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ABSTRACT
Although in many cases contracts can be made or ended digitally,
laws require handwritten signatures in certain cases. Forgeries are
a major challenge with digital contracts, as their validity is not
always immediately apparent without forensic methods. Illiteracy
or disabilities may result in a person being unable to write their
full name. In this case x-mark signatures are used, which require a
witness for validity. In cases of suspected fraud, the relationship of
the witnesses must be questioned, which involves a great amount of
effort. In this paper we use audio and motion data from a digital pen
to identify users via handwritten symbols. We evaluated the perfor-
mance our approach for 19 symbols in a study with 30 participants.
We found that x-marks offer fewer individual features than other
symbols like arrows or circles. By training on three samples and
averaging three predictions we reach a mean F1-score of 𝐹1 = 0.87,
using statistical and spectral features fed into SVMs.

CCS CONCEPTS
• Human-centered computing→ Accessibility technologies;
Gestural input.

KEYWORDS
digital pens, signature authentication, signing documents, pattern
recognition, handwriting recognition, motor impairments, accessi-
bility
ACM Reference Format:
Maximilian Schrapel, Dennis Grannemann, and Michael Rohs. 2022. Sign
H3re: Symbol and X-Mark Writer Identification Using Audio and Motion
Data from a Digital Pen. InMensch und Computer 2022 (MuC ’22), September
4–7, 2022, Darmstadt, Germany. ACM, New York, NY, USA, Article 111,
10 pages. https://doi.org/10.1145/3543758.3543764

1 INTRODUCTION
Even today, handwritten signatures are an important means of
identifying a person. Although electronic signatures offer a digital
alternative [20], the legal situation defines several cases in which a
physical handwritten signature with a pen on paper is necessary.
According to the National Telecommunications and Information
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Administration (NITA), cases include, for example, wills and testa-
mentary dispositions, family law cases (e.g. divorce or adoption),
insurance policy cancellations, products with significant health
risks, all documents for the transport of hazardous materials and
utility cancellations [87]. German law requires that every document
in which rights are exercised must be signed. However, unless oth-
erwise specified (e.g. testamentary dispositions [28]), documents
can be signed digitally [27]. In addition, the finance and business
sectors remain subject to physical signature requirements. Even to-
day, businessmen travel around the world for notarized signatures
in order to conclude valid contracts. In the financial sector, paper
checks and debit cards require signatures for validity. Decentralized
finance (DeFi) aims to offer a future alternative [22]. For instance,
in contrast to banks, smart contracts on the Ethereum blockchain
are not subject to human involvement. They can be seen as a type
of account in the network with a balance and functions defined
by code. Other accounts can irreversibly submit transactions to
execute these functions [23]. Smart contracts offer various advan-
tages, including anonymity, efficiency, transparency, and providing
financial services to people without access to bank accounts [22].
However, legal enforceability is still unclear [29], implying that
signatures are likely to remain important. Handwriting is unique
because it is influenced by training, physiology, and further be-
havioral factors over a lifetime [26, 83]. Verifying the validity of a
signature poses a major challenge. The mismatch of signatures on
mail ballots with signatures on file led to the rejection of thousands
of votes in the past 2012 and 2016 U.S. presidential elections [80].
In the same time period cases of signature fraud in Canada tripled
between 2014 and 2016 [21].

These examples demonstrate the need for security precautions
due to legal requirements and the risk of forged signatures. The
verification of x-mark signatures in particular, which must be wit-
nessed for legal validity, presents a major challenge. Illiteracy or
disabilities may result in an individual not being able to write his
or her full name. The witness of a x-mark signature serves to verify
and confirm the identity of the writer. Hence, x-mark signatures
do not provide sufficient security and validity for online signed
contracts when no witness is involved. In cases of suspected fraud,
witnesses of an x-mark signature must be investigated. Forensic
methods on the x-mark handwriting are limited to stroke features
like length, direction, orientation and connection as well as features
related to pen and paper, such as line quality and the crossing point
position [39, 43, 63].

In this paper, we present an approach to measure the individual-
ity of handwritten symbols with predefined writing instructions
for user identification. Recorded data of a digital pen when signing
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a contract can support in cases of suspected fraud to identify the
writer. We use measured motion data and scratching sounds from a
digital pen [78]. We conducted a user study with 30 participants as
a proof-of-concept and to collected a dataset of 19 different symbols
for authentication. On this dataset different feature sets, which
are fed into SVMs, are analyzed for their applicability for writer
identification. In our tests, we focus on small training sample sizes,
as it would be inconvenient for a person to write his or her x-mark
signature several times before the proposed system is able to iden-
tify the handwriting. We show that by combining audio data – of
the scratching sound that the pen tip makes when it moves across
the paper – with 3D acceleration and gyroscope data of the pen,
just three training samples of a symbol are sufficient to reach an
average F1-score of over 87 % on writing three test symbols. In
addition, alternative symbols were identified that are easy to draw
and, with our approach, reach higher F1-scores than commonly
used x-marks.

2 RELATEDWORK
Signature verification can be divided into offline [84] and online
approaches [12]. Offline verification usually requires signature im-
age analysis for proofing one’s identity [37, 57]. Therefore, it only
relies on features from the signature image. Skilled forgers imi-
tate the style of a signature to claim a person’s identity. Online
approaches use data recordings of the writing process to identify
user-specific features. The larger number of features compared to
offline approaches usually results in higher accuracies [45] and
makes it more difficult for forgers to mimic a signature. As digital
pens usually implement online-verification [89], we here briefly
review online approaches related to digital devices and handwriting
as well as digital pens.

Smartphones are plausible candidates for e-signatures. Beside
their integrated authentication features, signatures drawn with the
finger on the display have been proposed as a feasible alternative
[76]. In addition to the visual representation, features such as sound
and vibration can also be measured via the embedded motion sen-
sors on the input device [92, 93]. Several classification methods
have been applied on pictorial and force-related features including
Dynamic Time Warping (DTW) [24, 70, 95], Hidden Markov Mod-
els (HMM) [25, 47, 66], Neural Networks [3, 46, 53, 81] as well as
Support Vector Machines (SVM) [10, 34, 35] and Random Forests
(RF) [64]. More recently, smartwatches gained attention for authen-
tication purposes. For instance, drawing gestures [58] or signatures
in the air [5, 14, 36, 56, 61, 65, 68, 86] can offer an unobtrusive au-
thentication method [13]. The motion of a pen can also be tracked
by wrist-worn devices for authentication [33, 60] and for recog-
nizing text [75] or gestures [11]. In addition, other smartwatch
measurements, such as blood volume changes, can increase the
reliability of a signature belonging to a certain person [73]. The
bending of fingers contains user-specific features [2] as well as arm
movements [74], hand gestures [99] and even simple button presses
can differentiate users [72]. In the vicinity of the pen, the scratching
sound that the pen tip makes when it moves across the paper can
serve as a distinguishing feature [19, 59, 100]. Via inaudible sound
signals from a smartphone, vertical movement variations of the pen
can be estimated from the reflected sounds [15]. However, it should

Figure 1: The 3D-printed pen prototype (𝑤 = 12𝑐𝑚×𝑑 = 1.5𝑐𝑚)
based on [78] with improved case (added a pen grip).

be mentioned that audio alone is not secured against replay attacks
[93] and sensor data alone are not sufficient for a valid signature
according to the legal situation [18].

Digital pens emit ink on the paper for legally valid contracts and
measure related handwriting features, mostly related to the mo-
tion of the pen [32, 42, 69, 90]. Companies like Anoto [1], Wacom
[16], and Stabilo [30] offer digital pens for education and industrial
applications. In addition, 3D Systems introduced a haptic pen in-
put device that can be utilized to write signatures in the air [17].
Modular concepts for digital pens have been proposed to allow
users to create their own applications [88] with different input and
output modalities [52, 55, 91, 97]. Integrating fingerprint sensors
[85] provides additional security mechanisms, e.g. for biometric
authentication in pharmaceutical digital audits [1]. The pressure on
the pen grip is another source for individual handwriting features
[7, 9, 40, 51] and also pressure applied to the surface is a relevant
feature [8, 67]. Pictorial features can not only be obtained from
cameras [82] but also via magnet tracking, which has been used for
sketching on the back of the hand [77] and signatures [49, 50]. Com-
binations of audio and motion data have been applied for pen-based
handwritten digit recognition [78].

In contrast to related work, we explore the applicability of simple
and easy to draw symbols for user authentication. Along with
predefined writing trajectories, authentication becomes particularly
challenging, because forgers do not have to fully learn another
person’s handwriting. Furthermore, as few samples as possible
should be used for training in order not to stress users who are only
able to produce simple x-mark signatures. As previously applied for
handwritten digit recognition [78], we combine audio and motion
of a digital pen for our approach.

3 PROTOTYPE
Our prototype is based on Pentelligence by Schrapel et al. [78].
Data is transmitted via USB to the PC for further analysis. The inte-
grated contact microphone samples audio data at a rate of 7.1 kHz
and 3D accelerometer as well as 3D gyroscope measurements at a
rate of 800 Hz. Ambient noise is attenuated by the housing, thus
mainly scratching sounds are measured during writing. Symbols
and strokes are separated by detecting when the pen tip touches
the writing surface. For this purpose, a pin is soldered on the spring,
which is connected to electrical ground on the PCB. When the pen

210



Sign H3re: Writer Identification Using Audio and Motion Data from a Digital Pen MuC ’22, September 4–7, 2022, Darmstadt, Germany

tip touches a surface, the pin on the spring of the ink cartridge
closes a contact to the PCB for identifying writing.

In contrast to the earlier prototype of Schrapel et al. [78] we
improved the case by adding a pen grip to constrain the ways the
pen can be held. This reduces one source of intra-user variability
and helps to capture the way the pen is held in the motion data.
Figure 1 shows the prototype printed with a Keyence AGILISTA and
the corresponding 3D model with the position of the internal PCB.

4 USER STUDY
We conducted a study to collect a dataset of various easy to draw
symbols. In order to adhere to a skilled forgery setup, we gave
instructions regarding the order and direction of the strokes of each
gesture. Figure 2 on the right, shows our gesture set with predefined
writing instructions. Each of our selected symbols just consists of a
few strokes and taps, since we aimed to analyze the individuality
of symbols that are comparable in complexity to x-mark signatures.
For x-markswe use themost frequently occurringwriting trajectory
in signing tasks [63]. In addition, common gestures from related
work [38, 42, 48, 62] were selected to analyze their applicability
for writer identification. In total 19 gestures were selected for our
study.

We invited 30 volunteers aged 18 to 56 years (𝑀 = 25.6 years,
𝑆𝐷 = 10.3 years) including 5 female and 25 male individuals. Two
of the male participants were left-handed writers. All participants
reported feeling well and rested, which is important because fatigue
affects handwriting [4]. Our study procedure was adapted from
Schrapel et al. [78]. The study was conducted in a quiet office
environment to avoid interfering the internal audio measurements
and to allow the participants to focus on their tasks. We began by
introducing our prototype and the study procedure. We stated that
we intended to collect and analyze gestures with the digital pen.
The participants were instructed to repeatedly write a symbol on
a 21.0 × 29.7 cm white squared paper with a box size of 11 × 14
mm and 15 boxes per row. The symbol and its writing instruction
was displayed on a nearby screen. To simplify the selection of
individual symbols, the writing of a symbol was confirmed with
a short beep and the current count was displayed with a green
background. Symbols were cropped in time from the data stream
by storing the data from 20 ms before to 20 ms after the pen tip
touched the paper. Between two strokes more than 500 ms had
to elapse to be recognized as two different symbols. Figure 2, left,
shows a participant during the study procedure. All 19 symbols
were collected in random order. After writing a symbol 20 times,
another symbol was displayed until all symbols were written. When
a participant accidentally wrote a symbol before hearing the soft
beep sound, used the wrong writing instruction or wrote a wrong
symbol, the samples were discarded and repeated. This ensured
that a clean and balanced data set was created.

5 RESULTS
We analyzed the collected dataset in order to investigate the indi-
viduality of the handwritten symbols. Here, we focus on the use
of a small number of training samples with SVM classifiers, as it
would be inconvenient, e.g. in the case of signing contracts, to give
one’s own (symbol-) signature many times before an identification

Figure 2: Study setup and gestures. The photo shows a partici-
pant writing symbols on squared paper. The screen displayed
symbols with writing instructions. The set of symbols is vi-
sualized on the right. The arrows and numbers represent the
writing direction and stroke sequence, respectively.

system can be used. Our total dataset consists of 11,400 samples
including 380 samples per user with 20 samples for each of the 19
symbols.

5.1 Feature Creation
For our analysis, we decided to evaluate different preprocessing
steps in the frequency domain for keeping the length of the result-
ing feature vector constant among the cropped samples [54, 98]. To
create the feature vector, we first convert the audio signal of each
sample into spectral components using a Fast Fourier Transforma-
tion (FFT). This is done by splitting the signal of the symbol into
one, two, or three equal parts and then applying the FFT to each
part. By splitting the data stream, a time component is integrated
into the feature vector which may contains additional information
about the time depended writing speed and scratching sounds. After
normalizing each resulting set of amplitudes by the maximum value
and adding the array to the feature vector, statistics are calculated
from the raw audio signal. We use the mean and median value as
well as standard deviation, and variance of the signal, normalized
in the interval [0,1]. In addition, we count the number at which the
normalized signal reaches the maximum and minimum value. The
time interval between two peaks is also counted. From the counted
numbers we calculate the previously applied statistical metrics,
normalized by the signal length. This integrates general features of
a handwriting into the feature vectors. Then, the same procedure is
repeated for the motion data by first summing up the accelerometer

Figure 3: The block diagram depicts the algorithm for calcu-
lating a feature vector. Each sensor data is processed sepa-
rately and then concatenated to a feature vector.
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Figure 4: F1-score analysis of different feature sets. The tables on the left show the analyzed feature vector generation methods
for the visualization on the right. The box plots visualize the F1-scores of different feature vectors including signal splitting,
FFTs, statistical features, and downsampling.

axes and gyroscope axes separately. For each summed sensor signal
FFTs and statistical features are calculated using the same methods
as for audios. The most relevant feature components for audio in
handwriting recognition are located below 1 kHz [78]. To correctly
measure the relevant features, the signal must be sampled with
at least twice this cutoff frequency [79, 94]. Thus, we also added
the downsampled audio signal to 2 kHz to the analyzed feature set.
For motion we downsampled the signal to 300 Hz. Downsampling
attenuates high-frequency noise and can may support a classifier
to focus on user-specific features. Figure 3 visualizes the process of
generating the feature vector sets.

5.2 Feature Analysis
To analyze the symbols on their suitability for writer identification,
we first optimize the SVM parameters and then continue by cross
validating on each given feature vector set. The SVM hyperparam-
eters kernel (linear or rbf) and cost C (1, 10, 100, 100) are optimized
via grid search [71]. The goal of this initial grid search process is to
recognize the 30 writers on all symbols as accurately as possible for
each previously calculated feature set. Using the established SVM
parameters on a given preprocessed dataset, we randomly split the
data of each writer into 70 % for training and 30 % for testing. Hence,
for each training iteration the training set consists of 266 samples
per writer. The SVM is then trained using in total randomly picked
7980 samples to identify the 30 users. We repeat the training and
test procedure for 25 times on each corresponding feature set and
note down the resulting metrics, i.e. accuracy, precision, recall, and
F1-score. As proposed by Levy et al. [57], for each feature set we
use the same set of random seeds to obtain comparable results. We
performed the procedure on 41 different feature sets resulting in a
total of 1,025 tests (41 feature sets × 25 training and testing).

Figure 4 on the right shows the results of our feature vector
tests sorted by the maximum average F1-score. We obtained an
average (macro) F1-score of 𝐹1 = 0.78 (𝑆𝐷 = 0.05) with comparable
recall (𝑅 = 0.78; 𝑆𝐷 = 0.12) and precision (𝑃 = 0.79; 𝑆𝐷 = 0.12) on
the best performing feature set. Stating the average AUC score of
𝐴𝑈𝐶 = 0.96 (𝑆𝐷 = 0.03) and equal error rate 𝐸𝐸𝑅 = 0.09 (𝑆𝐷 = 0.04)
is misleadingly high in our case, because for each of the 30 classes

(writers) there exist 114 positive and 3,306 negative test samples.
Thus, we will continue reporting F1-scores. In general we derive
from the tests that the statistical features have a substantial contri-
bution to the distinguishability of users, and by splitting the audio
signal into three parts further improvements are achieved. Com-
bining audio and motion measurements from pens for user iden-
tification (𝐹1 = 0.74; 𝑆𝐷 = 0.12) clearly outperforms audio alone
(𝐹1 = 0.53; 𝑆𝐷 = 0.12) and motion alone (𝐹1 = 0.46; 𝑆𝐷 = 0.11).
On all our 41 SVM hyperparameter optimizations, linear kernels
showed better results than Gaussian kernels (rbf ). In 31 cases a
cost parameter of 𝐶 = 10 was selected, followed by five cases using
𝐶 = 1000 (selected by the SVMs trained exclusively on statistical
features) and three cases using 𝐶 = 100. A larger C value corre-
sponds to a smaller margin hyperplane and defines how strongly
a sample is penalized inside the margin. The best performance is
achieved when the raw audio of the samples is splitted into three
equal parts where of each statistical features and FFTs are added to
the feature vector. Data of accelerometer axes and gyroscope axes
are downsampled to 300 Hz and summed up respectively. The FFT
and statistical metrics are calculated from each of the two summed
signals and added to the feature vector. Splitting of the summed mo-
tion signals is not applied. The grid search on this best performing
feature set resulted in using a linear kernel with a cost 𝐶 = 1 for the
trained SVMs. For the best performing feature set we repeated the
grid search test on three, four, and five-degree polynomial kernels
and a sigmoid kernel, again obtaining the best results with a linear
kernel with a 𝐶 = 1.

5.3 Symbol Analysis
We now analyze symbols with respect to their suitability for writer
identification by using the best-performing feature set and corre-
sponding SVM hyperparameters. The cross validation test is re-
peated by using one, three, five, and ten training samples. For each
training size on each symbol we perform 25 tests by using a fixed
set of random seeds to pick training and test samples. In total 1,900
multi-class SVMs were trained and tested (4 training sizes × 19
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Figure 5: Training size and symbol analysis. The left plot
depicts the impact of training sample count on the average
F1-score over all symbols. The right plot compares the F1-
scores of each symbol with one training sample. We use the
best performing SVM hyperparameters and feature set for
the results. One training example was chosen to illustrate
the most challenging use case.

symbols × 25 tests). We analyze the influence of the training set
size on the F1-score of the classifiers for each symbol.

In Figure 5 on the right, the symbols are displayed sorted by the
highest average F1-score with one training sample. On average, we
obtain an F1-score of 𝐹1 = 0.55 (𝑆𝐷 = 0.065). Arrow achieves the
highest F1-score (𝐹1 = 0.66; 𝑆𝐷 = 0.035), followed by Circle Left
(𝐹1 = 0.658; 𝑆𝐷 = 0.035). Cross showed an average performance
within the overall confidence interval (𝐹1 = 0.57; 𝑆𝐷 = 0.029).
Right had the worst performance (𝐹1 = 0.47; 𝑆𝐷 = 0.035). A one-
way ANOVA revealed a statistically significant difference of the
F1-scores between at least two symbols (𝐹 (19, 25) = 61.02, 𝑝 <<

0.001). Hence, we performed a post-hoc Tukey test to identify
which symbol pairs have a significantly different F1-score. Cross
shows a significantly different F1-score to twelve of the symbols
including: Arrow, At, Circle Left, Double Tap, Down, Equals, Plus,
Question Mark, Right, Single Tap, Square, Triangle. The symbol with
the best performance,Arrow, showed only no statistically significant
difference to Circle Left (𝑝 = 0.9 >> 0.05).

Figure 5 on the left, depicts the impact of the number of train-
ing samples on the F1-score. With increasing training sample size
we obtain more accurate results. A one-way ANOVA revealed a
statistically significant difference of the F1-scores between at least
two training sizes (𝐹 (4, 475) = 3940.85, 𝑝 < 0.001). A subsequent
post-hoc Tukey test showed a statistical significant difference of the
F1-scores between all group pairs meaning that a larger training set
significantly improved the classifier’s performance, as one would
expect. In addition, we wanted to find out whether the precision
and recall measures have comparable performances. A one-way
ANOVA indicated statistically significant differences between both
measures (𝐹 (8, 475) = 3125.71, 𝑝 < 0.001). A subsequent post-hoc
Tukey test found no significant difference between recall and pre-
cision when ten training samples are used (𝑝 = 0.1 > 0.05). On
average the precision is slightly higher by Δ = 1.2 % (𝑆𝐷 = 0.38 %),
which still indicates an acceptable tradeoff between the two mea-
sures.

Ideally, the classifier would reject all other writers and only
accept true samples of an individual. A higher precision means
that the SVM is more accurately rejecting other writers. While a

higher recall results in a more accurate identification of the writer.
Therefore, precision is more important in authentication tasks. The
F1-score is the harmonic mean of both measures and reaches in an
ideal case a value of 1.

5.4 Majority Voting
As contracts might require a person to sign a document several
times, we analyze the impact of averaging classification results. For
this purpose, we used the predicted results of the previous tests
and average all possible combinations without duplicates by the
formula:

(𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘 )! . Where 𝑛 is the number of predictions and
𝑘 is the number of voting samples. Using each previous training
sample sizes 𝑡 = [1, 3, 5, 10] and the corresponding test sample
sizes 𝑛 = [19, 17, 15, 10], we analyzed 𝑘 = [1, 3, 5, 7, 9] voting test
samples. The user is then determined in a voting result based on
the maximum occurring class.

In Figure 6, left, the impact of majority voting on the F1-score
and training sample size is plotted. The lines are the determined
mean values of the F1-scores for each training sample size. The col-
ored shades indicate the standard deviation around the mean values.
For each training size a one-way ANOVA revealed significant dif-
ferences between at least two groups of majority voting F1-scores
(𝐹 (5, 475) = [727.5, 1805.9, 2405.0, 2263.5], 𝑝 < 0.001). A subse-
quent Tukey test found significant differences for each training size
between all corresponding numbers of voting samples. There was
no significant difference between 7 and 9 voting samples using 10
training samples (𝑝 = 0.127). However, this result can be related to
the limited amount of 20 samples per symbol and user. To exemplify
the impact of majority voting, Figure 6, right, depicts voting results
on the symbols Arrow, Cross and Right. On average three voting
samples increase the F1-score by Δ = 8.9 %(𝑆𝐷 = 3.3 %). We derive
that majority voting positively effects writer identification and that
signing a contract with three symbols allows a more reliable user
identification than with just one symbol. Symbols such as Arrow
were found to have a significantly higher potential of accurately
identifying users than Cross with our approach.

Figure 6: Majority voting analysis. The left plot shows the
average impact of the number of voting samples on the F1-
score across all symbols. The plots on the right depict the
impact of the number of voting samples on the symbols
Arrow, Cross and Right.

6 DISCUSSION
Identifying writers by handwritten symbols is a major challenge
in cases of suspected fraud. So far, the focus has been on ordinary
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signatures, but in cases of illiteracy or disabilities, a writer may be
limited to signing with x-marks or similar easy to draw symbols.
At least three people have to be involved in the process of a valid
x-mark signature [18]. This includes the writer, the contractor, and
a witness. Cases of suspected fraud are associated with a high finan-
cial expense, as the signatures have to be analyzed using forensic
methods and the relationships of witnesses have to be investigated.
Additional security mechanisms can contribute to identify forg-
eries. One challenge in collecting samples of handwritten symbols
is that writers of x-mark signatures may tire faster. Thus, a classifier
must be able to reliably distinguish writers with as few samples as
possible.

Our results show that combining audio andmotion data of digital
pens can more reliably identify writers by handwritten symbols
than single sensors. This confirms the finding by Schrapel et al.
[78] that both sensors contain relevant and specific features of a
symbol signature. In addition, this is in agreement with the results
of Muramatsu et al. that combined sensor approaches increase the
reliability of online verification approaches [67]. Splitting the in-
coming data stream is advantageous for scratching sounds in order
to integrate a time component into the features. In contrast, higher
recognition rates were achieved when motion data of a symbol
were not splitted. In addition, downsampling the measurements to
300 Hz was beneficial on motion data, while using the raw audio
signal at 7.1 kHz resulted in higher scores. Compared to previous
approaches that used spectral analysis [54, 98], our results show
the importance of the time component in signature verification
tasks. Additional statistical features of both sensors can further
increase the accuracy of the classifier. Hence, the time component
of the signals is more important for audio measurements, while the
high-frequency components of motion data contain less informa-
tion. This can be attributed to the writing speed. Vibrations on the
paper are more likely to occur at lower frequencies (up to 150 Hz).
Produced scratching sounds are modulated by the writing speed
[59]. Small irregularities of the paper surface act as a carrier that
influence the pitch of the produced scratching sounds. In addition,
the volume is influenced by the pressure on the paper [44]. Together
with loop-back sounds that propagate via the bones of the hand,
resonance properties of the writing surface and the way the pen is
held, unique features are produced. This allows relatively accurate
identification of a writer with just a few training samples.

Our analysis of the individual symbols shows that certain sym-
bols include a higher diversity of individual characteristics for our
participants. This can be attributed to the individual writing style
and the way of holding the pen. While the x-marks achieved a
uniform performance over the analyzed symbols, the F1-scores
of the three best performing symbols Arrow, Circle Left, Question
Mark exhibit a significantly higher reliability in identifying writ-
ers. However, arrows on contracts are commonly used to indicate
signing fields and question marks may also be misinterpreted. In
addition, according to the legal situation in Germany, a contract
must be signed with three crosses for validity [18]. With three
crosses as a training set, the F1-Score already increases to about
75 % in comparison to 55 % with only one training cross. In the
case of suspected fraud, it would be required to write at least three
crosses again and select a user based on majority voting. With this
approach the F1-Score increased to over 80 %. The more training

and test samples are given for majority voting, the more reliably the
30 users were identified. With 7 test majority samples, we already
reached an F1-score of over 90 % on x-marks by using three training
samples. It should be noted that x-mark signatures are particularly
challenging due to their structural simplicity. A skilled forger can
easily learn the trajectories of a symbol [39, 43, 63]. However, the
scratching sounds that propagate via the loop-back channel over
the hand bones contain individual features that make forgeries
more challenging.

Compared to previous research on handwritten digit recognition
with audio and motion data [78], we showed that combining both
sensors allows identifying writers. Since these features are writer
specific, generalization of handwriting recognition classifiers is
challenging. Schrapel et al. circumvent this problem by retraining
their neural networks on samples of the writer. This assumes that
the current writer is known and individualized classifiers already
exist. However, it could not be determined whether the current
writer is already known to the system. Our research has closed
this gap and shown that the writer can be detected by individual
symbols. This detection allows automatic selection of a user-specific
classifier and support for multiple users of a pen. In addition, the
presented approach opens up new application scenarios.

We will now discuss the components and challenges of such a
possible future x-mark signature verification application. In this
context, our prototype may serve as an additional security ele-
ment in cases of suspected fraud. The system components involved
are illustrated in Figure 7. A full implementation would have to
be integrated into a suitable public-key and document archive in-
frastructure. When signing a contract the pen would encrypt and
cryptographically sign the measured data along with a unique pen
hardware identifier and timestamps. The date and time on the phys-
ical contract allows assigning a digital timestamp of the pen to a
signing event. Furthermore, the metadata of the contract can serve
to enable unique identification. To additionally prevent subsequent
modification of the stored pen data, each signing event could be
irreversibly stored in a blockchain or on a trusted, secured server.
Although both a blockchain and a server structure would be possi-
ble on the backend [96], there is a major challenge in making the
stored data immutable with a central solution. An attacker could
try to delete or modify the data to prevent later verification.

When signing a contract, only the person authorized to sign with
crosses uses the digital pen. In case of suspected fraud, all persons
involved (e.g. contractor, witnesses and writer) would write at least
3 samples of the symbol, e.g. the x-mark, with the digital pen that
was used when signing the contract. These samples are used to
verify the signature on the contract. As shown in Figure 6, the more
samples are written, the more reliably a person can be identified by
majority voting. To prevent the writing of invalid samples during
this observation, another neutral person (investigator) monitors the
process. The neutral person ensures that all writers give samples
of the symbol with the same writing instructions as found on the
physical contract in the same environment, or at least with compa-
rably low ambient noise level in a similar environment. While the
pen is not in use, the ambient noise level may be measured so that
comparable conditions can be created later. Likewise, signatures
could be automatically rejected in noisy environments. In order to
verify a symbol signature, data previously stored in the blockchain
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Figure 7: Proposed application scenario: The encrypted mea-
sured motion and audio data of a signature is stored in the
blockchain or on a trusted server and can be retrieved for
subsequent writer identifications. The data is encrypted and
used for training an SVM. Additional signatures or symbols
are then tested on the trained SVM.

or on a trusted server is used to train an SVM. This allows to later
determine a probability that the signature on the contract belongs
to a specific person in question. The more contracts were previously
signed with our digital pen by an individual, the more reliable the
identification system becomes. Since audio modulates the scratch-
ing sounds on the surface and by propagating though the hand,
the signal includes individual characteristics. However, in case of
intermediate hand surgeries or diseases those characteristics might
change. Thus we do not consider such cases. In addition, it may
happen that a writer merely claims not to have signed a document.
In these cases, the person would try to fool the system by, for ex-
ample, holding the pen differently or pressing the pen tip harder on
the sheet of paper. It is likely that the resulting x-mark signatures
differ from other previous contracts of the writer. Differences could
also be determined by forensic analysis. Furthermore, stored signa-
tures may already exist in the backend from other valid contracts
that can be used for analysis. Since the handwriting changes in the
course of life [26, 83] a time limit of used signatures for training an
SVM would be necessary. Besides this application scenario, an addi-
tional security mechanism could be implemented, e.g. for biometric
authentication in pharmaceutical digital audits [1]. In addition to
the fingerprint sensor [85], our approach would recognize x-marks
while filling out forms. Since fingerprint sensors in mobile devices
can be easily fooled by fake fingers, e.g., made of silicone [31], our
mechanism could provide additional confidence that the pen is held
by an authorized user.

The results of our study and the example application scenario
show limitations of the presented prototype. First, the acoustic sig-
nals might also include sounds from the environment. Even though
the scratching sounds are considerably louder than environmental
noises while writing, our approach is limited to quiet office envi-
ronments. The influence of environmental noise has to be further
investigated in future studies. In addition, the paper used for sign-
ing a contract can have an influence on the measured scratching
sounds. Therefore, scratching sounds on different surfaces and pa-
pers should be further investigated. Furthermore, our approach
must be limited to small numbers of writers. In our use case, all
contract partners are known and therefore a classifier can more
easily identify individual features of the writers. We assume that

in a usage scenario with a significantly larger number of writers,
there may be more false positive classifications. Hence, we limit
our approach to contracts which are likely to involve a limited
number of contract partners. To further increase the reliability with
a significant higher number of users the pen could be extended
to measure the force of holding the pen in the hand [6, 41] and a
fingerprint sensor [85].

7 CONCLUSION
This paper presented an approach to identify users via handwritten
symbols using a digital pen that measures audio and motion data. A
study with 30 participants was conducted to evaluate the approach
on 19 candidate symbols. The collected dataset consists of 11,400
samples resulting from 380 samples per user with 20 samples for
each of the 19 symbols. The proposed method has three main con-
tributions: (1) a preprocessing algorithm for combining audio and
motion data from digital pens in the frequency domain to identify
writers via handwritten symbols, (2) an analysis of different fea-
ture sets fed into SVMs on their suitability for writer identification,
and (3) an examination of various symbols including x-marks on
their ability to identify writers based on small training sets in an
online-verification task.

We found that combining scratching sounds of a pen tip when
moving on a sheet of paper with the motion of a pen outperforms
single sensor approaches to identify writers via handwritten sym-
bols. Signal representations in the frequency domain were fed into
SVMs to establish our results. To the best of our knowledge, we are
the first to unite audio and motion data for writer identification via
handwritten symbols. The approach achieves an average F1-Score
of 76 % when using only three training samples and 17 test sam-
ples per user and symbol. Applying majority voting on three test
samples increases the average F1 score to 87 %. We were able to
show that certain symbols have more distinctive features despite
having similar writing trajectories. The symbol Arrow achieved the
highest F1-Score of about 91 % with three training samples and
applying majority voting on three test samples. X-mark signatures
reached significantly lower F1-Scores of about 82 % in the same
configuration.

The proposed system may be used as an additional security
mechanism for illiterate persons or persons with motor disabilities
to support investigators in cases of suspected fraud. In this applica-
tion scenario, the challenges of writer identification are particularly
high. As few symbol samples as possible must suffice to identify
the writer. In the ideal case, the signature on the contract should be
sufficient to train a classifier. The presented approach allows this,
but is limited to low-noise environments, such as offices. Therefore,
further research is required in the future on how external noises
can be suppressed. A long-term study is also required to investigate
the change of handwritten x-mark signatures of single persons as
handwriting changes in the course of life.
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