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ABSTRACT

Explainability is an emerging quality aspect of software systems.
Explanations offer a solution approach for achieving a variety of
quality goals, such as transparency and user satisfaction. There-
fore, explainability should be considered a means to an end. The
evaluation of quality aspects is essential for successful software
development. Evaluating explainability allows an assessment of the
quality of explanations and enables the comparison of different ex-
planation variants. As the evaluation depends on what quality goals
the explanations are supposed to achieve, evaluating explainability
is non-trivial. To address this problem, we combine the already
well-established method of expert evaluation with goal-oriented
heuristics. Goal-oriented heuristics are heuristics that are grouped
with respect to the goals that the explanations are meant to achieve.
By establishing appropriate goal-oriented heuristics, software engi-
neers are enabled to evaluate explanations and identify problems
with affordable resources. To show that this way of evaluating
explainability is suitable, we conducted an interactive user study,
using a high-fidelity software prototype. The results suggest that
the alignment of heuristics with specific goals can enable an effec-
tive assessment of explainability.
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1 INTRODUCTION

The evaluation of quality aspects is a major factor in the field of
software engineering. Evaluation methods can be used to verify
whether the predefined quality requirements have been met. In
addition, metrics enable the tracking of improvements in quality.
Furthermore, the comparison of two systems with respect to a
specific quality aspect are enabled. Due to the importance of this
topic, there are already several established methods that support
the evaluation of many quality aspects [18, 19]. However, with the
emergence of explainability as a new quality aspect, the research
community is faced with a new challenge. As explainability can be
expected to gain more ground in the industry of the future, it is in-
creasingly important to find suitable ways to evaluate explanations,
in order to enable a successful software engineering process.

Explainability has a special nature compared to other NFRs (non-
functional requirements). Explanations serve as a means to achieve
a variety of quality goals [5]. They are required, for example, so
that users have more trust in the system, enjoy using it more or
have better insight into the inner workings of the system. This
particular property of explainability needs to be taken into account
when attempting to evaluate it as an NFR.

The majority of research works concerning explainability fo-
cus on the way in which explanations should be provided [23].
This covers not only the contents of the explanations, but also dif-
ferent presentation forms, such as textual explanations or visual
examples [1]. In contrast, this work will focus on the evaluation of
explainability. We do not intend to discuss how to design explana-
tions that are the most suitable for a certain scenario or user group.
Instead, we will investigate ways to evaluate the explainability of
already existing software systems, with respect to the intended
goals of the explanations.

We present the concept of goal-oriented heuristics, and examine
their feasibility for evaluating explainability. Goal-oriented means
that heuristics are grouped based on the goals that are supposed
to be achieved by the explanations, so that the evaluation can be
done in accordance with these goals. The intended goals of the
explanations are defined by the group of people who commission
the software system. This group of people is usually represented
by the product owner. We focus on the goals of the product owner,
as these are the goals that software engineers are working towards.
By focusing on these goals, we ensure that the evaluation of ex-
plainability determines whether the explanations accomplish what
the product owner intended them to do.
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2 BACKGROUND AND RELATED WORK
2.1 Explainability

Over the last decades, there has been a plethora of related work
on explainability as a non-functional requirement, especially in
the context of explainable artificial intelligence [5, 23]. Chazette
et al. [5] performed a thorough systematic literature review on
the topic. They found that the explainability of a software system
depends on the addressee of the explanations and context of use, but
also on the explainer, i.e., the entity that provides the explanation.
Other works have argued for the importance of the intent or goals
of an explanation [9, 13, 35]. Based on this related work, we define
explainability:

Definition: Explainability is the ability of a software to be
explained to an addressee, given a specific context of use and
depending on the goals of the explainer.

In most scenarios, the explainer is the software system itself,
providing explanations via its interface to explain itself to the user.
We call these systems self-explaining systems. In a case like that, the
system does not have its own intent or goal when providing the
explanations. Rather, it projects the goals of the product owner, who
provided their explainability goals when raising the explainability
requirements to the software.

Currently, research on explainability is often focusing on the
field of AL Machine learning models are made explainable to enable
the user to build more trust in the system. For example, the explain-
ability technique LIME "explains the predictions of any classifier in
an interpretable and faithful manner" [27]. In this paper, however,
we do not focus on the evaluation of such automatically generated
explanations in the domain of XAI. We want to evaluate the ex-
plainability of a system on a higher level. This means that we do
not want to gauge the ability of an algorithm to provide the correct
explanations. Instead, we want to evaluate whether the presented
information is appropriate with respect to the end-users and the
explanations’ intend.

Contemporary research has found that different users have differ-
ent explainability needs [5, 25, 32]. Supporting those needs, various
works argue that explanations should be personalized with regard
to their addressee [29, 34]. We aim to extend this concept of person-
alization towards the addressee by also incorporating the goals of
the explainer. In other words, explanations would be provided with
the goals of the explainer in mind and would in turn be evaluated
with respect to those goals.

Explainability interacts with a variety of other quality aspects
such as understandability, transparency and user satisfaction [5]. At
first glance, explainability is expected to have a positive influence
on those three NFRs. However, explainability may also compete
with them. Providing too much information within an explanation
might impede the user experience. Depending on the explainer’s
goals, pushing for higher transparency might come at the cost of
user satisfaction and decrease understandability [6]. With respect
to that, we hold that explanations should be evaluated with those
quality goals in mind.

Most related works focus on techniques and tools for providing
explanations. In comparison, the number of works that focus on
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the means to evaluate explainability is very limited [23]. In their
systematic literature review, Nunes and Jannach [23] found that the
majority of research papers on explainability do not include any
kind of empirical evaluation. Furthermore, most works that employ
empirical evaluation do so via user studies. A major downside of
user studies is that they can be very costly in terms of resources.
Heuristics enable expert evaluations in place of user studies, which
are much less resource intensive.

2.2 Metrics and Heuristics

A software metric is a measurement performed on a software, re-
sulting in a numerical value that describes to what degree a certain
aspect of the software has been fulfilled [12]. The aspect in question
has a direct impact on the quality of the software. Following the
definition of metrics, our goal-oriented heuristics should produce
a numerical value that is interpretable in terms of the degree to
which the goals of an explanation have been satisfied.

The aims pursued with a metric should be identified. Metrics
can then be developed and evaluated with respect to those aims.
The following goals are frequently mentioned in related works:

e Metrics should support the formulation of quality require-
ments [12].

e Metrics should enable the analysis of deviations between the
established quality requirements and the actual quality of
the system [10, 12].

e Metrics should pinpoint possible defects [10, 19].

Heuristics are a special form of metrics. Romanycia and Pelletier
reviewed many definitions of heuristics and concluded that heuris-
tics have a “rule of thumbishness” and that they “had to be useful
but need not guarantee success” [28]. In terms of software metrics,
this means that a heuristic is a reasonable, resource-efficient way
to get a measurement right with high probability, but there is no
guarantee that it will always produce exactly the correct value.

In 1990, Nielsen [22] introduced heuristic evaluation for usability
engineering. He proposes this method for the evaluation of the
interface design of software systems. Since explanations are usually
a part of a software interface, it is conceivable that the concept
of heuristic evaluation is also applicable to explanations. Nielsen
defines heuristic evaluation as a “method for finding the usability
problems in a user interface design” [21]. Thus, according to Nielsen,
heuristic evaluation focuses only on finding problems related to a
particular aspect. In this work, we use Likert scales to support the
application of heuristics. The use of Likert scales allows us to obtain
a first assessment of the quality of explainability, in addition to the
identification of possible problems regarding the explanations.

In usability engineering, heuristics are usually applied by experts.
For our heuristics, someone can be considered an expert if they have
a basic understanding of explainability and know basic terms and
concepts from the IT area. In the context of heuristic evaluation,
Nielsen stated that the evaluation becomes much more effective if
several evaluators accomplish the evaluation independently of each
other [21]. Therefore, this work will focus on heuristic evaluation
by multiple evaluators.

3 GOAL-ORIENTED HEURISTICS

Following the findings of related work, it can be seen that the goal
pursued by the explanations plays a major role in explainability.
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Unlike other NFRs, explanations can and must take many different
forms in order to achieve what is required. For example, long de-
tailed explanations are well suited in a context where the software
should certainly ensure that the user understands something. On the
other hand, in a context in which it is only important that the user
understands approximately, but should be able to do so very quickly,
long detailed explanations are very obstructive. Accordingly, de-
pending on the goal of the explanation, widely differing properties
of the explanations must be considered desirable. Hence, expla-
nations should be developed with respect to the particular goals
they are supposed to achieve. The basic idea behind goal-oriented
heuristics is to keep these goals in mind during the evaluation of the
explainability of a system. To this end, possible evaluation methods
must be mapped to the aspects that they are trying to measure, i.e.,
their goals. Figure 1 demonstrates this concept.

Goal, Goal,

Goal, Goal,

m+1~ Mp

Goal, and
Goaly
® Evaluation

M, - M, and M, ;- M,

Explainer

p+l

Figure 1: Applying Goal-Oriented Heuristics

The starting point is a set of various metrics for explainability
(M1 — Mp,). This set of metrics is established in section 3.2, based
on our finding from existing literature. In our work, we focus on
heuristics only. This initial set of heuristics is then divided into
disjoint sets based on possible explainability goals (see section 3.3).
In Figure 1, metrics M; — Mg were assigned to goal 1, metrics
Mg+1 — Mp were assigned to goal 2 and so on. The explainer in our
example seeks goals 1 and 3, meaning that metrics M; — My and
Mpy1 — My should be used.

3.1 Research Design

In order to investigate if the goal-oriented heuristic sets are more
effective than the ungrouped heuristic sets, we focus on two objec-
tives that metrics pursue. The first objective is to produce consis-
tent results. In other words, it is desirable that evaluators agree on
similar results. Otherwise, the evaluation might be too subjective.
The second objective of metrics is to detect differences in quality
between systems. If the heuristics are able to detect significant
differences between two systems, they are capable of revealing
differences in the quality of the explanations. Based on this, we
formulate the following research questions:

RQ 1 What are suitable heuristics for the evaluation of ex-
plainability?
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RQ 2 Do goal-oriented heuristics allow multiple evaluators
to better agree on how to evaluate explainability than
the ungrouped heuristics?

RQ 3 Are goal-oriented heuristics able to detect more sig-
nificant differences in terms of explainability than the
ungrouped heuristics?

Group Heuristics User Study w
N - According to
RQ1: Derive Suitable — Goals & RQ2: RQ3:
Heuristics from the Implement Interrater Significance
Literature Prototype Agreement Testing

Figure 2: Research Design

To answer the research questions, we performed three steps. The
first step was to find suitable heuristics to assess the explainability
of systems. To obtain a proper foundation, four known papers were
used to perform one forward and backward snowballing step to find
further papers that refer to the assessment of explainability. Based
on these papers, we then developed feasible heuristics. In the second
step, the heuristics were grouped with respect to possible goals.
Furthermore, a high-fidelity software prototype was implemented
to support the subsequent user study. The third step comprises a
user study with subsequent data analysis. The interrater agreement
is used to answer RQ2 and a significance test is used to answer RQ3.
Further details are given in chapter 5.

3.2 Developing Heuristics

Based on our findings from literature, we develop heuristics that on
the one hand help to assess the degree of explainability, and on the
other hand also pinpoint potential problems that exist regarding
explainability. These heuristics can be found in Table 1. It should
be noted that the heuristics are not complete, meaning that they
do not cover all aspects of explainability. Furthermore, they are not
universally applicable - for example, some heuristics can only be
applied to textual explanations, but not to visual examples. However,
this is not necessary, since our aim is only to show the possibility
of evaluating and improving explainability using goal-oriented
heuristics.

Heuristic M1 intends to verify that explanations are as simple
as possible. Baaj et al. [2] explicitly state that natural language is
desirable for explanations. This underlines the notion that technical
terms should also be avoided. The second heuristic is an established
method for measuring the complexity of texts. The Flesch Reading
Ease score calculates a score based on the number of words, sen-
tences and syllables [38]. Vultureanu-Albisi et al. [36] argue that the
number of words and the word length have great influence on the
quality of the explanation. Therefore, heuristic M2 is a good way to
assess this matter. Notably, heuristic M2 requires a calculation with
cannot be easily done by hand, so it is rather effortful compared
to the other heuristics. Vultureanu-Albisi et al. [36] state that sen-
tences should have a logical relationship to each other. There should
be no contradictions between sentences and, if possible, they should
follow a common thread, as that increases the understandability of
the explanation. This concept is reflected in heuristic M3.
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Table 1: Heuristics to Assess Explainability

ID Heuristic ‘ based on ‘

M1 The language is simple — it does not contain any technical words that the target user does not understand. [2]

M2 Flesch Reading Ease Score (computable score used to assess the readability of texts) [36, 38]

M3 The elements in the explanation are logically coherent. [36]

The explanation follows a common thread and contains no contradictions.

M4  For each input parameter, it is clear why the system needs the input and what it is used for. [3,4,11]

M5  Itis clear how the parameters that the user enters are connected to the events being explained. [4]

M6 It is clear which aspects the explanation targets. [16, 17, 26]

M7 The explanation is easy to find. [8, 17, 20, 33]

M8 The explanation is not disruptive and does not interfere with the general use of the system. [15, 24, 37]

M9 The explanation is understandable with the prior knowledge of the users of each target group of the system. | [7, 13, 36]
M10 The explanation is adaptable to the users’ level of prior knowledge. [7, 13, 36]

According to Carvalho et al. [4] an explanation should reflect
the importance of its own parts and features. Likewise, for each
output the system generates, the user should be able to comprehend
which input had the greatest influence. Furthermore, Hunt and
Price [11] state that an explanation should keep the user informed
why certain questions are asked. In other words, it should be clear
why certain input parameters are being requested. Especially when
it comes to privacy related data, so-called privacy explanations
should inform the user what the data will be used for, according
to Brunotte et al. [3] Based on these statements, the heuristics
M4 and M5 were established. The mental model that can be built
or improved through explanations is another important property
of explainability [16, 17, 26]. A mental model should reflect the
real system model as closely as possible. Notably, this criterion is
difficult to evaluate to its full extent without user studies. However,
starting with a necessary criterion for enabling a correct mental
model, we can get a first estimation for this. Explanations need to
state which aspects of the system they refer to (M6). If this criterion
is not fulfilled, the user cannot generate a correct mental model.

Regarding user satisfaction with explanations, some established
usability heuristics can be applied to explainability. When custom
Ul elements like dialogs are created for the explanations, common
usability guidelines should be considered. Two aspects that are
particularly important are captured in the heuristics M7 and M8.
According to Langer et al. [17] explanations should be easy to use.
To this end, they should first of all be easy to find. Having the users
search for an explanation can be very frustrating for them, and may
result in the explanations not being used at all. Furthermore, using
the explanations should increase the enjoyment of using the system
itself [15, 24, 37]. Therefore, it is crucial for the explanations to not
be disruptive and to not interfere with general use (M8).

Another important aspect of explanations is the ability to adapt
to the user [4, 13, 31]. If a system has diverse target users, possible
differences in prior knowledge must be taken into account [7, 13, 36].
In some scenarios, explanations should be adaptable to the user,
i.e., to their prior knowledge. This would allow every target user
to receive understandable information while avoiding the distur-
bance of advanced users with unnecessary additional information
(M10). Either way, it is critical that the explanations shown to the
user are comprehensible to them within the scope of their prior
knowledge(M9).
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3.3

Depending on the purpose of an explanation, there are different
properties that are required in order for the explanation to achieve
its goals. Consequently, not all explanations can be evaluated ac-
cording to the same criteria. On one hand, explanations may be
designed to help the user understand the inner workings of a sys-
tem. On the other hand, explanations may aim to increase overall
user satisfaction with the system. In such a case, the inner workings
of the system would not necessarily be the focus of the explana-
tion. Furthermore, explanations may be used to make the system
usable for different user groups. Hence, adapting the explanations
to the users’ needs is very important. In this section, we group
our previously defined heuristics according to the purpose of the
explanation. To this end, we establish four categories for heuristics.
This classification is shown in Table 2. Within other contexts, these
four categories are also known as NFRs. The reason for this is that
goals that can be demanded of software are usually requirements
that fall into this generally defined set of NFRs. Since explainability
refers to software systems, the goals pursued with explanations
are often similar to known NFRs. Nevertheless, they are still re-
ferred to as goals in order to clearly distinguish them from general
requirements.

Grouping Heuristics

Table 2: Grouping of the Heuristics

l Category [ Heuristics

Understandability | M1, M2, M3

Transparency M4, M5, M6
Satisfaction M7, M8
Suitability M9, M10

The first category (understandability) contains all heuristics that
aim to make explanations as easy to understand as possible. Heuris-
tics M1-M3 focus on the avoidance of technical terms and com-
plicated phrasing, and on ensuring the consistency within the ex-
planation. These heuristics should be used if the purpose of an
explanation is to minimize the mental effort required from the user
while using the system.

The transparency category focuses on ensuring that the inner
workings of the system are evident to the user. Heuristics M4-M6 are
used to check whether the role and use of the input parameters are
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clarified, and whether it is comprehensible which aspects exactly
are targeted by the explanation. Thus, the associated heuristics
should be evaluated if explainability is introduced with the goal of
revealing the inner workings of the system.

Heuristics M7 and M8 were combined into the satisfaction cat-
egory. This category should be considered if the purpose of the
explanations is to increase the overall satisfaction with the system.
Therefore, the heuristics that have been assigned to this category
ensure that the explanations are easy to use - more precisely, that
the explanations are easy to find and non-disruptive.

Finally, the last two heuristics M9 and M10 were merged into the
category suitability. These heuristics should be taken into account
if the adaptability to users and scenarios is a focus of the system.
In this case, they primarily ensure adaptation to the user, or more
precisely, to the user’s prior knowledge.

Before evaluating explainability using goal-oriented heuristics,
one must determine which goals the explanations are supposed
to achieve. These goals are usually already clarified during the
requirements elicitation process.Thus, they are already determined
before development and evaluation are started. Therefore, the first
step of specifying the goals of the explanations does not require
any additional effort.

4 EVALUATION

A user study was conducted to analyze the evaluation of explain-
ability using goal-oriented heuristics. Particular attention was paid
to the characteristics of good metrics mentioned in section 2.2.

4.1 Evaluation Prototype

In preparation for the user study, we developed a prototype that
supports the application of the heuristics.! For heuristic M2, the
Flesch Reading Ease Score is calculated automatically as soon as
a textual explanation is inserted. The remaining heuristics had to
be scored by the participants. The heuristics were implemented
using discrete sliders so that they can be scored using a Likert
scale. Figure 3 shows a screenshot of the prototype where this
evaluation was performed. In addition, the prototype provides a
feature to display possible problems that were identified during
the evaluation. This feature ensures the goal of pinpointing possible
defects for quality improvement as mentioned in section 2.2.

4.2 Research Design

Our research questions require the evaluation of two distinct sys-
tems. We chose a within-subjects design to obtain data on how
participants evaluate two systems in direct comparison. Therefore,
each participant rated both of the two systems. This approach car-
ries the potential risk of a learning bias. To mitigate this bias, we
asked half of the participants to start by evaluating system A and
the other half to start with system B. Since the study was conducted
during the Covid-19 pandemic, some participants did not want to
participate on site. The study was therefore partially conducted on-
line using a remote desktop program so that the prototype did not
have to be installed on the participants’ computer. The remaining

IThe prototype is available for replication of the study. Please contact us at
hannah.deters@inf.uni-hannover.de for further information.
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‘' Heuristics -~

Please answer the following questions (Keep in mind to look at the system from the target user's point of view).

&
The elements in the explanation are logically coherent. 7710
The explanation follows a common thread and contains no contradictions.

Strongly Y Strongly
disagree

The language is simple — it does not contain any technical words that the target user does 9/10
not understand.

strongly Strongly
disagree . agree
Flesch-Kincaid readability test 5/10

Please add one or more explanations in the text box below.

If you insert multiple explanations, please start a new line for each explanation.
Calculate value

dolor sit amet, const

v sadipscing el

d diam nonumy eimod

Save / view evaluation

Figure 3: Heuristic Page

participants conducted the study on site, where a research environ-
ment consisting of a laptop, a second monitor, a keyboard and a
mouse was provided.

4.2.1 Research Objects. We selected two similar systems for the
evaluation. Both systems are online consultants for bicycles that
guide the user through questions and suggest suitable bikes de-
pending on the answers. Both systems use explanation similarly
as an approach to explain why inputs are needed, what they are
used for, or to support correct input. Since our study was conducted
with German-speaking participants, both systems were used in
German. The systems are from here on referred to as system A and
system B. Both systems seemed to have a relatively high degree of
explainability at first glance. We chose these systems to obtain as
meaningful results from the study as possible. If we had chosen a
system with a very high degree of explainability and a system with
very poor explainability, the heuristics would most likely produce
more distinctive results, but the informative value of these results
would be low. We wanted to find out whether the goal-oriented
heuristics are able to detect differences that are not obvious at first
glance.

4.2.2  Participants. As mentioned above, the heuristics are designed
for experts with basic knowledge in the field of IT and especially
explainability. They include some technical terms, which is why
the participants should have an IT background. Thus, participants
should be pursuing a degree or work in the field of IT to meet
this requirement. In addition, other demographics such as gender
should be close to the real IT industry.

We acquired 20 participants for the study. The majority of the
participants (85%) are pursuing a degree in the fields of computer
science or business informatics. The remaining participants (15%)
are employed in the field of IT (IT specialist, system integration,
public service). The gender distribution was biased towards the
male gender (male: 85%, female: 15%). However, as this is rather
common in the IT sector, this distribution is acceptable. The average
age was 25.3 years (min: 21 years, max: 30 years, SD: 6.32).

4.2.3  Procedure. At the beginning of the study, a short briefing
was given to the participants. For this purpose, they received a
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document explaining the study procedure and a declaration of data
processing. In the next step, we gave a brief introduction to the topic
of explainability, focusing on the aspects that were important for
our study. During this step, examples of explanations were shown so
that the participants understood what to look for when evaluating
explainability. Possible questions regarding explainability and the
process were clarified, and it was made clear to the participants
that they could skip heuristics if they wanted to.

After the introduction, the participants had to apply the heuris-
tics to both systems using the prototype. For this purpose, they were
first asked to look at the first system and click through it to get a
good overview. Once they felt ready, they could start assigning val-
ues to each heuristic. In order to calculate the value for heuristic M2,
participants were asked to choose five explanations from the system
and insert them into the prototype to retrieve their Reading Ease
Score. After assigning values to the heuristics, participants could
save the results and then look at possible explainability problems
on the evaluation screen. Subsequently, this process was repeated
for the second system. At the end, the participants were asked to
fill out a post-study questionnaire to collect the demographic data.

4.24 Independent and dependent Variables. The independent vari-
ables of this study are the two systems that are being evaluated
and the heuristics that are used for the evaluation. Since a within-
subject design is used, we derived a value for each heuristic per
system. Those values - more precisely, the ratings given - are the
dependent variables of the study.

4.3 Data Collection

The study produced two kinds of data. First, for each system, the
assigned values per heuristic were stored. These values are natural
numbers ranging from zero to ten. This 11-point Likert scale was
used to follow Wu and Leung’s [40] recommendation, stating that
this procedure helps to bring the Likert scale closer to normality
and interval scales. For heuristics that the participants did not want
to or could not answer, the missing value was replaced with a
marker, so that we could later identify them as unanswered. This
only occurred once for one heuristic (M7). The values were stored
pseudonymously so that we could analyze the data per participant.?
Second, demographic data was collected from each participant. This
included age, occupation and, optionally, field of study.

5 RESULTS

While analyzing the data, we focus on two points that are funda-
mental for metrics. The first analysis examines the consistency of
evaluations across raters. A Metric should, in the best case, always
produce the same numerical value regardless of who applies the
metric. However, since heuristics do not always produce the exact
correct result, it is unlikely that raters will produce the same value
for a system per heuristic. Nevertheless, the agreement should be
reasonable, otherwise the evaluation will be too unreliable. For this
evaluation, we examine the interrater agreement, more precisely
the intraclass correlation coefficient.

Second, metrics should be able to capture differences in qual-
ity. If a metric always delivers the same value and does not reveal

2The results of the study are available at: https://zenodo.org/record/7872635
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Figure 4: Results of the Understandability Heuristics

differences in quality, the metric is of no use. Therefore, we inves-
tigate whether the heuristics are capable of detecting significant
differences between two real systems using significance testing.

5.1 Data Description

To provide an overview of the collected data, we first present the
data using boxplots. For this purpose, the values of the sets were
determined using the unweighted average of the corresponding
heuristics. For example, for the understandability set, the values of
heuristics M1 - M3 were averaged. The values of the ungrouped set
correspond to the average of all heuristics (M1 - M10). This way, we
can examine whether it is advisable to select metrics that explicitly
fit the intended goal or whether all metrics together also achieve a
reasonable result.

In addition to the absolute values assigned by each participant for
each system, the comparison of the two systems is also of interest.
To this end, we need to take a look at the differences between the
ratings of the two systems for each participant. These relative values
were also presented in a boxplot. The relative values are calculated
by subtracting the values of both systems per heuristic for every
participant. For example, if a participant rated M1 for system A with
8 points and for system B with 6 points, system A was rated 2 points
better. Hence, the relative value of this participant for heuristic M1
is +2 on the side of system A. The final values for the sets are then
calculated in the same way as the absolute values (average of the
corresponding heuristics).

Figure 4 shows the boxplots for the absolute and relative values
of the understandability set. They already suggest that a difference
between the systems has been recognized. The boxplot for the ab-
solute values shows that the average of all participants’ ratings for
system A is over one point higher than for system B. Furthermore,
the relative values show that in terms of understandability, sys-
tem A was rated better than system B by 95% of the participants.
The boxplot in Figure 4b shows this distribution. The boxplots of
the other sets (transparency, satisfaction, suitability) show similar
results. The corresponding figures are provided in appendix A.
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Figure 5: Results of the Ungrouped Heuristics

Figure 5 shows the boxplots for the ratings for all heuristics
together, i.e., the ungrouped set. Both boxplots show no noticeable
difference between the two systems. The mean of the absolute
ratings is almost identical. Similarly, the 75%-quartile of the relative
values is just around zero, which means that most participants rated
the two systems about the same.

In conclusion, the first visualization of the data already suggests
that the goal-oriented heuristics are more capable of detecting
differences in quality than the ungrouped set.

5.2 Significance Test

In order to faithfully answer RQ3, we test for statistical significance.
More precisely, we use the Mann-Whitney-U test, as the depen-
dent variable is measured on an ordinal scale, but is not normally
distributed (thus excluding the independent t-test). In Table 3 the
p-values and the average values for system A and system B are
given. The first thing to notice is that the ungrouped set does not
reveal any significant difference between the two systems. Both
systems were evaluated very similarly (system A: 7.46 and system
B: 7.5). The p-value further confirms that this difference is not at
all statistically significant.

The goal-oriented sets, in contrast, reveal significant differences
or in some cases even highly significant differences between the
systems. The understandability set shows that system A provides
better understandable explanations than system B. According to
the p-value of 0.00008, this difference is highly significant. The
heuristics of the transparency set (M4 - M6) further show that the
explanations from system A also perform better with respect to
transparency. Thus, System A’s explanations better clarify what
the system needs the inputs for and how the system processes the
inputs. This difference is statistically significant with a p-value of
0.02. The satisfaction and suitability sets, on the other hand, show
that the explanations from system B are better suited to the user
group and also increase the overall enjoyment of using the system
more than the explanations from system A. Both differences proved
to be highly significant with p-values of 0.00131 and 0.00293.
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Group p-value | Average of | Average of
System A | System B
| Ungrouped [ 1.0 [746 [ 75 |
Understandability | 0.00008 | 8.21 6.96
Transparency 0.02876 | 8.15 6.75
Satisfaction 0.00131 | 7.6 9.63
Suitability 0.00293 | 5.2 7.4

Table 3: Significance Values

These results lead to two different conclusions depending on the
predefined goal. If the goal of the explanations was to better reveal
the inner workings of the system and to convey this information
as simply as possible, system A would have a better explainability.
In contrast, if the goal of the explanation was to make the system
adaptable to different user groups or to increase the overall satis-
faction with the system, system B would have better explainability.

Overall, the results of the Mann-Whitney-U test can be sum-
marized as follows: The goal-oriented heuristic sets were able to
detect differences in explainability between two systems, whereas
the ungrouped set was not able to detect any significant differ-
ences. This indicates that grouping metrics according to the goals
of the explanations can help to reveal differences in the quality of
explainability.

5.3 Interrater Reliability

To answer RQ2, we evaluated the interrater agreement. For this
purpose, the intraclass correlation coefficient (ICC) was calculated.
Following Koo and Li [14] it “reflects the variation between 2 or
more raters who measure the same group of subjects”. As the raters
are a random sample of the population, two-way random effects oc-
cur. Furthermore, according to Shrout and Fleiss [30] the calculation
depends on whether the final evaluation is planned to be done by
one person or whether the average of several ratings is considered.
Based on the recommendation of Nielsen [21], we assume that the
heuristic is evaluated by several raters. This assumption leads to
the ICC(2,k) defined by Shrout and Fleiss [30]. Nevertheless, we
also take a look at the ICC(2,1) to investigate if only one person
would also be sufficient for the evaluation.

e, 1) = BMS — EMS W
* 7 BMS + (k — 1)EMS + k(JMS — EMS) /n
1.1 = BMS — EMS @

BMS + (JMS — EMS)/n

BMS: Between target variance, JMS: Between judges variance, EMS: Residual variance,
n: number of targets, k: number of judges

Table 4 shows the calculated values, including the 95% confidence
intervals. The values for ICC(2,1) are below 0.5 for all sets. Accord-
ing to the guideline of Koo and Li [14], this indicates poor reliability.
Thus, if it is assumed that a single person performs the assessment,
the heuristics have poor interrater reliability. In contrast, the val-
ues of the ICC(2,k) for the sets understandability, satisfaction and
suitability are above 0.9. According to Koo and Li, this indicates ex-
cellent reliability. Likewise, the result of the transparency set with a
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| Group [ 1cC@2,1) | CI95% [ ICC(2)k) |CI95% |

| Ungrouped [-0.015 [-0.02,0.0] [[-0.436 [-0.46,0.01] |
Understandability || 0.492  [0.13,1.0] || 0.95 [0.75, 1.0]
Transparency 0.195  [0.03,1.0] || 0.829 [0.36, 1.0]
Satisfaction 0.345  [0.05,1.0] || 0.913 [0.54, 1.0]
Suitability 034  [0.06,1.0] || 0.911  [0.54,1.0]

Table 4: Intraclass Correlation Coefficient

value of about 0.83 indicates good reliability. These findings indicate
that the interrater reliability of the goal-oriented heuristics is very
good, assuming that several raters are available for the evaluation.
The value of the ICC(2,k) for the ungrouped set, on the other
hand, indicates poor reliability with a value below 0.5. The reason
for this is that the ungrouped set did not find a significant difference
between the two systems, as described above. The variance of the
measured objects (BMS) plays a major role in the ICC (see equation 1
and 2). This is due to the fact that smaller variations among the
raters are not as relevant if the differences between the measured
objects are high anyway. Thus, the results again indicate that the
goal-oriented heuristics perform better than the ungrouped set.

6 DISCUSSION

6.1 Answering the Research Questions

6.1.1  RQ1: What are suitable heuristics for the evaluation of explain-
ability? The first research question is answered by Table 1. With
the help of existing literature, we were able to develop ten heuris-
tics for the evaluation of explainability. Our user study showed
that these heuristics enable explainability to be compared between
two systems with regard to the quality goals of understandability,
transparency, satisfaction, and suitability. As mentioned already,
the ten heuristics are not complete, meaning that most likely fur-
ther heuristics exist. That also applies to the four goals that the
heuristics are mapped to.

6.1.2  RQ2: Do goal-oriented heuristics allow multiple evaluators to
better agree on how to evaluate explainability than the ungrouped
heuristics? In order to answer the second research question, we cal-
culated ICC(2,1) and ICC(2,k). The first conclusion from the results
of ICC(2,1) is that the ratings of only one single evaluator have a
poor reliability. That means that if only one evaluator is available
for evaluation, our heuristics do not produce consistent results.
This fact applies to both goal-oriented and ungrouped heuristics.
However, examining the ICC(2,k), major differences between the
two approaches can be seen. The ungrouped heuristics again pro-
duced a value under 0.5 implying a poor reliability. The sets of the
goal-oriented heuristics on the other hand produced values over
0.75 and partly even over 0.9 indicating good to excellent reliabil-
ity. These results strongly indicate that goal-oriented heuristics
indeed allow multiple evaluators to better agree on how to evaluate
explainability than the ungrouped heuristics.

6.1.3  RQ3: Are goal-oriented heuristics able to detect more signifi-
cant differences in terms of explainability than the ungrouped heuris-
tics? To further examine whether goal-oriented heuristics are suit-
able to measure explainability, we investigated if they could detect
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differences in quality between two systems. More precise, we inves-
tigated whether the goal-oriented sets could detect more significant
differences than the ungrouped set. To this end, we used the Mann-
Whitney-U test. The results show that the ungrouped heuristic set
was not able to detect any significant differences. On the other hand,
the goal-oriented sets showed statistically significant differences in
the quality of the explanations of the two systems. As explanations
can pursue many different kinds of goals, these goals can interfere
with each another. This coincides with the fact that explainability
competes with many other NFRs [5]. In our experiment, the four
explanation goals (understandability, transparency, satisfaction and
suitability) interacted in such a way that positive and negative prop-
erties of the explanations cancelled each other out. Thus, merging
the heuristics resulted in the two systems being rated the same,
even though there were differences between them. That shows that
the evaluation of explanations should be done in accordance with
the goals of the explanations, to avoid irrelevant properties from
distorting the results. All together, our results suggest that goal-
oriented heuristics are more likely to detect differences in quality
between two systems.

6.2 Proposed Evaluation Method

Overall, the results of the evaluation indicate that grouping heuris-
tics regarding possible goals, leads to a better reliability of results
and allows them to detect more differences in quality. Based on this,
we suggest the following procedure while evaluating explainability:

Step 2: Applying Step 3: (Optional)
corresponding Applying further
Heuristics Metrics

=>|  Heuristics from the =) If possible, conduct

Goals of the
Explanations

( Step 1: Specifying

Usually done during

the requirement groups that fit the user studies to obtain
analysis previously defined more sophisticated
goals results

Figure 6: Steps

Our first step is to specify the goals of the explanations. This step
is already deeply integrated in the requirements analysis process
and is elaborated between the customer who commissioned the
software and the company developing it. This means the goal origi-
nates from the customer, who consults the requirements engineers.
Subsequently, the software is developed towards these goals.

In the second step, the quality of the explainability of the system
is assessed. For this purpose, goal-oriented heuristics can be used.
In this process, several experts apply the heuristics according to
the predefined goals.

If the heuristic evaluation reveals issues that need to be investi-
gated further, an optional third step can be performed. User studies
produce more reliable results than heuristics, since heuristics do not
guarantee correct results. Thus, if major modifications are consid-
ered, it would be reasonable to first ensure that those modifications
are necessary. The metrics should also be mapped to explanation
goals and applied accordingly.

Based on our results, we believe that our proposed procedure
enables a resource-efficient but reliable way to evaluate the explain-
ability of software systems.
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6.3 Threats to Validity

To address the validity of our results, we follow the suggestions
of Wohlin et al. [39] considering four types of validity. The con-
struct validity expresses to what extent the research questions be-
ing discussed are represented by the operational measures that are
used [39]. The user study that is used to compare the goal-oriented
heuristics to the ungrouped heuristics set is a reliable way to mea-
sure our research questions. The literature research, on the other
hand, carries the risk that we did not find all heuristics that exist
for explainability. To this end, a systematic literature review would
have been a more reliable method. However, since our goal was not
to find all possible heuristics, this threat to validity is not as severe.

The internal validity may be threatened by possible biases that in-
fluence the reliability of the results. As two systems were evaluated
by each participant, a possible learning bias could have occurred.
To mitigate this bias, we let one half of the participants begin with
system A and the other half with system B. Another threat to the in-
ternal validity may be the choice of participants. Since we were not
able to acquire real experts for the study, we tried to approximate
this expert status with general knowledge in the field of computer
science and a brief introduction to the field of explainability to mit-
igate this threat. Nevertheless, it is possible that real experts would
have produced different results if they had used the heuristics.

This choice of systems, on the other hand, increases the external
validity, as real systems can be generalized better than systems that
are developed for a user study only. The external validity could also
be threatened by choice of participants, as most of the participants
were students, making the results less generalizable. In addition,
the generalizability with respect to other possible goals of explana-
tions (except for understandability, transparency, satisfaction and
suitability) has to be investigated in future research.

The conclusion validity concerns the statistical power of the
results and the right application of statistical tests [39]. Since we
used well-established statistical methods, the conclusion validity is
not threatened.

7 CONCLUSION AND FUTURE WORK

Evaluating explainability is not trivial, as it depends heavily on
what the goal of the explanations is. As explainability interacts
with many other NFRs and affects some NFRs negatively [5], it
must be determined how explanations should be implemented to
meet their goals but cause few negative effects. To evaluate ex-
plainability in terms of predefined goals, we introduced the concept
of goal-oriented heuristics. Different goals of explanations lead to
different properties that have to be realized in the explanations.
The heuristics are grouped with respect to these properties, so that
the heuristics of each set measure whether their particular goal is
achieved.

The results of our user study suggest that the goal-oriented sets
perform better than the ungrouped set in terms of detecting differ-
ences in quality of explainability. The goal-oriented sets were able
to reveal significant differences in terms of the quality of explain-
ability between two systems. The ungrouped set, on the other hand,
was not able to identify any significant differences. Furthermore,
the goal-oriented heuristics produced a higher interrater agree-
ment. Overall, the results suggest that goal-orientation improves
the quality of heuristics, in the context of explainability.
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The concept of grouping heuristics in accordance with the goals
the explanations are supposed to achieve may be transferable to
metrics in general. As a consequence, not only heuristics, but any
other metrics, should be grouped according to possible goals expla-
nations could achieve.

In future work, we plan to investigate the possible goals to be
achieved with explanations. By defining a set of possible goals,
we want to enable a consistent grouping of metrics. In addition,
we want to compile a useful set of metrics that are mapped to
these goals. Additionally, when compiling metrics, further heuris-
tics can be developed which cover further goals of explanations.
The collected metrics should then be evaluated in a further user
study to examine whether the concept of goal-oriented heuristics
is transferable to other metrics and to other goals.
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