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Abstract

One-dimensional critical integrable lattice models with a finite-dimensional degree of freedom
attached to each lattice site can exhibit the remarkable phenomenon of the emergence of
continuous degrees of freedom in the scaling limit. The most studied system in which this
occurrence has been observed is the staggered six-vertex model with twisted boundary
conditions. Here, we study the influence of different boundary conditions and higher-
rank generalisations on/of this model. Our analysis is based on the Bethe ansatz and the
formulation of a conserved quantity — the so-called quasi-momentum — which parametrises
the non-compact degree of freedom directly on the lattice. Moreover, we carry over the
powerful approach of the correspondence between ordinary differential equations and
integrable quantum field theories to the case of open boundary conditions. Using this
methodology, we can fully classify the scaling limit of the alternating six-vertex model
with Uq(sl(2)) boundary conditions. Furthermore, we demonstrate the incompatibility of
antidiagonal boundary conditions with a non-compact degree of freedom in the scaling
limit. Finally, we provide numerical evidence that the higher rank generalisation, the D(2)

3

model, possesses two independent continuous components.

Keywords: integrability, Bethe ansatz, six-vertex model, boundary conditions, scaling
limit, lattice models, conformal field theory, critical exponents.
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1 | Introduction

The beginning of the era of investigating phase transitions via solvable systems can un-
doubtedly be dated back 100 years ago1 to the formulation of the Ising model [1]. In that
work, Ising showed the absence of a ferromagnetic phase for any finite temperature in
one dimension. He concluded — based on the results for the one-dimensional (1D) case
— the general failure of the model to describe ferromagnetism in solids for any dimension.
Shortly after, Ising’s conclusions concerning the higher dimensional case were called into
question, in particular, by Peierls [2]. Later, Kramers and Wannier [3] deduced the critical
temperature, if it exists, of a phase transition for the two-dimensional (2D) Ising model.
Their arguments make use of a map between the partition functions at temperatures T
and T−1, which is a prototype of strong/weak coupling dualities that nowadays attract a
lot of attention in quantum field theory (QFT), in particular in String Theory. Further
attempts at clarification using approximate methods led to contradictory results. It was
only after Onsager solved the 2D square lattice Ising model exactly [4] that the matter
was finally settled. His analytical results proved the existence of a phase transition at the
critical temperature predicted in [3]. It also laid the foundation for the development of key
concepts such as the scaling hypothesis, universality, and the transfer matrix approach to
statistical systems.

The success of the square lattice Ising model stimulated interest in other simplified
statistical systems. One of these is the so-called Potts model. In the antiferromagnetic
case, Berker and Kadanoff observed a remarkable phenomenon. In their work [5], they
showed that T = 0 is not a fixed point of the renormalisation group (RG) flow. This
is connected to the presence of a macroscopically large residual entropy. The universal
behaviour was further studied in [6] via the mapping of the critical Potts model to the
(inhomogeneous) six-vertex model, which can be solved exactly [7]. Phases exhibiting
properties such as macroscopic residual entropy attract a lot of attention in condensed
matter physics. Recent examples are fracton systems, which have been studied with a view
towards possible realizations in nature [8] and applications to quantum information theory
[9].

At the critical temperature, which is a fixed point under the renormalisation group
flow, a system develops universal behaviour. The latter is insensitive to the details of the
microscopic Hamiltonian. Thus, even studies of highly simplified, exactly solvable systems

1If one considers the date at which Ising has submitted his article.
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1. Introduction

exhibiting a phase transition yield results that apply to a class of models, some of which
may be realised in nature.

The critical six-vertex model develops universal behaviour, which is described by a
free massless bosonic field, taking values on the circle. Such ‘compact’ conformal field
theories (CFTs) were commonly believed to arise also in the scaling limit of other critical
lattice systems, where the local number of degrees of freedom is finite. On the other hand,
theories with non-compact target space describe many interesting problems in modern
physics. For example, they appear in theoretical high-energy physics in the context of the
correspondence between quantum gravity in Anti de Sitter space (AdS) and CFT [10, 11,
12, 13, 14]. Moreover, non-compact QFTs have applications in the context of condensed
matter theory. For instance, they have been argued to describe the multifractal scaling
of the critical wave functions at the integer quantum Hall plateau transition and other
disorder-driven quantum phase transitions [15, 16]. Such non-compact field theories and
their lattice counterparts — where the degrees of freedom at each lattice site are infinite
— are significantly more challenging to study. Even in the case of integrable models, the
standard techniques meet difficulties. However, there has been significant progress for
specific models, e.g. for the Sinh-Gordon QFT [17].

The common belief that non-compact CFTs only admit lattice regularisations with an
infinite number of local degrees of freedom made the results of [18] all the more remarkable.
In that work, a critical integrable sl(2|1) superspin chain with alternating three-dimensional
quark and antiquark representations at each site is studied. A finite-size analysis provided
evidence for the presence of a continuous component in the spectrum of critical exponents
— a hallmark of a CFT with non-compact target space. This opens the way to approach
non-compact field theories via the analysis of the scaling limit of integrable lattice systems
where the Hilbert space is finite-dimensional. The latter can be treated within the standard
Bethe ansatz approach.

The emergence of a continuous component in the spectrum of scaling dimensions was
later found to occur in other critical lattice models as well [19, 20, 21, 22, 23]. The simplest
of these is the so-called staggered six-vertex model, which possesses three different phases.
For one of them, it was conjectured in [24] that the scaling limit is governed by a non-linear
sigma model (NLSM) in (1 + 1)-dimensional space-time, whose target space is the so-called
2D Euclidean Black Hole. The solution of the spectral problem for this CFT, which includes
determining the density of states for the continuous spectrum, was achieved in the later
work [25]. The results are based on a detailed study of the staggered six-vertex model with
twisted boundary conditions (BCs).

The analysis of critical integrable systems exhibiting a continuous spectrum of critical
exponents presents various technical challenges. These require the application of novel
techniques based on the study of the family of commuting operators on the lattice and
in the CFT. Previous works have mostly focused on the case when periodic (or, more
generally, twisted) BCs are imposed. This thesis aims to extend the analysis to integrable
lattice models with open BCs. This would be of prime interest from the point of view of
2D boundary conformal field theory (BCFT). As a testing ground, two extreme cases for

2



1. Introduction

the staggered six-vertex model are considered. Namely, a particular choice of diagonal BCs
for which the U(1) symmetry is enlarged to a continuous Uq(sl(2)) symmetry and those
where the U(1) is broken down to a discrete Z2 one (antidiagonal BCs). The former case
has already been investigated from the perspective of the Potts model [26, 27]. In these
works, it was shown that different choices of BCs in the Potts model have a profound effect.
Namely, depending on their choice, the continuous component of the conformal spectrum
may disappear completely. We explain this phenomenon within a unified framework. In
addition, we study a higher-rank generalisation of the staggered six-vertex model based on
the twisted affine Lie-algebra D(2)

3 .

The second chapter of the thesis introduces basic concepts which underpin the later
analysis. In particular, we will state some fundamental facts about CFT using the examples
of the free massless boson and the Black Hole CFTs which are relevant to this thesis. Also,
the framework of Yang-Baxter integrable models for various BCs is introduced. We briefly
comment on the relationship between CFT and critical lattice models.

In the third chapter, we discuss integrable vertex models with two-site periodically
repeating inhomogeneities, the so-called staggered vertex models. We describe their algebraic
structure for periodic and open BCs. In the latter case, it turns out that only two types of
staggering, named alternating and quasi-periodic, lead to a local Hamiltonian. The scaling
limits of these Hamiltonians for the particular case of the six-vertex model with so-called
Uq(sl(2)) invariant BCs will be examined in chapter four.

For the model with alternating staggering, we demonstrate the power of the corre-
spondence between ordinary differential equations (ODEs) and integrable quantum field
theories (IQFTs) for the analysis of the scaling limit. The ODE/IQFT correspondence was
first observed and developed in [28, 29, 30]. Using the uniform framework introduced in
chapter three, the case of the quasi-periodic staggering is then studied by a spectral flow to
the alternating case.

We briefly discuss the results of our numerical investigation for the case of antidiagonal
BCs in the fifth chapter.

Finally, the framework from chapter three allows a straightforward generalisation from
the staggered six-vertex model to the homogeneous D(2)

3 model, whose underlying symmetry
algebra is of a higher rank. A detailed numerical finite-size analysis of a class of states is
performed.

A visualisation of the relationship of the key sections of this thesis is given below. This
thesis is based on the author’s works [31, 32, 33, 34]. We omit the referencing of these
works repeatedly.

3
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Figure 1.1: A visualisation of the key chapters of this thesis
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2 | Preliminaries

This thesis concerns the study of the scaling limit of critical integrable lattice models. By
scaling limit, we mean a certain limit where the system size tends to infinity, and one just
considers the low energy excitations around the ground state. This procedure leads to an
effective description of the low-energy regime of the lattice model in terms of a field theory
[35]. While it seems natural to introduce the lattice side first, then present the procedure
of taking the scaling limit, and finally discuss the field theory content in detail, the reverse
way is more convenient for coherently presenting the methodology used.

The first section is devoted to the field theory side. It is mainly centred around a
detailed discussion of the free massless boson in 2D. Along the way, we will use this simple
example to recall and demonstrate elementary facts about CFT. This lays the foundation to
introduce the so-called 2D Black Hole CFTs, which play a significant role in this thesis. The
content is based on the introductory chapters of [36, 37]. We have adapted the presentation
for our purposes and omitted referencing these works repeatedly.

The bridge to the lattice part of this introductory chapter is a short discussion about the
concept of finite-size scaling.

In the second half of this chapter, we introduce Yang-Baxter integrable lattice models;
the presentation is partly adapted from [32]. In the course of the discussion, we present a
toolbox of analytic and numerical methods, which we will often refer to in later chapters.
We put emphasis on the analysis of the scaling limit of an integrable lattice system. Again,
we illustrate the technique with a simple example: the spin-12 XXZ chain. Along the way,
we will also discuss the powerful ODE/IQFT approach.

5



2.1 The free massless boson in 2D

2.1 The free massless boson in 2D

Consider the real scalar field defined on the infinite cylinder (−∞,∞)× [0, L) with circum-
ference L

φ(t, x) : (−∞,∞)× [0, L) −→ R . (2.1)

In the literature, the domain of the field is often called the worldsheet, while its image is
called the target space. We use this convention in the following. The dynamics of the field
is described by the following action functional

S[φ] =
1

2

∫ ∞

−∞
dt

∫ L

0
dx
(
∂tφ
)2
(t, x)−

(
∂xφ

)2
(t, x) . (2.2)

Requiring that the action is stationary under a variation of the field φ 7→ φ+ δφ leads to
the following equations of motion as well as the extra condition1

∂µ∂
µφ(t, x) = 0 ,

∫ ∞

−∞
dt ∂xφ(t, x)δφ(t, x)

∣∣∣∣x=L

x=0

= 0 . (2.3)

To satisfy the latter, we impose that the quantity ∂xφ(t, x) is periodic2 in x with period L,
i.e., ∂xφ(t, x+ L) = ∂xφ(t, x). In the Hamiltonian formalism, the conjugate momentum
to φ is given by π(t, x) = ∂tφ(t, x) and is assumed also to be L-periodic in the spatial
direction. Hence, for a given time slice — we choose t = 0 for simplicity — we can introduce
the following Fourier expansions for the two chiral fields ∂±φ

(∂−φ)(0, x) :=
1

2
(π(0, x)− ∂xφ(0, x)) =

√
π

2

p

L
+

√
2π

L

∑
n∈I

ane
2iπnx

L , (2.4)

(∂+φ)(0, x) :=
1

2
(π(0, x) + ∂xφ(0, x)) =

√
π

2

p̄

L
+

√
2π

L

∑
n∈I

āne−
2iπnx

L . (2.5)

Here, we used the light cone derivatives ∂± = ∂t ± ∂x and the index set I is Z\{0}. To
quantise the theory, we promote the fields to be operator-valued with the fundamental
commutation relations

[φ(t, x), π(t, y)] = iδ(x− y) ,

[π(t, x), π(t, y)] = 0 ,

[φ(t, x), φ(t, y)] = 0 .

(2.6)

These in turn induce relations on the Fourier modes p, p̄, an and ān. In fact, they are
mutually commuting except for [am, an] =

m
2 δn+m,0 and [ām, ān] =

m
2 δn+m,0. We will call

the modes with positive indices the annihilation and those with negative subscripts the
creation operators.

Let us proceed to define the theory’s Hamiltonian and momentum operator. They do
not depend on time and are given by

H =

∫ L

0
dx

1

2

(
π2(t, x) + (∂xφ)

2(t, x)
)
=

∫ L

0
dx (∂+φ)

2(0, x) + (∂−φ)
2(0, x) , (2.7)

P =−
∫ L

0
dxπ(t, x)∂xφ(t, x) = −

∫ L

0
dx (∂+φ)

2(0, x)− (∂−φ)
2(0, x) . (2.8)

1We assume here for simplicity that the variation of the field decays to zero as t→ ±∞.
2—and so the variation δφ is also periodic—

6



2.1 The free massless boson in 2D

The expressions above contain composite operators such as (∂±φ)2(0, x). A proper definition
of such operators can be subtle since the product of two local operators generically diverges
when evaluated at the same space-time point. For example

(∂−φ)(0, x)(∂−φ)(0, y) =
p2π

2L2
+
πp

L

∑
n̸=0

an

(
e

2iπnx
L + e

2iπny
L

)
+

2π

L2

∑
n,m ̸=0

: anam : e
2iπ(n+m)x

L − π

4L2 sin2
(
π(x−y)

L

) , (2.9)

where : ... : denotes the normal ordering where we place all annihilation operators to the
right. We see that (∂−φ)

2(0, x) is diverging due to the last term in (2.9). One suitable
regularisation scheme is to subtract the most divergent term. The latter can be obtained
via the expansion

π

4L2 sin2
(
π(x−y)

L

) =
1

4π(x− y)2
+

π

12L2
+O

(
(x− y)1

)
. (2.10)

From now on, we define any composite operators to be implicitly regularised by subtracting
the divergent part, e.g.,

(∂±φ)
2(0, x) = lim

y→x
(∂±φ)(0, x)(∂±φ)(0, y) +

1

4π(x− y)2
. (2.11)

By this definition, the Hamiltonian and the momentum operator can be expressed in terms
of the oscillator modes

H =
π (p2 + p̄2)

2L
+

4π

L

(∑
n>0

a−nan + ā−nān

)
− 1

12

2π

L
, (2.12)

P =
π (p2 − p̄2)

2L
+

4π

L

(∑
n>0

a−nan − ā−nān

)
. (2.13)

This explicit form of the Hamiltonian can be used to determine the time evolution of the
fields. The Heisenberg equations lead to

an(t) = e−
2iπnt

L an , (2.14)

ān(t) = e−
2iπnt

L ān , (2.15)

while p and p̄ are constant in time. One can utilise this to restore the time dependence in
the fields. Furthermore, we can integrate suitable linear combinations of ∂±φ to obtain the
following expressions for the fundamental quantities

φ(t, x) = φ0 +

√
π

2

p+ p̄

L
t−

√
π

2

p− p̄

L
x+

i√
2π

∑
n∈I

1

n

(
ane

2iπn(x−t)
L + āne−

2iπn(x+t)
L

)
,

(2.16)

π(t, x) =

√
π

2

p+ p̄

L
+

√
2π

L

∑
n∈I

ane
2iπn(x−t)

L + āne−
2iπn(x+t)

L , (2.17)

7



2.1 The free massless boson in 2D

where φ0 is the constant zero mode. Its commutation relations with the other operators
are deduced to be

[φ0, an] = 0, [φ0, ān] = 0 , (2.18)[
φ0,

√
π

2
(p− p̄)

]
= 0,

[
φ0,

√
π

2
(p+ p̄)

]
= i . (2.19)

Note that the last equation is the defining relation of the Heisenberg algebra. Hence, as the
target space of the fields is R, the operator p+ p̄ has a continuous spectrum [38].

The Virasoro algebra

To discuss the symmetry properties of the present theory, it is useful to map the infi-
nite cylinder to the complex plane C (in fact, the Riemann sphere) via the following
transformation (and going to imaginary time t 7→ −it)

z = exp

[
2π

L
(t− ix)

]
, z̄ = exp

[
2π

L
(t+ ix)

]
. (2.20)

Then, time flows in the radial direction while space plays the role of the phase. Note that
the compactification x ∼ x+ L of the cylinder is consistent with the periodicity of 2πi of
the exponential function. Further, the infinite past is mapped to the origin of C, while the
infinite future is mapped to complex infinity.

In general, for a given space-time equipped with the coordinates xµ and the contravariant
metric tensor gµν(x) , a mapping xµ 7→ wµ(x) is defined to be conformal if the transformed
tensor is the original one up to some scalar function λ(x), i.e.

gµν(x) 7→ g̃µν(w) = λ(x) gµν(x) . (2.21)

For the case at hand, the above condition, locally, takes the same form as the Cauchy-
Riemann equations for either a holomorphic or anti-holomorphic function. Hence, each
local (anti-)holomorphic function defines a local conformal transformation on the complex
plane3 which are, in general, given by

z 7→ z +
∑
n∈Z

cnz
n+1 , (2.22)

and analogously for the anti-holomorphic part. In the following, we will use the barred and
unbarred notation for quantities which are4 anti-holomorphic and holomorphic, respectively.
The generators of the local conformal transformations on the space of functions — this
means on the classical level — can be easily deduced:

ln = −zn+1∂z , l̄n = −z̄n+1∂z̄ with n ∈ Z . (2.23)

These form a realisation of the De Witt algebra whose defining commutation relations
are given by the following

[ln, lm] = (n−m) ln+m ,
[
l̄n, l̄m

]
= (n−m) l̄n+m ,

[
ln, l̄m

]
= 0 . (2.24)

3Note that we do not make any restrictions on the function to be well-defined on the whole complex
plane. We just require this locally. Further, in the context of our discussion of the free bosonic field, we
mean here (anti-)holomorphicity on the Riemann sphere with both poles {0,∞} removed.

4— or which are associated to (anti-)holomorphic quantities —
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2.1 The free massless boson in 2D

From the commutation relations, it is clear that l±1, l0 and their anti-holomorphic counter-
parts form a subalgebra. This is the algebra of global conformal transformations defined
on the whole complex plane. From (2.23), it is apparent that l−1 = −∂z generates trans-
lations on the complex plane. Further, l1 = z2∂z induces the so-called special conformal
transformations. Linear combinations of l0 = −z∂z and its anti-holomorphic counterpart
correspond to rotations and scale transformations. Namely, dilatations are generated by
l0 + l̄0 while the application of i(l0 − l̄0) results in a rotation. Hence, l0 + l̄0 and i(l0 − l̄0)
play the role of translation in time and space, respectively.

A field ϕ(z, z̄) is called quasi-primary if it transforms under global conformal transforma-
tions z 7→ w(z) as

ϕ(z, z̄) 7→
(

dw
dz

)−∆(dw̄
dz̄

)−∆̄

ϕ(z, z̄) , (2.25)

where ∆ and ∆̄ are the eigenvalues of l0 and l̄0 respectively. If the field transforms as (2.25)
under any local transformation, we call the field a primary field.

The field φ itself is not primary, but the chiral fields ∂±φ are. Due to the latter, one can
show that the action of bosonic theory (2.2) is invariant under conformal transformations.
We call this property classical conformal symmetry.

An important general fact about conformal invariance is that it restricts the energy-
momentum tensor to be symmetric5 and traceless. Combined with the conservation law
∂µT

µν its non-trivial entries are, in complex coordinates,

T (z) = T11 − T22 − 2iT12 , T̄ (z̄) = T11 − T22 + 2iT12 , (2.26)

which are (anti-)holomorphic functions i.e. ∂z̄T (z) = 0 and ∂zT̄ (z̄) = 0. As usual,
the elements of the stress energy-momentum tensor T (z), T̄ (z̄) are the local densities
of the Noether charges associated with translations. It turns out that the conserved
charges built from zn+1T (z), z̄n+1T̄ (z̄) generate through Poisson brackets all the other
infinitesimal conformal transformations just like (2.23). The expression of the generators
of the conformal transformations in terms of the energy-momentum tensor allows for the
standard quantization procedure.

In order to quantise the theory, we promote the Noether charges to operators and replace
the Poisson bracket with the commutator. As discussed above, the underlying algebraic
structure of conformal invariance of the quantum theory can then be conveniently expressed
in terms of the modes of the quantised energy-momentum tensor

Ln =
1

2πi

∮
dz zn+1T (z) , (2.27)

L̄n =
1

2πi

∮
dz z̄n+1T̄ (z̄) , (2.28)

5In fact, we can always symmetrize the energy-momentum tensor [37] for theories with rotational/Lorentz
invariance.
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2.1 The free massless boson in 2D

where the contour is taken to be at constant time, i.e., a circle. For the case at hand,
the free massless boson, we can easily express these operators in terms of the oscillator
operators

Lm =
∑
n∈Z

am−nan , L̄m =
∑
n∈Z

ām−nān , m ̸= 0 , (2.29)

L0 =
p2

4
+ 2

∑
n>0

a−nan , L̄0 =
p̄2

4
+ 2

∑
n>0

ā−nān . (2.30)

It is easy to work out their commutations relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 , (2.31)[

L̄n, L̄m

]
= (n−m)L̄n+m +

c

12
n(n2 − 1)δn+m,0 , (2.32)[

Ln, L̄m

]
= 0 , (2.33)

where c = 1. These above equations are the defining relations of the so-called Virasoro
algebra, which underlies, in general, conformal quantum field theory in two dimensions.
The central charge c is an important characteristic quantity of the model.

The Hamiltonian and momentum operator can be expressed in terms of the Virasoro
generators L0 and L̄0 as

H =
2π

L

(
L0 + L̄0 −

1

12

)
, P =

2π

L

(
L0 − L̄0

)
. (2.34)

Note that this is the quantum version of our discussion about the De Witt algebra on the
classical level where l0 + l̄0 and i(l0 − l̄0) play the role of translation in time and space
respectively.

The Hilbert space

So far, we have not discussed the space of states. In the following, we present two analogous
constructions of the latter, which use the annihilation and creation operators of either the
Heisenberg or Virasoro algebra.

The Hamiltonian and p, p̄ commute amongst each other. Hence, the eigenvalues of p, p̄
can be used to label the eigenstates of the Hamiltonian. Define now the Fock vacuum,
denoted by |p, p̄⟩ and the Virasoro vacuum, called |Ω⟩p,p̄ as the simultaneous eigenstate of
H and p, p̄ which is annihilated by all an, ān or Ln, L̄n for n > 0:

Ln |Ω⟩p,p̄ = 0 & L̄n |Ω⟩p,p̄ = 0 , (2.35)

an |p, p̄⟩ = 0 & ān |p, p̄⟩ = 0 . (2.36)

The eigenvalues ∆ = p2/4 and ∆̄ = p̄2/4 of the zero modes L0, L̄0 will be referred to as
the conformal weights or dimensions.
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2.1 The free massless boson in 2D

Based on the reference state, we define the so-called level-spaces as

Vp,p̄
L = span

 ∏
∑

i niℓi=L

Lℓi
−ni

|Ω⟩p,p̄

 , V̄p,p̄
L̄

= span

 ∏
∑

i n̄iℓ̄i=L̄

L̄ℓ̄i
−n̄i

|Ω⟩p,p̄

 , (2.37)

Fp,p̄
F = span

 ∏
∑

i niℓi=F

aℓi−ni
|p, p̄⟩

 , F̄p,p̄
F̄

= span

 ∏
∑

i n̄iℓ̄i=F̄

āl̄i−n̄i
|p, p̄⟩

 , (2.38)

Note that the number of basis vectors in each level space is given by the number of integer
partitions of L or F and is independent of p, p̄. For a given integer x, we will call the number
of its integer partition par(x). Its generating function reads

∞∑
d=0

par(d) qd =
∞∏
j=1

1

(1− qj)
. (2.39)

Finally, the Fock space Fp,p̄ or Verma module Vp,p̄ over the vacuum |p, p̄⟩, |Ω⟩p,p̄ is defined
to be6

Fp,p̄ =

∞⊕
F,F̄=0

Fp,p̄
F ⊗ F̄p,p̄

F̄
, Vp,p̄ =

∞⊕
L,L̄=0

Vp,p̄
L ⊗ V̄p,p̄

L̄
(2.40)

while the total Hilbert space can be written as a direct sum

H =
⊕
p,p̄

Fp,p̄ =
⊕
p,p̄

Vp,p̄ . (2.41)

The Verma module construction appears to be the same as the Fock space one for the
case at hand. However, in general, there are significant differences. For instance, while
the Fock space will always be an irreducible representation of the Heisenberg algebra, the
Verma module might become a reducible one for the Virasoro algebra. In particular, this
is the case when the Verma module contains so-called nullstates. These are states in the
L-level-subspace with L > 0 which are annihilated by all the positive Virasoro modes.

2.1.1 Toroidial partition function of the periodic boson

In the following, we consider the periodic boson. This means that instead of imposing that
the first derivative of the field φ is spatially periodic, we require the stronger condition
φ(t, x + L) = φ(t, x). With regard to (2.16), this additional assumption enforces the
equality p = p̄ of the two chiral zero modes. Besides spatial periodicity, we also require
the same property in the time direction, leading to the geometry of a torus [37]. Again,
the mapping to the complex plane is useful to illustrate the effects of conformal invariance.
Let us recall in general how a torus can be constructed from the complex plane: one way
of defining a torus is to pick two complex numbers t1, t2 of different phases and identify

6Here, by the tensor product we mean the span of all possible combinations of the applications of barred
and unbarred operators on the vacuum.
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2.1 The free massless boson in 2D

points which differ by an integer combination of these numbers. As our theory is invariant
under conformal transformations — in particular, it does not depend on a length scale or
an absolute orientation — our results should just depend on the ratio τ = t2/t1. This fact
is known as modular invariance, and τ is called the modular parameter.

Not only does the theory depend just on the modular parameter, but it must also be
invariant under the so-called modular transformations. To explain this point, let t′1 and t′2 be
two other complex numbers generating the same — up to some global scale transformation
— torus as t1 and t2. It follows that we must have the relation(

t′1
t′2

)
=

(
a b
c d

)(
t1
t2

)
with ad− bc = 1 , a, b, c, d ∈ Z . (2.42)

Under the above transformation, the modular parameter is changed according to

τ −→ a τ + b

c τ + d
. (2.43)

All results must be invariant under (2.43).

Let us now define the partition function on the torus. Without loss of generality, we
choose for the generating numbers of the latter t1 = L and t2 = α+iβ with α, β ∈ R. Then,
the partition function is defined as

Z = TrH

(
e−βH+iαP

)
= TrH

(
qL0− 1

24 q̄L̄0− 1
24

)
, (2.44)

where, in the second step, we have used the expression of the Hamiltonian and the momentum
operator in terms of the Virasoro modes (2.34), and we have introduced the quantities

q = exp (2iπτ) , q̄ = exp (−2iπτ̄) ,

τ = (α+ iβ)/L , τ̄ = (α− iβ)/L .
(2.45)

Note that τ is the modular parameter and that q̄ is the complex conjugate of q.

The trace in (2.44) can be evaluated in any basis. We choose to describe the Hilbert
space as a Verma module. This way, a direct computation shows that

Z =

∫ ∞

−∞
dp 1

∞∑
L,L̄=1

par(L)par(L̄) e
ln(q)+ln(q̄)

4
p2qL−

1
24 q̄L̄−

1
24 , (2.46)

where the 1 was placed for further reference, and we integrate over all possible values of
the zero mode momentum p = p̄. Evaluation of the Gaussian integral gives

Z =

√
4π√

− ln(q)− ln(q̄)

∞∑
L,L̄=1

par(L)par(L̄)qL−
1
24 qL̄−

1
24 ,

=

√
4π√

− ln(q)− ln(q̄)

1

η(q)η(q̄)
,

=
1√

ℑm(τ)

1

|η(q)|2
, (2.47)
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2.1 The free massless boson in 2D

where we have restricted to q being of modulus less than 1 to make use of the series
expansion of the Dedekind η-function

(η(x))−1 = x−
1
24

∞∑
n=0

par(n)xn for |x| < 1 . (2.48)

Using the transformation properties of the Dedekind η-function, one can show that the
partition function (2.47) is modular invariant [37, 39].

The above calculation has been carried out in the operator formalism of QFT. An
equivalent treatment is the path integral approach [40]. For the reader’s convenience, we
have presented the above calculation also in this equivalent methodology in appendix A.

2.1.2 Compactified boson
In contrast to the previous section, where the target space of the field was R, we can also
consider the case of a circle of radius R instead. This means we identify field configurations
if they differ by an integer multiple — the so-called winding number — of the circumference
of the circle

φ(t, x) ∼ φ(t, x) + 2πϑR ϑ ∈ Z . (2.49)

Under this identification, the periodicity condition of the field does not imply the equality
of the zero modes, as was pointed out for the non-compactified case. Rather, they obey√

π

2
(p− p̄) = 2πRϑ . (2.50)

For notational clarity, we put in the following hats on operators while their eigenvalues are
denoted without hats. In view of (2.19), the standard representation of the Heisenberg
algebra with φ̂0 being the multiplication operator and p̂+ ˆ̄p being the differential is suitable
to compute the eigenvalues p+ p̄:

φ̂0 = φ0 ,

√
π

2
(p̂+ ˆ̄p) = −i

∂

∂φ0
. (2.51)

As φ0 is defined on a circle, we have that the plane waves exp
[
ijφ0

R

]
with j ∈ Z are a

complete set of eigenfunctions of p̂+ ˆ̄p and so we have√
π

2
(p+ p̄) =

n

R
. (2.52)

Combining this with (2.50) yields
√
2πp =

n

R
+ 2πRϑ ,

√
2πp̄ =

n

R
− 2πRϑ . (2.53)

In turn, the conformal weights of the vacuum are given by

∆n,ϑ =
1

8π

( n
R

+ 2πRϑ
)2

, ∆̄n,ϑ =
1

8π

( n
R

− 2πRϑ
)2

, (2.54)
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2.1 The free massless boson in 2D

while the partition function becomes

Z =Tr0

(
qL0− 1

24 q̄L̄0− 1
24

)
=
∑
n,ϑ∈Z

q∆n,ϑ q̄∆̄n,ϑ

|η(τ)|2
. (2.55)

The partition function is invariant under the modular transformations (2.43). In addition,
the expression (2.55) exhibits the remarkable T-duality R 7→ (2πR)−1. In view of (2.54)
this mapping interchanges n and ϑ. The latter leaves the partition function, which involves
a sum over all integer values of n and ϑ, unchanged.

Like in the last section, we present the calculation of the above partition function in the
path integral formalism in the second part of appendix A.

2.1.3 Free boson on the strip
So far, we have considered CFT on the cylinder or the infinite plane. These two manifolds
do not have any boundaries. In this section, we give some facts concerning the free
massless boson with the worldsheet, instead of the cylinder, now being the infinite sheet
(t, x) ∈ (−∞,∞)× [0, L]. We stress that the points on the boundaries x = 0 and x = L are
not identified. The equations of motion and the additional constraint read as in (2.3). To
satisfy the latter, Dirichlet or Neumann conditions can be imposed. Using the canonical
momentum, we can write out all possible BCs and their constraints on the mode expansions
in (2.16),(2.17) in the convenient form

(NN) ∂xφ(t, 0) = 0 & ∂xφ(t, L) = 0 =⇒ an − ān = 0 , p− p̄ = 0 , I = Z/{0}
(ND) ∂xφ(t, 0) = 0 & π(t, L) = 0 =⇒ an − ān = 0 , p− p̄ = 0 , I = Z+ 1

2

(DN) π(t, 0) = 0 & ∂xφ(t, L) = 0 =⇒ an + ān = 0 , p+ p̄ = 0 , I = Z+ 1
2

(DD) π(t, 0) = 0 & π(t, L) = 0 =⇒ an + ān = 0 , p+ p̄ = 0 , I = Z/{0}

The above imply the following restriction on the Virasoro modes7

Ln − L̄n = 0 =⇒ T (z) = T̄ (z̄) . (2.56)

Hence, the holomorphic and anti-holomorphic parts are no longer independent. The fact
that the symmetry algebra is just one copy of the Virasoro algebra is general for any BCFT
[36, 37]. The partition function then takes the form

Z = Tr(qL0− c
24 ) . (2.57)

Evaluating it8 for the different BCs of the bosonic theory yields [36]

Z(D,D) = e
iτ
4π

(φL
0 −φ0

0)
2 1

η(τ)
, (2.58)

Z(MIX) =

√
η(τ)

ϑ4(τ)
, (2.59)

Z(N,N) =
1

2
√
−iτ

1

η(τ)
, (2.60)

7Note that, we have an = ±ān and that the expressions (2.29) and (2.30) are quadratic in an and ān.
8These are cylinder partition functions. For more details on their derivation and physical meaning see

e.g. [36].
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2.2 The 2D Black Hole CFTs

where ϑ4(τ) is the Jacobi theta function. Also, for the case of Dirichlet-Dirichlet BCs,
φj
0 is the value of the fields at the boundary j = 0, L. The prefactor originates from the

constraint
√
2πp = φ0

0 − φL
0 . (2.61)

2.2 The 2D Black Hole CFTs

The subjects of interest in this section are the so-called 2D Black Hole CFTs, which were
introduced in string theory by Witten [10], see also [41]. The Euclidean Black Hole CFT
appeared slightly earlier in the work of Elitzur et al. [42]. It attracted attention in the
context of the AdS/CFT correspondence and was used as a setup for the development
of methods of non-rational CFT [12]. We will not go into these interesting applications.
Instead, we just briefly sketch its origin, elaborate on the name and then import the results
necessary for our purposes from the literature.

A starting point to define the Black Hole CFTs is the Wess-Zumino-Witten (WZW)
model [43, 44, 45] whose action functional takes the form

SWZW [g] = − k

16π

∫
dt dx

√
−η ηµνTr

(
g−1(∂µg)g

−1∂νg
)
− kW [g] . (2.62)

We focus on the case where the target space of the model is SL(2,R) and the worldsheet is
taken to be the torus. Further, ηµν denotes the Minkowski metric on the worldsheet, k is a
coupling constant, and W (g) is the so-called Wess-Zumino term. The latter is crucial to
ensure conformal invariance [37]. It takes the form

W [g] =
1

24π

∫
B
d3y ϵµνλTr

(
g−1(∂µg)g

−1(∂νg)g
−1∂λg

)
, (2.63)

where ϵµνλ is the Levi-Civita tensor, and B is a three-dimensional manifold with the
worldsheet as its boundary. In writing the above integral, we have implicitly extended the
field g from the worldsheet to B. It turns out that the theory is not dependent on the
particular extension of g nor the choice of B.

An important property of the above action is that it is invariant under the transformation

g(t, x) 7→ gL g(t, x)gR . (2.64)

where gL,R ∈ SL(2,R) are constant matrices. In other words, the model possesses a global
SL(2,R)× SL(2,R) symmetry. In the following, we want to gauge the theory with respect
to a subgroup H ∈ SL(2,R)× SL(2,R). This means [40], to introduce gauge fields aL,aR
such that the theory — now described by a modified action SWZW [g,aL,aR] containing
the gauge fields — is invariant under the infinitesimal transformations

g 7→ g + i(hL(t, x)g + ghR(t, x)) ,

aL,µ 7→ aL,µ − ∂µhL + [aL,µ,hL] ,

aR,µ 7→ aR,µ − ∂µhR + [aR,µ,hR] .

(2.65)
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2.2 The 2D Black Hole CFTs

Here, hL(t, x)⊕ hR(t, x) is an element of the Lie algebra of H and is related to the group
element via the exponential mapping eihL ⊗ eihR ∈ H. We emphasise that hL,R are allowed
to vary with the worldsheet variables. Further, note that, as a consequence of this symmetry,
two field configurations of g must be identified if they differ by a gauge transformation.
Hence, the space of the physical degrees of freedom is reduced to fields taking values in
SL(2,R)/H.

The gauged action for a general WZW model for any group G is known. By using the
notation for the light cone indices ± introduced in section 2.1, it takes the form

SWZW [g,aL,aR] = SWZW [g] +
k

2iπ

∫
dt dxTr

(
aR,−g

−1∂+g + aL,+(∂−g)g
−1
)

+
k

2π

∫
dt dxTr

(
aR,−aR,+ + g aR,−g

−1
)
.

(2.66)

This action is invariant under (2.65) provided the gauge anomaly condition9

Tr (hR, ∂−aR,+ − ∂+aR,−)− Tr (hL, ∂−aL,+ − ∂+aL,−) = 0 (2.67)

is satisfied [10].

Let us consider gauging the U(1)-subgroup of SL(2,R) corresponding to the transforma-
tion

g 7→ e
i
2
h(t,x)σy

g e
i
2
h(t,x)σy ≈ g +

ih(t, x)

2
(σy g + gσy) , (2.68)

aR,µ = aL,µ =
1

2
aµσ

y =⇒ aµ 7→ aµ − ∂µh(t, x) . (2.69)

Clearly, the anomaly condition (2.67) is satisfied. For the explicit calculations, it is
convenient to parametrise g in terms of the Euler angles

g(ω(t, x), ϕ(t, x), ρ(t, x)) = e
i
2
(ω+ϕ)σy

eρσ
z
e

i
2
(ω−ϕ)σy

. (2.70)

Note that the gauge transformation is then expressed as a shift in the field ω 7→ ω + h.
Using this parameterisation, the gauged action (2.66) can be brought to the form

S̃EBH[ϕ, ρ, ω, a±] =
k

2π

∫
dtdx sinh2(ρ)

(
∂+ϕ∂−ϕ+ ∂−ϕ(∂+ω + a+)− ∂+ϕ(∂−ω + a−)

)
+ ∂+ρ∂−ρ− cosh2(ρ)(∂+ω + a+)(∂−ω + a−) .

(2.71)
The gauge fields can be eliminated by inserting their equations of motion/integrating them
out; see for details [10]. In this way, the action is reduced to

SEBH[ϕ, ρ] =
k

2π

∫
dx dt ∂−ρ∂+ρ+ tanh2(ρ)∂+ϕ∂−ϕ . (2.72)

9The anomaly-free condition can be formulated purely in terms of the Lie algebra of the to-be gauged
subgroup. Namely, Tr(h1

L, h
2
L)− Tr(h1

R, h
2
R) = 0 for any two elements h1,2 = h1,2

L ⊕ h1,2
R of the Lie algebra

of the subgroup H. Recall that the gauge field is generally valued in the Lie algebra so that (2.67) follows
from the above condition. Furthermore, it turns out [46] that it is impossible to gauge a WZW model by a
subgroup H if the anomaly condition is not satisfied by its Lie algebra.
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2.2 The 2D Black Hole CFTs

1

Figure 2.1: Displayed is an embedding of the manifold with the metric (2.75) in R3. The

realisation is given as z = log

(√
2−x2−y2+1√
1−x2−y2

)
−
√
2− x2 − y2. Due to the shape of the

embedded manifold, the theory was coined the cigar CFT or simply the cigar.

It can be further simplified via the following coordinates

U = sinh(ρ)eiϕ , Ū = sinh(ρ)e−iϕ (2.73)

in which it finally takes the convenient form

SEBH[U, Ū ] =
k

8π

∫
dx dt

∂µU∂
µŪ

1 + |U |2
. (2.74)

The obtained action can be interpreted as governing a field moving on a manifold with the
metric

ds2EBH =
dUdŪ

1 + |U |2
. (2.75)

Let us examine this result with regards to the geometry of the target space SL(2,R)/U(1).
The above metric is invariant under rotations U 7→ Ueiα. Moreover, one can see that
the curvature takes its maximum value at the point where |U | = 0. In contrast, in the
regime where |U | ≫ 1, the metric becomes nearly flat as then the denominator can be
approximated in the following way

ds2EBH ≈ dUdŪ

|U |2
= dρ2 + dϕ2 . (2.76)

In the second step, we have made the coordinate transformation U = eρ+iϕ. Hence, in this
chart, we obtain the flat metric of a cylinder. From these three facts, it is clear that one
may visualize the target space as a half-infinite cigar. For the reader’s convenience, an
embedding of the target space as a surface in the higher dimensional space R3 has been
displayed in Figure 2.1.

In the above, we have gauged a compact U(1) subgroup. However, there exists also a
non-compact abelian subgroup of SL(2,R) corresponding to the transformation

g 7→ eh(t,x)σ
z
g eh(t,x)σ

z ≈ g + h(t, x) (σz g + gσz) , (2.77)

aR,µ = aL,µ =
i

2
aµσ

z =⇒ aµ 7→ aµ + ∂µh(t, x) . (2.78)
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Performing similar steps, one arrives at the action

SLBH =
k

8π

∫
dx dt

∂µU∂
µV

1− UV
, (2.79)

where U and V are real fields. The metric is given by

ds2LBH =
dUdV

1− UV
. (2.80)

The name Black Hole CFT was given to the theory (2.79) as the target space geometry —
see Figure 2.2 — resembles the usual Schwarzschild one in Kruskal coordinates, one can see
the curvature singularity at UV = 1. Further, the coordinate axes where U = 0 or V = 0
mark the event horizon. Instead of a globally defined time coordinate, the Killing vector
U∂U − V ∂V is timelike in regions I and II while it is spacelike in regions III and IV.

Note that — neglecting an overall minus sign — the metric (2.80) becomes the previous
one (2.75) under a Wick rotation in the target-space10. Due to this fact, the latter is also
called the 2D Euclidean Black Hole CFT while (2.80) is known as the 2D Lorentzian Black
Hole. This explains the choice of the subscripts EBH and LBH in (2.74) and (2.79).

The quantum versions of the above theories are, of course, of great interest. However,
the quantization of the Lorentzian Black Hole faces the usual problem of unboundedness
due to the Lorentzian signature of the target space. In contrast, the quantum Euclidean
Black Hole was widely studied. It reveals itself as a unitary CFT with central charge

c = 2 +
6

k − 2
. (2.81)

The spectrum of conformal dimensions splits into two parts [47]. The first is a continuous
family of weights given by

∆ =
p2

k
− J(J − 1)

k − 2

∆̄ =
p̄2

k
− J(J − 1)

k − 2

, with
p =

(m+ kw)

2

p̄ =
(m− kw)

2

and
J =

1

2
+ is

s ∈ R+
0

, (2.82)

where the integers m ∈ Z and w ∈ Z label the momentum and winding in the compact
direction of the semi-infinite cigar-shaped target space of the CFT for large |U |. The
quantity is = J − 1/2 is the conserved ingoing momentum along the uncompactified
direction. Besides the continuous spectrum, there is another family, the discrete states,
where the conformal dimensions are given by (2.82) but J takes a set of discretized values
[48, 49]

J ∈
[
1− k

2
,−1

2

)
∩
(
N− 1

2
|kw|+ 1

2
|m|
)
. (2.83)

These correspond to bound states localized near the tip of the cigar-shaped target space of
the model [50, 49, 48]. The restriction (2.83) can be seen as a condition that the states are
normalizable.

10We extend U, V to be complex-valued and set Ū = −V . This makes the time coordinate in region I to
be purely imaginary.
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2.2 The 2D Black Hole CFTs

UV

II I

V

VI

III

IV

Figure 2.2: Displayed is the space-time diagram of the metric (2.80). The event horizon,
where U = 0 or V = 0, coincides with the coordinate axes. The wiggled curve displays the
curvature singularity, where UV = 1.

The calculation of the partition function of the Euclidean Black Hole via the path integral
formalism starting from (2.71) has been carried out in [49, 51]. The evaluation boils down to
a computation of the Ray-Singer Torsion [52]. The latter involves a regularisation procedure
similar to the case of the free boson on the line that we present in appendix A. As this
matter is somewhat technical and long, we do not reproduce it here.

The partition function obtained from the path integral approach enables one to make
conjectures about the density of states, i.e. the measure over which the continuous spectrum
must be integrated, e.g. see (2.46) for the non-compact free boson, where the integration
measure was trivial, i.e. ≡ 1. For the continuous component of the Black Hole CFT, it was
conjectured in the works [49, 51] to be given by

ρ
(L̄,L)
EBH (s | p̄, p) = par2(L) par2(L̄) ρ

(0)(s | p, p̄) ,

ρ(0)(s) =
1

π
log(Λ) +

1

4iπ

d

ds
log

(
Γ
(
1
2 + p− is

)
Γ
(
1
2 + p̄− is

)
Γ
(
1
2 + p+ is

)
Γ
(
1
2 + p̄+ is

)) .
(2.84)

Here Λ plays the role of a regularising cut-off, and par2(L) is the number of bipartitions of
the integer L (see (4.96)).

In a series of recent works [20, 24, 53, 54, 55], in particular [25], new results for the 2D
Euclidean Black Hole sigma model were obtained via a detailed study of an integrable
lattice system. It led, among other things, to a corrected formula for the density of states
for the continuous part of the spectrum. Explicitly one has

ρ
(L̄,L)
EBH (s | p̄, p) =2

π
par2(L) par2(L̄) log(Λ) +

1

2πi

d

ds
log

[ (
D

(L̄)
p̄ (s)

)par2(L) (D(L)
p (s)

)par2(L̄) ]
(2.85)

where

D(L)
p (s) =

(
Γ(12 + p− is)

Γ(12 + p+ is)

)par2(L) L−1∏
a=0

[(
1
2 + a+ p− is

) (
1
2 + a− p− is

)(
1
2 + a+ p+ is

) (
1
2 + a− p+ is

)]par2(L)−da(L)

(2.86)
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2.2 The 2D Black Hole CFTs

and the integers da(L) are defined by the series expansion of the following generating
function ( ∞∏

m=1

1

(1− qm)2

) ∞∑
m=0

(−1)m q
1
2
m (m+2a+1) =

∞∑
L=0

da(L) q
L . (2.87)

Notice that for the case L = L̄ = 0, this density of states coincides with eq. (2.84).
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2.3 Finite-size scaling

Since the pioneering work of Polyakov [56], it has been widely accepted that the scaling
behaviour of a critical isotropic and homogeneous statistical system can be effectively
described in the framework of CFT. While a general proof is lacking, there is extensive
supporting evidence [57, 58, 59], much of which arises from examining two-dimensional
classical statistical models. In numerous instances, these models can be rephrased as
one-dimensional quantum spin chains. Consequently, identifying the underlying CFT can
be pursued by investigating the scaling limit of the spin chain Hamiltonian. In the following,
we will elaborate on this point borrowing from the discussion in [60, 61].

Consider the two-point function of a primary field ϕ subject to periodic BCs in space. In
the path integral formalism, it would be given by

⟨ϕ(z1, z̄1)ϕ(z2, z̄2)⟩ =
1

Z

∫
Dϕ ϕ(z1, z̄1)ϕ(z2, z̄2) exp [−S[ϕ]] . (2.88)

Conformal invariance dictates the form of the two-point function and its transformation
behaviour under conformal mappings [37]. On the complex plane z ∈ C we have that

⟨ϕ(z1, z̄1)ϕ(z2, z̄2)⟩ = (z1 − z2)
−2∆ (z̄1 − z̄2)

−2∆̄ . (2.89)

Further, under a conformal mapping z, z̄ 7→ w(z), w̄(z̄) the following identity holds true

⟨ϕ(w1, w̄1)ϕ(w2, w̄2)⟩ =

[
∂w

∂z

∣∣∣∣
z1

∂w

∂z

∣∣∣∣
z2

]−∆ [
∂w̄

∂z̄

∣∣∣∣
z̄1

∂w̄

∂z̄

∣∣∣∣
z̄2

]−∆̄

⟨ϕ (z1, z̄1)ϕ (z2, z̄2)⟩ .

(2.90)

Let us now evaluate the right hand side (RHS) with z substituted for w according to
w = 2π

L log(z) (analogously for w̄ and z̄). One obtains

⟨ϕ (w1, w̄1)ϕ (w2, w̄2)⟩ =
(
2π

L

)2(∆+∆̄)
(
z
1/2
1 z

1/2
2

z1 − z2

)2∆(
z̄
1/2
1 z̄

1/2
2

z̄1 − z̄2

)2∆̄

=

(
π

L sinh ( πL(w1 − w2))

)2∆( π

L sinh ( πL(w̄1 − w̄2))

)2∆

≈
(
2πvF
L

)2(∆+∆̄) ∞∑
L,L̄=1

(
cL,L̄ e−

2πvF
L (∆+∆̄+L+L̄)(t1−t2)

× e−
2πi
L (∆−∆̄+L−L̄)(x1−x2)

)
, (2.91)

where in the last step we have splitted w into its real and imaginary parts, w = vF t+ ix,
and expanded the resulting expression for large |vF (t1 − t2)| ≫ L. Here cL,L̄ are some
coefficients which are easily calculable and we restored the constant vF, the velocity of light,
relating time and space.

Let us assume that the CFT governs the universal behaviour of a critical lattice model.
In the transfer matrix approach — where the field ϕ appears in the scaling limit of a
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2.3 Finite-size scaling

regularised lattice version ϕreg — one can express the two-point function as the ground
state expectation value

⟨0|ϕreg (t1, x1)ϕreg (t2, x2) |0⟩ =
∑
n

⟨0|ϕreg(t1, x1)|n⟩⟨n|ϕreg(t2, x2)|0⟩

=
∑
n

|⟨n|ϕreg(0, 0)|0⟩|2e−(En−E0)(t1−t2)e−iPn(x1−x2) . (2.92)

In the first step, we have inserted a complete set of eigenstates of H and P with eigenvalues
En and Pn, respectively, while the second line follows since the Hamiltonian and momentum
operators generate translations in time and space. A comparison with (2.91) suggests the
relations between the conformal weights and the finite-size corrections of the low-lying
energy states of the lattice regularisation:

En(L)− E0(L) ≍
2πvF
L

(∆ + ∆̄ + L+ L̄) , (2.93)

Pn(L)− P0(L) ≍
2π

L

(
∆− ∆̄ + L− L̄

)
+ 2DkF . (2.94)

In the above, we have accounted for the possibility [62] of a macroscopic momentum 2DkF
of the state ϕ|0⟩ measured in units of the Fermi momentum kF .

The ground state energy of a 1+1 dimensional critical spin chain should behave as [61,
63]

E0(L) ≍ Le∞ − πvF
6L

c , (2.95)

where e∞ is the energy density in the thermodynamic limit. Combining this with (2.93),
we obtain the formula

E(L) ≍ Le∞ +
2πvF
L

Xeff , Xeff = − c

12
+ ∆+ ∆̄ + L+ L̄ . (2.96)

The above results can be generalized to open BCs [59]. They read

E(L) ≍ Le∞ + f∞ +
πvF
L
Xeff , Xeff = − c

24
+ ∆+ d , (2.97)

where d = 0, 1, 2, . . . denotes the level of the descendent11 and f∞ is the surface energy
density.

Formulae like (2.96) or (2.97) are of great practical importance. They allow one to study
the spectrum of scaling dimensions of the CFT underlying the critical behaviour of a lattice
system by considering the energy of the low-lying energy states at large L. However, it
should be stressed that the central charge and the conformal weights enter as a sum. As
such, one cannot read them off separately from the lattice data but only their combination.
Let us discuss this matter in the context of the continuous family of conformal primaries in
the Euclidean Black Hole CFT with periodic BCs. By inserting (2.81) and (2.82) in (2.96),
we obtain for the effective scaling dimensions

XEBH
eff = − 2

12
+
p2

k
+
p̄2

k
+

2s2

k − 2
, (2.98)

11Recall, that we have for the open case Ln = L̄n. We denote the level instead of L as d.
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where we have expressed J in terms of s. This looks like ∆+∆̄− c
12 for two non interacting

masslesss bosons. Indeed, the second and third terms p2/k, p̄2/k resemble the chiral zero

mode momenta of a compact boson with compactification radius R =
√

k
2π (see (2.54)).

The fourth term can be identified — up to a multiplicative factor — with the zero mode
momentum of a periodic non-compact boson (see (2.30), the discussion after section 2.1.1
and after (2.18)). The first term would correspond to c = 1+ 1, one for each boson. Hence,
we conclude the following: the additive constant from J = 1/2 + is combines with the
central charge term in a way that the effective scaling dimensions of the conformal primaries
will mimic the ones of a CFT consisting of two bosonic (compact and non-compact) fields.
Thus, to identify the Black Hole CFT as the effective field theory describing the low energy
regime of a given lattice model, it is necessary to show the existence of the discrete states
(2.83) and to determine the non-trivial density of states (2.84), which distinguish the Black
Hole CFT from the free field theory.

Ignoring the fact that we have not yet defined any conformal invariant BCs for the
Euclidean Black Hole CFT, the application of formula (2.97) for the open case yields

XEBH
eff = − 1

12
+
p2

k
+

s2

k − 2
. (2.99)
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2.4 Yang-Baxter integrable models

The first part of this chapter is based on the author’s publication [32].

The basic element for the systematic construction of an integrable lattice model is the
R-matrix. Written as Ra,b(u) the R-matrix depends on the so-called spectral parameter
u ∈ C and acts as an endomorphism on the tensor product Va⊗Vb of some vector spaces Va

and Vb. The explicit form of the vector spaces defines the physical properties of the lattice
model, but their specification is not strictly necessary in order to formulate the abstract
notion of integrability. In the rest of the manuscript, we use the following convention unless
stated otherwise. Given Ra,b(u), we extend it to the larger spaces such as Va ⊗ Vb ⊗ Vc

by demanding its action on Vc to be the identity. We do the same for any other lattice
operator as well. Using this convention, the defining relation of the R-matrix can be stated
as

Ra,b(u− v)Ra,c(u)Rb,c(v) = Rb,c(v)Ra,c(u)Ra,b(u− v) . (2.100)

The equation (2.100) is called the Yang-Baxter equation (YBE) after their two inventors C.
N. Yang [64, 65] and R. J. Baxter [66] (see also [67]). By depicting the matrix element12

Rγδ
αβ(u) of the R-matrix as in the left panel of Figure 2.3, the YBE can be illustrated as

on the right side of Figure 2.3, where a summation over the indices associated with the
internal lines is being assumed.

Often [68], the R-matrix has additional properties such as the so-called regularity, i.e. it
becomes proportional to the permutation operator P when evaluated at zero

Ra,b(0) ∝ Pa,b . (2.101)

From this and the YBE, it follows that the R-matrix obeys13

Ra,b(u)Rb,a(−u) = ξ(u)ξ(−u)1 , (2.102)

where ξ(u) is a scalar function, which we assume to be regular at u = 0. The above relation
is called unitarity. An inspection of (2.101), keeping in mind (2.102), suggests that the
proportionality constant therein can be arranged to be ξ(0). We will assume this to be true
in the following.

Several other properties are common, such as the so-called PT-symmetry

R
titj
i,j (u) = Rj,i(u) , (2.103)

where we denote by the superscripts tj the transpose in the space j. Further, we will assume
that we have an invertible matrix V and the so-called crossing parameter η ∈ C such that

Ri,j(u) = ViR
tj
i,j(−u− η)V −1

i . (2.104)

12Here, we use the index pair |γα for the first space, and |δβ for the second space.
13To be precise, it just follows that Ra,b(u)Rb,a(−u) ∝ 1. For simplicity, we assume that the proportion-

ality function factorises in this convenient manner, as this is the case for all explicit R-matrices in this
thesis.
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Rγδ
αβ(u) =

u
α γ

β

δ

u− v

u

v =

u− v

u

v

Figure 2.3: The left hand side (LHS) shows the R-matrix in graphical notation. The right
panel illustrates the Yang-Baxter equation, where we have suppressed the free indices and
summation over indices of connected lines is implicit.

It will be convenient to combine unitarity and the crossing symmetry into the so-called
crossing unitarity:

Rti
i,j(u)MiR

tj
i,j(−u− 2η)M−1

i = ξ(u+ η)ξ(−u− η)1 , (2.105)

where M = V tV . Besides the above properties, some [68, 69] R-matrices are also quasi-
periodic in their spectral parameter. That means, there exist a non-zero constant p ∈ C
and an invertible matrix U such that

Ra,b(u+ p) = ±UaRa,b(u)U
−1
a , (2.106)

where the sign depends on the specific model. In fact, one can show that U is either a
symmetric or antisymmetric matrix. Furthermore, one has U−1 ∝ V −1UV . We depict U
as in Figure 2.4.

Given a solution of the YBE, we define the Yang-Baxter algebra for the so-called
monodromy matrix Ta

Ra,b(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Ra,b(u− v) , (2.107a)

Ta(u)Ra,b(u+ v)T−1
b (−v) = T−1

b (−v)Ra,b(u+ v)Ta(u) , (2.107b)

Ra,b(u− v)T−1
a (u)T−1

b (v) = T−1
b (v)T−1

a (u)Ra,b(u− v) . (2.107c)

where Ta acts on Va⊗H . Here, H denotes the Hilbert space of the quantum system while
Va is called the auxiliary space. By tracing out the auxiliary space, we obtain a family of
commuting operators [70]. The generating function is called the transfer matrix t(u) of the
integrable system

t(u) = Tra (Ta(u)) , [t(u), t(v)] = 0 . (2.108)

Assuming that the matrix elements of t(u) are analytical in some domain of the complex
u-plane, including the origin, one can expand the commutator above in a power series in u
and v. This makes the family of commuting operators explicit

t(u) = I0 + u I1 + u2 I2 + . . . , [ Ik , Ij ] = 0 . (2.109)

It is important to mention that a solution of (2.100) automatically generates one of
(2.107a) with H = Vc by taking Ta(u) = Ra,c(u+δc) where δc ∈ C is an arbitrary parameter
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α βUβ
α = α β(U−1)βα =

α βϖβ
α = α β(ϖ−1)βα =

Figure 2.4: The figure illustrates the matrices U and ϖ in graphical notation.

which is called the inhomogeneity. Further, equation (2.107a) possesses the comultiplication
property, i.e. solutions of the RTT-relation can be combined together to form another
solution with an enlarged Hilbert space. Hence, a R-matrix naturally leads to the transfer
matrix

t(u) = Tra (Ra,L(u+ δL)Ra,L−1(u+ δL−1) . . . Ra,1(u+ δ1)) (2.110)

of an integrable system with Hilbert space H = VL ⊗ · · · ⊗ V1.

To define a quantum mechanical system, the space of states is not enough. The dy-
namics are encoded in a Hamiltonian. In principle, any choice of the operators Ij for the
Hamiltonian is possible if we disregard the question of its meaning or utility in describing
physical phenomena. In this thesis, I0 corresponds to either the translation or the identity
operator, while I1 will be taken as the Hamiltonian. For example we have, provided the
inhomogeneities {δm}Lm=1 are all set to zero,

H ∝
L∑
i=1

Pi,i+1R
′
i,i+1(0) , (2.111)

where the prime denotes the derivative with respect to the spectral parameter, and we
identify the (L+ 1)th space with the first one.

The transfer matrix in (2.108) can only generate systems with periodic BCs as is evidenced
in formula (2.111). The case of twisted or open BCs is incorporated in the following way.
Starting with the former, we need additional symmetry properties of the R-matrix. Namely,
if we find a scalar-valued solution ϖa of (2.107a) i.e.[

ϖaϖb, Ra,b(u)
]
= 0 , (2.112)

then we can construct an integrable model with twisted BCs controlled by ϖ by inserting
it in the transfer matrix as

t(u) = Tra (ϖaRa,L(u+ δL)Ra,L−1(u+ δL−1) . . . Ra,1(u+ δ1)) . (2.113)

Any operator O acting on the lattice site (L+ j) would be identified as acting on the jth

space up to an additional conjugated action of ϖ

OL+j = ϖjOjϖ
−1
j . (2.114)

When it comes to open or free BCs, the property (2.112) is not enough. It turns out that
one has to introduce reflection algebras [71, 72, 73]. The right reflection algebra FR is built
from solutions KR of the following equation

Ra,b(u− v)KR
a (u)Rb,a(u+ v)KR

b (v) = KR
b (v)Ra,b(u+ v)KR

a (u)Rb,a(u− v) , (2.115)

26



2.4 Yang-Baxter integrable models

α

β

u[KL]βα(u) =

α βMβ
α =

α β(M−1)βα =

α

β

u = [KR]βα(u)

Figure 2.5: The figure illustrates the K- and M-matrices in graphical notation.

while the defining relation of the left analogue, FL, can be stated as

Ra,b(−u+ v)KL,ta
a (u)M−1

a Ra,b(−u− v − 2η)MaK
L,tb
b (v)

= KL,tb
b (v)MaRa,b(−u− v − 2η)M−1

a KL,ta
a (u)Rb,a(−u+ v) .

(2.116)

Similar to the periodic case, the K-matrices and the reflection algebras can be depicted
graphically, as done in Figures 2.5 and 2.6.

Note that the two algebras are isomorphic. Given an element KR of the right reflection
algebra, one obtains a solution of equation (2.116) by the mapping

KR(u) 7→ KR,t(−u− η) ∈ FL . (2.117)

We will require the K-matrices to have some additional properties. We will discuss just the
imposed assumptions for the right K-matrix as the ones for the left directly follow by the
above isomorphism. The first relation we want to impose is the K-analogue of unitarity:

KR(u)KR(−u) ∝ 1 , (2.118)

which can be shown to hold for a large number of K-matrices, see [72, 73, 74, 75] and refer-
ences therein. If the R-matrix is quasi-periodic (2.106), we further assume the compatibility
condition

KR(u+ p) ∝ UKR(u)U . (2.119)

Finally, it is natural, especially with regard to local Hamiltonian to assume that KR(u) is
meromorphic in u, and obeys

KR(0) ∝ 1 , KR
(p
2

)
∝ U . (2.120)

Having at hand solutions KR, KL, and a solution of the RTT-relation, we can again
construct commuting transfer matrices

t(u) = Tra
(
KL

a (u)Ta(u)K
R
0 (u)T

−1
a (−u)

)
. (2.121)

Taking T (u) as the L-fold coproduct of R-matrices, we can resolve the inverse in (2.121) by
using the unitarity (2.102) of the R-matrix. We obtain

t(u) =Tra
(
KL

a (u)R0,L(u+ δL) ... R0,1(u+ δ1)

× KR
0 (u)R1,0(u− δ1) ... RL,0(u− δL)

)
,

(2.122)

whereby we have ignored upcoming scalar factors14.
14We can always absorb overall factors in a redefinition of the R-matrix without spoiling integrability.
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v

u

−u− v − 2η

v − u

=
u

v

v − u

−u−
v −

2η

u+ v

u− v

u

v =

u
−
v

u+ v v

u

Figure 2.6: Graphical representation of the left and right reflection algebra, respectively.
The dashed line has no meaning in the graphical notation but has been added to emphasise
the meaning of the name reflection algebras.

Additional symmetries

It often appears that a model has additional symmetries. By a symmetry, we mean a
quantity G such that

[t(u),G] = 0 . (2.123)

Note that for periodic or twisted BCs, equation (2.112) already implies the symmetry∏L
i=1ϖi . Besides the twist matrix ϖ, there are two other natural symmetries15 based on

the properties of the R-matrix. Namely, one can show that the crossing matrix M (see
(2.105)) and the matrix U in (2.106) also always generate symmetries16.

Turning to open BCs, the general picture remains the same provided the elementary
building block of the symmetry also commutes with the reflection matrices KL and KR.

2.4.1 Famous example: the six-vertex model
Let us illustrate the above abstract notion of integrability on a concrete example by following
[7]. Among the most prominent examples are the so-called ice-type models [76, 77]. When
water freezes, a crystal structure arises in which the oxygen atoms arrange in a lattice with
coordination number four [78], i.e. each oxygen atom has four neighbouring oxygen atoms.
The hydrogen atoms position themselves in between the oxygen according to hydrogen
bonding. This means each oxygen atom is surrounded by two close-by hydrogen atoms
and two more distant ones. The lattice is three-dimensional. However, a toy model that
is easier to study is the two-dimensional version of it. The structure of the oxygen in the
latter is then the one of a square lattice. One possible configuration is depicted in the left
panel of Figure 2.7. The hydrogen bonds between the oxygen atoms induce electric dipoles
whose direction either points towards the oxygen atom (near hydrogen) or away from it
(far away hydrogen). Such a dipole structure is illustrated on the right of Figure 2.7. One
can notice that the only six vertices arising from the dipole structure are given by

ω1 ω2 ω3 ω4 ω5 ω6
.

15Under the assumption that these matrices also commute with the twist matrix if twisted BCs are
considered.

16For the proof for U one needs to use the PT-symmetry in the transposed version of (2.106) with the
spaces interchanged.

28



2.4 Yang-Baxter integrable models

Figure 2.7: On the left panel the square lattice of the oxygen atoms (red) is visualised.
A possible configuration of the hydrogen atoms (black) is displayed. On the right, the
corresponding dipole structure is illustrated.

For the ice model, we would assign to each of these vertices the same energy [7]. However,
in general, each vertex can be assigned a different Boltzmann weight ωi. In this most
general case, the partition function of the statistical system would be given by

Z =
∑
confi

exp

[
−E

confi

kBT

]
=
∑
confi

6∏
j=1

ω
nj

j , (2.124)

where the sum is over all possible configurations and nj is the number of appearing vertices
of type j in a given configuration. If we consider a periodic L×M lattice with periodic
BCs, it is easy to show that the partition function can be written as

Z = Tr
(
t
M (u)

)
, (2.125)

where t is given by (2.110) with all the inhomogeneities set to zero, Va = C2 and

R(u) =


ω1 0 0 0
0 ω3 ω6 0
0 ω5 ω4 0
0 0 0 ω2

 . (2.126)

For general ωj , the above matrix is not a solution of the YBE, so the model is not exactly
solvable. However, if we set

ω1 = ω2 = sinh(u+ iγ) , ω3 = ω4 = sinh(u) , ω5 = ω6 = sinh(iγ) (2.127)

the model becomes integrable17. The extra parameter γ ∈ C is called the anisotropy. It is
related to the crossing parameter by η = iγ. The other quantities involved in the relations,
such as unitarity, crossing symmetry and quasi-periodicity (negative sign), take the explicit
form

ξ(u) = sinh(u+ iγ) , V =

(
0 1
−1 0

)
, U =

(
1 0
0 −1

)
, p = iπ . (2.128)

The above R-matrix commutes with the tensor products σj ⊗ σj of all Pauli matrices
j = x, y, z and also with the matrix exponential eikσz ⊗ eikσz for k ∈ C. Hence, suitable

17Note, that one always has the gauge freedom to set ω5 ̸= ω6.
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BCs can be generated by18

ϖ =

(
eikπ 0
0 e−ikπ

)
, ϖ =

(
0 1
1 0

)
. (2.129)

We will refer to k as the twist parameter in the following. While the first choice in (2.129)
is compatible with the U(1) symmetry. i.e. Sz =

∑
j σ

z
j is a conserved quantity, for

the antidiagonal BCs only one a discrete Z2 symmetry exists. The Hamiltonian of the
homogeneous six-vertex model as in (2.111) is the one of the XXZ chain of interacting
1
2 -spins:

HXXZ = − 1

2 sin(γ)

L∑
j=1

σxj σ
x
j+1 + σyj σ

y
j+1 + cos(γ)(σzjσ

z
j+1 − 1) , (2.130)

where we recall that the BCs (2.129) are reflected in (2.114).

The most general K-matrix for open BCs in the six-vertex model depends on three
additional parameters s1, s2 and ξR and takes the form [79]

KR(u) =

(
sinh(u+ ξR) s1 sinh(2u)
s2 sinh(2u) − sinh(u− ξR)

)
. (2.131)

2.4.2 The Bethe ansatz
In this section, we briefly sketch a method for how the spectrum and eigenvectors of
the transfer matrix t(u) can be found exactly. Note that this yields the simultaneous
diagonalization of the whole family of commuting operators Ik.

We start by illustrating the algebraic Bethe ansatz for the simple case of a periodic model
with sl(2) symmetry, e.g. the six-vertex model. It turns out that for this symmetry, the
auxiliary space of the monodromy matrix Ta is isomorphic to C2. Hence, we can write Ta
as a two by two matrix

Ta(u) =

(
A(u) B(u)
C(u) D(u)

)
, (2.132)

where the entries A(u), B(u), C(u) and D(u) are operators acting on H . These operators
obey the commutation relation dictated by the RTT-relation (2.107a). The transfer matrix
t(u), given as the trace over the auxiliary space, can easily be expressed as

t(u) = A(u) +D(u) . (2.133)

The starting point of the algebraic Bethe ansatz is to identify an obvious simultaneous
eigenvector of A(u) and D(u). Further, one needs that this eigenvector is either annihilated
by B(u) or C(u) and must not be by the other. A vector with these properties is called a
pseudo vacuum or simply the reference state. For the six-vertex model, a suitable reference
state is the product state of all spins up. Once a reference state |ϕ⟩ is found, one constructs
the so-called Bethe states by applying the non-annihilating operator on it. In the following,

18Note that the BC produced by σy can be generated by a combination of the ones given in (2.129).
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we pick the convention that C(u) will annihilate |ϕ⟩, and B(u) does not. In this case, the
Bethe state is defined as

|u1 . . . uM ⟩ :=
M∏
j=1

B(uj) |ϕ⟩ , (2.134)

where uj ∈ C are extra — yet unknown — parameters. Using the explicit form of the
commutation relation of A(u) and D(u) with B(u), the action of the transfer matrix on
the Bethe state can be worked out explicitly, e.g. for the six-vertex model the necessary
commutation relations would look like

A(u)B(v) = B(v)A(u)
ω1(v − u)

ω4(v − u)
− B(u)A(v)

ω6(v − u)

ω4(v − u)
,

D(u)B(v) = B(v)D(u)
ω2(u− v)

ω4(u− v)
− B(u)D(v)

ω5(u− v)

ω4(u− v)
.

(2.135)

Imposing that the Bethe state is an eigenstate, i.e. cancelling all contributions arising from
the second terms in (2.135), will lead to a set of algebraic constraints for the parameters
uj . These constraints are called the Bethe ansatz equations (BAE), and the solution set
{uj}Mj=1 are named Bethe roots. For the inhomogeneous six-vertex model with twisted19

BCs the BAE take the form (after a redefinition of uj 7→ uj − iγ
2 + iπ

2 )

L∏
l=1

cosh
(
um + δl +

iγ
2

)
cosh

(
um + δl − iγ

2

) = e2iπk
M∏

j ̸=m

sinh (um − uj + iγ)

sinh (um − uj − iγ)
, (2.136)

while the eigenvalue of the transfer matrix would read

t(u) =eiπk
L∏

j=1

sinh(u+ δj + iγ)

M∏
j=1

sinh(u− uj − iπ
2 − iγ

2 )

sinh(u− uj − iπ
2 + iγ

2 )

+ e−iπk
L∏

j=1

sinh(u+ δj)
M∏
j=1

sinh(u− uj − iπ
2 + 3iγ

2 )

sinh(u− uj − iπ
2 + iγ

2 )
.

(2.137)

The eigenvalue of Ik on the corresponding Bethe state can then be simply expressed in terms
of the Bethe roots. Hence, the problem of determining the spectrum of the commuting
family of operators has been reduced to obtain all solutions of an algebraic system of
equations. For example, the energies given by the eigenvalues of (2.130) can be expressed
in terms of the corresponding Bethe roots solving (2.136) as

EXXZ =

M∑
j=1

ϵ0(uj) = −
M∑
j=1

2 sin(γ)

cosh(2uj) + cos(γ)
. (2.138)

Here, we call ϵ0 the bare energies of the model for further reference. Remarkably, the above
procedure can also be generalised to higher-rank models where the minimal dimension of

19Note that the above derivation is strictly speaking only valid for the periodic case k = 0. However, the
above procedure can be simply generalized to the twisted case by adding the phase factors e±iπk in (2.133).
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the auxiliary space is larger than two. For the case of a rank 3 model, the monodromy
matrix would be of the form (

Ã B̃
C̃ D̃

)
, (2.139)

where Ã is just an operator but B̃ and C̃ are operator-valued two-row and two-column
vectors respectively while D̃ is an 2× 2 operator valued matrix. Nevertheless, applying the
framework of algebraic Bethe ansatz will lead to a diagonalization problem of reduced rank.
The latter can be again solved by a second algebraic Bethe ansatz. Hence, one ends up
applying the above scheme two times. This is a general pattern. A n rank problem needs a
hierarchy of n− 1 Bethe ansätze [80, 81, 82].

The generalisation to models with other BCs is also straightforward provided the associ-
ated matrices ϖ, KL and KR are diagonal (see [72, 73] for the open case). The case of
non-zero off-diagonal elements is more delicate due to the lack of an obvious reference state.
Hence, the treatment of this model requires more advanced methods, e.g. separation of
variables [83, 84] or off-diagonal Bethe ansatz [85].

The algebraic Bethe ansatz gives important insights through the explicit construction of
the eigenstates. However, in this thesis, we are primarily interested in the spectrum of the
transfer matrix. The latter can be obtained through the analytic Bethe ansatz, which we
will review in the next section.

2.4.3 Commuting transfer matrices: the Q-operator
Another powerful concept in integrable lattice systems is known as the method of commuting
transfer matrices. The method has been developed by Baxter to solve the eight vertex
model [86]. It can also be applied to the six-vertex model [87] and is based on the so-called
Q-operator, which commutes with the transfer matrix and itself

[Q(u),Q(v)] = [t(u),Q(v)] = 0 . (2.140)

Note that (2.140) implies the existence of a common system of eigenvectors of Q(u) and
t(u). Further, the transfer matrix and the Q-operator are intertwined by the so-called
TQ-equation. This is a functional relation of the kind

t(u)Q(u) = f1(u)Q(u+ a) + f2(u)Q(u+ b) , (2.141)

where f1,2(u) are scalar functions and a, b ∈ C.

The method of commuting transfer matrices is, in particular, useful for systems where
the algebraic Bethe ansatz fails, such as models with off-diagonal boundary matrices, e.g.
the second one in (2.129). Based on [88, 89], we briefly sketch how the Q-operator can be
constructed for the general inhomogeneous six-vertex model with antidiagonal BCs. In the
later section 4.1 we will discuss the case of open BCs.

The starting point of the derivation is to apply the transfer matrix given by (2.113),
(2.126) and (2.129) on a general product state, denoted as

y = g1 ⊗ g2 ⊗ · · · ⊗ gL, gi =

(
g1j
g2j

)
, gij ∈ C. (2.142)
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The result can be written in multi index notation β = (β1, . . . , βL)

(t(u)y)β = Tr (GL(βL) . . .G1(β1)ϖ) , (2.143)

where the matrix G is given by

Gi(1) =

(
ω1(u+ δi)g

1
i ω3(u+ δi)g

2
i

ω5(u+ δi)g
2
i 0

)
, Gi(2) =

(
0 ω5(u+ δi)g

1
i

ω3(u+ δi)g
1
i ω1(u+ δi)g

2
i

)
(2.144)

The key is now to find a matrix Pi =

(
pi(1) ∗
pi(2) ∗

)
to write Gi(βi) = Pi+1Hi(βi)P

−1
i where

Hi(βi) is an upper triangular matrix. A necessary and sufficient condition for the existence
of such matrices leads to the recurrence relation

2 cos(γ) =
ri
ri+1

+
ri+1

ri
(2.145)

for ri =
pi(1)
pi(2)

. This equation can be solved leading to ri = ri−1eiγσ
(i−1) where σ(i−1) can

either be +1 or −1. Note that for each i = 1, . . . L, the choice of the sign of σ(i−1) can be
made independently. This yields 2L different combinations in total, equal to the dimension
of the Hilbert space H . The initial condition, r1 = r is fixed by the antiperiodicity of the
model such that r2 = eiγ

∑L
j=1 σ

j

.

Using the above solution for ri, the diagonal elements of the matrix Hi(βi) are easily
found, and so equation (2.143) can be evaluated using its upper triangular form for all 2L

different sign choices. Grouping all 2L different vectors into one matrix Q leads using an
appropriate normalisation to the following TQ-relation

t(u)Q(u) =

L∏
j=1

sinh(u+ δj + iγ)Q(u− iγ)−
L∏

j=1

sinh(u+ δj)Q(u+ iγ) , (2.146)

whereby we have found the matrix elements of Q to be given by (z = eu)

Qi,j(z) =
QE

i,j(z)

QE
j,j(z)

(2.147)

with

QE
i,j(z) =z

1
2

∑L
k=1 σk(j)

L∏
k=1

hk,wk(i)(σ(j)) ,

hi,j(σ(k)) =1 + δj,2(−1 + ri(σ(k))z
−σi(k)e−δiσi(k)) ,

ri(σ(k)) =e−
iγ
2

∑L
j=1 σj(k)eiγ

∑L
j=i+1 σj(k) , (2.148)

σj(k) =− 1 + 2 IntDig(k − 1, 2, L, j) ,

wj(k) =1 + IntDig(k − 1, 2, L, j)

and IntDig(a, b, c, j) is the jth entry of the list of the base-b-digits in the integer a of length
c. In fact, it just transforms the indices of the canonical basis into the ones of the tensor
basis notation in a convenient way. We should stress that this formula is truly explicit
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and does not contain any implicit operations such as matrix inversion or multiplications
in contrast to [89]. Hence, this form of the operator is particularly useful for numerical
implementations.

The above operator equation induces, in turn, a similar equation for the eigenvalues t(u),
Q(u) of the transfer matrix and the Q-operator:

t(u)Q(u) =
L∏

j=1

sinh(u+ δj + iγ)Q(u− iγ)−
L∏

j=1

sinh(u+ δj)Q(u+ iγ) . (2.149)

Note the similarity with the eigenvalues t(u) for the twisted BCs (2.137). The above
equation (2.149) for Q(u) can be solved [89, 90] by the knowledge of the asymptotics of
t(u): Using the fact that the transfer matrix is a Laurent polynomial in eu one obtains the
following asymptotic behaviour of its eigenvalues regarding the spectral parameter u:

lim
u→∞

t(u)e−Lu = O(e−u). (2.150)

Taking this scaling into account one can deduce from (2.149) that Q(u) has the form

Q(u) =
L∏

k=1

sinh

(
1

2

(
u− uk +

iγ

2

))
, (2.151)

where the uk’s are unknown parameters. The eigenvalue of the transfer matrix is given in
terms of the uk:

t(u) =
L∏

j=1

sinh(u+ δj + iγ)
L∏

k=1

sinh
(
1
2(u− uk − iγ

2 )
)

sinh
(
1
2(u− uk +

iγ
2 )
)

−
L∏

j=1

sinh(u+ δj)

L∏
k=1

sinh
(
1
2(u− uk +

3iγ
2 )
)

sinh
(
1
2(u− uk +

iγ
2 )
) .

(2.152)

From the form of the transfer matrix and its analytic dependence on its spectral parameter,
the eigenvalue must also be an analytic function. Prima facie, the expression in (2.152) has
simple poles at u = uk − iγ

2 . However, provided {uk} satisfies the equations

L∏
j=1

sinh
(
uk + δj +

iγ
2

)
sinh

(
uk + δj − iγ

2

) =
L∏

m=1

sinh
(
1
2 (uk − um + iγ)

)
sinh

(
1
2(uk − um − iγ)

) , (2.153)

all residues vanish, and so the singularities are removable. This scheme of deriving the
eigenvalue of the transfer matrix by requiring it to be an analytical function is called the
analytical Bethe ansatz.

Systematic extraction of Bethe roots

Above we have seen that different Bethe ansätze have in common that the solution of the
spectral problem reduces to finding all solutions of the Bethe ansatz equations. However,
finding all of the possible solution sets of the latter, even for L ≲ 20, is impossible to carry
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Figure 2.8: The left panel displays the Bethe root configuration of the ground state for
L = 18 of the Hamiltonian (2.130) with twisted BC in the complex u-plane obtained within
the Q-operator approach while the right panel depicts the root pattern extended to L = 100.
The parameters are given by γ = π

5 and k = 0.05.

out on a modern consumer-PC because the system is too complicated. Moreover, many
searching algorithms, e.g. the Newton method, are based on the quality of the guess of an
initial approximation. The try-and-error approach is time-consuming and not guaranteed
to work. A more sophisticated method is required. Note that the zeros of the eigenvalue of
Q are given essentially by the Bethe roots see e.g. (2.151). This allows for an efficient and
systematic way to extract the Bethe roots for system sizes L ∼ 20, as we will describe in
the following [91].

First, one should choose from the family of commuting operators Ik an operator which is
of sparse form, e.g. the Hamiltonian as given in (2.111). Due to its sparse form, it can be
easily implemented on a standard computer for relatively large system sizes L ∼ 20 without
running out of memory. Using the Arnoldi-Krylov method [92, 93], one can obtain its first
few hundred eigenvalues and corresponding eigenvectors, whereby we order the spectrum
by its real parts. Using the shifted operator H− λ1 instead of H where λ ∈ C is called the
Arnoldi shift, one can iteratively diagonalize the whole Hamiltonian by suitable choices of
λ.

Once the spectrum and eigenstates of the Hamiltonian are found, one finds, e.g. by the
Gram–Schmidt process, an orthonormalized basis (ONB) ψ(j) j = 1, . . . d in each d-times
degenerated energy level. Due to (2.140), each eigenspace is left invariant under the action
of Q. Hence, we can project Q(u) onto one of these subspaces. Let us denote this projected
version by Qproj(u). As Qproj(u) still commutes with itself for different arguments, its
eigenvectors do not depend on the spectral parameter. Hence, it is enough to finds its
eigenvectors aj for some numerical value u = u0. Then we obtain the d eigenvalues of Q(u)
in the given energy level via

Qj(u) =
a†jQproj(u)aj

||aj ||2
, j = 1, . . . , d . (2.154)

Using simple root-finding algorithms such as the Newton method, one determines the
associated Bethe roots. The Bethe roots of the ground state and one excited state of the
twisted XXZ chain are displayed in Figures 2.8 and 2.9. Furthermore, looping this algorithm
over all accessible energy levels, we systematically generate all corresponding Bethe roots.

It should be stressed that in the above procedure, the rational notation ζ = e−2u should
be used when implementing the algorithm on a computer. The advantage is that instead of
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working with a growing number of unevaluated functions such as sinh(u+ ...), one works
with Laurent polynomials in ζ. Numerical manipulations of the latter are simply reduced
to computations of their purely numerical coefficients.

2.4.4 The critical twisted homogeneous XXZ model
To extract properties such as the critical behaviour of a lattice system, often small system
sizes such as L ∼ 20 are not enough to capture the essential physics. However, studying
larger system sizes is limited by the growth of necessary memory or computational time.

The advantage of integrable lattice systems, such as the XXZ chain, is that they allow
for either direct analytical treatment or that the complexity of certain numerical problems
grows polynomially. One particular task facilitated by integrability is the construction of
individual RG trajectories. We mean by that the extension of a given state |ψLin⟩ for the
system of Lin sites to larger system sizes20 e.g. L = Lin + 2. In an integrable system, we
can assign a set of Bethe roots to each state. Suppose one has at hand the Bethe roots for a
Bethe state for a lattice of Lin sites. The state |ΨLin+2⟩ is specified such that the pattern of
Bethe roots qualitatively remains the same. They can be obtained by numerically solving
the Bethe ansatz equations, where the initial approximation for the solution is constructed
from the Bethe roots corresponding to |ΨLin⟩. By iterating this procedure, a RG trajectory
{|ΨL⟩} for increasing L is obtained. Examples of the Bethe root configuration for the
ground state and an excited state for the twisted XXZ model are displayed in Figures 2.8
and 2.9, respectively.

Note that having at hand the Bethe roots of a RG trajectory {|ΨL⟩}, we can study how
the properties, e.g. energy or momentum of that individual state, behave as L→ ∞. This
is, in particular, useful concerning the discussion in section 2.3, especially for formulae like
(2.96) and (2.94). There, it has been shown that the asymptotic behaviour of the energies
and momenta of a lattice regularisation of a conformal field theory is dictated by its field
theory content. On the other hand, given an integrable lattice model and the hypothesis
that its infra-red limit tends to a conformal fix point, information about this fix point can
be accessed via the study of the scaling behaviour of the pattern of Bethe roots. Essentially,
the latter is the subject of the rest of the thesis.

A sketch of the root density approach

The above numerical method relies on the assumption — the so-called Bethe hypothesis —
that the Bethe roots are arranged in a regular pattern as L→ ∞. Based on the numerical
data of the roots for an increasing number of system sizes, one can guess what the limiting
pattern is. Starting from a hypothesis for a particular class of states, one can treat them in
an analytic fashion [94] valid in the limit L→ ∞. For the so-called root density approach,
two main properties of the limiting root pattern are essential.

First, one needs to know the limiting imaginary part as a function of the real part. Often,
the imaginary part has branches, i.e. given a real number x, there can be multiple choices
for the possible imaginary part. One needs to incorporate each branch.

20Since the two Hilbert spaces are not isomorphic, this question only makes sense if one restricts to a
certain energy regime, e.g. the low-energy excitations.
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Secondly, the distance between neighbouring roots on the same branch needs to decrease
as ∼ L−1. Suppose we have ordered the roots uj by their real part xj such that xj+1 > xj .
Then the quantity

ρ(xj+ 1
2
) =

1

L(xj+1 − xj)
with xj+ 1

2
=

(xj + xj+1)

2
(2.155)

tends to a continuous function in the thermodynamic limit L→ ∞, describing the density
of the root distribution on the associated branch. As the Bethe ansatz equations involve all
roots, the densities on different branches are not independent of each other but rather are
coupled to each other via a system of integral equations. The latter follows by inserting the
Bethe hypothesis into the logarithmic form of the Bethe ansatz equations and performing a
series expansion in L−1 whereby sums over the roots of a given branch can be replaced by
a convolution with the associated density.

For instance, the lowest energy state in a given sector of Sz of the twisted XXZ model
has L/2− Sz real roots if the twist parameter k is not too large. For an illustration of the
roots of the ground state, which appears in the sector Sz = 0, see Figure 2.8. By comparing
the two panels, it is apparent that the above conditions are satisfied. Then we can bring
(2.136) by taking its logarithm to the form

2π Im = ZL(um) , (2.156)

where Im are a certain set of (half)-integers, labelling the branch of the logarithm. Further,
we have introduced the so-called counting function

ZL(u) = 2πk+ Lf1(u) +

L
2
−Sz∑

m=1

f2(u− um) , (2.157)

where

f1(u) = 2 arctan
(
tanh(u) tan

(γ
2

) )
, f2(u) = 2 arctan

(
tanh(u) cot(γ)

)
. (2.158)

In the derivation of (2.157) we have chosen the branches of the logarithm such that f1(u) and
f2(u) are continuous functions in the strips |ℑm(u)| < π−γ

2 and |ℑm(u)| < γ, respectively,
such that (the star denotes the complex conjugation)

fj(u
∗) =

(
fj(u)

)∗
, fj(0) = 0 (j = 1, 2) . (2.159)

Different choices of the Im correspond to different solution sets of the Bethe ansatz equations.
For simplicity, let’s focus on the case when L

2 − Sz is even. Then, for the considered lowest
energy states in a sector Sz, the Im are the half integers and symmetrically distributed
around zero. Further, the counting function (2.157) for the solution set {uj} is a real,
monotonically increasing function. The above facts read

ZL(um) = π
(
2m− 1 + Sz − L

2

)
, (2.160)

um < um′ ⇐⇒ m < m′ . (2.161)

Also, we have the asymptotics

ZL(u) → ±π
(
L
2 − Sz

)
± 2γSz + 2πk as u→ ±∞ . (2.162)
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Figure 2.9: The left panel displays the Bethe root configuration of an excited state for
L = 18 of the anti-ferromagnetic XXZ spin chain in the complex u-plane obtained within
the Q-operator approach while the right panel depicts the root pattern extended to L = 100.
The parameters are given by γ = π

5 and k = 0.05.

Note that, for L→ ∞, the bounds of the counting function approach ±∞. Now, in regard
to the continuous version of (2.155), we define the root density to be

ρ(u) =
d

du

ZL(u)

2πL
. (2.163)

By differentiating the equation (2.157) and approximating the sum via the Euler MacLaurin
formula as L→ ∞, we obtain in the first order of L−1, the integral equation for the ground
state density

2πρ(u) = f ′1(u) +

∫ ∞

−∞
du′f ′2(u− u′)ρ(u′) . (2.164)

This integral equation can be solved via the Fourier transform. This yields

ρ(u) =
1

2(π − γ)

1

cosh( u
π−γ )

. (2.165)

Having this density at hand, we can calculate the energy density in the thermodynamic
limit by approximating the sum over the roots in (2.138) again by the convolution with the
root density. This way, we obtain

e∞ = − 1

π − γ

∫ ∞

−∞
dω

sinh
(

γω
π−γ

)
cosh(ω) sinh

(
πω
π−γ

) . (2.166)

Further, one can determine the dressed energies ϵ(u), defined by the same integral equation
as (2.164) but where the driving term f ′1 is replaced by the bare energies ϵ0 given in (2.138).
The form of dressed energy shows that one has gapless excitations with linear dispersion.
The corresponding Fermi velocity is given by

vF = lim
Λ→∞

1

2πρ(Λ)

d
dΛ

ϵ(Λ) =
π

π − γ
. (2.167)

Now, we have everything at hand to extract the conformal weights of the underlying
CFT. By numerically solving the Bethe ansatz equations, we can extract a finite-size
approximation Xeff(L) of effective scaling dimensions given in (2.96), i.e.

Xeff(L) =
L

2πvF
(E(L)− Le∞) . (2.168)
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In the rest of this thesis, we will often suppress the argument L of the finite-size estimate
Xeff(L) of Xeff when it is clear from the context what is meant.

By considering various states in different sectors of Sz, we obtain the formula

Xeff(L) = − 1

12
+
γS2

z

2π
+

(k+ w)2

2γ
+ L+ L̄+ o(1) , (2.169)

where w ∈ Z and L+ L̄ are positive integers. Comparing (2.169) with (2.54), we conclude
that the CFT underlying the XXZ model is a compactified boson of radius R =

√
2γ

−1.
Also, one can check that the degeneracy (2.39) of the level space par(L)par(L̄) works out.

Comment on ODE/IQFT correspondence

In the last section, we have seen that the CFT Hamiltonian of a compact boson appears
in the scaling limit of the Hamiltonian of the XXZ model. A natural question to ask is
what operators built from the free bose field appear in the scaling limit of the Q-operator
or the transfer matrix t. It turns out that the CFT analogues are well known. They form
a communting family which is referred to as the qKdV integrable structure in the CFT
[95, 96, 97]. In the later work [29], it was shown that the spectral problem for the integrals
of motion of the IQFT can be equivalently described in terms of spectral properties of a
class of ODEs. The latter offers a much simpler and convenient treatment. A detailed
explanation of the lattice, IQFT and ODE’s threefold interplay is outside this thesis’ scope.
We will limit ourselves to stating the relation between the lattice operators and the ODEs
and pointing out some numerical checks.

A good starting point for the discussion is the expression of the eigenvalues of the lattice
Q± operators — below and above the equator — in the rational notation ζ = e−2u

A±(ζ) =

L
2
∓Sz∏

m=1

(
1− ζ

ζ±m

)
, (2.170)

where we neglect an inessential overall factor. A manifestation of the ODE/IQFT corre-
spondence, which is important for our purposes, is that the scaling limit (slim) of A± for
the vacuum coincides with the spectral determinants of a certain ODE:

slim
L→∞

A±((L/L0)
( 2γ

π
−2)E) = D±(E) . (2.171)

Let us explain the quantities appearing in the above formula. In the LHS L0 is a non-
universal constant:

L0 =

√
πΓ
(
1
2 + π

2π−2γ

)
2Γ
(
1 + π

2π−2γ

) . (2.172)

The functions D±(E) are the spectral determinants of the ODE(
∂2x + E − x2α − l(l + 1)

x2

)
Ψ(x) = 0 . (2.173)
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2.4 Yang-Baxter integrable models

Here the relation between the parameters is given by

Sz+
πk

γ
= l +

1

2
, γ =

π

1 + α
. (2.174)

Also in (2.171) we make the technical assumption that 0 < γ < π
2 .

As a definition of the spectral determinant D+(E) (for D−(E) see below) we will use the
following. Denote by ψ+ the solution of the ODE, which is characterised by its asymptotic
behaviour at x→ 0+

ψ+(x) ≍
√

2π

1 + α

(2 + 2α)−
2l+1
2+2α

Γ(1 + 2l+1
2+2α)

xl+1 as x→ 0+ . (2.175)

Note that this specifies ψ+(x) uniquely only for ℜe(l + 1) ≥ 0. Let χ+(x) be another
solution of the ODE which decays as x→ +∞. We fix its normalisation by means of the
Wentzel-Kramers-Brillouin (WKB) approximation

χ+(x) ≍ x−
α
2 exp

[
− xα+1

α+ 1

]
as x→ +∞ . (2.176)

The spectral determinant of the ODE is defined as the Wronskian of the solution which
decays at x = 0 with the one which decays at x = ∞:

D+(E) =
1

2
W [χ+, ψ+] =

1

2

(
χ+∂xψ

+ − ψ+∂xχ
+
)
. (2.177)

For the values E = Em at which there exists a normalisable solution of the ODE (2.173),
ψ+ is proportional to χ+ and so their Wronskian vanishes:

D+(Em) = 0. (2.178)

Also the normalisation factors in (2.175) and (2.176) are chosen such that

D+(0) = 1 . (2.179)

An essential ingredient that allows one to argue for the scaling relation (2.171) is the
so-called quantum Wronskian relation. On the lattice/IQFT side, it can be derived from
the representation theory of Uq(ŝl(2)) (for an irrep see (4.8) and (4.9)) with q = eiγ , which
underlies the integrability of the XXZ spin chain [97]. It reads

(eiπkqSz − e−iπkq−Sz)(1 + ζ)L = eiπkqSzA+(q ζ)A−(q
−1ζ)− e−iπkq−SzA−(q ζ)A+(q

−1 ζ) .
(2.180)

In the scaling limit where L→ ∞ and ζ ∼ L(
2γ
π
−2) the factor (1+ ζ)L tends to one and can

be ignored (recall the technical assumption 0 < γ < π/2). In the following, we derive along
the lines of the work [29] the same functional relation (2.180), without the factor (1+ζ)L, for
the spectral determinants D±(E). Among other things, it yields the identification between
the parameters of the lattice model and the ones of the ODE (2.174). The derivation is
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2.4 Yang-Baxter integrable models

based on the Bazhanov-Lukyanov-Zamolodchikov symmetry transformations [29] of the
ODE (2.173)

Λ̂ : x 7→ x , E 7→ E , l 7→ −l − 1 , (2.181)

Ω̂ : x 7→ q0 x , E 7→ q−2
0 E , l 7→ l , (2.182)

which act non-trivially on the solutions but leave the ODE the same. In the above, we have
defined21 q0 to be

q0 = e
iπ

1+α =⇒ qα+1
0 = −1 . (2.183)

Let us denote the transformed solutions by ψ− and χ−

ψ−(x,E, l) =ψ+(x,E,−l − 1) , (2.184)

χ−(x,E, l) =iq
− 1

2
0 χ+(q0x, q

−2
0 E, l) . (2.185)

The Wronskian of these with the original solutions are

W [ψ+, ψ−] = 2i

(
q
l+ 1

2
0 − q

−l− 1
2

0

)
, (2.186)

W [χ+, χ−] = 2 . (2.187)

A non-vanishing Wronskian means that the two solutions are linearly independent. As the
ODE is of second order, both sets {ψ+, ψ−} and {χ+, χ−} individually form bases of all
solutions of the ODE for generic l. Therefore, we can express ψ+ in terms of χ±:

ψ+(x,E, l) = C(E, l)χ+ +D(E, l)χ− . (2.188)

For future reference, we mention that D and C are referred to as connection coefficients.
Due to (2.187) and W [f, f ] = 0 for any function f , we have

D(E, l) =
1

2
W [χ+, ψ+] . (2.189)

Other relations between the coefficients C and D can be deduced by considering the action
of the transformations given in (2.181) and (2.182) on the solutions ψ±, χ±. One finds

Λ̂ψ±(x,E, l) = ψ∓(x,E, l) , Λ̂χ±(x,E, l) = χ±(x,E, l) , (2.190)

Ω̂ψ±(x,E, l) = ql+1
0 ψ±(x,E, l) , Ω̂χ+(x,E, l) = −iq

1
2
0 χ

−(x,E, l) , (2.191)

and also the following identity where u(E, l) is an unknown function that is not important
for our purposes

Ω̂χ−(x,E, l) = −iq
1
2
0 χ

+(x,E, l) + u(E, l)χ−(x,E, l) . (2.192)

If we apply Ω̂ to the equation (2.188) we get

ql+1
0 ψ+(x,E, l) =− iq

1
2 C(q−2

0 E, l)χ−(x,E, l)− iq
1
2
0 D(q−2

0 E, l)χ+(x,E, l)

+ u(E, l)D(q−2
0 E, l)χ−(x,E, l) .

(2.193)

21We have chosen almost the same letter q0 for e
iπ

α+1 as for the anisotropy q of the XXZ model, since
they turn out to coincide.
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2.4 Yang-Baxter integrable models

Equating the LHS of the last equation with (2.188), we obtain by comparing the prefactors
in front of χ+ (possible due to the linear independence of the solutions {χ+, χ−}) that

C(E, l) = −iq
−l− 1

2
0 D(q−2

0 E, l) . (2.194)

Substituting this into the Λ̂ transformed version of (2.188), yields

ψ− = −iq
l+ 1

2
0 D(q−2

0 E,−l − 1)χ+ +D(E,−l − 1)χ− . (2.195)

Having all these identities at hand, we can now derive the quantum Wronskian relation for
the connection coefficients. We start by inserting (2.195) into (2.186):

2i

(
q
l+ 1

2
0 − q

−l− 1
2

0

)
= −iq

l+ 1
2

0 D(q−2
0 E,−l − 1)W [ψ+, χ+] +D(E,−l − 1)W [ψ+, χ−] .

(2.196)

The first factor can be rewritten by using (2.189). For the second factor we insert (2.188)
and further apply (2.187):

2i

(
q
l+ 1

2
0 − q

−l− 1
2

0

)
= 2iq

l+ 1
2

0 D(q−2
0 E,−l − 1)D(E, l) + 2D(E,−l − 1)C(E, l) . (2.197)

Keeping in mind (2.194) one obtains

2i

(
q
l+ 1

2
0 − q

−l− 1
2

0

)
= 2iq

l+ 1
2

0 D(q−2
0 E,−l − 1)D(E, l)− 2iq

−l− 1
2

0 D(E,−l − 1)D(q−2
0 E, l) .

(2.198)

Finally, we just have to do some cosmetic manipulations: namely, dividing by 2i and shift
E 7→ q0E, to arrive at

q
l+ 1

2
0 − q

−l− 1
2

0 = q
l+ 1

2
0 D(q0E, l)D(q−1

0 E,−l − 1)− q
−l− 1

2
0 D(q−1

0 E, l)D(q0E,−l − 1) .
(2.199)

Hence, we obtain the same functional relation as (2.180) — without the factor (1 + ζ)L —
upon the following identifications

slim
L→∞

A+(ζ) = D(E, l) = D+(E, l) , slim
L→∞

A−(ζ) = D(E,−l − 1) = D−(E, l) , (2.200)

and

ζ = (L/L0)
( 2γ

π
−2)E, Sz+

πk

γ
= l +

1

2
, q = q0 ,

(
γ =

π

1 + α

)
. (2.201)

We have proven that D± satisfies the same functional relation that appears in the
scaling limit of (2.180). One can further show that the analytic properties and asymptotic
behaviour of the functions D± and slimL→∞A± are also the same [96, 29]. It turns out that
the quantum Wronksian relation combined with the analytic and asymptotic properties
determines the functions uniquely and so their equality follows.
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2.4 Yang-Baxter integrable models

Let us sketch how the uniqueness can be easily deduced from the ODE side. By
its definition, the spectral determinant D+(E, l) is an entire function in E while it is
meromorphic in l and analytic for ℜe(l) > −1

2 . A detailed WKB analysis determines the
asymptotic behaviour in E and l. Due to its analyticity in E, the logarithm of the spectral
determinant can be expanded in a power series in E:

log(D+(E, l)) =
∞∑
s=1

Js(l)E
s (2.202)

with a finite radius of convergence. It can be plugged into the quantum Wronkian relation
(2.199). This yields a recursive sequence of equations for the Js(l). For example, the first
one reads

J1(l) sin

(
π (2l + 3)

2α+ 2

)
+ J1(−l − 1) sin

(
π(2l − 1)

2α+ 2

)
= 0 . (2.203)

The punch line is that the above equation and also all others of higher order are simply
Riemann Hilbert problems as Js(l) is analytic for ℜe(l) > −1

2 . The solution of a Riemann
Hilbert problem is unique if one takes into account the known asymptotic. Hence, all
coefficients are fixed, and so is the function.

On the side of the IQFT/lattice, the formulation of the Bethe ansatz equations as
non-linear integral equation (NLIE) is needed to determine the analytical properties of
A±(ζ) defined in (2.170), e.g. see [98] for the lattice. The asymptotics in l can then be
derived from the Wiener Hopf analysis of a linearized version of the NLIE in the large l
limit; see [96] for details.

For practical purposes, having at hand a way of numerically validating the ODE/IQFT
correspondence is often extremely useful. A suitable approach is based on the study of
what we refer to as the sum rules. This was originally introduced in the works [91, 55] and
we give a brief description for the XXZ model. One expands the logarithm of the LHS of
(2.171) and compares it with (2.202) which yields

slim
L→∞

(
L

L0

)−2s( γ
π
−1)

h(L)s = Js , (2.204)

and we defined

h
(L)
j =

1

j

M∑
m=1

ζ−j
m . (2.205)

Both sides of the above formula can be computed numerically and verified that they are
equal to one another. The relation (2.204) and its variants are known as the sum rules.
They turn out to be very important tools for deducing the ODE governing the scaling of a
given integrable lattice model.

The sum rules sometimes meet technical problems related to the numerical evaluation of
the limit in the LHS of (2.204). An alternative approach is to focus on the scaling behaviour
of individual roots. Note that the Bethe roots are the zeros of the function (2.170). Hence,
their scaled version should become the zeros of the spectral determinant, i.e. the eigenvalues
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2.4 Yang-Baxter integrable models

Ek of the Sturm-Liuville operator (2.173). The latter can be easily computed numerically
by integrating the ODE. Therefore, one can check if the following relation holds true

lim
L→∞

(
L

L0

)2− 2γ
π

ζk = Ek (2.206)

where ζk is the kth smallest Bethe root, equivalently, in the u = −1
2 log(ζ) plane the root

with the kth largest real part.
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3 | Staggered vertex models

This chapter is based on the author’s publication [32].

Yang-Baxter integrable lattice models with periodically repeating inhomogeneities (or
so-called staggered models) have proven to be applicable to a wide range of problems.
Apart from the construction of spin chains with larger unit cells [99, 100], they are used,
for example, in the quantum transfer matrix approach to thermodynamics [101] or to
formulate the Potts model as a Z2-staggered six-vertex model [102]. They also serve as
lattice regularisation of field theories such as the principal chiral model [103, 104] or can be
utilised to study integrable perturbations of CFTs [105].

In this chapter, we take a different perspective on staggered models by reformulating
these as homogeneous models. This is interesting as staggered models naturally possess
two different classes of integrals of motions: one stemming from the product of elementary
transfer matrices and the other from the quotient. The definition of the latter is not directly
possible from the perspective of a homogeneous model. Further, we will see in subsequent
chapters that the definition/identification of the scaling limit of certain integrable lattice
models requires operators of both families. Namely, the Hamiltonian from the ‘product
family’ and the so-called quasi-momentum operator from the ‘quotient family’. We hope
that the presented alternative approach facilitates the study of the critical behaviour of
homogeneous models.

We start this chapter by constructing composite R-matrices using the co-multiplication
property of the Yang-Baxter algebra. These R-matrices satisfy a generalised Yang-Baxter
equation (3.2) and depend on the original inhomogeneities through additional arguments.
For periodic BCs, this allows us to define a homogeneous transfer matrix generating the
two classes of integrals of motions.

Then, we generalise our findings to the case of open BCs, where we express composite
boundary matrices in terms of the elementary ones. Depending on the properties of the
elementary R-matrices (and unlike in the periodic case), we identify two different choices of
the staggering leading to a transfer matrix constructed from the composite R-matrix and
boundary matrices, which generates a Hamiltonian with local interactions (similar as in the
works [106, 107]). For one of these choices, a second homogeneous transfer matrix with
boundary matrices satisfying a different reflection equation generates the quasi-momentum.
The commutativity of these objects is guaranteed by a set of intertwining relations between
the two sets of boundary matrices.
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3.1 The composite R-matrix

u+ δi − δℓ

u+ δj − δℓ

u+ δi − δk

u+ δj − δk

δi

δj

δk δℓ

u→ u− δj + δℓ

u+∆ij

u

−∆kl

u−∆kl

u+∆ij

δi

δj

δk δℓ

Figure 3.1: The composite R-matrix (3.1), where ∆ij = δi − δj .

3.1 The composite R-matrix

The coproduct structure of the Yang-Baxter algebra allows one to extend a solution R of
the YBE (2.100) acting on V ⊗V to one acting on (V ⊗V )⊗ (V ⊗V ) (or, more generally,
the n-fold tensor products of the vector space V ). We define the composite R-matrix to be

Ri,j|k,ℓ(u,∆ij ,∆kℓ) = Ri,ℓ(u+∆ij)Ri,k(u+∆ij −∆kℓ)Rj,ℓ(u)Rj,k(u−∆kℓ) , (3.1)

where ∆ij ,∆kℓ are arbitrary parameters. The explicit form in equation (3.1) is motivated
by a general choice of inhomogeneities in both the horizontal and vertical direction as
displayed in Figure 3.1. The introduced index notation, including the vertical line, should
emphasise that Ri,j|k,ℓ acts on the tensor product of the two copies (Vi ⊗Vj) and (Vk ⊗Vℓ).
By construction, R satisfies the generalized Yang-Baxter equation

Ri,j|k,ℓ(u− v,∆ij ,∆kℓ)Ri,j|m,n(u,∆ij ,∆mn)Rk,ℓ|m,n(v,∆kℓ,∆mn) =

Rk,ℓ|m,n(v,∆kℓ,∆mn)Ri,j|m,n(u,∆ij ,∆mn)Ri,j|k,ℓ(u− v,∆ij ,∆kℓ) ,
(3.2)

and therefore allows for the definition of commuting transfer matrices similar to the
procedure explained in section 2.4. Since this construction relies on the properties (2.102)-
(2.106) of the elementary matrix R(u) it is natural to ask which of these are inherited to
the R-matrix. One can work out that the R-matrix obeys the following properties

Ri,j|k,ℓ(0,∆,∆) = ξ2(0)ξ(∆)ξ(−∆)Pi,j|k,ℓ, (3.3)

Ri,j|k,ℓ(u,∆ij ,∆kℓ)Rk,ℓ|i,j(−u,∆kℓ,∆ij) = Ξ(u,∆ij ,∆kℓ)1 , (3.4)

Rtitjtktℓ
i,j|k,ℓ (u,∆ij ,∆kℓ) = Rk,ℓ|i,j(u,−∆kℓ,−∆ij) , (3.5)

M−1
i,j Ri,j|k,ℓ(u,∆ij ,∆kℓ)Mi,j = Mk,ℓRi,j|k,ℓ(u,∆ij ,∆kℓ)M−1

k,ℓ , (3.6)

U−1
i,j Ri,j|k,ℓ(u,∆ij ,∆kℓ)Ui,j = Uk,ℓRi,j|k,ℓ(u,∆ij ,∆kℓ)U−1

k,ℓ , (3.7)

Ri,j|k,ℓ(u+ p,∆ij ,∆kℓ) = Ui,jRi,j|kℓ(u,∆ij ,∆kℓ)U−1
i,j , (3.8)

and

Rtitj
i,j|k,ℓ(u,∆ij ,∆kℓ)Mi,jRtktℓ

i,j|k,ℓ(−u− 2η,−∆ij ,−∆kℓ)M−1
i,j = Ξ(u+ η,∆ij ,∆kℓ)1 . (3.9)

The equation (3.3) is a regularity property (with a different normalization) where Pi,j|k,ℓ is
the enlarged permutation operator acting on the vector (a⊗b)⊗(c⊗d) ∈ (Vi⊗Vj)⊗(Vk⊗Vℓ)
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3.2 Staggered vertex models with periodic BCs

as

Pi,j|k,ℓ(a⊗ b)⊗ (c⊗ d) = (c⊗ d)⊗ (a⊗ b) .

The equation (3.4) is a unitarity condition where the proportionality constant reads as

Ξ(u,∆ij ,∆kℓ) =ξ(u+∆ij)ξ(−u−∆ij)ξ(u+∆ij −∆kℓ)ξ(−u−∆ij +∆kℓ)

× ξ(u)ξ(−u)ξ(u−∆kℓ)ξ(−u+∆kℓ) .

The third property (3.5) is a generalized PT-symmetry. Note the sign difference of the
parameters in R on the right and left-hand side. This can be traced back to a reordering
caused by the transposition:

Rtitjtktℓ
i,j|k,ℓ (u,∆ij ,∆kℓ) = (Ri,ℓ(u+∆ij)Ri,k(u+∆ij −∆kℓ)Rj,ℓ(u)Rj,k(u−∆kℓ))

titjtktℓ

= R
tjtk
j,k (u−∆kℓ)R

titk
i,k (u+∆ij −∆kℓ)R

tjtℓ
j,ℓ (u)Rtitℓ

i,ℓ (u+∆ij)

= Rk,j(u−∆kℓ)Rk,i(u+∆ij −∆kℓ)Rℓ,j(u)Rℓ,i(u+∆ij)

= Rk,ℓ|i,j(u,−∆kℓ,−∆ij) .

As the PT-symmetry is related to the crossing unitary, the R-matrix also satisfies a
generalized crossing unitarity given in the equation (3.9) where Mi,j =MiMj .

Finally, also the quasi-periodicity (2.106) and the symmetry relations can be directly
transferred to the R-matrix, yielding equations (3.6)-(3.8) where Ui,j = UiUj .

3.2 Staggered vertex models with periodic BCs

Let us now construct Z2-staggered models with periodic BCs. Here, we show how the
formulations in terms of the elementary and the composite R-matrices are related.

Consider the transfer matrix (2.110) with 2L sites (L ∈ N) and periodic BCs. Further, let
us choose on the even sites δ1 and on the odd sites δ2 as the inhomogeneities. In addition
to this staggering, we also induce a staggering in the auxiliary direction by multiplying two
transfer matrices with different shifted spectral parameters u+ δ0, u+ δ0 together. This
defines the composite transfer matrix Tpbc (0 and 0 label different auxiliary spaces)

Tpbc(u, {δ0, δ0, δ1, δ2}) =t
pbc(u+ δ0, {δ1, δ2}) tpbc(u+ δ0, {δ1, δ2}) (3.10)

=Tr0

(
R0,2L(u+ δ0 + δ1)R0,2L−1(u+ δ0 + δ2) ... R0,1(u+ δ0 + δ2)

)
×Tr0

(
R0,2L(u+ δ0 + δ1)R0,2L−1(u+ δ0 + δ2) ... R0,1(u+ δ0 + δ2)

)
.

We can combine the two traces into one over an enlarged auxiliary space. By this and
reordering the R-matrices, we obtain

Tpbc(u,{δ0, δ0, δ1, δ2}) =

Tr00

(
R0,2L(u+ δ0 + δ1)R0,2L(u+ δ0 + δ1)R0,2L−1(u+ δ0 + δ2)R0,2L−1(u+ δ0 + δ2) ...

...R0,2(u+ δ0 + δ1)R0,1(u+ δ0 + δ2)R0,1(u+ δ0 + δ2)R0,1(u+ δ0 + δ2)

)
.

47



3.2 Staggered vertex models with periodic BCs

The products of four R-matrices appearing in each row can be expressed in terms of the
composite R-matrix (3.1). By shifting the spectral parameter as u→ u− δ0− δ1, we obtain
a homogeneous transfer matrix

Tpbc(u, {∆00,∆12}) = Tr00

(
R0,0|2L−1,2L(u,∆00,∆12) ...R0,0|1,2(u,∆00,∆12)

)
. (3.11)

For the physical interpretation as a lattice model with finite range interactions, additional
conditions need to be satisfied. Typically, locality can be derived from the regularity
property of the R-matrix, i.e. it becomes a permutation operator at a shift point u = u0.
In the case at hand, (3.3), we have u0 = 0 and we need to tune the staggering parameters
such that

∆00 = ∆12 ≡ ∆ . (3.12)

With this constraint, and under the assumption that R is differentiable at ±∆, a Hamiltonian
which couples the degrees of freedom from nearest neighbour quantum spaces V ⊗ V is
obtained by

Hpbc ∝ ∂

∂u
log(Tpbc(u,∆,∆))

∣∣∣∣
u=0

. (3.13)

The staggering in the auxiliary direction allows one to construct another generating function
of commuting operators: instead of (3.10) we can consider the quotient of single row transfer
matrices

tpbc(u+ δ0, {δ1, δ2})
tpbc(u+ δ0, {δ1, δ2})

.

As done for the product of transfer matrices, we shift the spectral parameter u→ u−δ0−δ1,
leading to

tpbc(u− δ1, {δ1, δ2})
tpbc(u+∆00 − δ1, {δ1, δ2})

. (3.14)

Restricting the staggering parameters δ1, δ2, δ0 and δ0 to be compatible with (3.12) and
taking the logarithm of this operator at the shift point, u0 = 0, we obtain the so-called
quasi-momentum operator

Bpbc = log

[
tpbc(−δ1, {δ1, δ2})
tpbc(−δ2, {δ1, δ2})

]
. (3.15)

This operator has proven to be essential for the characterization of the low energy effective
behaviour of several staggered vertex models, see for example [24, 53, 54, 108, 31], and
further has found recent application as a Floquet Hamiltonian [109].

We now want to generate the quasi-momentum from an operator constructed from the
composite R-matrix (3.1). For that, let us resolve the inverse of the single row transfer
matrix (2.110) in (3.15). By using the regularity and unitarity of the R-matrix we obtain(

t
pbc(−δ2, {δ1, δ2})

)−1
∝ Tr0 (R1,0(0)R2,0(−∆) ... R2L−1,0(0)R2L,0(−∆)) . (3.16)

48



3.3 Composite picture for open models

By defining

Kpbc(u) = Tr0 (R1,0(−u)R2,0(−u−∆) ... R2L−1,0(−u)R2L,0(−u−∆))

× Tr0

(
R0,2L(u)R0,2L−1(u−∆) ... R0,2(u)R0,1(u−∆)

)
,

we obtain a product of R-matrices depending on a spectral parameter which, after taking
the logarithm, becomes (3.15) at the shift point up to a different normalisation. Using the
crossing symmetry (2.104) and expressing the result in terms of the composite R-matrices
we find:

Kpbc(u) = Tr00
(
R0,2L(u+∆− η)R0,2L−1(u− η) ... R0,2(u+∆− η)R0,1(u− η)

×R0,2L(u)R0,2L−1(u−∆) ... R0,2(u)R0,1(u−∆)
)

= Tr00

(
R0,0|2L−1,2L(u,∆− η,∆) ...R0,0|1,2(u,∆− η,∆)

)
= Tpbc (u, {∆− η,∆}) .

(3.17)

Note that this becomes the product of two single row transfer matrices with arguments
differing by the crossing parameter η in the homogeneous limit, ∆ → 0,

lim
∆→0

Kpbc(u) = Tr00
(
R0,2L(u− η)R0,2L(u) ... R0,1(u− η)R0,1(u)

)
= t

pbc(u− η) tpbc(u) .

(3.18)

This product can be related to the higher-spin transfer matrices through the T -system
bilinear functional relations [110].

In summary, the transfer matrices

Tpbc(u, {θ,∆}) = Tr00

(
R0,0|2L−1,2L(u, θ,∆) ...R0,0|1,2(u, θ,∆)

)
(3.19)

provide a unified framework generating both local integrals of motion such as the Hamiltonian
under the locality condition (3.12), i.e. θ = ∆, and the quasi-momentum (3.15) for θ = ∆−η.
Note that the third argument of all R-matrices in (3.19) coincide. Therefore, the generalized
YBE (3.2) ensure commutativity of Tpbc (u, {θ,∆}) for different u and θ (which includes
Kpbc(u)).

3.3 Composite picture for open models

We now want to address the question to which extent this procedure can be applied
to construct staggered models with open BCs. The strategy is the same: we begin by
considering the product of two transfer matrices (2.122) built out of generic R and K-
matrices satisfying the Yang-Baxter and reflection equations, respectively, i.e.

T(u, {δ0, δ0, δ1, δ2}) = Tr0

(
X0(u+ δ0)

)
Tr0

(
Y0(u+ δ0)

)
= Tr00

(
X0(u+ δ0)Y

t0
0
(u+ δ0)

)
,

(3.20)
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3.3 Composite picture for open models

u+ δ0 − δ1 u+ δ0 − δ2 u+ δ0 − δ1 u+ δ0 − δ2

u+ δ0

u+ δ0 + δ1 u+ δ0 + δ2 u+ δ0 + δ1 u+ δ0 + δ2

u+ δ0 − δ1 u+ δ0 − δ2

u+ δ0 + δ1 u+ δ0 + δ2

u+ δ0

u+ δ0 − δ1 u+ δ0 − δ2 u+ δ0 − δ1 u+ δ0 − δ2

u+ δ0

u+ δ0 + δ1 u+ δ0 + δ2 u+ δ0 + δ1 u+ δ0 + δ2

u+ δ0 − δ1 u+ δ0 − δ2

u+ δ0 + δ1 u+ δ0 + δ2

u+ δ0

2L 2L− 1 2L− 2 2L− 3 2 1

Figure 3.2: Graphical representation of the product (3.20) of two transfer matrices with
arbitrary Z2 staggering by using the conventions defined in Figures 2.3 and 2.5.

where for presentational reasons, we have defined

X0(u) ≡KL
0 (u)T0(u, {δ1, δ2})KR

0 (u)T
−1
0 (−u, {δ1, δ2}) ,

Y0(u) ≡T0(u, {δ1, δ2})K
R
0
(u)T−1

0
(−u, {δ1, δ2})KL

0
(u) .

For a graphical representation of T(u), see Figure 3.2. Inserting a crossing unitarity (2.105),
using the cyclicity of the trace and applying the PT-symmetry, we obtain

T(u, {δ0, δ0, δ1, δ2})ξ(2u+ δ0 + δ0 + η)ξ(−2u− δ0 − δ0 − η)

= Tr00

(
M0R0,0(−2u− δ0 − δ0 − 2η)M−1

0 X0(u+ δ0))R0,0(2u+ δ0 + δ0)Y0(u+ δ0)

)
= Tr00

(
M0R0,0(−2u− δ0 − δ0 − 2η)M−1

0 KL
0 (u+ δ0)

× T0(u+ δ0, {δ1, δ2})KR
0 (u+ δ0)T

−1
0 (−u− δ0, {δ1, δ2})R0,0(2u+ δ0 + δ0)

× T0(u+ δ0, {δ1, δ2})K
R
0
(u+ δ0)T

−1
0

(−u− δ0, {δ1, δ2})K
L
0
(u+ δ0)

)
.

Now we use the equation (2.107b) and rearrange the K-matrices to get:

T(u, {δ0, δ0, δ1, δ2}) =Tr00

(
KL

0
(u+ δ0)M0R0,0(−2u− δ0 − δ0 − 2η)M−1

0 KL
0 (u+ δ0)

× T0(u+ δ0, {δ1, δ2})T0(u+ δ0, {δ1, δ2})
×KR

0 (u+ δ0)R0,0(2u+ δ0 + δ0)K
R
0
(u+ δ0)

× T−1
0 (−u− δ0, {δ1, δ2})T−1

0
(−u− δ0, {δ1, δ2})

)
× ξ−1(2u+ δ0 + δ0 + η)ξ−1(−2u− δ0 − δ0 − η) .
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3.3 Composite picture for open models

u+ δ0 − δ1 u+ δ0 − δ2 u+ δ0 − δ1 u+ δ0 − δ2

u+ δ0

u+ δ0 + δ1 u+ δ0 + δ2 u+ δ0 + δ1 u+ δ0 + δ2

u+ δ0 − δ1 u+ δ0 − δ2

u+ δ0 + δ1 u+ δ0 + δ2

u+ δ0

u+ δ0 − δ1 u+ δ0 − δ2 u+ δ0 − δ1 u+ δ0 − δ2

u+ δ0

u+ δ0 + δ1 u+ δ0 + δ2 u+ δ0 + δ1 u+ δ0 + δ2

u+ δ0 − δ1 u+ δ0 − δ2

u+ δ0 + δ1 u+ δ0 + δ2

u+ δ0

2u+ δ0 + δ0−2u− δ0 − δ0 − 2η

2L 2L− 1 2L− 2 2L− 3 2 1

Figure 3.3: Graphical representation of the product of transfer matrix (3.21) after the
merging procedure. The composite R-matrix here is given by four vertices as in Figure 3.1
as indicated as an example by the red box. Further, we see we obtain some enlarged
boundary matrices, as emphasized by the blue box.

Finally, using the expression for the monodromy matrices in terms of the elementary
R-matrices, this transfer matrix can be represented graphically as shown in Figure 3.3 (up
to a scalar factor). Clearly, this can be expressed in terms of the composite R-matrices
(3.1) giving

T(u, {δ0, δ0, δ1, δ2}) = cτ (u+ δ0, {δ1, δ2})cτ (u+ δ0, {δ1, δ2})
× ξ−1(−2u− δ0 − δ0 − η)ξ−1(2u+ δ0 + δ0 + η)

× Tr00

(
KL

0
(u+ δ0)M0R0,0(−2u− δ0 − δ0 − 2η)M−1

0 KL
0 (u+ δ0)

×R0,0|2L−12L(u+ δ0 + δ1,∆00,∆12) ...R0,0|1,2(u+ δ0 + δ1,∆00,∆12)

×KR
0 (u+ δ0)R0,0(2u+ δ0 + δ0)K

R
0
(u+ δ0)

×R1,2|0,0(u+ δ0 − δ1,∆12,∆00) ...R2L−1,2L|0,0(u+ δ0 − δ1,∆12,∆00)

)
,

(3.21)
where the scalar function cτ originates from resolving the inverse of the monodromy matrix.
It reads

cτ (u, {δ1, δ2}) = [ξ(−u+ δ1)ξ(−u+ δ2)ξ(u− δ1)ξ(u− δ2)]
−L . (3.22)

3.3.1 Local interactions I: alternating staggering
As for periodic BCs, the staggering parameters {δ0, δ0, δ1, δ2} have to satisfy constraints to
generate local interactions from this open boundary transfer matrix. Nearest neighbour
interactions between the composite degrees of freedom of the staggered model are obtained
by taking the derivative (assuming all quantities to be differentiable at the corresponding
points) of T(u) with respect to the spectral parameter [72]

H ∝ ∂

∂u
T (u, {δ0, δ0, δ1, δ2})

∣∣∣∣
u=u0

. (3.23)
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2δ0

−2δ0

−2δ0

2δ0

2j − 1 2j

(b)

2δ0

−2δ0

−2δ0

2δ0

− p
2

− p
2

p
2

p
2

2j − 1 2j

(c)

2j − 1 2j

(d)

u+ δ0 − δ1

u+ δ0 − δ1

u+ δ0 + δ1

u+ δ0 + δ1

u+ δ0 − δ2

u+ δ0 − δ2

u+ δ0 + δ2

u+ δ0 + δ2

2j2j − 1

(a)

2j − 1 2j

(e)

Figure 3.4: (a) To establish bulk locality at u = 0 the parameters δ0, δ0, δ1, δ2 have to
be fine-tuned such that the conditions i)-iii) hold. The diagrammatic schemes of the bulk
elementary cells at the shift point u = 0 for all possible non-trivial choices of staggering
are displayed in (b) & (c) (alternating case (3.24)) and (d) (quasi-periodic case (3.30)).
Using the regularity (2.101), unitarity (2.102), and in (d) quasi-periodicity (2.106) of the
elementary R-matrix gives the identity (e) in the bulk.

Again, locality derives from the regularity of R. To make use of (3.3) three conditions need
to be met:

i) The R-matrices in (3.21) need to act on the same auxiliary space e.g. V0 ⊗ V0.

ii) As in the periodic case, the staggering parameters have to satisfy the constraint (3.12).

iii) The staggering parameters have to be chosen such that all R in (3.21) can simultane-
ously be evaluated at the shift point u0 = 0.

For i) we use the identity Ri,j|0,0 = P0,0Ri,j|0,0P0,0. Conditions ii) and iii) are achieved by
choosing the staggering parameters to be opposite and equal in both the horizontal and the
vertical direction, i.e.

δ0 = −δ0 = δ1 = −δ2 (3.24)

(depicted in Figure 3.4c) or the equivalent choice of parameters obtained by changing
δ0 → −δ0 (see Figure 3.4b). These constraints on the staggering parameters imply ∆00 =
∆12 = 2δ0 with δ0 remaining as a free parameter. The resulting transfer matrix is

T(u, {δ0,−δ0, δ0,−δ0}) = cτ (u+ δ0, {δ0,−δ0})cτ (u− δ0, {δ0,−δ0})

Tr00

(
KL

0,0
(u, 2δ0)R0,0|2L−1,2L(u, 2δ0, 2δ0) ...R0,0|1,2(u, 2δ0, 2δ0)

×KR
0,0

(u, 2δ0)R1,2|0,0(u, 2δ0, 2δ0) ...R2L−1,2L|0,0(u, 2δ0, 2δ0)

)
,
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3.3 Composite picture for open models

where we have introduced

KR
i,j(u, 2δ0) = Pi,jK

R
j (u+ δ0)Ri,j(2u)K

R
i (u− δ0) , (3.25a)

KL
i,j(u, 2δ0) =

1

ξ(2u+ η)ξ(−2u− η)
Pi,jK

L
j (u− δ0)MiRi,j(−2u− 2η)M−1

i KL
i (u+ δ0) .

(3.25b)

In terms of the monodromy matrix built from the composite R-matrices,

T0,0(u,∆00,∆12) = R0,0|2L−1,2L(u,∆00,∆12) ...R0,0|1,2(u,∆00,∆12) , (3.26)

the transfer matrix for alternating staggering (3.24) is brought into its standard form
(2.122)1

Talt(u, 2δ0) ≡ T(u, {δ0,−δ0, δ0,−δ0)

= Tr00

(
KL

0,0
(u, 2δ0)T0,0(u, 2δ0, 2δ0)K

R
0,0

(u, 2δ0)T −1
0,0

(−u, 2δ0, 2δ0)
)
.

(3.27)

Remarkably, if the R-matrix is also quasi-periodic, the above transfer matrix possesses
the following duality transformation2. If, we send 2δ0 7→ p− 2δ0, then it can be shown that
Talt is similar to itself, i.e.

Talt(u, p− 2δ0) = DTalt(u, 2δ0)D
−1 (3.28)

with

D=

L∏
i=1

U2i

L∏
i=1

P2i−1,2iR2i−1,2i(2δ0) . (3.29)

Hence, if we adjust 2δ0 =
p
2 , we obtain an extra symmetry as then the transfer matrix is

left invariant under the action of D. We will call this the self-dual point.

3.3.2 Local interactions II: quasi-periodic staggering
Interestingly, there exists a second choice of the staggering parameters leading to a local
Hamiltonian (3.23) when the elementary R-matrix is quasi-periodic (2.106), namely

δ0 =
p

2
, δ0 = 0 , δ1 = 0 , δ2 =

p

2
, (3.30)

which is displayed in Figure 3.4d. Again, we have to implement the same three steps
to bring the transfer matrix into a form generating a local Hamiltonian: for step i), i.e.
switching the auxiliary space V0 ⊗ V0 to V0 ⊗ V0, we use the Yang-Baxter equation (2.100)
for v = −p/2 giving

Ri,j|0,0

(
u+

p

2
,−p

2
,
p

2

)
R0,0

(
−p

2

)
= R0,0

(
−p

2

)
Ri,j|0,0

(
u,−p

2
,−p

2

)
. (3.31)

1If one drops the constraint (3.24), a shift in the spectral parameter in (3.21) leads to a transfer
matrix with a moving boundary [106]. This transfer matrix does not lead in general, however, to a local
Hamiltonian.

2The same can be shown to hold true in the periodic case.
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3.3 Composite picture for open models

For step ii), i.e. preparing R such that the regularity (3.3) can be exploited, we use the
quasi-periodicity of R which implies

R0,0|i,j

(
u,

p

2
,−p

2

)
= U0R0,0|i,j

(
u,−p

2
,−p

2

)
U−1
0 . (3.32)

Together with the unitarity condition R0,0(−
p
2)R0,0(

p
2) = ξ(p2)ξ(−

p
2)1 these identities allow

us to rewrite the transfer matrix (3.21) such that also condition iii) is satisfied, i.e.

T
(
u,
{p
2
, 0, 0,

p

2

})
= cτ

(
(u+

p

2
,
{
0,

p

2

})
cτ

(
u,
{
0,

p

2

})
ξ−1

(p
2

)
ξ−1

(
−p

2

)
Tr00

(
KL

0,0(u,−
p

2
)R0,0|2L−1,2L(u,−

p

2
,−p

2
) ...R0,0|1,2(u,−

p

2
,−p

2
)

×KR
0,0(u,−

p

2
)R1,2|0,0(u,−

p

2
,−p

2
) ...R2L−1,2L|0,0(u,−

p

2
,−p

2
)

)
,

(3.33)

with

KR
i,j

(
u,−p

2

)
=U−1

i KR
i

(
u+

p

2

)
Rj,i

(
2u+

p

2

)
KR

j (u)Ri,j

(
−p

2

)
, (3.34a)

KL
i,j

(
u,−p

2

)
=Rj,i

(p
2

)
KL

j (u)MiRi,j

(
−2u− p

2
− 2η

)
M−1

i KL
i

(
u+

p

2

)
Ui (3.34b)

× 1

ξ
(
2u+ p

2 + η
) 1

ξ
(
−2u− p

2 − η
) .

Using the monodromy matrix (3.26) for the composite R-matrices the transfer matrix
for the quasi-periodic staggering (3.30) can be written as

Tqp(u,−p

2
) ≡T(u, {−p

2
, 0, 0,−p

2
})

=Tr00

(
KL

0,0(u,−
p

2
)T0,0(u,−

p

2
,−p

2
)KR

0,0(u,−
p

2
)T −1

0,0
(u,−p

2
,−p

2
)

)
× ξ−1

(p
2

)
ξ−1

(
−p

2

)
.

(3.35)

Note that the composite monodromy matrix T (3.26) enters in the transfer matrices
(3.27) and (3.35) with identical arguments for the particular choice of 2δ0 = −p

2 . Hence,
the bulk of these models coincides while the reflection matrices K (3.25) and K (3.34)
correspond to different BCs.3 This has been discussed recently in the context of a staggered
six-vertex (or A(1)

1 ) model [26, 106, 107]: for 2δ0 = −p
2 the resulting composite model is a

vertex model based on the twisted affine Lie algebra D(2)
2 . The D(2)

2 boundary matrices
corresponding to K and K were known previously [111] and can be factorized into objects
of the six-vertex model subject to Uq(sl(2)) BCs.

3.3.3 Associated reflection algebras and composite K-
matrices

We are left to prove that the reflection matrices (3.25) and (3.34) are indeed representations
of a reflection algebra associated with the R-matrix. We define the following generalized

3This does not lead to different models in the case of periodic BCs where different choices of the
horizontal staggering can be related by a shift in the spectral parameter (see Figure 3.5).
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u+ δ1 u+ δ2

u→ u− δ1

u u+ δ2 − δ1

u− δ1 u− δ2

u+ δ2u+ δ1

u→ u− δ1
u− 2δ1 u− δ2 − δ1

u+ δ2 − δ1u

(a)

(b)

Figure 3.5: In the periodic case (a) a shift in the spectral parameter allows to adjust one
inhomogeneity to zero e.g. δ1 = 0. This is not possible in the open case (b) where each
inhomogeneity appears twice with different signs.

reflection algebras:

Ri,j|k,ℓ(u− v, θ, θ)KR
i,j(u, θ)Rk,ℓ|i,j(u+ v, θ, θ)KR

k,ℓ(v, θ) (3.36a)

= KR
k,ℓ(v, θ)Ri,j|k,ℓ(u+ v, θ, θ)KR

i,j(u, θ)Rk,ℓ|i,j(u− v, θ, θ)

and

Ri,j|k,ℓ(−u+ v,−θ,−θ)KL,ti,j
i,j (u, θ)M−1

i,j Rk,ℓ|i,j(−u− v − 2η,−θ,−θ)Mi,jK
L,tk,ℓ
k,ℓ (v, θ) =

KL,tk,ℓ
k,ℓ (v, θ)Mi,jRi,j|k,ℓ(−u− v − 2η,−θ,−θ)M−1

i,j K
L,ti,j
i,j (u, θ)Rk,ℓ|i,j(−u+ v,−θ,−θ) .

(3.36b)

Note that the sign of the free parameter θ in the arguments of the composite R-matrices
differs between (3.36a) and (3.36b). One of the main results is that for given KR,L satisfying
equations (2.115-2.116) the matrices K (3.25) and K (3.34) obey the equations (3.36) with
the composite R-matrix R(u, θ, θ) for θ = 2δ0, δ0 arbitrary, and θ = −p

2 , respectively. The
proof for (3.25b) is given in Appendix B. The one for (3.25a) works along the same lines,
for (3.34), one needs to use multiple times the quasi-periodicity in addition.

Based on the reflection algebra, it is straightforward to show the commutativity of the
transfer matrices for both alternating and quasi-periodic BCs.

3.3.4 Boundary terms in the Hamiltonian
Above, we have identified two types of staggering, (3.24) and (3.30), allowing for the
construction of a local bulk Hamiltonian from the corresponding transfer matrix of the
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composite model. For a compact presentation, we define

Ri,j|k,ℓ(u, s) =

{
Ri,j|k,ℓ(u,−p

2 ,−
p
2) , s = 0

Ri,j|k,ℓ(u, 2δ0, 2δ0) , s = 1
, KL,R

i,j (u, s) =

{
KL,R

i,j (u,−p
2) , s = 0

KL,R
i,j (u, 2δ0) , s = 1

(3.37)

where s = 1 (0) corresponds to the alternating (3.27) and the quasi-periodic staggering
(3.35), respectively. Note that KR(0, s) ∝ 1 by (2.118) for s = 1 and by (2.120) for s = 0.
Hence, we obtain a local4 Hamiltonian [72] via (3.23) whose bulk contribution is found to
be

Hs
bulk =

2

ξ(∆)ξ(−∆)

L−1∑
j=1

P2j,2j−1|2j+2,2j+1R
′
2j,2j−1|2j+2,2j+1(0, s) . (3.38)

Here and in the following, the prime indicates the derivative with respect to the first
argument, where we assume that all quantities are differentiable at the corresponding points.
The boundary contributions read as

Hs
left =

Tr00

(
K

′L
0,0

(0, s)

)
Tr00

(
KL
0,0

(0, s)

) +

2Tr00

(
KL
0,0

(0, s)P0,0|2L−1,2LR
′
0,0|2L−1,2L

(0, s)

)
Tr00

(
KL
0,0

(0, s)

)
ξ(∆)ξ(−∆)

,

Hs
right =

KR′
1,2(0, s)

KR
1,2(0, s)

.

(3.39)

Note that to obtain the spectrum of the above Hamiltonians, it is sufficient to use the Bethe
ansatz for the single double row transfer matrix t(u) (2.122). Knowing the eigenvalue
t(u) of t(u), the energies can be calculated via equations (3.20) and (3.23) with operators
replaced by their eigenvalues.

3.4 Quasi-momentum for open systems

As pointed out for the periodic case above, there exist two families of conserved quantities
for the staggered models considered in this section: in addition to the ones generated by the
product of elementary transfer matrices (3.20) (or equations (3.27) and (3.35) for the two
cases discussed above), one can consider operators such as the quasi-momentum generated
from the quotient of elementary transfer matrices. For the staggered model with open BCs
built from arbitrary elementary R- and K-matrices, we replace (3.15) by

B = log

[
t(−δ1, {δ1, δ2})
t(−δ2, {δ1, δ2})

]
. (3.40)

To express this operator in the composite picture, we adopt the idea from the periodic case:
we look for a generating function built out of a product of transfer matrices, giving (3.40)
as the leading term.

4It is noteworthy that for KR(0) ̸∝ 1, inducing an alternating staggering is sufficient to define a local
Hamiltonian. See also [112] for a similar approach.
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Figure 3.6: Here the two double row transfer matrices defining the quasi-momentum as in
(3.40) for quasi-periodic staggering evaluated at the shift point are shown. We see that both
at their own become trivial in the bulk, and if one assumes that KR(0),KR

(p
2

)
∝ 1 then the

whole transfer matrices become essentially the identity leading to a trivial quasi-momentum.

3.4.1 Quasi-periodic staggering

For the quasi-periodic staggering, the single ingredients t(−p
2 , {0,

p
2}) and t(0, {0, p2})

become trivial in the bulk, see Figure 3.6. Hence, under the assumptions (2.120), the
quasi-momentum operator is trivial

Bqp ∝ 1. (3.41)

We will come back to this when we consider the specific example of the six-vertex model in
section 4.3.

3.4.2 Alternating staggering
For the alternating staggering case, the quasi-momentum operator can be directly related
(up to an additive constant) to a single double row-transfer matrix

Balt = log

(
t
2(−δ0, {δ0,−δ0})

)
. (3.42)

In this case, the quasi-momentum can be represented in the rotated geometry as displayed
in Figure 3.7. Starting from t2(u− δ0, {δ0,−δ0}) and repeating the steps in section 3.3 to
reach (3.21) and then applying the manipulations i)-ii) in section 3.3.1, we obtain another
generating functional for the quasi-momentum operator:

K(u) = Tr00

(
KL

0,0
(u, 2δ0)T0,0(u, 0, 2δ0)K

R
0,0

(u, 2δ0)T −1
0,0

(−(u− 2δ0), 0, 2δ0)

)
, (3.43)
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3.4 Quasi-momentum for open systems

−δ0

−2δ0 −2δ0 −2δ0 −2δ0
−2δ0 −2δ0 −2δ0 −δ0

2L 2L− 1 2L− 2 2L− 3 2L− 4 3 2 1

Figure 3.7: We have graphically represented the quasi-momentum operator for alternating
staggering in the rotated geometry. One can see that the quasi-momentum operator is
acting non-locally. The loops at the right and left endings are due to the influences of the
boundary matrices.

where the K-matrices

KR
i,j(u, 2δ0) =Pi,jK

R
j (u− δ0)Ri,j(2u− 2δ0)K

R
i (u− δ0) , (3.44a)

KL
i,j(u, 2δ0) =Pi,jK

L
j (u− δ0)MiRi,j(−2u+ 2δ0 − 2η)M−1

i KL
i (u− δ0) (3.44b)

× 1

ξ(2u− 2δ0 + η)ξ(−2u+ 2δ0 − η)

obey the reflection algebras

Ri,j|k,ℓ(u− v, 0, 0)KR
i,j(u, 2δ0)Rk,ℓ|i,j(u+ v − 2δ0, 0, 0)K

R
k,ℓ(v, 2δ0) =

KR
k,ℓ(v, 2δ0)Ri,j|k,ℓ(u+ v − 2δ0, 0, 0)K

R
i,j(u, 2δ0)Rk,ℓ|i,j(u− v, 0, 0)

(3.45a)

and

Ri,j|k,ℓ(−u+ v, 0, 0)K
L,ti,j
i,j (u, 2δ0)M−1

i,j Rk,ℓ|i,j(−u− v + 2δ0 − 2η, 0, 0)Mi,jK
L,tk,ℓ
k,ℓ (v, 2δ0) =

K
L,tk,ℓ
k,ℓ (v, 2δ0)Mi,jRi,j|k,ℓ(−u− v + 2δ0 − 2η, 0, 0)M−1

i,j K
L,ti,j
i,j (u, 2δ0)Rk,ℓ|i,j(−u+ v, 0, 0) ,

(3.45b)
respectively. Again, the proof is analogous to the one shown in appendix B for KL.
Reflection algebras of this type were introduced by Nepomechie and Retore [113, 106]: they
describe a moving boundary where the reflection of a particle at the boundary not only
changes the sign of its rapidity but also leads to a shift by 2δ0 in the argument of the
R-matrix containing the sum of u+ v.

These reflection algebras, together with the generalized YBE (3.2), ensure the commuta-
tivity of K with itself for different arguments. Finally, we need to prove the commutativity
with the transfer matrix (3.27) in the composite picture. For the open chain with alter-
nating staggering, this is not obvious because the boundary matrices KL,R and KL,R are
representations of different reflection algebras. Remarkably, it turns out that they are
intertwined by the following relations

Ri,j|k,ℓ(u− v, 0,−2δ0)K
R
i,j(u, 2δ0)Rk,ℓ|i,j(u+ v − 2δ0, 2δ0, 0)KR

k,ℓ(v, 2δ0) =

KR
k,ℓ(v, 2δ0)Ri,j|k,ℓ(u+ v, 0,−2δ0)K

R
i,j(u, 2δ0)Rk,ℓ|i,j(u− v − 2δ0, 2δ0, 0) ,

(3.46a)
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and

Ri,j|k,ℓ(−u+ v, 0, 2δ0)K
L,ti,j
i,j (u, 2δ0)M−1

i,j Rk,ℓ|i,j(−u− v + 2δ0 − 2η,−2δ0, 0)

×Mi,jK
L,tk,ℓ
k,ℓ (v, 2δ0) = KL,tk,ℓ

k,ℓ (v, 2δ0)Mi,jRi,j|k,ℓ(−u− v − 2η, 0, 2δ0)

×M−1
i,j K

L,ti,j
i,j (u, 2δ0)Rk,ℓ|i,j(−u+ v + 2δ0,−2δ0, 0) .

(3.46b)

Again, this can be proven as shown in appendix B. Using these algebras, one can show on
the composite level that

K(u)Talt(v, 2δ0) = Talt(v, 2δ0)K(u) . (3.47)

We want to stress that the intertwining relations (3.46) ensure the commutativity of transfer
matrices with different boundary matrices. It would be interesting to address whether
similar relations exist between other already-known boundary matrices.

3.5 Chapter summary

Starting from an elementary solution R of the YBE (2.100), we have constructed the
composite R-matrix (3.1). In addition to the spectral parameter, the composite matrix
depends on two free parameters related to the staggering of the elementary vertices (see
Figure 3.1). PT-symmetry, unitarity, regularity and crossing unitarity are inherited from the
elementary R-matrix. Most importantly, the composite R-matrix obeys a generalized YBE
(3.2). In this picture, the commuting transfer matrices of arbitrary Z2-staggered models
can be rewritten as homogeneous ones where the staggering parameters enter through the
additional arguments of the composite R-matrices (and reflection matrices in the case of
open BCs). Integrals of motion, including the quasi-momentum operator, whose natural
definition relies on the staggering of the model, have been described in the homogeneous
picture based on the composite R-matrix. In the case of open BCs, the Hamiltonian and
the quasi-momentum are defined in terms of different representations of the reflection
algebra intertwined by (3.46). This construction may provide insights into a definition of
this operator in homogeneous models which may lack a known factorization of the transfer
matrix. This is of particular interest for models featuring a continuous component of
the conformal spectrum at criticality [23, 114, 115, 116]. Knowing the quasi-momentum
operator in these models is expected to foster the identification of the CFT describing the
low-energy regime.

Demanding locality in the Hamiltonian limit leads to constraints on the staggering
parameters: in the case of periodic BCs, they have to be tuned to satisfy (3.12). For open
BCs, the staggering has to satisfy equation (3.24) for ‘alternating staggering’. Moreover, for
quasi-periodic R- (and R-) matrices, the inequivalent choice of ‘quasi-periodic staggering’
(3.30) leads to a different Hamiltonian with local interactions. For both cases, we have
identified the corresponding composite boundary matrices, which generalise the findings of
the factorization [107] for the D(2)

2 boundary matrices [117, 118, 111] to arbitrary algebras.

59



4 | The staggered six-vertex
model with Uq

(
sl(2)

)
BCs

In this chapter, which is based on the author’s works [31, 32, 34], we want to apply our
findings and investigate further the special case of the staggered six-vertex model (2.126)
with so-called Uq(sl(2)) invariant BCs. This corresponds to setting the right K-matrix to be

KR(u) =

(
eu 0
0 e−u

)
, (4.1)

where we assumed the R-matrix to be of the form (2.126),(2.127), and we use for the left
K-matrix the isomorphic one (2.117). The above K-matrix can be obtained from the most
general one (2.131) by setting s1 = s2 = 0 and sending1 ξR → ∞. However, for technical
reasons, it is better to consider first the one-parameter2 family (2.131) with s1 = s2 = 0
but finite ξR, and then recover the case of interest — the Uq

(
sl(2)

)
invariant case — by

taking the limit ξR → ∞. Moreover, for the sake of generality and a coherent presentation,
it is useful to discuss the more general model with arbitrary inhomogeneities {δJ}.

Let us proceed by defining the more general model. As discussed in the preliminaries, for
the systematic extraction of the Bethe roots in the Q-operator approach — which will be
of great importance later — it is advantageous to directly use the multiplicative spectral
parameter ζ and arrange the definitions such that the matrix elements of both t(ζ) and
Q(ζ) are manifestly polynomials in ζ. Therefore, we use

R(ζ) =


q − q−1 ζ 0 0 0

0 1− ζ q − q−1 0
0 (q − q−1) ζ 1− ζ 0
0 0 0 q − q−1 ζ

 , (4.2)

instead of (2.126) in this section. Then the transfer matrix reads as

t(ζq−1) = q−2L tr0

(
KL

0 (ζ)R0,2L(ζ η
−1
2L ) ... R0,1(ζ η

−1
1 )KR

0 (ζ)R1,0(ζ η1) ... R2L,0(ζ η2L)
)
,

(4.3)
where KR,L take the form

KR(ζ) =

(
1 + ζϵ 0

0 ζ2 + ζϵ

)
, KL(ζ) =

(
q−2ζ + ϵ 0

0 ζ−1 + q−2ϵ

)
. (4.4)

1This limit requires a regularisation factor of e−ξR .
2To get in this limit the Uq(sl(2)) invariant case, we need to set the other free parameter of the left

K-matrix to be ξL = −ξR. The negative sign originates from the sign change of the isomorphism (2.117).
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4.0 The staggered six-vertex model with Uq

(
sl(2)

)
BCs

Here, the rational notation3 is connected to the ones in the preliminaries in equations
(2.126), (2.127) and (2.131) via the identifications

ζ = e−2u, q = eiγ , ηJ = e2δJ , ϵ = −e−2ξR . (4.6)

Let us consider the case when the extra boundary parameter ϵ is set to zero (i.e. ξR → ∞)

t
(0)(ζ) ≡ t(ζ)

∣∣
ϵ=0

. (4.7)

A special feature of such a choice of boundary terms is that the model possesses Uq

(
sl(2)

)
symmetry. This means that t(0)(ζ) commutes with the z -projection of the total spin
operator:

Sz =
1

2

2L∑
J=1

σzJ , (4.8)

and with

S±q =
2L∑
J=1

( 2L∏
ℓ=J+1

q−
σz
ℓ
2

)
η∓1
J σ±J

( J−1∏
ℓ=1

q+
σz
ℓ
2

)
, (4.9)

which satisfy the defining relations of the Uq

(
sl(2)

)
algebra:

[
Sz , S±q

]
= ±S±q ,

[
S+q , S−q

]
=
q2S

z − q−2Sz

q − q−1
. (4.10)

Hence, the eigenstates of the transfer matrix form irreducible representations of this algebra,
i.e. the states come in multiplets MS . These are characterised by the Casimir operator,

2C = (q + q−1) [Sz]2q + S+q S−q + S−q S+q . (4.11)

The eigenvalues of C are given by [S]q [S +1]q with integer S = 0, 1, 2, . . . , L. The subscript
q on the bracket indicates the so-called q-bracket which is given by

[m]q = (qm − q−m)/(q − q−1) . (4.12)

It is important to emphasise that the presence of the Uq

(
sl(2)

)
symmetry simplifies the

diagonalisation problem. Namely, since each multiplet has a representative in the sector
Sz = 0, it is sufficient to consider the (2L)!/(L!)2 dimensional nullspace of the operator Sz.

The rest of this chapter is structured as follows: in the next section, we state the Q-
operator of the more general model and describe how the Q-operator for the Uq(sl(2))
invariant case can be obtained in the limit ϵ→ 0.

Then, we investigate the scaling limit of the model with alternating staggering. First, we
study the model’s Hamiltonian for small system sizes by exact diagonalisation. We identify

3In fact, the transfer-matrix as defined in formula (4.3) for arbitrary inhomogeneities ηJ is related to
(2.122) with (2.126) and (2.131) (for s1 = s2 = 0) via a similarity transformation by a diagonal matrix and
an overall multiplicative factor. Namely,

t(ζ) = 24Le−4Lu−2u U t(u)U−1. (4.5)

Here U = G1(δ1)⊗ ...⊗G2L(δ2L) with G(u) = diag(1, e−u), while the parameters u, γ, δJ , ξR need to be
identified with ζ, q, ηJ , ϵ as in (4.6). Note that the K-matrices must also be identified appropriately.
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u

0.5 1 1.5

ℑm(u) = π
2

u

0.5 1 1.5 2

ℑm(u) = π
2

Figure 4.1: Displayed is the pattern of Bethe roots in the complex u = − 1
2 log(ζ) plane for a low

energy Bethe state that was generically chosen. For the left panel, L = 10 was selected, and the
set {ζm} has been obtained from the eigenvalue of the Q-operator computed on the state. On the
right panel, the Bethe roots for the corresponding state with L = 40 are shown. The trajectory is
labeled by S = 1, while the anisotropy parameter was taken to be q = e

10πi
49 .

one particular class of states that partly describes the low-energy spectrum of the spin
chain. We analyse this class of states in the scaling limit using analytical techniques, such
as the root density approach. By means of a Wiener-Hopf analysis and numerical data of
the finite-size spectrum, we conclude that a non-compact degree of freedom emerges in the
scaling limit. The quasi-momentum operator parametrises this degree of freedom on the
lattice. While the quasi-momentum for the considered class of states is real, we find that
other states exist with purely imaginary values of the quasi-momentum. It turns out that
these describe the so-called ‘discrete’ states. The found effective scaling dimensions mimic
the ones of the conformal primaries of the Black Hole CFT introduced in the preliminaries.

After this, we generalize the study to any low-energy state for the self-dual model,
applying the ODE/IQFT approach. This leads to the formulation of a so-called ‘quantization
condition’ for the permitted values of the quasi-momentum operator, which allows us to
characterise the model’s scaling limit fully. This analysis yields the density of states and
the discrete characters, which classify the continuous and discrete parts of the spectrum of
conformal dimensions, respectively. We also calculate the partition function in the scaling
limit.

Finally, we study the model with quasi-periodic staggering by an integrable spectral flow
to the model with alternating staggering.

4.1 The Q-operator

To find the Bethe roots of the model at hand systematically, we will use the introduced
technique based on the notion of the Baxter Q-operator Q(ζ) discussed in section 2.4.3. In
the following, we present an explicit formula for the Q-operator. It was obtained based on
the results of work [119] (see also [120, 121, 122]). Of particular interest is the following
result: they give Q(ζ) as a trace of a monodromy matrix over a q-oscillator representation
for models associated with the rational [120] and trigonometric [121, 122] R-matrix for
sl(2). The considered BCs are essentially given by (2.131) with s1 = s2 = 0 and ξR, ξL are
the free parameters. The matrix elements of Q(ζ) are expressed in [119] as infinite sums,
which converge only in a parametric domain not applicable to the model with Uq

(
sl(2)

)
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4.1 The Q-operator

invariant BCs. Hence, it was necessary to analyze the expression in order to adapt it to a
form that is directly applicable to our case.

We start by noting that the transfer matrix (4.3) of the more general model is a polynomial
of order 4L+ 2 in the spectral parameter and satisfies the conditions

t(0) = ϵ
(
q2S

z
+ q−2Sz) , t(ζ−1) = ζ−4L−2

t(ζ) . (4.13)

As discussed below equation (4.11), for the study of the Uq(sl(2)) invariant case, it is
sufficient to focus for t on the sector where the eigenvalue of the z -projection of the total
spin operator is zero4. Denote by the tuples (a1a2 ... a2L) and (b1b2 ... b2L) with aJ , bJ = ±
the input and output indices for the space

(
C2
)⊗2L respectively. To state the formula for

the Q-operator, we introduce the matrices [
A(ζ;m)

]+
+

[
A(ζ;m)

]−
+[

A(ζ;m)
]+
−
[
A(ζ;m)

]−
−

 =

(
qm qm

ζq−m+1 q−m

)
, (4.14)

 [
Ã(ζ;m)

]+
+

[
Ã(ζ;m)

]−
+[

Ã(ζ;m)
]+
−
[
Ã(ζ;m)

]−
−

 =

(
qm ζqm+2

q−m−1 q−m

)
. (4.15)

The matrix elements of Q(ζ), valid in the sector Sz = 0, then read

[
Q(ζ)

]b1...b2L
a1...a2L

=
∑

c1...c2L=±
q(S

z
c )

2
(ϵq2ζ)S

z
c

2L∏
J=1

[
A(ζη−1

J ,mb,J)
]bJ
cJ

[
Ã(ζηJ ,ma,J+1)

]cJ
aJ
. (4.16)

The symbol Sz
c , which should not be confused with the eigenvalue of Sz, is defined as

Sz
c =

1

2

2L∑
J=1

cJ . (4.17)

It provides a grading for the sum over cJ in (4.16). The internal indices {ma,J ,mb,J}
originate from the product over the auxiliary space. They are completely fixed to be

mx,J =
1

2

2L∑
ℓ=J

(xℓ − cℓ) (J = 1, . . . , 2L+ 1; x = a, b) , (4.18)

by the ice-rule. Despite the factor ζSz
c in formula (4.16), where the exponent can take

negative values, the matrix elements of Q(ζ) turn out to be polynomials in ζ of degree 2L.
Further, one can show that they satisfy:

Q(ζ−1) = ζ−2L Q(ζ) , Q(0) = 1 . (4.19)

The Q-operator obeys (2.140) as well as the TQ-relation(
1− ζ2

)
Q(ζ) t(ζ) =

(
ϵ+ q+1 ζ

) (
1 + ζ q+1 ϵ

)
f(q−1 ζ)Q

(
ζ q+2

)
(4.20)

+
(
ϵ+ q−1 ζ

) (
1 + ζ q−1 ϵ

)
f(q+1ζ)Q

(
ζ q−2

)
(Sz = 0) ,

4Note, that Sz is defined independently of ϵ.
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4.1 The Q-operator

where

f(ζ) = (1− ζ2)
2L∏
J=1

(
ζ − η−1

J

)(
ζ − ηJ

)
. (4.21)

The TQ-relation allows the application of the analytic Bethe ansatz as discussed in section
2.4.3: one considers both sides of equation (4.20) evaluated on a common eigenvector of t
and Q. In regards to (4.19), the eigenvalues of Q(ζ) take the form

Q(ζ) =
L∏

j=1

(1− ζ/ζj) (1− ζζj) . (4.22)

Combining this with (4.20) and setting ζ = ζm into that formula, one arrives at the BAE:

2L∏
J=1

(
ζmq

+1 − η−1
J

) (
ζmq

+1 − ηJ
)(

ζmq−1 − η−1
J

) (
ζmq−1 − ηJ

) =

(
ϵ+ q+1 ζm

) (
q+1 ϵ+ ζ−1

m

)(
ϵ+ q−1 ζm

) (
q−1 ϵ+ ζ−1

m

) (4.23)

× q2
L∏

j=1
j ̸=m

(
ζj − q+2ζm

) (
1− q+2ζmζj

)(
ζj − q−2ζm

) (
1− q−2ζmζj

) (Sz = 0) .

These are equivalent to the BAE obtained in the original work [72], in the sector Sz = 0 and
with ξ+ = −ξ− under the identifications (q, ηJ , ϵ) 7→ (eη, e−2uJ ,−e2ξ±), while ζm 7→ e−2vm .

The limit ϵ → 0 of the Q-operator requires careful handling. It is apparent from the
explicit formula (4.16) that the matrix elements of Q(ζ) generically diverge due to the
presence of the factor ϵSz

c , where the exponent may be negative. This is a manifestation of
the Uq

(
sl(2)

)
invariance arising at the point ϵ = 0, so that states of different sectors of Sz

combine into multiplets of the symmetry group that have the same eigenvalue of Q(ζ). In
reference [123], a similar phenomenon was studied in the context of the XXX spin chain
with twisted BCs controlled by the parameter ϕ. At ϕ = 0, the model possesses a global
su(2) symmetry and the matrix elements of the Q-operator become infinite. The authors
explain how to take the limit ϕ→ 0 of Q(ζ) so that one obtains a well-defined result. The
discussion is readily adapted to the present case.

Define S to be an operator, which for an eigenstate of the quadratic Casimir (4.11) with
eigenvalue [S]q [S + 1]q gives back the non-negative integer S ≥ 0. Then, following [123], it
turns out that the limit

Q(0)(ζ) = lim
ϵ→0

ϵ
S
2 Q(ζ; ϵ) ϵ

S
2 (4.24)

exists and yields the Q-operator for the inhomogeneous six-vertex model with Uq

(
sl(2)

)
invariant BCs for Sz = 0. The commutativity condition (2.140) and the TQ-relation (4.20)
with the substitutions

(
Q, t

)
7→
(
Q(0), t(0)

)
and in the latter, ϵ = 0, are satisfied. However,

the normalisation as in (4.19) no longer holds true. Instead,

Q(0)(ζ)|ΨL⟩ = C ζS
L−S∏
j=1

(1− ζ/ζj) (1− ζζj) |ΨL⟩ , (4.25)

where C is a constant which depends only on q and S.
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4.2 The Q-operator

The TQ-relation for ϵ = 0 leads with (4.25) to the Bethe ansatz equations:

2L∏
J=1

(
ζmq

+1 − η−1
J

) (
ζmq

+1 − ηJ
)(

ζmq−1 − η−1
J

) (
ζmq−1 − ηJ

) = q4+4S
L−S∏
j=1
j ̸=m

(
ζj − q+2ζm

) (
1− q+2ζmζj

)(
ζj − q−2ζm

) (
1− q−2ζmζj

) . (4.26)

Notice that (4.26) also follows from (4.23) by taking ϵ→ 0 and assuming that S roots ζj
with j ̸= m tend to zero in this limit.

The eigenvalue of the transfer matrix t(0)(ζ) can be expressed in terms of the roots ζj :

t(0)(ζ) =
q+1 − q−1ζ2

ζ−1 − ζ

2L∏
J=1

(
q−1ζ − η−1

J

)(
q−1ζ − ηJ

) L−S∏
j=1

(1− q+2ζ/ζj) (1− q+2ζζj)

(1− ζ/ζj) (1− ζζj)

+
q−1 − q+1ζ2

ζ−1 − ζ

2L∏
J=1

(
q+1ζ − η−1

J

)(
q+1ζ − ηJ

) L−S∏
j=1

(1− q−2ζ/ζj) (1− q−2ζζj)

(1− ζ/ζj) (1− ζζj)
.

(4.27)
The eigenvalues and Bethe ansatz equations can also be obtained by the algebraic Bethe
ansatz, see [124]. This work uses the trigonometric notation (4.6) which we also use from
time to time when it simplifies the presentation. Hence, for the reader’s convenience, we
translate the Bethe equations and the transfer matrix eigenvalue in the trigonometric
notation. With t(0)c = 24Le−4Lu−2u, they read

t(0)(u)/t(0)c =
sinh(2u+ iγ)

sinh(2u)

2L∏
J=1

sinh(u− δJ − iγ
2 ) sinh(u+ δJ − iγ

2 )

×
L−S∏
m=1

sinh(u− um − iγ) sinh(u+ um − iγ)

sinh(u− um) sinh(u+ um)

+
sinh(2u− iγ)

sinh(2u)

2L∏
J=1

sinh(u+ δJ + iγ
2 ) sinh(u+ δJ + iγ

2 )

×
L−S∏
m=1

sinh(u− um + iγ) sinh(u+ um + iγ)

sinh(u− um) sinh(u+ um)

(4.28)

and

2L∏
J=1

sinh(um − δJ + iγ
2 ) sinh(um + δJ + iγ

2 )

sinh(um + δJ − iγ
2 ) sinh(um + δJ − iγ

2 )
=

L−S∏
k=1̸=m

sinh(um − uk + iγ) sinh(um + uk + iγ)

sinh(um − uk − iγ) sinh(um + uk − iγ)
.

(4.29)

From our discussion in section 3.3, we know that only the alternating or quasi-periodic
staggering leads to a local Hamiltonian. In the next sections, we will now consider the
scaling limit of these models.
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4.2 Scaling limit of the alternating case

4.2 Scaling limit of the alternating case

The Hamiltonian given by (3.38) and (3.39) for alternating staggering (s = 0, see also
(3.24)) can be written as

H =− 2

sin(γ)

2L−1∑
j=1

ej,j+1 +
sin(α)

sin(γ) sin2(α+ γ)

2L−1∑
j=2

(
sin(α+ (−1)j+1γ) ej,j+1 ej−1,j

+ sin(α+ (−1)jγ) ej−1,j ej,j+1

)
(4.30)

where we introduced — to use the same notation as the literature [54] — the so-called
staggering parameter iα = 2δ0 and have defined ej,j+1 to be

ej,j+1 =
1

2

(
σxj σ

x
j+1 + σyj σ

y
j+1 + cos(γ)(σzjσ

z
j+1 − 1) + i sin(γ)(σzj − σzj+1)

)
. (4.31)

In fact, the above ej,j+1 are the vertex representation of the generators of the Temperely-
algebra whose defining relations read

ej,j+1ej+1,j+2ej,j+1 = ej,j+1 , ej,j+1ej,j+1 = −2 cos(γ)ej,j+1 ,

ej+1,j+2ej,j+1ej+1,j+2 = ej+1,j+2 , ek,k+1ej,j+1 = ej,j+1ek,k+1 , |k − j| > 1 .
(4.32)

Inserting the RHS of (4.31) in (4.30) for ej,j+1 leads to a Hamiltonian purely expressed
in Pauli matrices. For notational clarity, we have exiled it to appendix C. Note that the
Hamiltonian is non-hermitian. We order its eigenvalues by their real parts. Along our study
of the scaling limit, we will see that the imaginary parts will decrease to zero as L→ ∞.

Let us consider some limiting cases of the Hamiltonian (4.30). For α→ 0 it becomes —
as expected — the homogeneous XXZ chain with Uq(sl(2)) invariant BCs. A more subtle
limit is γ → 0. In this case, the Hamiltonian becomes

lim
γ→0

sin(γ)H =− 1

2

2L−2∑
j=1

σzjσ
z
j+2 + 2(σ+j σ

−
j+2 + σ−j σ

+
j+2)

− 1

2

(
σz1σ

z
2 + 2

(
σ+1 σ

−
2 + σ−1 σ

+
2

))
− 1

2

(
σz2L−1σ

z
2L + 2

(
σ+2L−1σ

−
2L + σ−2L−1σ

+
2L

))
+ L ,

(4.33)

which agrees with the one of the ferromagnetic XXX chain with periodic BCs.

The quasi-momentum operator (3.42) takes up to a normalization5 the form (see also
Figure 3.7)

B = log

[(
L∏
i=1

P2i−1,2iR2i−1,2i(−iα)

)
e−iασz

1/2

(
L−1∏
i=1

P2i,2i+1R2i,2i+1(−iα)

)
eiασ

z
2L/2

]
.

(4.34)

5We have shifted it by an additive constant which is given by log
[
sin(2γ−α)
sin(2γ+α)

]
+ (2L− 1) log

[
sin(γ−α)
sin(γ+α)

]
.

Further, we divided by a factor of 2.
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4.2 Scaling limit of the alternating case

The energies and quasi-momenta have a simple form in terms of the Bethe roots {uj}
solving (4.29) where in the latter we set the inhomogeneities to ± iα

2 on (−) even and (+)
odd sites

E =
L−S∑
j=1

ϵ0(uj) , B =
L−S∑
i=1

k0(ui) . (4.35)

Here, the bare quantities ϵ0 and k0 read in trigonometric notation

ϵ0(u) = − 2 sin(α− γ)

cosh(2u)− cos(α− γ)
+

2 sin(α+ γ)

cosh(2u)− cos(α+ γ)
, (4.36)

k0(u) = log

[
cosh(2u)− cos(α+ γ)

cosh(2u)− cos(α− γ)

]
. (4.37)

Further, we choose the branch of the logarithm in the definition of the quasi-momentum
such that

−π < ℑm
(
B
)
≤ π . (4.38)

The reason why (4.38) was chosen will be explained later in the discussion around (4.80).
Moreover, recall that the transfer matrix possesses the duality transformation (3.28). This
can also be seen on the level of the Bethe equations (4.29). If we perform the duality
transformation and the following redefinition of the Bethe roots

α→ π − α , uk → uk +
iπ

2
, (4.39)

solutions of (4.29) are mapped to solutions of (4.29). In view of (4.35), one can see that the
energy E is invariant under (4.39) while the quasi-momentum changes the sign B → −B.

4.2.1 Numerical study of small number of lattice sites

As a basis for our study of the finite-size spectrum of the staggered six-vertex model using
its Bethe ansatz solution, we have numerically diagonalised the Hamiltonian (4.30) and
the quasi-momentum (4.34) for small lattices in the parametric domain (to which we will
restrict in the following)

γ < α < π − γ , 0 < γ <
π

2
, 0 < α < π. (4.40)

In Figure 4.2, we present the real parts of the energies as a function of the anisotropy γ
for L = 3 and 4 and different values of the staggering parameter α.

Surprisingly, we find the spin of the model’s ground state depends on the anisotropy
parameter: ground state crossings are observed at certain rational fractions of γ/π. For
the small lattices which are accessible to the numerical diagonalization, we find as an
approximate rule that the ground state has Uq(sl(2))-spin S for anisotropies γ in the
interval

π

2(SGS + 1)
≲ γ ≲

π

2SGS
. (4.41)
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Figure 4.2: For the reader’s convenience, we have displayed both conventions q = eiγ and
the later to be introduced q = e

iπ
n+2 : (a) We illustrate the spectrum of the Hamiltonian

for L = 3 and α = π/2, which is completely real for this choice of parameters. The solid
lines indicate levels with real quasi-momentum, while the dashed ones represent a purely
imaginary quasi-momentum. The colours indicate the quantum number S. (b) Depicted is
the real part of the spectrum of the model with staggering α = 4π/9 and L = 3. (c) Shown
is the real part of the spectrum of the self-dual model α = π/2 for L = 4. We see a new
ground state crossing appears at γ = π/8, (n = 6) in comparison to the L = 3 case.

We will confirm that these inequalities become exact for larger systems through our
Bethe ansatz analysis below. For 0 ≤ γ ≲ π/2L the ground state is in the sector with
maximum SGS = L, matching our observation that the Hamiltonian (4.30) becomes that of
the ferromagnetic Heisenberg chain in the limit γ → 0. Hence, the Uq(sl(2)) symmetry is
maximal spontaneously broken in this range of γ. This is different from the periodic model,
where the ground state is a unique state with total Sz = 0 for all anisotropies [20].
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4.2 Scaling limit of the alternating case

Furthermore, we find that the eigenvalues of the quasi-momentum operator may transmute
from real into purely imaginary ones when the anisotropy γ is lowered. The lower γ, the
more energy levels acquire a purely imaginary quasi-momentum. Such a transmutation has
been found to be related to the appearance of discrete states in the spectrum of conformal
weights of a staggered superspin chain based on a deformation of the algebra sl(2|1) [108].

The above analysis has been carried out for small lattice sizes only. However, we will
see how the same results appear when using the root density formalism valid for all lattice
sizes.

4.2.2 The root density approach for the ground state
To proceed with our studies, we have to identify the Bethe root configurations in the regime
(4.40) describing the low energy states. We find that the Bethe states parameterised by
M = L− S Bethe roots always realise the highest-weight state in a given S spin multiplet.

Moreover, we find in the regime of anisotropies 0 < γ < π/2 that the root configurations
of the ground state consist of two types of Bethe roots, either completely real or with an
imaginary part π/2:

u0m = xm , m = 1, 2, 3, ... ,M0 , u
π
2
n = yn +

iπ

2
, n = 1, 2, 3, ... ,M

π
2 . (4.42)

This observation enables us to study the model further in the introduced root density
formalism, see the discussion around (2.155). By taking the logarithm, we obtain the
following logarithmic equations for real parts, xm and yn

2πIxm = −2Lϕ

(
xm,

γ − α

2

)
− 2Lϕ

(
xm,

α+ γ

2

)
+

M0∑
k=1,̸=m

ϕ (xm − xk, γ)

+
M0∑

k=1, ̸=m

ϕ (xm + xk, γ)−
M

π
2∑

k=1

ψ (xm − yk, γ)−
M

π
2∑

k=1

ψ (xm + yk, γ) , m = 1, ... ,M0 ,

2πIyn = 2Lψ

(
yn,

γ − α

2

)
+ 2Lψ

(
yn,

α+ γ

2

)
−

M0∑
k=1

ψ (yn − xk, γ)

−
M0∑
k=1

ψ (yn + xk, γ) +

M
π
2∑

k=1, ̸=m

ϕ (yn − yk, γ) +

M
π
2∑

k=1,̸=m

ϕ (yn + yk, γ) , n = 1, ... ,M
π
2 .

(4.43)
Here, we have introduced Ix,ym ∈ N characterizing the different branches of the logarithm
and further have defined

ϕ(x, y) = 2 arctan (tanh(x) cot(y)) , (4.44)
ψ(x, y) = 2 arctan (tanh(x) tan(y)) . (4.45)

The solutions of these equations become dense on the whole real lines in the thermodynamic
limit L→ ∞ with M0,π

2 /L fixed. This allows us to describe the distributions of the Bethe
roots for the ground state by two densities, i.e. see (2.155). The coupled linear integral
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4.2 Scaling limit of the alternating case

equations fixing these densities can be derived by the doubling procedure of the Bethe roots
(see, e.g. [125]) and are given by

ρx(x) = σx0 (x) +
τx0 (x)

L
+

∫ ∞

−∞
dx′K0(x− x′)ρx(x′) +

∫ ∞

−∞
dx′K1(x− x′)ρy(x′) +O

( 1

L2

)
,

ρy(x) = σy0(x) +
τy0 (x)

L
+

∫ ∞

−∞
dx′K1(x− x′)ρx(x′) +

∫ ∞

−∞
dx′K0(x− x′)ρy(x′) +O

( 1

L2

)
.

(4.46)
The driving terms and the integral kernels are given by the following expressions, where
the prime denotes the derivative with respect to the first argument:

σx0 (x) =− 1

π
ϕ′
(
x,
γ − α

2

)
− 1

π
ϕ′
(
x,
α+ γ

2

)
,

σy0(x) =
1

π
ψ′
(
y,
γ − α

2

)
+

1

π
ψ′
(
y,
α+ γ

2

)
,

τx0 (x) =− 1

π
ϕ′(2x, γ)− 1

2π
ϕ′(x, γ) +

1

2π
ψ′(x, γ) ,

τy0 (x) =− 1

π
ϕ′(2x, γ)− 1

2π
ϕ′(x, γ) +

1

2π
ψ′(x, γ) ,

K0(x) =
1

2π
ϕ′(x, γ) , K1(x) = − 1

2π
ψ′(x, γ) .

(4.47)

Note that for α = π/2, the driving terms coincide, reflecting the self-duality of the model
for this value of the staggering parameter. The integral equations can be solved order by
order in 1/L by Fourier transformation. We obtain the results for the first two orders:

σx(x) =
2 sin

(
π(α−γ)
π−2γ

)
π − 2γ

1

cosh
(

2πx
π−2γ

)
− cos

(
π(α−γ)
π−2γ

) ,
σy(x) =

2 sin
(
π(α−γ)
π−2γ

)
π − 2γ

1

cosh
(

2πx
π−2γ

)
+ cos

(
π(α−γ)
π−2γ

) ,
τx(x) = τy(x) =

1

4π

∫ ∞

−∞
dω eiωx

sinh
(
3γ−π

4 ω
)

sinh
(γω

4

)
cosh

(
2γ−π

4 ω
) .

(4.48)

Note that σx(x) ↔ σy(x) under the duality transformation α→ π − α, see (4.39). Further-
more, the bulk densities are positive in the considered interval (4.40). From these densities,
we compute the number of Bethe roots of the different types describing the ground state
and obtain

2M0
GS + 1

L
= 2 · π − α− γ

π − 2γ
+

1

L

(
3

2
− π

2γ

)
+O

( 1

L2

)
,

2M
π
2
GS + 1

L
= 2 · α− γ

π − 2γ
+

1

L

(
3

2
− π

2γ

)
+O

( 1

L2

)
.

(4.49)

The individual numbers of Bethe roots are α and γ dependent. With the above expression
and the fact that all Bethe states are highest weight states, we can compute the sector S in
which the ground state is realized. The surface contribution would imply a non-zero spin
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4.2 Scaling limit of the alternating case

−1
2 + π

2γ of the ground state, which is independent of the staggering α but is a non-integer
due to the explicit γ dependence. This can be resolved by rounding the number of Bethe
roots (4.49) and the resulting ground state spin SGS to the nearest integer number, giving

SGS =

⌊
−1

2
+

π

2γ

⌉
. (4.50)

Here, the brackets ⌊...⌉ indicate the rounding to the nearest integer. Inverting this relation,
we obtain a range of anisotropies γ for which the ground state is realized in the sector with
spin SGS :

π

2SGS + 2
< γ <

π

2SGS
. (4.51)

This formula refines the approximate rule (4.41), which we have conjectured based on our
numerical investigations of small systems above. The minor differences between (4.51) and
the numerical observations for small lattices can be interpreted as a result of the excessive
influence of the boundary terms for small L. Note that (4.50) tends to infinity as γ → 0
reflecting the relation (4.33) to the ferromagnetic XXX chain in this limit. This generalises
our findings regarding the spontaneously broken Uq(sl(2)) symmetry from small system
sizes to general L.

While the spin SGS = L− (M0
GS +M

π
2
GS) of the ground state is independent of α, the

difference or the ratio of the numbers M0,π
2

GS of the corresponding Bethe roots depend on
the staggering parameter: from the bulk contributions to (4.49) we obtain

dNGS =M0
GS −M

π
2
GS = L

π − 2α

π − 2γ
, (4.52)

2M0
GS + 1

2M
π
2
GS + 1

=
π − α− γ

α− γ
+O

( 1
L

)
. (4.53)

Hence, by varying α, crossings between different S states may be induced. To realise
the corresponding root configurations on a given lattice, the numbers of roots should be
commensurate with L, i.e. have a rational ratio and a simple scaling of the difference of
the number of Bethe roots for the bulk contribution. This is achieved by fixing α as

α =
r1γ + r2(π − γ)

r1 + r2
, (4.54)

where r1 and r2 are positive integers and relatively prime to each other [54]. With that
condition, one would obtain the following expression for the ratio and difference between
the two types of roots:

2M0
GS + 1

2M
π
2
GS + 1

=
r1
r2

+O
(
1

L

)
,

M0
GS −M

π
2
GS = L

r1 − r2
r1 + r2

.

(4.55)

Note that by setting r1 = r2 = 1, which corresponds to the self-dual case α = π/2, the
numbers of the two types of Bethe roots become the same for all γ, corresponding to the
additional degeneracy of the spectrum.
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4.2 Scaling limit of the alternating case

Knowing the ground state densities (4.48), the bulk and boundary contributions to the
expectation values of the conserved quantities in the thermodynamic limit can be calculated.
The bulk and surface energy densities are given by

e∞ = −2

∫ ∞

−∞
dω

sinh(γω2 )
(
sinh

(
πω
2 − ωγ

2

)
cosh(ωπ2 − αω)− sinh(γω2 )

)
sinh(ωπ2 ) sinh((π−2γ

2 )ω)
, (4.56)

f∞ = −
∫ ∞

−∞
dω

cosh
(
1
4(π − 2α)ω

)
sinh

(
1
4(3γ − π)ω

)
cosh

(γω
4

)
cosh

(
1
4(π − 2γ)ω

)
sinh

(
πω
4

) − 4 sin(2γ)

cos(2α)− cos(2γ)
.

(4.57)

The Fermi velocity reads

vF =
2π

π − 2γ
. (4.58)

Similarly, we obtain an expression for the value of the quasi-momentum of the ground state
in the thermodynamic limit

Bthermo = Lk∞ + ks, (4.59)

where the bulk k∞ and surface ks contributions read

k∞ =2

∫ ∞

−∞
dω

sinh(ωγ2 ) sinh(πω2 − αω) sinh(π−γ
2 ω)

ω sinh(ωπ2 ) sinh(π−2γ
2 ω)

, (4.60)

ks =

∫ ∞

−∞
dω

sinh(3γ−π
4 ω) cosh(γω4 ) sinh(π−2α

4 ω)

ω sinh(ωπ4 ) cosh(2γ−π
4 ω)

− log

(
sin (γ + α)

sin (γ − α)

)
. (4.61)

Having these explicit expressions, we can start to characterise the effective field theory
describing the low-energy regime of the spin chain for large system sizes by studying the
finite-size spectrum. Due to the criticality of the model and the open BCs, we expect that
the field theory is a BCFT. Hence, we expect (2.97) to hold. In the following, it is useful
to introduce the following parameterisation of the anisotropy parameter

γ =
π

n+ 2
(n > 0) . (4.62)

By studying the asymptotic behaviour of energy of the ground state of the lattice model,
which is realized in the sector with spin S = SGS(γ), (see equation (4.50)), we can extract
the effective central charge [27]

ceff = −24XGS
eff (4.63)

= 2− 24

n+ 2

(
frac

(
1 +

n

2

)
− 1

2

)2

, (4.64)

where frac
(
1 + n

2

)
denotes the fractional part of 1+ n

2 . The cusps are, due to the fractional
part of the effective central charge, a consequence of the ground state crossings occurring
at integer values of 1 + n

2 in the staggered six-vertex model, see Figure 4.3.
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Figure 4.3: The effective central charge (4.64) of the staggered spin chain as a function of
the anisotropy is represented as the solid black line. The dashed coloured lines are plots
of (4.63) in sectors with given spin S, crosses represent the effective central charges ceff
obtained from the Bethe ansatz solutions for large L. The vertical dotted lines represent
the ground state crossings.

4.2.3 Analysis of one class of states

To determine the (effective) scaling dimensions, one needs to take low-lying excitations
above the ground state into account. We find that a particular class of states has Bethe
root configurations that are still given by (4.42) but with different quantum numbers S
and dN as compared to the ground state (4.51), (4.52), see Figure 4.4 for an illustration.
Hence, these states can be analogous to the ground state described in the framework of the
root density formalism. However, the integral boundaries of the linear integral equations
for the excited states will differ from those of the ground state representing the different
values of quantum numbers S, dN .

For two branches of excitations with the same Fermi velocity, the resulting finite-size
energies can be expressed in terms of the above quantum numbers as [126, 127, 128, 129]
(for the particular case of open BCs see [125, 62])

E(L) ≍ Le∞ + f∞ +
πvF
L

{
1

2
∆M⃗T

(
ZZ⊤

)−1
∆M⃗

}
, (4.65)

where

∆M⃗ =

(
M0 −M0

GS

M
π
2 −M

π
2
GS

)
, Z = lim

x→∞

(
ξ11(x) ξ12(x)
ξ21(x) ξ22(x)

)
.
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Figure 4.4: The left and right panels display the Bethe roots in the complex u = − 1
2 log(ζ)

plane for the ground state and an excited state, respectively, of the spin chain with L = 10. The
excitation is built by disbalancing the number of roots on the two lines with respect to the ground
state pattern. The states have total Uq

(
sl(2)

)
spin S = 2 while n = 2.9 (γ = 0.64114).

We recall that S = L−M0 −M
π
2 and the difference in the numbers of Bethe roots of the

two different types (4.42) is dN = M0 −M
π
2 . Z is the so-called dressed charge matrix

defined by linear integral equations similar to (4.46):

ξ11(x) = 1+

∫ ∞

−∞
dx′K0(x− x′)ξ11(x

′) +

∫ ∞

−∞
dx′K1(x− x′)ξ21(x

′) ,

ξ21(x) =

∫ ∞

−∞
dx′K1(x− x′)ξ11(x

′) +

∫ ∞

−∞
dx′K0(x− x′)ξ21(x

′) ,

ξ12(x) =

∫ ∞

−∞
dx′K0(x− x′)ξ12(x

′) +

∫ ∞

−∞
dx′K1(x− x′)ξ22(x

′) ,

ξ22(x) = 1+

∫ ∞

−∞
dx′K1(x− x′)ξ12(x

′) +

∫ ∞

−∞
dx′K0(x− x′)ξ22(x

′) .

(4.66)

By means of the Wiener-Hopf method one finds that [129]

(
ZZ⊤

)
=

(
1−

∫∞
−∞ dxK0(x) −

∫∞
−∞ dxK1(x)

−
∫∞
−∞ dxK1(x) 1−

∫∞
−∞ dxK0(x)

)−1

giving

E(L) ≍ Le∞ + f∞ +
πvF
L

(
− 1

12
+

p2

n+ 2
+

1

4

(dN − dNGS)
2

Z̃2
D

)
, (4.67)

The term p is shorthand for the expression

p =
1

2

(
2S + 1 + w (n+ 2)

)
with w = −1 , (4.68)

and we have defined

Z̃D = lim
ω→0

(
1−

∫ ∞

−∞
dx eiωx (K0(x)−K1(x))

)−1

.

We note that Z̃D diverges in the limit ω → 0 as a consequence of the degeneracy of the
integral kernel in (4.66). This is a characteristic feature in several lattice models with a
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Figure 4.5: (dN − dNGS)/b vs. log(L) on the self-dual line α = π/2. Different symbols
indicate different combinations of S and γ as labelled in the legend. (a) Collapse of data
for spin-S states and anisotropies γ ≲ π/2S corresponding to the continuous part of the
conformal spectrum with different dN (encoded by colouring: black dN = 1, red dN = 2,
green dN = 3, blue dN = 4 and magenta dN = 5). (b) Lifting of this degeneracy w.r.t. dN
for the states in the S = 1-continuum for anisotropy γ = 23π/80 ≳ π/4, where the ground
state crosses into the S = 2 sector.

.

continuous spectrum of scaling dimensions emerging in the continuum limit, see e.g. [18, 20,
21]: as a consequence of this singularity, the penultimate term in (4.67) does not contribute
to the finite-size scaling for any finite dN − dNGS in the limit L → ∞. For large but
finite L one finds that the energy gaps between states with different dN − dNGS vanish
as 1/L(logL)2. As in the periodic model, we find that these logarithmic corrections are
determined in terms of the eigenvalues of the quasi-momentum operator: to bring the
logarithmic corrections in the scaling dimensions under control we introduce the quantum
number b based on the difference between the quasi-momentum of the RG trajectory and
the one of the thermodynamic ground state

b =
n

2π

(
B −Bthermo

)
. (4.69)

The variable b can be related to the deviation of dN from the one of the ground state dNGS

(note that b is real for root configurations (4.42)). One finds that it satisfies the large L
asymptotic behaviour [31]

bdN (L) =
πdN

2 log(L)
+O

(
1/(logL)2

)
(dN − fixed) . (4.70)

We checked this asymptotic behaviour numerically for levels in the spin sectors with
several S and corresponding anisotropies γ from equation (4.51) on the self-dual line. For
γ ≲ π/2S, i.e. close to the right boundary of these intervals, we find that the quotient
(dN − dNGS)/b for different dN (and L) collapse to a single line ∝ logL with a slope of
2/π independent of γ, as predicted by (4.70), see Figure 4.5(a). On the other hand, for
values of γ ≳ π/(2S + 2), i.e. close to the transition SGS → SGS + 1, we observe a splitting
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4.2 Scaling limit of the alternating case

into lines for different values of dN , although still with a slope of 2/π for sufficiently large
system sizes L, see Figure 4.5(b). We emphasise, however, that this does not affect the
quality of the parameterization of the logarithmic corrections of the continuous part of the
spectrum; see Figures 4.6 and 4.7 below.

Using the quantum number b, we find numerically that

E ≍ Le∞ + f∞ +
πvF
L

(
p2

n+ 2
+
b2

n
− 1

12
+ d

)
. (4.71)

with d = 0. When assigning an L dependence |ΨL⟩ to the class of states discussed above, it
is tempting to keep the integer dN fixed. Then, in view of formula (4.70), the value of b(L)
would go to zero as L→ ∞. However, there is another way of organizing the RG flow. One
may increase dN as ∼ log(L) so that the value of b(L) tends to a finite, non zero limit as
L→ ∞. Such an RG trajectory would be characterized by

s = slim
L→∞

b(L) , (4.72)

which can be arranged to be an arbitrary real number as argued in the following: From
(4.70) is it clear that as L becomes large, ∆bdN (L) = bdN+2(L) − bdN (L) ∝ 1/ logL, so
that the values of bdN (L) are densely distributed in some segment of the real line. The
latter is given by (−bdNmax ,+bdNmax), where dNmax(L) ≪ L is the maximum value of the
integer dN such that the state with Bethe roots (4.42) is still of low energy. Assuming that
dNmax grows faster than log(L) as L → ∞, this segment becomes the entire real line in
the scaling limit. Hence, the limiting value s in (4.72) can be arranged to take any real
value and we have, in view of (2.97),

Xeff =
p2

n+ 2
+
s2

n
− 1

12
. (4.73)

Thus, we conclude that the spectrum of scaling dimensions develops a continuous
component labeled by the parameter s ∈ R. Some part of the numerical data used for the
above analysis is shown in Figures 4.6 and 4.7. Displayed is the finite-size estimate Xeff(L)
of effective conformal weights for fixed dN , once obtained by the finite-size energies (2.168)
and also calculated by the Bethe ansatz results for b from (4.71) for various anisotropies
γ and staggering α in the spin sector containing the ground state. Extrapolation of the
finite-size data to L → ∞ by means of a rational function of 1/ logL shows that various
levels with dN ̸= dNGS converge to the bottom of the corresponding continuum (given by
the Bethe state with dN = dNGS). Note that (4.73) is the same as the effective scaling
dimension for the conformal primaries obtained from the Euclidean Black Hole CFT (2.99)
if we make the identification

k = n+ 2
(
k = π

γ

)
. (4.74)

Transmutation: continuous to discrete

In the Euclidean Black Hole CFT, besides the continuous part of the conformal dimensions
considered above, there also exists a set of conformal weights with discrete values; see
equation (2.83). From the latter and (4.74), we expect that a discrete state with fixed J is
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Figure 4.6: Spectrum of conformal weights for the self-dual model (i.e. dNGS = 0): for
each S = 1, 2, 3 we have chosen two values of the anisotropy in the intervals (4.51) for
which S is the spin of the ground state. The black symbols are the finite-size estimate of
the effective scaling dimensions using the finite-size energies obtained from the solution of
the Bethe equations. Red symbols represent the scaling dimensions obtained from (4.71)
using the Bethe ansatz results for the quasi-momentum. Note that the latter provides an
excellent parameterization of the logarithmic corrections via the continuous variable b for
all γ values considered (e.g. in the top-right figure for the parameters used in Figure 4.5(b)
showing the lifting of the degeneracy of (4.70) w.r.t. dN).
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Figure 4.7: Similar as Figure 4.6 but for values of α away from the self-dual point
(∆N = dN − dNGS).

realised in the spin-chain spectrum for n ranging from ∞ to some root integer. Specifically,
a discrete state with given J may be realised for

0 < γ <
π

2J + 1
,

(
J <

n+ 1

2

)
. (4.75)

The discrete CFT states and their realisation conditions can also be related to the quasi-
momentum of the Bethe state. In our study of the continuous part of the spectrum above,
we found that the Bethe states are parameterised by root configurations (4.42), resulting in
real eigenvalues for the quasi-momentum. However, as seen in the study of small lattice
sizes, the quasi-momentum can also change from real values to purely imaginary ones when
the anisotropy γ is lowered see Figure 4.2.

On the level of Bethe roots, this translates into a root pattern changing from (4.42) to
more complicated complex configurations: the real parts (in the u-plane) of one or more of
the roots diverge as the anisotropy approaches from above certain rational multiples of π.
Reducing the anisotropy further these roots reappear in the finite domain with different
imaginary parts. Depending on the state considered this process may be repeated several
times until the root configuration acquires the following remarkable pattern: for states
parameterised by an even number M of Bethe roots they come in pairs uj , ūj mirrored at
the line iπ/4

uj = xj + iyj , ūj = xj + i
(π
2
− yj

)
with xj , yj ≥ 0 j = 1, 2, ... ,

M

2
.

(4.76)

If the number M of Bethe roots is odd there appears an additional root with imaginary
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Figure 4.8: Displayed is a typical pattern of Bethe roots leading to an imaginary quasi-
momentum. The configurations are obtained from the configurations given in (4.42), with
dN as indicated, by lowering the anisotropy. On the left (n = 4.42676), we have an odd
number of Bethe roots, and so one root lies on the line iπ/4, while the rest is paired. On
the right (n = 2.38598), we have an even number of roots, hence, the pairing works.

part π/4, i.e.

uj = xj + iyj , ūj = xj + i
(π
2
− uj

)
, uM = x+

iπ

4

with xj , yj , x ≥ 0 , j = 1, 2, ... ,
M − 1

2
.

(4.77)

Examples of such root configurations for spin-1 states on lattices with L = 40 (41) sites, i.e.
M = 39, M = 40, evolving from (4.42) with dN =M0 −M

π
2 = 1 and 2, respectively, as γ

is lowered are shown in Figures 4.8 and 4.11.

By following the transmutation of configurations (4.42) to (4.76), (4.77) under the
variation of γ for small values of dN we are able to observe what happens to the scaling
dimensions when the quasi-momentum changes from real to imaginary: as discussed above,
the scaling dimensions corresponding to spin-1 states are in the continuous part of the
spectrum (4.71) for anisotropies π/4 < γ < π/2 where they are separated by finite-size gaps
∼ (dN/ logL)2.6 As γ is reduced further, the lowest levels approach the lower bound of
the S = 1 continuum, leaving it when the quasi-momentum becomes purely imaginary, see
Figure 4.9 for the lowest states in this spin sector. Specifically we find that the finite-size
energies of the states with dN = 1, 2 (dN = 3, 4), realized for even and odd lattice sizes L
respectively, lead to the conformal weights (2.99) of the Black Hole CFT with J = (k− 3)/2
((k − 5)/2) in the regime where s ∈ iR. It turns out that the finite-size formula (4.73)
continues to hold for purely imaginary s: in this case, J = 1

2 + is has to be an element
of the discrete set (2.83). This leads to the following condition on the allowed imaginary
values of s to which b(L) tends in the scaling limit

s = ±i
(
− p− 1

2
− a

)
with a = 0, 1, 2, . . . < −p− 1

2 (d = 0) .

(4.78)
6In the limit γ → π/2, one observes a crossover to a linear dependence on 1/ logL. This can be

understood from the fact that the staggered six-vertex model at γ = π/2 coincides with the integrable
OSp(2|2) model, which is in a different universality class [130, 131].
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Figure 4.9: Effective scaling dimensions vs. anisotropy γ (n) for the self-dual model,
α = π/2, of size L = 40, 41 derived for the lowest states in the S = 1 sector, showing the
transmutations of continuous states into discrete ones. The black shaded area represents the
continuum of levels starting at the spin-SGS = 1 ground state. Grey shading indicates the
continua in the spin SGS > 1 sectors, which overlap with each other and the spin-SGS = 1
one. The lower edge of the continua corresponds to ceff (4.64) up to a factor of −24. Blue
symbols denote the effective scaling dimensions obtained from finite-size data corresponding
to weights from the continuous part with S = 1 of the CFT spectrum given in terms of root
configurations (4.42) with different dN . Red and green symbols depict the continuation of
the corresponding states (same symbol shape) to anisotropies where the Bethe root patterns
change to (4.76) or (4.77) and the quasi-momentum b becomes imaginary. Red (green)
solid lines are the effective scaling dimensions (2.82), (2.83), (2.99) of the primary fields
with m = 3, w = −1 and J = (k − 3)/2 ((k − 5)/2) for k = π/γ, (n+ 2). Dashed lines are
their continuation to anisotropies γ > π/(2J + 1),(n+ 1 < 2J) where the corresponding
operators in the CFT become non-normalizable.

Note that this implies that the thresholds for the appearance of discrete levels of the
Black Hole CFT resulting from the unitarity condition (2.83) coincide with the anisotropies
(4.51) where the spin of the ground state in the lattice model changes. This prediction
can be compared with our numerical findings for the S = 1 states with J = (k − 3)/2− a,
a = 0, 1, considered in Figure 4.9. Their quasi-momentum b(L), once it becomes imaginary,
is expected to match7 the condition for s above for a = 0, 1, i.e.

sa=0 = ±i
(n
2
− 1
)

for 2 < n ,

sa=1 = ±i
(n
2
− 2
)

for 4 < n .
(4.79)

Our numerical data show that the change from real to imaginary quasi-momentum takes
7Note that, as the states are then discreet, we expect that the b(L) → s very fast, such that one can set

b(L) ∼ s already for immediate system sizes such as L ∼ 40.
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Figure 4.10: Real (blue symbols) and imaginary (red and green symbols) part of the
quasi-momentum b vs. anisotropy γ (n) for the spin S = 1 states considered in Figure 4.9.
The solid red and green lines depict the CFT predictions s via (4.79). Dashed lines are
obtained by continuation of the CFT data into the region where the unitarity condition
(2.83) is violated. Note that b ≡ 0 for the dN = 0 state.

place at or slightly below these values of γ. Overall, i.e. up to finite-size corrections near
these thresholds, equations (4.79) match our results for the quantum number b obtained
for system sizes L = 40 and 41, see Figure 4.10.

To end this section, let us briefly comment on the the choice of the branch for the
logarithm in the expression (4.38) which induces

−n
2
< ℑm

(
b(L)

)
≤ n

2
. (4.80)

For all the trajectories — also in the later analysis — we constructed, it turned out that
consistency with the asymptotic formula for the energy (4.71) requires this particular choice
of the branch. The question of which of the boundaries ℑm

(
b(L)

)
= ±n

2 to include in the
domain of b(L) does not matter for the following reason. The only RG trajectories, e.g. see
Figure 4.11, of the spin chain which were observed such that ℑm

(
b(L)

)
→ ± in

2 as L→ ∞
had vanishing real part in the scaling limit. In this case, one notes that the asymptotic
formula for the energy (4.71) yields the same result for limL→∞ L (E−Le∞−f∞) regardless
of whether limL→∞ b(L) coincides with − in

2 or + in
2 .

Let us briefly summarise the key results obtained so far. Firstly, the model possesses a
spontaneously broken Uq(sl(2))-symmetry. Secondly, we have seen the presence of state-
dependent strong logarithmic corrections in the spectrum of effective scaling dimensions.
We have found that the quasi-momentum operator parameterises these corrections. This
led to the expression (4.71) for the effective scaling dimensions, which is consistent with
the continuous spectrum of the SL(2,R)/U(1) sigma model at level k via the identification
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Figure 4.11: Displayed is numerical data for a RG trajectory where b(L) tends to − in
2 . The

left panel depicts the pattern of Bethe roots in the complex u = − 1
2 log(ζ) plane for the state |ΨL⟩

with L = 10. The right panel is a plot of b(L) as a function of L, where the dashed line represents
its limiting value. Here S = 1 and n, which parameterizes q as in (4.62), is given by n = 2.9
(γ = 0.64114).

(4.74). Further, we have seen that states with purely imaginary quasi-momentum yield
the same effective scaling dimensions as states in the cigar with the discrete value of J
(2.83). The results hold for the entire regime γ < α < π − γ of the staggering parameter α.
Only non-universal quantities, such as the energy densities or the bulk quasi-momentum,
depend on α. Hence, regarding the universality class, we conclude that α ∈ (γ, π − γ) is an
irrelevant deformation from the self-dual case α = π/2, similar as observed in the periodic
model [54].

However, we should stress that we have only considered certain classes of states yielding
conformal primaries until now. A full classification of the scaling limit of the self-dual model
— including the space of state and, in particular, the density of states— is the subject of the
next sections using the powerful approach of the ODE/IQFT correspondence. As briefly
discussed in the preliminaries the central element is the scaling limit of the Q-operator,
hence, we change from here to the rational notation. For the reader’s convenience, we write
out the energies and quasi-momentum operator eigenvalues in the rational notation for the
self-dual case:

E =
L−S∑
m=1

4i (q2 − q−2)

ζ2m + ζ−2
m + q2 + q−2

, (4.81)

B =

L−S∑
m=1

log

[ (
ζm + iq−1

) (
ζm − iq

)(
ζm − iq−1

) (
ζm + iq

) ] . (4.82)

4.2.4 ODE/IQFT correspondence
Mathematical techniques that are more sophisticated than those used in the last section are
needed to fully characterize the scaling limit of a lattice model whose spectrum of scaling
dimensions possesses a continuous component. A suitable approach to the study of the
scaling limit is based on the ODE/IQFT correspondence [132, 28, 29, 30]. We found that
the ODEs which govern the scaling limit of the staggered8 six-vertex model with Uq

(
sl(2)

)
invariant BCs fall within the same class of ODEs which describe the model for twisted BCs

8We mean here the case at hand, the alternating staggering.
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[91, 25]. This allowed us to transfer over many previous results in regard to the differential
equations.

Let us recall that the primary Bethe states, i.e., the RG trajectories whose energy obeys
the asymptotic (4.71) with d = 0, are labelled by the Uq

(
sl(2)

)
spin S and the RG invariant

s which is defined in equation (4.72). The ODE/IQFT correspondence implies a relation
between the scaling limit of the eigenvalue of the Q-operator for |ΨL⟩ and the spectral
determinant of the ODE:[

− d2

dz2
+
p2 − 1

4

z2
+

2is

z
+ 1 + µ−2−n zn

]
ψ = 0 . (4.83)

Here, recall that p is given in terms of S as in equation (4.68), n > 0 parameterizes
the anisotropy of the spin chain, see (4.62), while µ is the scaled version of the spectral
parameter ζ (see (2.201) for the homogeneous XXZ chain). The spectral determinant
D(µ | p, s) is defined similarly to section 2.4.4. One specifies a solution to the differential
equation by its behaviour in the vicinity of the singular point z = 0:

ψp(z) → z
1
2
+p as z → 0 . (4.84)

For large z, the term µ−2−n zn in (4.83) becomes dominant and one can define another
solution through the z → +∞ asymptotic:

Ξ(z) ≍
( z
µ

)−n
4
exp

[
− 2

n+ 2

( z
µ

)n
2
+1

2F1

(
− 1

2 ,−
n+2
2n ,

n−2
2n

∣∣−µn+2 z−n
)
+ o(1)

]
(4.85)

where 2F1(a, b, c|z) is the Gauss hypergeometric function, and we make the technical
assumption that µ > 0 and9

n ̸= 2

2k − 1
k = 1, 2, ... . (4.86)

The spectral determinant D(µ) = D(µ | p, s) is given by

D(µ) =
√
π (n+ 2)−

2p
n+2

− 1
2 µ−p+ 1

2
W [ψp,Ξ ]

Γ(1 + 2p
n+2)

, (4.87)

where we recall the Wronskian W [ψp,Ξ ] = Ξ ∂zψp − ψp ∂zΞ. The normalisation has been
chosen such that

D(0) = 1 . (4.88)

It is worth mentioning that the procedure for computing the spectral determinant based on
formula (4.87) with the solutions ψp and Ξ obtained via numerical integration of the ODE
(4.83) works only for ℜe(p) ≥ 0. Nevertheless D(µ | p, s) turns out to be a meromorphic
function of p and can be analytically continued to generic complex values.

Instead of considering the eigenvalue of Q(0)(ζ) (4.25) for a primary Bethe state, we
consider the scaling limit of

A(ζ) =

L−S∏
j=1

(1− ζ/ζj) (1− ζζj) . (4.89)

9For the delicate case of n = 2
3k−2

we refer the reader to [25].
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The advantage is that it does not involve the overall factor ζS , and the normalization yields
A(0) = 1 (compare with (4.88)). Then, the scaling relation between A(ζ) and the spectral
determinant is given by

slim
L→∞
b(L)→s

G(L)
(
− µ2

∣∣∣ 2
n+2

)
A
((
L/L0

)− n
n+2 iµ

)
= D(µ) . (4.90)

Here, the function G has been chosen to ensure the convergence of the limit for all values
of the anisotropy and is given by10

G(L)(E |g) = exp


[

1
2(1−g)

]∑
m=1

(−1)m L

m cos(πmg)

(
L

L0

)2m(g−1)

Em

 , (4.91)

where the brackets [. . .] stand for the integer part, while

L0 =

√
π Γ
(
1 + 1

n

)
4Γ
(
3
2 + 1

n

) . (4.92)

For the RG trajectories with d ≠ 0 entering into the asymptotic formula for the energy
(4.71), the scaling relation (4.90) needs to be modified as follows. The LHS remains the
same, while for the RHS one takes D(µ) to be the spectral determinant for the differential
equation:[

− d2

dz2
+
p2 − 1

4

z2
+

2is

z
+ 1 +

d∑
a=1

(
2

(z − wa)2
+

n

z(z − wa)

)
+ µ−2−n zn

]
ψ = 0. (4.93)

Here,
w = (w1, . . . , wd) (4.94)

are not arbitrary parameters. They are restricted by the condition that any solution ψ(z)
of the differential equation must be single-valued in the vicinity of z = wa. This leads to
the coupled algebraic system:

0 = 4nw2
a + 8is (n+ 1)wa − (n+ 2)

(
(n+ 1)2 − 4p2

)
(4.95)

+ 4

d∑
b̸=a

wa

(
(n+ 2)2w2

a − n(2n+ 5)wawb + n(n+ 1)w2
b

)
(wa − wb)3

(a = 1, . . . , d) .

For generic n, s and p the number of solutions w = {wa}da=1, up to permutations of the
wa’s, is given by par2(d) – the number of bipartitions of d. The generating function for
this combinatorial quantity reads as

∞∑
d=0

par2(d) q
d =

∞∏
j=1

1

(1− qj)2
. (4.96)

For applications to the staggered six-vertex model with Uq

(
sl(2)

)
invariant BCs p is not

generic, but should be taken as in (4.68), i.e., 2p = 2S + 1− (n+ 2). Then, it turns out
10This can be compared with formula (5.48) in the work [25].
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that the number of solutions of the coupled equations (4.95) is typically less than par2(d).
To explain this phenomenon, let’s replace p with pε = p+ ε2S+1 where 0 < ε≪ 1. Of the
par2(d) solution sets of (4.95) with p 7→ pε there exists those where

wa = O(ε) for a = 1, 2, . . . , 2S + 1 . (4.97)

The other variables {wa}da=2S+2 tend to a finite, non-vanishing limit as ε → 0. Their
limiting values obey (4.95) with the replacements p 7→ S+ 1

2 +
1
2 (n+2) and d 7→ d−2S −1.

In counting the solution sets of the algebraic system on wa with 2p = 2S + 1− (n+ 2) we
only consider those to be admissible where none of the wa are zero. It is easy to see that

N(d | S) := # {solution sets of (4.95) with p as in (4.68)} = par2(d)− par2(d− 2S − 1)
(4.98)

Note that par2(d) = 0 when its argument is a negative integer.

We suppose that for a given trajectory {|ΨL⟩} with RG invariants S, s and d, there
exists a solution set w of (4.95) such that the scaling relation (4.90) holds true with
D(µ) = D(µ |w, p, s) being the spectral determinant11 for the differential equation (4.93).

Unfortunately, we cannot rigorously prove the above statement. We checked it numerically
for a variety of cases using the method of sum rules, which we have explained around
(2.204). The analysis is not included here as it is essentially the same as that presented in
section 11 of the work [25] concerning the staggered six-vertex model with twisted BCs.
However, one particular scaling relation involving the products over the Bethe roots

Π± =
L−S∏
m=1

q
(
ζm ± iq−1

) (
ζ−1
m ± iq−1

)
, (4.99)

is worth mentioning as it will become important later. It reads

Π± ≍ C

2 cos( π
n+2)

e±
π
n
s C(±)

p,s (w)

(
L

L0

)− np
n+2

±is( 4n

n+ 2

)L (
1 +O(L−ϵ)

)
. (4.100)

Let us now discuss its ingredients. The coefficients C
(±)
p,s = C

(±)
p,s (w), are related to the

asymptotic expansion of D(µ) in µ:

D(µ |w, p, s) ≍ C(±)
p,s (w)

(
±µ
)± i(n+2)s

n
−p

exp

(
2L0

cos(πn)

(
±µ
)n+2

n +o(1)

)
for ℜe(±µ) > 0 .

(4.101)
For the case when d = 0, the coefficients are given by

C(0,±)
p,s =

√
2π

n+ 2
2−p± i(n+2)s

n (n+ 2)−
2p

n+2
Γ(1 + 2p)

Γ(1 + 2p
n+2) Γ(

1
2 + p± is)

. (4.102)

In general,
C(±)
p,s (w) = C(0,±)

p,s Č(±)
p,s (w) , (4.103)

11Note that eqs. (4.84)-(4.87) for the definition of D(µ) still remain valid since the inclusion of the extra
sum in the ODE has no impact on the leading asymptotics of ψp and Ξ.
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4.2 Scaling limit of the alternating case

where Č(±) are normalized to be one for d = 0. A closed form expression for Č(±) for general
d = 0, 1, 2, . . . was obtained in [133] and is quoted in appendix D.

In (4.100), C is a non-universal constant which is given by

C = exp

(
2

∫ ∞

−∞
dω
(
τ̂(ω)

ω

(
ℑm

[
e

2iπ
n+2 Φ

(
e−

inπ
n+2 , 1 , 1− iω

4

)]
− π

n+ 2
− 2

ω

)
− n− 1

2πω2

))
.

(4.104)
We recall that τ(ω) is Fourier transform of the surface density (see (4.48)) i.e. in the
notation (4.62) given by

τ̂(ω) = − 1

4π

sinh(π(n−1)
4(n+2) ω)

sinh( πω
4(n+2)) cosh(

nπω
4(n+2))

(4.105)

and Φ(z, s, a) is the standard Lerch transcendent function

Φ(z, s, a) =
∞∑

m=0

zm

(m+ a)s
. (4.106)

Finally, we mean by the notation O(L−ϵ) with some ϵ > 0 that the correction terms fall off
faster than any power of the logarithm of L. The asymptotic formula (4.100) is the analogue
for the lattice system with open Uq

(
sl(2)

)
invariant BCs of a product rule presented in [25],

see (11.19) therein.

4.2.5 Quantization condition
In the next section, a full description of the space of states H appearing in the scaling limit
will be given. Among other things, this includes the admissible values of pure imaginary s
as well as the density of states characterizing the continuous spectrum. The results are
based on an analysis of the so-called ‘quantization condition’ for b(L), which we shall obtain
below.

The key observation is that the eigenvalue of the quasi-momentum operator (4.82), used
in the computation of b(L) (4.69), may be expressed as

expB = (−1)L−S Π+

Π−
. (4.107)

Here Π± stand for the products over the Bethe roots defined in (4.99). Let us substitute
these products for their asymptotics (4.100) with s replaced by the ‘running coupling’ b(L).
Upon rearranging and making use of eq. (4.69), one finds(

L

L0

)2is

e
i
2
δ(w,p,s)

∣∣∣
s=b(L)

=σ +O(L−ϵ) (4.108a)

e
i
2
δ(w,p,s) =

C
(+)
p,s (w)

C
(−)
p,s (w)

(4.108b)

σ =(−1)L−S . (4.108c)
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4.2 Scaling limit of the alternating case

The above relation given in (4.108), which will be henceforth referred to as the quantization
condition, is interpreted in the following way. Given an RG trajectory {|ΨL⟩} one computes
p from the value of the Uq

(
sl(2)

)
spin S via the definition (4.68) as well as the sign

factor σ = (−1)L−S . The latter is kept fixed along the RG trajectory {|ΨL⟩}. Then b(L),
computed from the Bethe roots according to equations (4.82) and (4.69), obeys (4.108a) for
some solution set w = {wa}da=1 of the algebraic system (4.95) with s replaced by b(L). The
‘phase shift’ δ is given in terms of the coefficients C

(±)
p,s (w) (4.103), which were introduced

in the previous subsection. For the primary Bethe states with d = 0, one has

e
i
2
δ(∅,p,s) = 2

2i(n+2)s
n

Γ(12 + p− is)

Γ(12 + p+ is)
(d = 0) . (4.109)

For d = 1, 2, 3, ... one must make use of eqs. (4.102), (4.103) together with the explicit
formula for Č

(±)
p,s (w) which is contained in appendix D.

Let’s take a moment to discuss the quantization condition (4.108) for the primary Bethe
states in the context of the results in the last section, see also [27]. We start with the
asymptotic (4.70) for b(L) that was observed for a class of RG trajectories labelled by the
integer dN . In this case, it is useful to take the logarithm of both sides of formula (4.108a)
with the phase shift as in (4.109) and write it in the form:

2bdN log

(
L

L0

)
− i log

[
2

2i(n+2)bdN
n

Γ(12 + p− ibdN )

Γ(12 + p+ ibdN )

]
= πdN +O(L−ϵ) . (4.110)

For the class of states, we are considering bdN (L) goes to zero as L→ ∞. As a result, the
second term in the LHS of the above relation containing the Γ-functions also tends to zero
and, to a first approximation, can be ignored. This way, one obtains (4.70). The formula
(4.110) provides a refinement to the large L asymptotic behaviour of bdN (L) which takes
into account all power-law corrections in 1/ log(L). To demonstrate its accuracy, some
numerical data obtained from the Bethe roots for a primary Bethe state |ΨL⟩ is compared
with the predictions coming from the quantization condition in Figure 4.12.

Another possibility of how (4.108a) could be satisfied for L ≫ 1 is if b(L) approaches
a singularity of the phase shift. The explicit formula (4.109), valid for d = 0, shows that
these occur for pure imaginary s when 1

2 + p ± is is a positive integer. If the imaginary
part of b(L) is positive, then the vanishing of the first term in the LHS of (4.108a) may be
compensated if b(L) tends to a pole of e

i
2
δ, i.e.,

slim
L→∞

b(L) = s with s = i
(
− p− 1

2 − ℓ
) (

ℑm(b(L)) > 0
)

(4.111)

and ℓ = 0, 1, 2, . . . . This is the same as eq. (4.78) with the sign factor chosen to be ‘+’.
The upper bound on ℓ in that equation ensures the condition ℑm(b(L)) > 0. The minus
version of the relation is deduced from (4.108a) by means of similar arguments.

A verification of the quantization condition (4.108) was carried out using numerical data
obtained from the lattice model with L = 10. The spin chain Hamiltonian was constructed,
and the first few hundred lowest energy Bethe states were found via a direct diagonalization
procedure. Note that, because of the Uq

(
sl(2)

)
symmetry, it was sufficient to focus on the
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4.2 Scaling limit of the alternating case
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1.25

b(L)

L

Figure 4.12: The numerical data of b(L) for an RG trajectory {|ΨL⟩} is depicted. The
representative state for L = 10 is the one whose pattern of Bethe roots is displayed on the right
panel of Figure 4.4. In particular, it has d = 0, total Uq

(
sl(2)

)
spin S = 2 and the integer dN —

the difference between the number of roots lying on the real line and the line ℑm(u) = π
2 in the

complex u plane — is held fixed along the flow to be dN = 4. The crosses depict the numerical
values of b(L) = bdN (L) for different L which were computed from the Bethe roots corresponding
to |ΨL⟩ via formulae (4.69) and (4.82). The dashed line gives the predictions coming from the
quantization condition (4.110) with dN = 4 and the correction terms ignored. Note that the branch
of the logarithm was fixed by requiring that the LHS of (4.110) is a continuous function for real
bdN which vanishes at bdN = 0.

sector with Sz = 0 as there is always one state |ΨL⟩ from the Uq

(
sl(2)

)
multiplet MS

lying in this sector. For each Bethe state, apart from the energy, the eigenvalue of the
quasi-momentum operator was computed from which we extracted b. The numerical data
for b(L) was compared with b∗(L) — the predictions coming from the quantization condition.
The latter was obtained by considering (4.108) as an equation from which b∗(L) could be
determined numerically (in (4.108a) we ignore the correction term O(L−ϵ) and set L = 10).
Note that the phase shift e

i
2
δ therein depends on b transcendentally via the Γ-functions as

in (4.109) and algebraically through the set w, which solves the coupled system (4.95) with
s 7→ b. For given d ≤ 3 we took the par2(d)−par2(d−2S −1) equations which are obtained
from the quantization condition by specializing the phase shift δ = δ(w, p, s) to different
solution sets w = {wa}da=1 of (4.95). For each of them we found all possible solutions b∗(L)
that lie in a suitably chosen finite portion of the strip

∣∣ℑm(b∗)
∣∣ < n

2 + ε with 0 < ε≪ 1 of
the complex b plane. Some of the results for the comparison of b(L) and b∗(L) for L = 10
are presented in Figure 4.13. They motivated us to make the following conjecture.

Conjecture: For any RG trajectory {|ΨL⟩} labelled by S, d and a solution set w =
{wa}da=1 of equation (4.95) the corresponding value12 of b(L) = n

2πB, with B computed
according to formula (4.82), obeys the quantization condition (4.108). Conversely, let
b∗(L) : −n

2 < ℑm
(
b∗(L

)
≤ n

2 be a solution of the relation (4.108a) with the correction
terms ignored. Then, there exists a unique Uq

(
sl(2)

)
multiplet MS for which B obtained

from |ΨL⟩ ∈ MS is such that exp(B)− exp
(
2π
n b∗(L)

)
tends to zero faster than any power

of the logarithm of L.

12Note that for the self-dual case α = π/2 the term Bthermo vanishes in (4.69).
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Figure 4.13: Numerical data for b(L) and b∗(L) is plotted in the complex b plane for the lattice
system with L = 10. Out of the few hundred states that were considered, only those with d = 2 (top
panel), d = 1 (bottom panel) and Uq

(
sl(2)

)
spin S = 2 were used to produce the figure. The open

circles correspond to b(L) that was extracted from the Bethe roots by means of eqs. (4.82), (4.69).
The filled shapes represent b∗(L) obtained from an analysis of the quantization condition (4.108).
The green squares and blue circles are used to distinguish whether b∗(L) becomes a pure imaginary
number or a real number, respectively, in the scaling limit. The two green squares in the top panel
for which slimL→∞ b∗(L) = ± in

2 correspond to the same state. It seems interesting to note that
the agreement between b(L) and b∗(L) is better than in the case of the lattice model with twisted
BCs imposed. To see that, compare the above figures with the ones contained in appendix C of the
work [25]. The anisotropy parameter was taken to be n = 2.9 (γ = 0.641141).
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4.2 Scaling limit of the alternating case

4.2.6 Space of states in the scaling limit

Continuous and discrete spectrum

A key result is the above conjecture which was motivated by our numerical work. It describes
a certain one-to-one relation between b(L) and b∗(L). The former is computed via the Bethe
roots corresponding to a state |ΨL⟩ in a multiplet MS , labeled by 2p = 2S + 1− (n+ 2),
the non-negative integer d and one of the N(d | S) = par2(d)− par2(d− 2S − 1) solution
sets w = {wa}da=1 of the algebraic system (4.95). The notation b∗(L) stands for a solution
of the quantization condition (4.108) treated as an equation for b(L) with the correction
terms ignored.

Accepting the conjecture to be true, one can determine the spectrum of b(L) for the low
energy states at large L via a study of the quantization condition. In turn, the results allow
one to fully characterize the spectrum of conformal dimensions as well as the space of low
energy states in the scaling limit.

Consider the quantization condition (4.108) and suppose that the phase shift δ(w, p, s)|s 7→b(L)

is significantly smaller than log(L). Then, the first term dominates, and one can obtain
an asymptotic expansion for b(L) in 1/ log(L). The leading and subleading asymptotic
behaviour are given by

bdN (L) =
2πdN − δ0

4 log
(
e

1
4
δ′0L/L0

) +O
(
(logL)−3

) (
L≫ 1, dN − fixed

)
. (4.112)

Here, we have introduced the notation

δ0 = δ|s=0 , δ′0 = ∂sδ|s=0 , (4.113)

while dN , which labels13 the different b(L) obeying the quantization condition comes about
as a result of taking the logarithm of (4.108a) and is an even or odd integer for σ = +1 or
σ = −1, respectively.

Formula (4.112) shows that, in general, bdN (L) is a complex number since δ0 and δ′0
are generically complex. However, while ℑm

(
bdN (L)

)
∼ 1/ log(L) → 0 as L → ∞ the

magnitude of the real part is controlled by the integer dN which, for the low energy states,
may take any values up to some dNmax ≪ L. Numerical work leads us to suppose that
limL→∞ bdNmax = ∞.

Let H(cont)
L|S denote the set of low energy states |ΨL⟩ with fixed value of the Uq

(
sl(2)

)
spin S = 0, 1, 2, . . . such that ℑm

(
b(L)

)
→ 0 as L → ∞. Recall that the states come in

multiplets MS and one can choose a basis for that multiplet in which Sz = 1
2

∑2L
J=1 σ

z
J , is

diagonal. This yields the refinement

H(cont)
L|S =

S⋃
Sz=−S

H(cont)
L|S,Sz . (4.114)

13We intentionally used the same letter as the one which is associated to the class of states (4.42). For
those states, these numbers ‘coincide’. However, for general complex Bethe roots the definition of dN is —
from the perspective of the root pattern — subtle.
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4.2 Scaling limit of the alternating case

Each low energy Bethe state in H(cont)
L|S,Sz is uniquely specified by the non-negative integer d,

a solution set w = {wa}da=1 of the algebraic system (4.95) with s 7→ b(L), as well as the
even or odd integer dN that enters into the asymptotics (4.112). For L≫ 1, the value of
bdN (L) becomes densely distributed in the segment (−bdNmax(L),+bdNmax(L)). The density
of states is obtained from the quantization condition (4.108) written in logarithmic form:[

4s log(L/L0) + δ(w, p, s)
]
|s 7→bdN (L) = 2πdN +O(L−ϵ) . (4.115)

Here, the branch of the logarithm needed to define δ from (4.108b) is taken such that the
phase shift is a continuous function of s in the strip |ℑm(s)| < ε for some ε > 0 (it is being
assumed that e

i
2
δ contains no zeroes or poles for real s). The term in the square brackets

on the LHS of (4.115) is a monotonic function of s for L sufficiently large. This way one
concludes that the number of states in H(cont)

L|S,Sz with fixed d such that ℜe
(
b(L)

)
lies in the

interval (s, s+∆s) ∈ (−bdNmax(L),+bdNmax(L)) is given by ρ(d)p (s)∆s with14

ρ(d)p (s) =
1

π
N(d | S) log

(
2

n+2
n

L

L0

)
+

1

2πi
∂s log

[(
Γ(12 + p− is)

Γ(12 + p+ is)

)N(d | S) ∏
w

d− fixed

Č
(+)
p,s (w)

Č
(−)
p,s (w)

]
(4.116)

up to corrections which vanish as L→ ∞. The product over w appearing in the RHS goes
over all the N(d | S) (4.98) solution sets of the algebraic system (4.95) with d fixed. Also,
recall that 2p = 2S + 1− (n+ 2).

In [133] a formula is presented for a product over w similar to the one appearing in the
RHS of (4.116) (see also Appendix B of [25]). It is valid for the case of generic p and n
when the number of solution sets w of (4.95) is par2(d). Based on this, one can derive the
result:

∏
w

d− fixed

Č
(+)
p,s (w)

Č
(−)
p,s (w)

= (−1)par2(d−2S−1)
d−1∏
a=0

( 1
2 + a+ p− is
1
2 + a+ p+ is

)N(d | S)−N+
a (d | S)

×
d−1∏
a=0

( 1
2 + a− p− is
1
2 + a− p+ is

)N(d | S)−N−
a (d | S)

(4.117)

with the integers N±
a being defined through their generating function as

∞∑
d=0

N±
a (d | S) qd =

( ∞∏
j=1

(1− qj)−2

) ∞∑
m=0

(−1)m
(
1− q(1±m)(2S+1)

)
qma+

m(m+1)
2 . (4.118)

Notice that
N+

a (d | S) = N(d | S)−N−
−a−1(d | S) . (4.119)

14This line of arguments is analogous to the standard derivation in the root density approach. One
introduces a monotonic increasing counting function which evaluates to (half-)integers at the Bethe roots
similar to the LHS of (4.115) evaluates to odd/even integers dN multiplied by π when s is swapped for
bdN (L) and L ≫ 1. Differentiating the counting function in the root density approach yields the root
density, while we obtain the density of states (4.116) by differentiating (4.115) and dividing by 4π.
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4.2 Scaling limit of the alternating case

The scaling limit of the RG trajectory L 7→ |ΨL⟩ ∈ H(cont)
L|S labelled by real s, the integers

S, Sz, d and the solution set w yields

slim
L→∞

|ΨL⟩ = |ψ(Sz)
p,s (w)⟩ . (4.120)

One can define the linear span H(cont)
S of all such possible states with fixed S. The above

discussion implies that this linear space admits the decomposition

H(cont)
S =

S⊕
Sz=−S

H(cont)
S,Sz , (4.121)

where each of the spaces H(cont)
S,Sz is isomorphic to H(cont)

S,S and

H(cont)
S,S =

∫ ⊕

R
ds

∞⊕
d=0

H(cont,d)
p,s

(
2p = 2S + 1− n− 2

)
. (4.122)

The components appearing inside the direct sum are finite dimensional such that

dim
(
H(cont,d)

p,s

)
= N(d | S) . (4.123)

For the low energy states where the value of ℑm
(
b(L)

)
is non-vanishing in the limit L→ ∞

so that they do not belong to H(cont)
L|S , one may repeat a similar analysis to the one in [25]

in the context of the staggered six-vertex model with twisted BCs (see appendix B therein).
Let us denote by H(disc)

L|S,Sz the set of such states |ΨL⟩ with given quantum numbers S and Sz.
The quantization condition (4.108) implies that the set w and s = slimL→∞ b(L) labelling
the RG trajectory {|ΨL⟩} must be such that

e−
i
2
δ(w,p,s) = 0 if ℑm(s) > 0 , e+

i
2
δ(w,p,s) = 0 if ℑm(s) < 0 .

(4.124)
We supplement this with the additional constraint

−n
2
< ℑm(s) ≤ n

2
(4.125)

on the imaginary part of s. It originates from the inequality (4.38), while the line
ℑm(s) = − in

2 was excluded from the interval in order to avoid double counting states with
slimL→∞ b(L) = ± in

2 . It turns out that the phase shift satisfies:

e
i
2
δ(w,p,s) = e−

i
2
δ(−w,p,−s) . (4.126)

Here, −w denotes the set {−wa}da=1 where, if w obeys the algebraic system (4.95), then
−w obeys the same set of equations with s 7→ −s. This allows one to focus on the case
with 0 < ℑm(s) ≤ n

2 while results for −n
2 < ℑm(s) < 0 follow by simply flipping the sign

s 7→ −s.

The analysis of (4.124) is greatly facilitated by the relation

∏
w

d− fixed

e
i
2
δ(w,p,s) =

(
2(2n+4) is

n
Γ(12 + p− is)

Γ(12 + p+ is)

)N(d | S) ∏
w

d− fixed

Č
(+)
p,s (w)

Č
(−)
p,s (w)

(4.127)
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4.2 Scaling limit of the alternating case

with the last term in the RHS being given by the product (4.117). It follows from the
definitions (4.108b), (4.102) and (4.103). Also, we will need the following assumptions
on the positions of the poles and zeroes of the function e

i
2
δ(w,p,s), which were verified

numerically for small d ≤ 3:

(i) The points where e
i
2
δ(w,p,s) is singular do not coincide with the location of any zero

of e
i
2
δ(w′,p,s) with w′ being some other solution set of (4.95).

(ii) All singularities of e
i
2
δ(w,p,s) in the complex s plane are simple poles. Notice that, in

view of eq. (4.126), this implies that all of its zeroes are simple as well.

From assumption (i), any pole or zero of e
i
2
δ(w,p,s) must appear as a pole/zero in the RHS

of (4.127). This way, one finds that the values of s for which the first condition in (4.124)
is obeyed are s = ±sa, with (see also our earlier analysis (4.78))

sa = i
(
− p− 1

2 − a
)
= i
(
n
2 − S − a

)
and 0 ≤ a+ S < n

2 , a ∈ Z , (4.128)

where the bound on a+ S comes from (4.125). Moreover, due to (ii), one can determine
the number of solution sets w with (4.124) being satisfied at s = sa by reading off the
multiplicity of that pole/zero from eqs. (4.127) and (4.117). This would coincide with the
dimension of the linear space H(disc,d)

p,s which is the span of all states of the form |ψ(Sz)
p,s (w)⟩

having fixed S,Sz, d and s with ℑm(s) ̸= 0. One finds the number of such w to be N+
a (d).

Define the space H(disc)
S,Sz as the linear span of all the states that appear in the scaling limit

of H(disc)
L|S,Sz . These are isomorphic to H(disc)

S,S and the analysis of the quantization condition
performed above implies that:

H(disc)
S,S =

⊕
s∈Σ+∪Σ−

∞⊕
d=0

H(disc,d)
p,s . (4.129)

Here Σ(±) denote the finite sets of pure imaginary numbers:

Σ+ =
{
s : n

2 + is ∈ Z , ℑm(s) ∈ (0, n2 ]
}
, Σ− =

{
s : n

2 − is ∈ Z , ℑm(s) ∈ (−n
2 , 0)

}
,

(4.130)
which incorporate the bound on the imaginary part of s (4.125). Each component H(d)

p,s is
finite dimensional and

dim
(
H(disc,d)

p,s

)
= N+

a (d | S) with a = n
2 − S ± is ∈ Z (4.131)

Here and below, when a condition involving ±is appears, we mean it is to be satisfied for
some choice of the sign + or −.

The following comment is in order here. For the case a < 0, the integers N+
a (d | S) (4.118)

are all zero for d = 0:

N+
a (0 | S) = 0 for a = −1,−2,−3, . . . . (4.132)

As a result, for the primary Bethe states, the limiting values of ℑm
(
b(L)

)
are given by

s = ±sa (4.128) with the extra condition imposed that a ≥ 0. Thus, one recovers the
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4.2 Scaling limit of the alternating case

formula (4.78). Of course, RG trajectories exist for the spin chain, which are not primary
Bethe states that are labelled by s = ±sa with a < 0.

We conjecture that any RG trajectory of the lattice model with given Uq

(
sl(2)

)
spin S

and eigenvalue of the z -projection of the total spin operator Sz belongs either to H(cont)
L|S,Sz

or H(disc)
L|S,Sz . Thus, the full space of low energy states of the lattice system in the scaling

limit becomes the linear space

H = H(cont) ⊕H(disc) (4.133)

with

H(cont) =
∞⊕

S=0

S⊕
Sz=−S

H(cont)
S,Sz , H(disc) =

∞⊕
S=0

S⊕
Sz=−S

H(disc)
S,Sz . (4.134)

We call H(cont) the ‘continuous spectrum’ due to the presence of a direct integral over s
in its decomposition, see (4.122). The space H(disc) will be referred to as the ‘discrete
spectrum’.

W∞ algebra

In the scaling limit, the critical lattice system possesses extended conformal symmetry.
The corresponding algebra is expected to be the W∞ algebra from reference [134] with
central charge c < 2. This is the same one that appears in the scaling limit of the staggered
six-vertex model with twisted BCs [91, 25]. Among other things, such a statement implies
that the graded linear spaces

∞⊕
d=0

H(d)
p,s , H(d)

p,s =

H(cont,d)
p,s for s ∈ R

H(disc,d)
p,s for p+ 1

2 ± is ∈ Z
(4.135)

are isomorphic to a (irreducible) representation of W∞. Then formulae (4.134), (4.122)
and (4.129) would provide a classification of the space of states H occurring in the scaling
limit of the lattice model in terms of irreducible representations (irreps) of the algebra
of extended conformal symmetry. In order to demonstrate this, we briefly mention some
details concerning the W∞ algebra and its representations while referring the reader to
section 16 of reference [25] for further discussion.

The W∞ algebra is generated by a set of currents Wj(u) of Lorentz spin j = 2, 3, . . . .
These satisfy an infinite system of operator product expansions (OPEs). Its first few
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4.2 Scaling limit of the alternating case

members can be chosen to be

W2(u)W2(0) =
c

2u4
− 2

u2
W2(0)−

1

u
∂W2(0) +O(1) ,

W2(u)W3(0) = − 3

u2
W3(0)−

1

u
∂W3(0) +O(1) , (4.136)

W3(u)W3(0) = −c(c+ 7)(2c− 1)

9(c− 2)u6
+

(c+ 7)(2c− 1)

3(c− 2)u4
(
W2(u) +W2(0)

)
− 1

u2

(
W4(u)

+ W4(0) +W 2
2 (u) +W 2

2 (0) +
2c2 + 22c− 25

30(c− 2)

(
∂2W2(u) + ∂2W2(0)

))
+ O(1) ,

where in the last line W 2
2 is a composite field which coincides with the first regular term

in the OPE W2(u)W2(0). Notice that there is some ambiguity in the definition of Wj for
j ≥ 3. Apart from the freedom in the overall multiplicative normalization, Wj 7→ CWj , it
is possible to add to Wj any differential polynomial of Lorentz spin j involving the lower
spin currents Wk with k < j. Here, the W3 current was fixed by the requirement that it is
a primary field of spin three, so that its OPE with W2 takes the form of the second line
in formula (4.136). As for W4, one cannot arrange for it to be a primary field by adding
linear combinations of W 2

2 , ∂W3 and ∂2W2. Defined such that it appears in the OPE of
W3(u)W3(0) as above, it turns out that W2(u)W4(0) takes a simpler form,

W2(u)W4(0) =
(c+ 10)(17c+ 2)

15(c− 2)u4
W2(0)−

4

u2
W4(0)−

1

u
∂W4(0) +O(1) , (4.137)

where the singular terms ∝ u−6 and ∝ u−3 are not present.

For the study of the W∞ algebra it is useful that it admits a realization in terms of two
independent chiral Bose fields. We normalize them as

∂ϑ(u) ∂ϑ(0) = − 1

2u2
+O(1) , ∂φ(u) ∂φ(0) = − 1

2u2
+O(1) , (4.138)

while ∂φ(u)∂ϑ(0) = O(1). One can check that as a consequence of the free field OPEs, the
currents

W2 = (∂ϑ)2 + (∂φ)2 +
i√
n+ 2

∂2φ , (4.139)

W3 =
6n+ 8

3n+ 6
(∂ϑ)3 + 2 (∂φ)2∂ϑ+ i

√
n+ 2 ∂2φ∂ϑ− in√

n+ 2
∂φ∂2ϑ+

n

6(n+ 2)
∂3ϑ

obey the algebra (4.136). The parameter n entering above is related to the central charge c
as

c =
2(n− 1)

n+ 2
. (4.140)

Hence, if n is real and positive, the central charge c is smaller than two. Notice that, while
an expression for W4 in terms of ∂ϑ and ∂φ has not been stated, it can be deduced from
the OPEs (4.136) and the formula (4.139) for W2 and W3. One computes W3(u)W3(0)
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4.2 Scaling limit of the alternating case

with W3 written in terms of free fields and compares the coefficient ∝ u−2 with the one
appearing in the last two lines of eq. (4.136). It turns out that the higher spin currents
always appear in the OPEs involving the lower spin ones. This way, starting from (4.139)
and recursively computing OPEs, one can determine the full realization of Wj in terms of
the free fields ∂φ and ∂ϑ for any j = 4, 5, 6, . . . .

A stepping stone for the construction of highest weight irreducible representations of the
W∞ algebra is the Verma module construction, which we have introduced around equation
(2.40). There, we mentioned the possibility of nullstates. Let us now discuss them for the
W∞ algebra.

The Verma module is defined using the Fourier modes of Wj(u), which we assume to be
periodic functions of the variable u ∼ u+ 2π:

Wj = − c

24
δj,2 +

∞∑
m=−∞

W̃j(m) e−imu . (4.141)

We introduce the highest weight state |ω⟩, which is specified by the conditions

W̃j(m) |ω⟩ = 0 (∀m > 0) , W̃j(0) |ω⟩ = ωj |ω⟩ (4.142)

with j = 2, 3. The highest weight is given by ω = (ω2, ω3), where the component ω2 is
equal to the conformal dimension of the highest state, while ω3 is the eigenvalue of W̃3(0),
which commutes with W̃2(0). The Verma module is spanned by the states that are obtained
by acting with the ‘creation modes’ of the spin 2 and spin 3 currents on the highest state:

W̃2(−ℓ1) . . . W̃2(−ℓm) W̃3(−ℓ′1) . . . W̃3(−ℓ′m′)|ω⟩ (4.143)

with ℓj , ℓ′j′ ≥ 1. It possesses a natural grading given by

d =
m∑
j=1

ℓj +
m′∑
j=1

ℓ′j , (4.144)

and the dimensions of its level subspace with fixed d is the number of bi-partitions of d,
i.e., par2(d) (4.96). In what follows, we will parameterize the highest weight for the Verma
module Vρ,ν as

ω2 =
ρ2 − 1

4

n+ 2
+
ν2

n
, (4.145)

ω3 =
2ν√
n

( ρ2

n+ 2
+

(3n+ 4) ν2

3n (n+ 2)
− 2n+ 3

12 (n+ 2)

)
.

This is motivated by the free field realization (4.139). Supposing that the highest state is
an eigenvector of the operators

∫
du ∂ϑ(u) and

∫
du ∂φ(u) with eigenvalues ν√

n
and ρ√

n+2
,

respectively, formula (4.145) follows from (4.139). The highest weight is an even function
of ρ. As a result, the spaces Vρ,ν and V−ρ,ν should be identified. In the parameterization
(4.145), the conformal dimensions of a state in the Verma module at level d is such that

W̃2(0)−
c

24
=

ρ2

n+ 2
+
ν2

n
− 1

12
+ d , (4.146)
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4.2 Scaling limit of the alternating case

which should be compared with eq. (4.73).

For generic complex values of ρ and ν the Verma module Vρ,ν is an irreducible repre-
sentation of the W∞ algebra. However, with ρ, ν obeying certain constraints, the Verma
module contains nullstates. Then the highest weight irrep Wρ,ν can be obtained from Vρ,ν

by factoring out all of the invariant subspace(s) generated by the nullstate(s). In view of
applications to the scaling limit of the lattice model of particular interest is when ρ takes
the values ρ = ±1

2

(
r −m(n+ 2)

)
with r,m = 1, 2, . . . . In this case, a nullvector appears

at level d = mr and the Verma module splits into the direct sum of two representations,
which are irreducible for generic n and ν:

Vρ,ν = Wρ,ν ⊕Wρ′,ν with
ρ = 1

2 (r −m (n+ 2)) (n, ν− generic)

ρ′ = 1
2 (r +m (n+ 2)) (r,m = 1, 2, . . .)

.

(4.147)
The space Wρ′,ν is isomorphic to the Verma module and the dimensions of its level subspaces
is par2(d), while for Wρ,ν , the level subspaces are par2(d)−par2(d−mr) dimensional. Con-
sider again the components H(cont,d)

p,s , which appear in the decomposition of the continuous
spectrum of the space of states occurring in the scaling limit of the spin chain. Taking into
account formulae (4.123) and (4.98), it is clear that

Wp,s
∼=

∞⊕
d=0

H(cont,d)
p,s

(
2p = 2S + 1− (n+ 2) , s ∈ R

)
. (4.148)

To describe the discrete spectrum in terms of irreps of the W∞ algebra, it is necessary to
analyze the case when ν is such that ρ+ 1

2 ± iν is an integer for some choice of the sign
±. As explained in, e.g., section 16.2 of [25] the Verma module with ρ+ 1

2 + iν = −a+ =
0,±1,±2, . . . contains a nullvector at level |a+ + 1

2 |+
1
2 , while for −ρ+ 1

2 + iν = −a− =
0,±1,±2, . . . there is a nullvector at level |a− + 1

2 |+
1
2 . Assuming ρ is generic for now, the

character of the irreducible representation,

chρ,ν(q) ≡ TrWρ,ν

[
qW̃2(0)− c

24

]
, (4.149)

is given by [135] (see also [136, 137])

chρ,ν(q) = q
− 1

12
+ ν2

n
+ ρ2

n+2

( ∞∏
m=1

1

(1− qm)2

) ∞∑
m=0

(−1)m qm|a+ 1
2
|+m2

2 (4.150)

where n, ρ are generic and ρ+ 1
2 ± iν = −a ∈ Z. If, in addition to ν being constrained as

above, ρ→ 1
2 (2S − n− 1) then Wρ,ν further breaks up into two irreducible representations.

One of them is generated by the nullvector which appears at level 2S + 1 and has highest
weights (ρ′, ν) with ρ′ = 1

2 (2S+n+3). Its character is given by (4.150) with ρ replaced by ρ′

and a 7→ a′ = −2(S+1)−a. Taking the difference chρ,ν(q)−chρ′,ν(q) with ρ→ 1
2 (2S−n−1)

and ρ′ → 1
2 (2S + n+ 3) yields for the character of the irreducible representation Wρ,ν

chρ,ν = q
− 1

12
+ ν2

n
+ ρ2

n+2

( ∞∏
j=1

1

(1− qj)2

) ∞∑
m=0

(−1)m q
m2

2

(
qm|a+ 1

2
| − q2S+1+m|2S+a+ 3

2
|
)

(4.151)
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4.2 Scaling limit of the alternating case

with
ρ+ 1

2 ± iν = −a ∈ Z and 2ρ = 2S − n− 1 . (4.152)

For the case a ≥ 0 the above expression, apart from the overall factor q
− 1

12
+ ν2

n
+ ρ2

n+2 ,
coincides with the generating function (4.118) for the integers N+

a (d | S). This way, one
concludes

Wp,s
∼=

∞⊕
d=0

H(disc,d)
p,s

(
p = S + 1

2 − 1
2(n+ 2) , n

2 − S ± is = a ∈ Z≥0

)
. (4.153)

The remaining case to be considered is when −S ≤ a < 0. The lower bound comes
from the condition s ∈ (−n

2 ,
n
2 ] which induces that ±is = n

2 − S − a ≤ n
2 . From the

definition of the integers N+
a (d | S) (4.118), which give the dimensions of the level subspaces

H(disc,d)
p,s ⊂ H(disc), one finds

dim
(
H(d)

p,s

)
= 0 for d = 0, 1, . . . , |a| − 1

(
− p− 1

2 ± is = a ∈ Z , −S ≤ a < 0
)
.

(4.154)
Thus, the corresponding irrep (4.135) has a highest state whose conformal dimension is
given by:

∆ =
p2

n+ 2
+
s2

n
+ |a|

(
− S ≤ a < 0

)
. (4.155)

This turns out to be an irreducible representation of the W∞ algebra,

Wρ,ν =
∞⊕
d=0

H(d)
p,s , (4.156)

with the highest weight parameterized as in (4.145), where

ρ = S +
1

2
, ν =

s−
in
2 for (−is) > 0

s+ in
2 for (−is) < 0

(
n
2 − S ± is = a ∈ Z<0 , −S ≤ a < 0

)
.

Assuming n is irrational, the character of such a representation is given by

chρ,ν(q) = q
− 1

12
+ ν2

n
+ ρ2

n+2

∞∏
m=1

1

(1− qm)2

∞∑
m=0

(−1)m q
m2

2
(
qm| |ρ|−|ν| | − q(m+1)(|ρ|+|ν|+1)− 1

2
)
.

(4.157)
One can check that the dimensions of the level subspaces, obtained by expanding chρ,ν(q)
in a series in q, coincides with the integers N+

a (d| S) with −S ≤ a < 0 and d = |a|, |a|+
1, |a|+ 2, . . . .

Finally, we mention that the states |ψ(Sz)
p,s (w)⟩ ∈ Wρ,ν appearing in the scaling limit of the

Bethe states, see eq.(4.120), have an important interpretation. They are the simultaneous
eigenstates of the so-called quantum AKNS integrable structure [138, 139]. The function
e

i
2
δ (4.108b) entering into the quantization condition coincides with the eigenvalue of a

certain so-called reflection operator [140] computed on |ψ(Sz)
p,s (w)⟩, see reference [133] for

details.
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4.2 Scaling limit of the alternating case

4.2.7 Partition function in the scaling limit

In the case of the lattice model with twisted BCs, it was proposed [24] and then verified
numerically [25] that the partition function appearing in the scaling limit of the lattice
system, Z(scl), coincides with twice the partition function of the 2D Euclidean Black Hole
CFT. Recall that, the latter was constructed in refs. [51, 49] by computing a functional
integral with the worldsheet being taken to be a torus. The results presented in the previous
section allow one to easily compute Z(scl) for the staggered six-vertex model subject to
Uq

(
sl(2)

)
invariant open BCs. One may expect 1

2 Z
(scl) to coincide with the partition

function for 2D Euclidean Black Hole CFT on the open segment x ∈ (0, R), with certain
conditions imposed on the fields at x = 0, R.

Consider the lattice partition function

Z
(lattice)
L = TrH

[
e−M H] , (4.158)

where the Hamiltonian H is given by (4.30) with α = π
2 and γ = π

n+2 and n ≥ 0, while
the trace is taken over the 22L dimensional space of states: H = C2

2L ⊗ C2
2L−1 ⊗ . . .⊗ C2

1.
Keeping the ratio

τ =
vFM

2L
(4.159)

fixed as L → ∞, one finds that the large L behaviour of the lattice partition function is
given by

Z
(lattice)
L ≍ e−MLe∞−Mf∞ Z(scl) . (4.160)

Here Z(scl) takes the form of a trace over the space of states H appearing in the scaling
limit of the lattice model:

Z(scl) = TrH

(
qĤCFT

)
with q = e−2πτ . (4.161)

It involves the ‘CFT Hamiltonian’ ĤCFT which when restricted to the finite-dimensional
spaces H(cont,d)

p,s or H(disc,d)
p,s appearing in the decomposition of H is diagonal with

ECFT =
p2

n+ 2
+
s2

n
− 1

12
+ d . (4.162)

Notice that the asymptotic formula for the energy (4.71) can be re-written as the formal
relation

ĤCFT = slim
L→∞

L

πvF

(
H− Le∞ − f∞

)
. (4.163)

In subsection 4.2.6, the space of states H was expressed as a direct sum of the continuous
spectrum H(cont) and the discrete one H(disc), see formula (4.133). The contribution of the
states to the trace in eq. (4.161) for each of these spaces will be denoted as Z(cont) and
Z(disc), respectively, so that

Z(scl) = Z(cont) + Z(disc) , (4.164)

where

Z(disc) = TrH(disc)

(
qĤCFT

)
, Z(cont) = TrH(cont)

(
qĤCFT

)
. (4.165)
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Let us focus on the computation of Z(disc). The space H(disc) is made up of the components
H(disc)

S,Sz
∼= H(disc)

S,S , which admit the decomposition (4.129) into finite dimensional spaces. We
introduce the notation

χa,S(q) = q
− (n2 −S−a)2

n
+ p2

n+2
− 1

12

∞∏
j=1

(1− qj)−2
∞∑

m=0

(−1)m
(
1− q(1+m)(2S+1)

)
qma+

m(m+1)
2 ,

(4.166)
where, aside from the prefactor, the function χa,S(q) coincides with the generating function
for the dimensions of the level subspaces H(disc,d)

S,S , see eqs. (4.131) and (4.118). Then, the
contribution of the discrete spectrum to the partition function reads as:

Z(disc) =
∑
S≥0

(2S + 1)

(
χ−S,S(q) + 2

∑
a∈Z

0<a+S<n
2

χa,S(q)

)
. (4.167)

Each term in the sum over S has multiplicity (2S+1) as a result of the Uq

(
sl(2)

)
symmetry

of the lattice model. Also, for every state with given s = sa (4.128) there exists another
one with s = −sa which yields the same contribution to the partition function, except for
the case when s = ± in

2 , where they are identified as the same state. This explains why
the functions χa,S(q) come with a factor of two except the one with a = −S (recall that
sa = i(n2 − S − a) and hence sa = in

2 for a = −S).

The contribution of the continuous spectrum to the partition function is given by

Z(cont) =
∑
S≥0

(2S + 1)

∫ ∞

−∞
ds
∑
d≥0

ρ(d)p (s) q
s2

n
+ p2

n+2
− 1

12
+d . (4.168)

Here ρ(d)p (s) is the density of states defined in formulae (4.116) and (4.117), while we recall
that 2p = 2S + 1− (n+ 2). Notice that Z(cont) becomes singular as L→ ∞:

Z(cont) = Z(sing) +O(1) , (4.169)

where the singular part is given by

Z(sing) =

√
n

2τ

log
(
2

n+2
n L/L0

)
π q

1
24
∏∞

m=1(1− qm)

∞∑
S=0

(2S + 1) q−
1
24

+ p2

n+2
1− q2S+1∏∞
m=1(1− qm)

. (4.170)

The factor out the front of the sum is easily recognised to be the partition function of a
boson taking values in the segment ∼ log(L) with Neumann BCs imposed at the endpoints
of the field at x = 0, R (see also (2.58)). As for the remaining term,

Z
(sing)
2 =

∞∑
S=0

(2S + 1) q−
1
24

+ p2

n+2
1− q2S+1∏∞
m=1(1− qm)

, (4.171)

in all likelihood, Z(sing)
2 corresponds to a boundary state, which is a superposition of

Ishibashi states associated with a degenerate representation of the Virasoro algebra with
generic central charge c (see reference [141] for the c = 1 case). Note that Z(sing)

2 also
appears in the scaling limit of the XXZ spin-12 chain with open Uq

(
sl(2)

)
invariant BCs

imposed [142].
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Formulae (4.167) and (4.168) do not seem to correspond to the published results in the
literature concerning branes in the 2D Euclidean Black Hole CFT, in particular, reference
[48]. As such, a separate investigation is required in order to establish the relation between
the partition function Z(scl) = Z(cont) + Z(disc) and that of the Black Hole CFTs in the
presence of boundaries.

4.3 Spectral flow to the quasi-periodic model

In the last section, we have discussed the scaling limit of the Uq(sl(2)) invariant self-dual
six-vertex model with alternating staggering in depth. Recall that there also exists the case
of quasi-periodic staggering (3.30). The Hamiltonian for quasi-periodic staggering coincides
with the one of the model with alternating staggering at the self-dual point up to boundary
terms

Hqper =Halt

(
iπ

2

)
+

2

sin(2γ) cos(γ)
(e1,2 + e2L−1,2L) , (4.172)

where we recall that

Halt

(
iπ

2

)
=− 2

sin(2γ)

2 cos(γ)

2L−1∑
j=1

ej,j+1 +

2L−1∑
j=2

ej,j+1ej−1,j + ej−1,jej,j+1

 . (4.173)

Remarkably, this choice of BCs, i.e. the presence of the additional term in (4.172), has
a profound influence on the low energy properties of the staggered models. Namely, by
studying the antiferromagnetic Potts model15, Robertson et al. found that the continuum
limit of the model (4.172) does not contain a continuous component [26]. Further, a
boundary RG flow between these two critical fixed points has been studied. It has been
concluded that the fixed points corresponding to (4.173) and (4.172) are unstable and
stable, respectively [27]. The numerical investigation was based on finite-size estimates
of the gap between the ground state and the lowest excitation when the amplitude of the
boundary term in (4.172) is varied between the two integrable points. However, simply
varying the amplitude of the boundary terms in (4.172), yields a non-integrable boundary
RG Flow.

In the setting of the composite R-matrix, both (4.173) and (4.172) originate from a
staggered vertex model. This allows us to study the spectral flow between (4.173) and
(4.172) in an integrable setting with a fixed choice of the boundary matrices under the
variation of the bulk inhomogeneities. The price to pay for integrability is giving up
the locality of the Hamiltonian at the intermediate points. Using the same staggering
in the vertical and horizontal directions of the vertex model discussed in chapter 3, i.e.
{δ0, δ0} = {δ1, δ2}, we can tune δ1 and δ2 to interpolate between the integrable models with
local interactions. We choose the following normalization of the non-local ‘Hamiltonian’
obtained from the transfer matrix (3.20) (with R given by (2.126),(2.127) and K-matrices

15The antiferromagnetic Potts model has been shown to be equivalent to the case at hand for suitable
BCs. We do not go into detail here, but discuss this point at the beginning of chapter 6.
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given by (4.1))

H =
q det

(
T
(
−δ1 − iγ

2

))
q det

(
T
(
−δ2 − iγ

2

))
2if(δ1)f(δ2)

(4.174)

×
(

d
du

∣∣∣∣
u=0

T(u, {δ1, δ2, δ1, δ2})−
d
du

∣∣∣∣
u=0

f(u+ δ1)f(u+ δ2)

)
with

f(u) =
sinh(2u+ 2iγ)

sinh(2u+ iγ)
sinhL(u− δ1 + iγ) sinhL(u− δ2 + iγ)

× sinhL(u+ δ1 + iγ) sinhL(u+ δ2 + iγ) ,

q det(T (u)) = sinhL
(
u+ δ1 −

iγ

2

)
sinhL

(
u+ δ1 +

3iγ

2

)
× sinhL

(
u+ δ2 −

iγ

2

)
sinhL

(
u+ δ2 +

3iγ

2

)
.

Specifically, we choose the parameterization

δ1 =
iϑ

2
+

iπ

4
, δ2 =

iϑ

2
− iπ

4
, −π

2
≤ ϑ ≤ 0 , (4.175)

for the remaining inhomogeneities resulting in alternating and quasi-periodic staggering for
ϑ = 0 and −π/2, respectively.

The eigenvalues of the ‘Hamiltonian’ (4.174) in this parameterization are given in terms
of the Bethe roots {um} solving the BAE (4.29) whereby we substitute (4.175). We get

E =

(
−4L cot(2γ) + L

2 sin(2ϑ)

sin(2γ) sin(2(γ + ϑ))
− 2 sin(ϑ)

cos(γ) cos(γ + ϑ)
+

2 sin(ϑ)

cos(2γ) cos(2γ + ϑ)

+
2 tan(γ)

cos(2γ)

)
×

(
M∏

m=1

cos(2(γ − ϑ)) + cosh(4um)

cos(2(γ + ϑ)) + cosh(4um)
− 1

)

− 4 sin(2γ)
M∑
k=1

{
cos(2γ) + cos(ϑ) cosh(4uk)

(cos(2(γ + ϑ)) + cosh(4uk))2

}
×

M∏
m=1
m̸=k

cos(2(γ − ϑ)) + cosh(4um)

cos(2(γ + ϑ)) + cosh(4um)
.

(4.176)
As expected, this expression reduces to a sum of bare quasi-particle energies ϵ0(um)
for ϑ = 0,±π/2 where the Hamiltonian becomes local. Away from these points, the
normalization of (4.176) leads to singularities at particular values of the flow parameter: the
one at ϑ = π

2 −2γ can be removed by multiplying the Hamiltonian by the ϑ-dependent factor
cos(2γ + ϑ) while ϑ = π

2 − γ > 0 does not lie on the spectral flow (4.175). The remaining
singularity at ϑc1 = −γ depends on the state considered. In terms of the corresponding
Bethe root configuration this can be related to the low energy root configurations of the
quasi-periodic model (4.172). These consists of pairs of complex conjugate roots with
imaginary part ±π

4 and an additional root at iπ
4 for Mqper odd [26]:

uqper ∈
{
xm +

iπ

4
, xm − iπ

4

∣∣∣∣xm ∈ R>0 ,m = 1, ... ,

⌊
Mqper

2

⌋}
∪
{
iπ

4

}
. (4.177)
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4.3 Spectral flow to the quasi-periodic model

Here ⌊...⌋ denotes the Gaussian bracket. Exact diagonalization of the Hamiltonian for small
systems together with the determination of the corresponding Bethe roots shows that root
patterns of this type persist throughout the interval ϑ = −π/2 ... ϑc1. At ϑc1, however,
several roots become purely imaginary, um = iπ/4, changing the order of the pole in (4.176).
This singularity can be removed by renormalization of the spectrum by a factor sinν(ϑ+ γ)
with an appropriate choice of an integer ν.

The spectral flow starting from the alternating model (4.173), ϑ = 0, can be studied in a
similar way. We recall the class of low energy states (including the ground state) is given
by (4.42). Configurations of this type exist in the interval ϑc2 < ϑ < 0 where roots with
vanishing real parts appear for ϑc2 = γ − π/2. These do not, however, lead to singularities
in the eigenvalues of (4.176).

Both at ϑc1 and ϑc2 the appearance of purely imaginary Bethe roots leads to degeneracies
involving many states. This is illustrated in Figure 4.14 for a spin chain with 2L = 8 sites
and anisotropy γ = 0.9 for the sector S = 2. Under the spectral flow, low energy states of
the local Hamiltonian (4.173) are mapped to high energy ones for (4.172) and vice versa.
The crossing of a large number of levels indicates the presence of first-order transitions
when the flow parameter is ϑc1 or ϑc2.

Support for this interpretation can be obtained by studying the spectral flow within
the root density formalism. In the thermodynamic limit, the densities of roots in the
configuration (4.42) of the alternating model are found to be

ρa(v) = σa(v) +
1

L
τa(v) , a = x, y , (4.178)

with bulk and surface contributions

σx(v) = σy(v) =
cos
(

π ϑ
π−2γ

)
π − 2γ

 1

cosh
(

2πv
π−2γ

)
+ sin

(
π ϑ

π−2γ

) +
1

cosh
(

2πv
π−2γ

)
− sin

(
π ϑ

π−2γ

)
 ,

τx(v) = τy(v) =
1

4π

∫ ∞

−∞
dωeiωv

sinh
(
3γ−π

4 ω
)

sinh
(γω

4

)
cosh

(
2γ−π

4 ω
) .

Similarly, the density ρ̄(x) of root configurations (4.177) of the quasi-periodic model is
found to be

σ̄(x) =
4

π − 2γ

cos
(
π
2
π+2ϑ
π−2γ

)
cosh

(
2πx
π−2γ

)
cosh

(
4πx
π−2γ

)
+ cos

(
π π+2ϑ
π−2γ

) , τ̄(x) =
1

π − 2γ

1

cosh
(

2πx
π−2γ

) . (4.179)

That the bulk densities σx,y(v) (σ̄(x)) vanish at ϑc2 (ϑc1), indicates a transition into a
different state in accordance with our results for small system sizes.
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4.3 Spectral flow to the quasi-periodic model
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Figure 4.14: Rescaled real parts Ẽ of the eigenvalues of the staggered six-vertex Hamilto-
nian with 2L = 8 sites, anisotropy γ = 0.9, (n = 1.49066) for the charge sector S = 2 for
the spectral flow (4.175). Energies have been multiplied with − cos(ϑ+ 2γ) sin5(ϑ+ γ) to
regularize the singularities as described in the main text. The mapping between low and
high-energy states in the local models is clearly seen. In the lower plots, the level crossings
at ϑ = ϑc1, ϑc2 of low-lying states evolving from the respective ground states are resolved
within the ϑ-intervals indicated in the upper image details.

As discussed in the previous sections, e.g. 4.2.3, the continuum limit of the alternating
model (4.173) possesses a continuum of scaling dimensions. Recall that the underlying
mechanism on the level of the Bethe configurations (4.42) is based on the difference
dNalt =M0−M

iπ
2 . Motivated by this, for the quasi-periodic model we consider the scaling

behaviour of states with Bethe configurations (4.177) with different numbers M± iπ
4 of

roots on the lines ℑm(um) = ±π
4 . The bulk energies eqp∞ , fqp∞ and Fermi velocity of the

quasi-periodic model can be calculated in the root density formalism using (4.179) with
ϑ = −π

2 . We obtain

eqp∞ = 2fqp∞ =− 1

2

∫ ∞

−∞
dω

sinh
(γω

2

)
sinh

(
πω
4

)
cosh

(
1
4(π − 2γ)ω

) , vqpF =
2π

π − 2γ
. (4.180)
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4.3 Spectral flow to the quasi-periodic model
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Figure 4.15: Scaling of energy gaps of the quasi-periodic chain in the sector S = 7
weighted by 1/ (dNqp)2 obtained by solving the Bethe ansatz equations for various dNqp

and L and fixed γ = 0.9, (n = 1.49066) . We see that the scaling dimensions of those states
depend on (dNqp)2 and display a clear logarithmic divergence as L→ ∞. While solving
the Bethe equations numerically, we found that the dNqp needs to be smaller than S for
numerical convergence.

Using the Bethe ansatz we have calculated the finite-sizes estimate Xeff(L) for states with
various dNqp =M− iπ

4 −M
iπ
4 . Parts of our numerical results are displayed in Figure 4.15.

Differing from the alternating model, we see that the Xeff(L) diverge logarithmically with
an amplitude proportional to (dNqp)2. We interpret these diverging scaling dimensions
in the quasi-periodic case in the manner that states with dNqp ̸= 0 disappear from the
low energy sector in the thermodynamic limit. Only states with dNqp = 0 stay in the low
energy regime as L tends to infinity which have been extensively studied in [26].

We have investigated whether the logarithmic divergent corrections can be parameterised
by a conserved quantity. A natural candidate would be the quasi-momentum operator.
However, for the case at hand, it is trivial (see (3.41)). Hence, we have considered the next
leading term, i.e.

Bqp ∝ d
du

t(u, {0, p2})
t(u− p

2 , {0,
p
2})

∣∣∣∣
u=0

, (4.181)

This operator can be expressed in terms of Pauli matrices as given in appendix (C.3). It
turns out to be a sum of local operators in contrast to the alternating case; see Figure 3.7.
A normalization can be chosen such that its eigenvalue Bqp can be expressed in a simple
form in terms of the Bethe roots:

B
qp

=
∑
j

k0(uj) with k0(u) =
16i sin(γ) cosh(2u)

cosh(4u)− cos(2γ)
. (4.182)
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Figure 4.16: The quasi-momentum of Bethe states having a non-vanishing quantum
number dNqp.

Note that Bqp measures the difference of the number of Bethe roots on the lines ± iπ
4 :

k0

(
x+

iπ

4

)
= −k0

(
x− iπ

4

)
. (4.183)

This is similar to the role of (3.42) in the alternating case. In the present case, however,
B

qp ∝ dNqp as L→ ∞, see Figure 4.16. Hence, Bqp does not capture the L-dependence
observed in Figure 4.15.

4.4 Chapter summary

In this chapter, we have considered the concrete example of the staggered six-vertex model
with quantum group invariant BCs (Uq(sl(2)) symmetry). We have described how the
Uq(sl(2)) case can be obtained from a limiting procedure ϵ→ 0 of the more general model
with two anti-parallel boundary magnetic fields of strength ϵ. We presented a formula for
the Q-operator of the latter, valid in the sector Sz = 0. The main advantage of (4.16),
as opposed to the expressions for Q(ζ) appearing in the literature [119, 120, 121, 122], is
that it contains no infinite sums and works literally for any (generic) complex values of q, ϵ.
Further, it can be programmed efficiently on the computer.

The TQ-relation allowed us to solve the model via the analytic Bethe ansatz. The limit
ϵ → 0 yields the known — from the algebraic Bethe ansatz — solution of the Uq(sl(2))
invariant case.

We analysed the special case of the model with alternating staggering. We found that
the Uq(sl(2))-symmetry is spontaneously broken: in contrast to the periodic chain where
the lowest state is always in the sector with Sz = 0, the ground state of the open chain
has non-zero spin depending on the anisotropy γ. It becomes completely polarised for
sufficiently small γ (γ → 0 in the thermodynamic limit).
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4.4 Chapter summary

An analysis of the finite-size spectrum based on the Bethe hypothesis (4.42) showed the
presence of strong logarithmic corrections to scaling. Further, we observed the existence of
‘discrete states’, for which there are no logarithmic corrections. As in previous studies of
the periodic model [24, 53, 54] the eigenvalues of the quasi-momentum operator B (4.34)
play an important role: On the one hand, they determine the amplitudes b(L) of the strong
logarithmic corrections of the states leading to a continuous degree of freedom in the scaling
limit, s = slimL→∞ b(L) ∈ R. On the other hand, a pure imaginary eigenvalue of the
quasi-momentum serves as a good indication that the corresponding state will become part
of the discrete spectrum in the scaling limit. These results led to the working hypothesis that
the scaling limit is related to the SL(2,R)/U(1) sigma model where the level is determined
from the anisotropy of the model via (4.74). Further, we show that tuning the value of the
staggering parameter α in the regime (4.40) away from the self-dual point is an irrelevant
deformation, similar as found in the periodic case [54].

After this, we focused on the self-dual model with α = π
2 . For this particular case, we

carried out a full characterisation of the scaling limit. The powerful analytic technique
crucial to our investigation is the ODE/IQFT approach to studying the scaling limit of
integrable, critical lattice systems. While it was developed for the case of twisted BCs,
we found it to be applicable for Uq

(
sl(2)

)
invariant open BCs as well. This points to the

versatility of the ODE/IQFT approach, where the analysis for one set of BCs can be readily
carried over to another.

One of the key results is the explicit formula for the density of states ρ(d)(s) (4.116), (4.117),
which characterises the continuous spectrum. In addition, we studied the RG trajectories
{|ΨL⟩}, where s becomes a pure imaginary number in the scaling limit. Building on our
previous analysis, the discrete set Σ ≡ Σ+ ∪ Σ− (4.130) of all admissible values of pure
imaginary s was found. We also determined the dimension of the linear span of states
occurring in the scaling limit of |ΨL⟩ with given s ∈ Σ and conformal dimensions ∆ (4.73).

Our work includes a full characterisation of the linear space H appearing in the scaling
limit of the space of low energy states of the lattice system. To describe it, H was decomposed
into a direct sum of the ‘continuous spectrum’ H(cont) and the ‘discrete spectrum’ H(disc).
The former, when expressed in terms of finite-dimensional spaces, involves a direct integral
over s, see equation (4.134), (4.121), (4.122), while the latter contains a direct sum (4.129).
We explained how the graded linear spaces ⊕∞

d=0H
(cont,d)
p,s and ⊕∞

d=0H
(disc,d)
p,s are irreps of

the W∞ algebra — the algebra of extended conformal symmetry of the model.

Perhaps the most interesting question is the relation between the scaling limit of the lattice
system and the 2D Euclidean/Lorentzian Black Hole CFTs introduced in the preliminaries.
We believe that the formula for the partition function Z(scl) provided in sec. 4.2.7 may be
of help. Unfortunately, it does not seem to correspond to known results in the literature on
branes in the 2D Black Hole CFTs. Progress in this direction would likely require further
research.

Finally, we have studied the spectral flow between the alternating and quasi-periodic
models. Following this flow along a line of integrable models, we find that the endpoints
are separated by two first-order transitions, consistent with the different properties of the
corresponding spectra observed previously.
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5 | Antidiagonal BCs

Let us now study the influence of antidiagonal BCs (the second expression in (2.129)) on
the staggered six-vertex model. The transfer matrix can be depicted as shown in Figure
5.1. The corresponding Hamiltonian takes the form (4.30) except that the upper and lower
bounds in the sum are 1 and 2L respectively and we identify operators according to (2.114).
The latter generates terms such as ∼ σxσy, when expressed in the Pauli matrices using
(4.31). These terms break the usual U(1) symmetry of the model with periodic or twisted
BCs. Left are only two discrete Z2 symmetries. They take the form

G =

2L∏
j=1

σzj , C =

2L∏
j=1

σxj . (5.1)

Using the exact solution via the analytical Bethe ansatz presented in section 2.4.3, we
obtain for the energy and the eigenvalues of the quasi-momentum operator

E =
2L∑
k=1

sin
(γ
2

)
cosh(uk − iα

2 )− cos(γ2 )
+

sin
(γ
2

)
cosh(uk +

iα
2 )− cos(γ2 )

, (5.2)

B = log

(
sin(γ + α)

sin(γ − α)

)L

+

2L∑
k=1

log

(
cosh(uk)− cos

(α−γ
2

)
cosh(uk)− cos

(α+γ
2

)) . (5.3)

Here, {uk} are the Bethe roots solving (2.153). The following comment is in order here.
Consider the duality transformation (3.28) where α→ π−α. If we simultaneously perform
γ 7→ π − γ we interchange the high energy and low energy spectra

H|α7→π−α
γ 7→π−γ

= −H . (5.4)

u u− iα u u− iα u u− iα

u+ iα u u+ iα u u+ iα u

2L 2L− 1 2L− 2 2L− 3 2 1

Figure 5.1: Graphical representation of transfer matrices with antidiagonal BCs repre-
sented by triangular-shaped operator insertions.
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5.1 Regime I
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Figure 5.2: The left (right) plot displays the dual Bethe-root configuration for the regime
I in the complex u-plane of the ground state for 2L = 10, (2L = 12), γ = π/6 and α = π/2.

Note that we can compensate for the influence of this transformation on the Hamiltonian
by adding an additional minus sign. The eigenvalue of the Q-operator will change under
the transformation. This leads to the fact that there exist two interchangeable sets of
Bethe roots describing the spectrum of H. We have found that the root patterns of the
duality-transformed roots are slightly more convenient for further study. Hence, we always
use these ‘dual’ root configurations in the following. Note that this phenomenon is special
to antidiagonal BCs due to the factor of 1

2 in the hyperbolic functions on the LHS of (2.153).
For twisted BCs the BAE are left invariant under the transformation see (2.136).

In the following, we study the low energy spectrum of the lattice theory in the limit of
infinite system size to extract information about the effective field theory arising in its
scaling limit. We investigate two regimes given by

• Regime I: γ < α < π − γ.

• Regime II: γ > α > π − γ.

5.1 Regime I

For regime I, we find that the analysis of small system sizes, which is used to formulate
a Bethe hypothesis for the ground state and the low energy excitations, is problematic.
Namely, it is plagued by level crossings and the appearance of complex energies when
the anisotropy γ or system size L is changed. Hence, from the study of small system
sizes L ∼ 6 one cannot obtain reliable support for a Bethe hypothesis, e.g. see Figure
5.2 for the drastic change in the root configurations for the ground state from L = 5 to
L = 6 and Figure 5.3 for the appearance of complex energies under the variation of the
anisotropy. By using parallel computing on a compute cluster, we have pushed our results
from direct diagonalization to intermediate system sizes 2L ≤ 28 to study these crossings.
By considering their behaviour, we conjecture that the bulk part of the Bethe roots should
align on the following four lines in the thermodynamic limit (xk, yk, zk ∈ R)

u
(1)
k = xk , u

(2)
k = yk − iπ , u

(3)
k = zk ±

iπ

2
. (5.5)

Note that the third ‘type of roots’ are two-strings. By inserting the above form of roots into
the logarithmic form of the Bethe equations, we obtain the following counting functions for
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5.1 Regime I
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Figure 5.3: Lowest finite size estimate of the scaling dimensions in regime I: While the
red circles are derived from the lowest real energies for L = 10, i.e. 20 lattice sites, the
black crosses resemble the real part of complex eigenvalues.

real parts xk, yk and zk

cx(x) = −Lψ(x, α−γ
2 ) + Lψ

(
x, α+γ

2

)
−

Mx∑
m=1

ψ
(
1
2(x− xm), γ2

)
+

My∑
m=1

ϕ
(
1
2(x− ym), γ2

)
−

Mz∑
m=1

ψ (x− zm, γ) ,

cy(x) = −Lψ(x, α−γ
2 ) + Lψ

(
x, α+γ

2

)
+

Mx∑
m=1

ϕ
(
1
2(x− xm), γ2

)
−

My∑
m=1

ψ
(
1
2(x− ym), γ2

)
−

Mz∑
m=1

ψ (x− zm, γ) ,

cz(x) = −Lψ(x, α−γ
2 ) + Lψ

(
x, α+γ

2

)
−

Mx∑
m=1

ψ
(
1
2(x− xm), γ2

)
+

My∑
m=1

ϕ
(
1
2(x− ym), γ2

)
−

Mz∑
m=1

ψ (x− zm, γ) .

(5.6)

In terms of these, the Bethe equations become

cx(xk) = 2πIxk , cy(yk) = 2πIyk , cz(zk) = 2πIzk . (5.7)

In the above formula, the numbers of roots are constrained to sum up to 2L, and we recall
(4.44). The corresponding root densities — defined as usual as the derivative of the counting
functions — resemble the bulk densities given in (4.48): the density of the real centres of
the two-strings is given by σy, the densities of the real parts of the type one u(1) and type
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5.2 Regime I
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Figure 5.4: The circles display the finite-size estimates of effective scaling dimensions
obtained from the energies of the states whose Bethe roots solve (5.7) for a symmetric
filling and imbalances of the numbers of two-strings: 0 (black), 2 (blue) and 4 (red). The
crosses display the formula −1

6 −
2γb(L)2

π−2γ where b(L) is calculated from the quasi-momentum
operator. The dashed lines are a rational extrapolation. The anisotropy is given by γ = π/6,
and the staggering parameter is α = π/2.

two roots u(2) turns out to be the same as σx. Due to the latter fact, we expect that the
type u(1) and u(2) roots combine in the thermodynamic limit into two-strings. Further, the
energy density also turns out to be identical to the one given in (4.56). As the leading term
in the energy expansion is not susceptible to BCs, the recovery of the bulk energy density
is expected and supports the Bethe hypothesis formulated in (5.5).

Now, one may solve the logarithmic equations (5.7) directly. By considering a symmetric
filling around zero of the Bethe integers Iik, we obtain that one can generate an infinite tower
of excitations by disbalancing the numbers of two-strings. It seems that all of these states
flow to the same scaling dimension in the limit L→ ∞, see Figure 5.4. For finite system
sizes, this degeneracy is lifted by logarithmic corrections, which behave as ∼ log(L)−2. As
seen in the previous chapter, the quasi-momentum (5.3) parameterises these logarithmic
corrections.

Despite the above underpinning evidence, the following problem arises: it seems that
only states with non-symmetric Bethe integers Ixk , Iyk are realised on the lattice, e.g. see
the shifted Bethe root configuration in Figure 5.2. We found in our analysis of small-to-
intermediate system sizes no fully symmetric states of the type (5.5).

We have investigated the scaling behaviour of the realised states on the lattice, where the
integers are unsymmetrical or shifted against each other, e.g. the ground state displayed in
Figure 5.5 for L = 8 and its extension to L = 100. They all show logarithmic increasing
or complex scaling dimensions see Figure 5.6. These two facts lead to a negative result.
We have not been able to extract any information about the scaling limit in this regime.
Based on this, we conclude that the antidiagonal BCs seem to be incompatible with the
emergence of a non-compact degree of freedom.
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5.2 Regime II
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Figure 5.5: The left (right) plot displays the dual Bethe-root configuration for the regime
I in the complex u-plane of the ground state for 2L = 16 (2L = 200). Here, γ = π/6,
α = π/2.
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Figure 5.6: The left (right) plot displays the real (imaginary) part of the effective scaling
dimensions of the ground state configuration displayed in Figure 5.5. The fits are chosen of
the form a1 + a2 log

2(L) + a3L
−1. The other parameters are γ = π/6 and α = π/2.

5.2 Regime II

In contrast to the previous parameter domain, in regime II, there are no ground state
crossings with increasing system sizes. Thus, the study of small system sizes L ≥ 8 provides
reliable results about the root patterns of the low energy states. It is found that the Bethe
roots for the ground state resemble the following pattern for even L:

u
(1)
k = xk ±

i(π + α)

2
, u

(2)
k = yk ±

i(π − α)

2
k = 1, . . . , L− 1 (5.8)

plus two additional roots on the real axis. Excitations above the ground state are generated
by removing roots from the lines of the ground state pattern and placing them in the
complex plane either as single roots or as complexes such as strings. The Bethe root
configuration of the ground state and for one excited state is depicted in the left and right
panel of Figure 5.7 respectively.

Using the regular pattern of the ground state’s Bethe roots, the energy density can be
extracted via the root density approach. It is equal to that of the periodic case ([143])

e∞ = −sin(γ)

π − γ

∫ ∞

−∞
dx

1

cosh( πx
2π−2γ )

(
1

cosh(x) + cos(γ)
+

1

cosh(x− 2iα) + cos(γ)

)
. (5.9)
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Figure 5.7: The left (right) plot displays the dual Bethe-root configuration for the regime
II in the complex u-plane of the ground state (excited state) for 2L = 16, γ = 4π/6 and
α = π/2.

The Fermi velocity is given by

vF =
π

π − γ
. (5.10)

We find the following finite-size spectrum

Xeff(k) =
1

12
+
k

2
, k = 0, 1, 2, . . . (5.11)

while the degeneracy deg(k) of an effective scaling dimension Xeff(k) is consistent with the
generating function

∞∑
k=0

deg(k) q
1
12

+ k
2 =q

1
12

∞∏
m=0

(
1− qm+ 1

2

)−4

= q
1
12 + 4q

7
12 + 10q

13
12 + 24q

23
12 + . . .

(5.12)

5.2.1 Conjectured CFT
We propose that the scaling limit of the lattice in regime II is governed by a CFT constructed
from two U(1) twisted Kac-Moody algebras [144], leading to c = 2.

For two copies of the U(1) twisted Kac-Moody algebra CFT, the zero mode of the
Virasoro algebra takes the form [144]

L0 = 2
∑

µ∈N+ 1
2

µa†µ aµ + 2
∑

ν∈N+ 1
2

ν b†ν bν +
2

16
. (5.13)

Hereby, the operators am, bm with m ∈ Z+ 1
2 form two independent Heisenberg algebras.

In fact, all operators commute among each other except for[
a†k, ap

]
=
[
b†k, bp

]
=
k

2
δk,p . (5.14)

The space of states can then be described as a Fock space (see discussion around (2.40))
originating from one vacuum with weight 2

16 . After taking the other chirality into account,
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5.3 Chapter summary

the degeneracy of each Fock space level is given by (5.12). One can also decompose the
Fock Space into a direct sum of representations of the Virasoro algebra as presented in
[144].

Further, we have checked consistency with the results of the homogeneous chain [145],
which is described by one U(1) twisted Kac-Moody algebra. In [145], it was found (see
equation (16) therein) that the energy levels of the lattice have fixed combinations of the
eigenvalues of the operators Chom,Ghom. For the case at hand, the splitting of the Hilbert
space in the eigenvalues of the symmetry operators C, G is consistent with the results of a
homogeneous chain in the following way: consider a lattice state which flows to a conformal
state. The corresponding conformal weight can be split into two weights, each corresponding
to one weight of the homogeneous chain. We can identify the corresponding eigenvalues of
Chom and Ghom with the help of equation (16) in [145]. The eigenvalues of C, G are then
obtained by simply taking the product for the corresponding eigenvalues Chom,Ghom for
the two copies of the homogeneous chain. So we conclude that the staggering is, in this
regime, an irrelevant deformation of the homogeneous case up to doubling of the underlying
CFT.

5.3 Chapter summary

In this chapter, we have studied the influence of the antidiagonal BCs on the staggered
six-vertex model. The antidiagonal BCs reduce the symmetry of the model to two discrete
symmetries given by (5.1). We have investigated two parametric domains.

In the first one, in which for the case of twisted [54] or Uq(sl(2)) invariant BCs, a
continuous component in the spectrum of scaling dimensions has been identified, we could
not obtain any insights about the model’s scaling limit. This is due to complex and
logarithmically divergent — even for the ground state — effective scaling dimensions. We
conclude that this phase is incompatible with antidiagonal BCs.

For the second regime, we conjecture that the CFT governing the scaling limit is
constructed from two U(1) twisted Kac-Moody algebras. We have checked compatibility
with the homogeneous model by the discrete Z2 symmetries.
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6 | To higher rank: D
(2)
3

This chapter is based on the author’s work [33].

Let us one last time recall the composite R matrix given in (3.1). Depending on the
choice of the parameters, the R-matrix may have an extended symmetry; for instance,
this might be the case at the self-dual point (3.28). This has been discussed recently in
the work [26] in which it has been shown that the antiferromagnetic Potts model — in
particular with open BCs — can be mapped to an integrable model based on the affine
D

(2)
2 Lie algebra. The homogeneous transfer matrix of the latter has been shown [113] to

factorize — the same way as presented in chapter 3 — into the self-dual staggered six-vertex
model1, see also [22]. Such a factorization is not known for the higher-rank models based
on D(2)

n . Nevertheless, obvious questions to ask are whether these, too, give rise to a series
of non-compact CFTs; what is the number of compact and non-compact degrees of freedom;
and finally, what is the operator content of the CFTs describing the low energy spectrum
in the scaling limit.

In this chapter, we investigate this question for the simplest case beyond the staggered
six-vertex model, i.e. the D(2)

3 spin chain. The chapter is organised as follows: in section
6.1 we construct the transfer matrix of the model subject to generic diagonal twisted BCs.
Also, we identify some of its symmetries. Generalising the analytical Bethe ansatz for
the periodic case [146], we obtain the eigenvalues of the transfer matrix and the resulting
Hamiltonian with local, i.e. nearest-neighbour interactions. In section 6.4, we identify the
root configurations of the low-lying states. This is used in section 6.5 to compute the
ground state energy density in the thermodynamic limit and in section 6.6 to construct the
renormalisation group trajectories for the ground state and excitations used in the finite-size
scaling analysis of the spectrum. We find compact and non-compact parts in the spectrum
of conformal dimensions. The flow of the compact modes under the twist resembles that of
two compact bosons with compactification radii depending on the anisotropy. In addition,
we observe the emergence of discrete states from the continuous parts of the spectrum of
conformal weights for sufficiently large twists.

1In this context the boundary matrices (3.25), (3.34) are different representations [117, 118, 111] of the
corresponding D(2)

2 reflection algebra.
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6.1 The D
(2)
3 R-matrix

To make a connection to other works, we will face the following abuse of notation. We
denote in the rest of this chapter by ηcross the crossing parameter as it is given in (2.104)
and we set 4η = −ηcross.

The basic ingredient of the D(2)
3 integrable quantum spin chain is the 36× 36 R-matrix

obtained in [147]. We use the conventions of the work [118] given in equations (A.8-10).
Namely, our R-matrix R(u) is related to the one of Jimbo RJ(x) given in his work [147] by

R(u) = e−2u−6ηRJ(x) , x = eu , k = e2η . (6.1)

Using this normalisation, the standard characteristics (2.101)-(2.106) take the explicit form

ξ(u) = 4 sinh(u+ 2iγ) sinh(u+ 4iγ) , ηcross = −4iγ , p = iπ , (6.2)

V =

 e−3iγ

e−iγ

1
1

eiγ

e3iγ

 , U =

 1
1
0 1
1 0

1
1

 . (6.3)

where we used η = iγ. In addition, we have a positive sign in (2.106).

The R-matrix possesses two continuous U(1) symmetries

[R(u) , (hj ⊗ 1+ 1⊗ hj)] = 0 , j = 1, 2 , (6.4)

where we have
h1 = e(1,1) − e(6,6) , h2 = e(2,2) − e(5,5) , (6.5)

and e(k,l) stands for the elementary 6× 6 matrices with vanishing entries except for the one
at position (k, l) where it is 1. Further, we have the additional Z2 symmetry:

R12(u) =W1(u)W2(0)R12(u)W1(u)W2(0) , W (u) =

 e−u

−e−u

1
−1

eu

−eu

 .

(6.6)

Note that we have V 2 = U2 = W (u)2 = 1. Moreover, by exponenting (6.5) we obtain a
diagonal twist matrix K

ϖ = e
∑2

j=1 iϕj hj = diag
(
eiϕ1 , eiϕ2 , 1 , 1 , e−iϕ2 , e−iϕ1

)
, (6.7)

where ϕ1 and ϕ2 are the twist parameters. In the following, we only consider ϕ1,2 ∈ R. We
consider the homogeneous transfer matrix t(u) with BCs controlled by (6.7) of length L,
i.e.

t(u) := tr0 (ϖ0R0L(u) . . .R01(u)) . (6.8)

Recall from the preliminaries that the U(1) symmetries (6.4) induce the following symmetries
of the transfer matrix [

t(u) ,h
(L)
j

]
= 0 , j = 1, 2 , (6.9)
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6.2 The D
(2)
3 R-matrix

where2

h
(L)
j =

L∑
i=1

(hj)i , (6.10)

and (hj)i is the generator hj (6.5) at the lattice site i, i.e.

(hj)i = 1⊗ · · · ⊗ 1⊗ hj︸︷︷︸
i

⊗1⊗ · · · ⊗ 1 . (6.11)

By similar arguments, it follows that

t
t(u; {ϕj}) = t(4iγ − u; {−ϕj}) , (6.12)
t(u+ iπ) = t(u) , (6.13)

t(u) = U⊗L
t(u)U⊗L . (6.14)

We mention here that the Z2 symmetry (6.14) resembles a generalisation of the Z2 symmetry
identified3 for D(2)

2 [20, 26, 106]. In addition, for generic values of the twist parameter
ϕ1, ϕ2, one can derive the following identity

W (0)⊗L
t(u;ϕ1, ϕ2)W (0)⊗L = t(u;−ϕ2,−ϕ1) . (6.15)

Hence, if the twist angles are the additive inverse of each other, i.e. ϕ1 = −ϕ2, the transfer
matrix (6.8) possesses the extra Z2 symmetry

W (0)⊗L
t(u;ϕ,−ϕ)W (0)⊗L = t(u;ϕ,−ϕ) . (6.16)

Finally, the transfer matrix is the CPT invariant

V ⊗LΠ tt(u; {−ϕj})ΠV ⊗L = t(u; {ϕj}) , (6.17)

where the so-called parity operator Π reads

Π =

⌊L
2
⌋∏

i=1

Pi,L+1−i . (6.18)

Its conjugate action on any local operator Xj yields ΠXj Π = XL+1−j . Proofs of the
symmetries (6.12), (6.15) and (6.17) are sketched in appendix F.

2By abuse of notation, we will abbreviate h(L)
j as hj if the meaning is evident from the context.

3In [106], the Z2 symmetry of the periodic transfer matrix built from the R-matrix of the twisted affine
Lie algebra D(2)

2 is expressed, see (3.32) therein, in terms of an operator built from a matrix C (2.10), in
the gauge that is specified by a matrix B (2.9), where

BC B =

(
1

0 1
1 0

1

)
,

which is clearly the lower rank case of the matrix U in (6.3).
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6.2 Bethe ansatz

6.2 Bethe ansatz

The periodic transfer matrix (6.8) with (ϕ1 = ϕ2 = 0) has been diagonalised by means of the
analytical Bethe ansatz in the work [146]. The generalisation to the case of non-vanishing
twist angles is given in appendix E. Our conventions of the Bethe-roots are related to the
ones given in [146] by

u
[1]
j = 2ixj , u

[2]
j = 2iyj . (6.19)

Using this convention, the eigenvalues t(u) of the transfer matrix read

t(u) = (4 sinh(u− 2iγ) sinh(u− 4iγ))L eiϕ1 A(u)

+ (4 sinh(u− 4iγ) sinhu)L
[
eiϕ2 B1(u) +B2(u) +B3(u) + e−iϕ2 B4(u)

]
+ (4 sinh(u− 2iγ) sinhu)L e−iϕ1 C(u) , (6.20)

where we have introduced the functions

A(u) =

m1∏
j=1

sinh(u− u
[1]
j + iγ)

sinh(u− u
[1]
j − iγ)

,

B1(u) =

m1∏
j=1

sinh(u− u
[1]
j − 3iγ)

sinh(u− u
[1]
j − iγ)

m2∏
j=1

sinh(u− u
[2]
j )

sinh(u− u
[2]
j − 2iγ)

,

B2(u) =

m2∏
j=1

2 cosh
(
1
2

(
u− u

[2]
j

))
sinh

(
1
2

(
u− u

[2]
j − 4iγ

))
sinh(u− u

[2]
j − 2iγ)

,

C(u) = Ā(4iγ − u) , B3(u) = B̄2(4iγ − u) , B4(u) = B̄1(4iγ − u) ,

(6.21)

and where the barred quantities are obtained by the negation u[l]j 7→ −u[l]j . Note that the
bar resembles the complex conjugation provided u and η = iγ are real. In addition, if
the latter condition is satisfied, the periodic transfer-matrix eigenvalue has the crossing
symmetry

t̄(u) = t(4iγ − u) . (6.22)

The same holds true in the XXZ model [148]. In general, (6.20) is periodic, i.e. t(u+ iπ) =
t(u), see (6.13).

The eigenvalue t(u) of the transfer matrix must be a Fourier polynomial and so an
analytic function. Requiring that the residues of (6.20) at the apparent poles

u = u
[1]
j + iγ , u = u

[2]
j + 2iγ (6.23)
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6.2 Bethe ansatz

vanish, yields the BAE (see also [146, 149])sinh
(
u
[1]
j − iγ

)
sinh

(
u
[1]
j + iγ

)
L

= ei(ϕ2−ϕ1)
m1∏
k ̸=j

sinh
(
u
[1]
j − u

[1]
k − 2iγ

)
sinh

(
u
[1]
j − u

[1]
k + 2iγ

) m2∏
k=1

sinh
(
u
[1]
j − u

[2]
k + iγ

)
sinh

(
u
[1]
j − u

[2]
k − iγ

) ,
j = 1, . . . ,m1 ,

m1∏
k=1

sinh
(
u
[2]
j − u

[1]
k − iγ

)
sinh

(
u
[2]
j − u

[1]
k + iγ

) = e−iϕ2

m2∏
k ̸=j

sinh 1
2

(
u
[2]
j − u

[2]
k − 2iγ

)
sinh 1

2

(
u
[2]
j − u

[2]
k + 2iγ

) , j = 1, . . . ,m2 .

(6.24)
As the BAE are invariant under the transformations u[1]j → u

[1]
j + iπ and u[2]j → u

[2]
j + 2iπ,

we can restrict ourselves to

−π
2
< ℑm(u

[1]
j ) ≤ π

2
, (6.25)

−π < ℑm(u
[2]
j ) ≤ π . (6.26)

Further, we are also allowed to do the mapping u[2]j → u
[2]
j + iπ, but only if we shift all the

Bethe-roots at the same time.

The eigenvalues hj of the U(1) charges hj are related to the numbers m1,m2 of Bethe
roots by [146]

h1 = L−m1 ,

h2 = m1 −m2 .
(6.27)

As usual, the Bethe ansatz provides solutions subject to the restriction

L ≥ m1 ≥ m2 ≥ 0 . (6.28)

Although an algebraic Bethe ansatz has not yet been worked out in detail, we expect
that the eigenstates |u[1]1 , . . . , u

[1]
m1 ;u

[2]
1 , . . . , u

[2]
m2⟩ of the D(2)

3 transfer matrix (6.8) can be
constructed as follows: the first level of nesting (introducing type-1 Bethe roots u[1]1 , . . . , u

[1]
m1)

can be accomplished following the work [150], reducing the problem to D(2)
2 . The transfer

matrix for the latter factorises in a product of A(1)
1 transfer matrices (see the construction

of chapter 3 and also [106]). The latter can then be diagonalised by the usual algebraic
Bethe ansatz, which leads to the type-2 Bethe roots u[2]1 , . . . , u

[2]
m2 . Hence, it is expected

(see also (3.34) in [106] of the D(2)
2 case) that the Z2 symmetry (6.14) leads to a global shift

of all type-2 Bethe roots by iπ:

U⊗L |u[1]1 , . . . , u
[1]
m1

;u
[2]
1 , . . . , u

[2]
m2

⟩ ∝ |u[1]1 , . . . , u
[1]
m1

;u
[2]
1 + iπ, . . . , u[2]m2

+ iπ⟩ . (6.29)
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6.3 The D
(2)
3 Hamiltonian

Commuting integrals of motion for the D(2)
3 spin chain are obtained by expanding the

transfer matrix (6.8) about the regular point u = 0. The leading term is given by

t(0) = (4 sinh(2iγ) sinh(4iγ))L eiP , (6.30)

where eiP is the one-site translation operator of the model with twisted BCs. Its matrix
elements read[

eiP
]b1,...,bL
a1,...,aL

= exp
{
iϕ1

(
δb11 − δb16

)
+ iϕ2

(
δb12 − δb15

)}
δb2a1δ

b3
a2 . . . δ

bL
aL−1

δb1aL . (6.31)

From (6.20) we deduce that its eigenvalue eiP is

eiP = eiϕ1

m1∏
k=1

sinh(u
[1]
k − iγ)

sinh(u
[1]
k + iγ)

. (6.32)

A local Hamiltonian of the D(2)
3 spin chain can be defined as the next leading term4

H = sinh(2iγ)
d

du
log (t(u))

∣∣∣
u=0

+ L sinh(2iγ) [coth(2iγ) + coth(4iγ)]1⊗L . (6.33)

The energies can be expressed in terms of the Bethe roots:

E =

m1∑
k=1

ϵ0(u
[1]
k ) = −

m1∑
k=1

2 sinh2(2iγ)

cosh
(
2u

[1]
k

)
− cosh (2iγ)

. (6.34)

The Hamiltonian of course inherits the symmetry properties (6.9), (6.14), (6.16) of the
transfer matrix

[H ,hj ] = 0 , j = 1 , 2 , (6.35)[
H , U⊗L

]
= 0 , (6.36)[

H(ϕ,−ϕ) ,W (0)⊗L
]
= 0 . (6.37)

In addition, the Hamiltonian also has a CP symmetry, i.e.[
H , V ⊗LΠ

]
= 0 . (6.38)

For details, see appendix F. We stress that this symmetry does not extend to the full
transfer matrix.

The commutator of the U(1) generators with the ones of the Z2 symmetry given in (6.14)
is zero: [

hj , U
⊗L
]
= 0 , j = 1 , 2 . (6.39)

4With this sign the Hamiltonian generalizes the D(2)
2 spin chain, which has been related to the antiferro-

magnetic Potts model [26] or respectively the corresponding staggered-six vertex model [106, 31].
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6.5 Considered class of states

The U(1) generators transform into each other under the transformation W (0) (6.6)

W (0)⊗L
h1W (0)⊗L = −h2 ,

W (0)⊗L
h2W (0)⊗L = −h1 . (6.40)

Under the CP symmetry, the U(1) generators change sign

V ⊗LΠhj ΠV
⊗L = −hj , j = 1 , 2 . (6.41)

The symmetry transformations (6.37) together with (6.38) induce degeneracies in the
energy spectrum between different sectors of the U(1)-charges. For the analysis of the
finite-size spectrum, it is sufficient to focus on one representative of a given energy level,
keeping these degeneracies implicit. The symmetries (6.37), (6.38) allow one to restrict
to the case h1 ≥ |h2| for suitably chosen twist angles. In addition, we found by exact
diagonalization of the Hamiltonian for small system sizes that one can further restrict to

0 ≤ h2 ≤ h1 . (6.42)

Note that all the sectors specified by (6.42) can be accessed by the above Bethe ansatz; see
(6.28) and (6.27). Further, we should stress that the defined Hamiltonian is non-Hermitian,
which leads to complex eigenvalues. On numerical grounds, however, we find that the
energies of the ground state and lowest excitations are real. In the rest of this work, we
study states parameterized by the classes of Bethe root configurations listed in the following
section. These states, too, turn out to have real energies.

6.4 Considered class of states

In the regime

0 < γ < π
4 (6.43)

and for small twist angles ϕ1,2, we found that the bulk of the Bethe root configurations
corresponding to low energy states consists of four-strings, each containing a pair of
conjugate roots on both levels centred at real xj :

u[1] −→ v
[1]
j = xj + δ

[1]
j +

iπ

2
− iγ − iϵ

[1]
j , v̄

[1]
j = xj + δ

[1]
j − iπ

2
+ iγ + iϵ

[1]
j ,

u[2] −→ v
[2]
j = xj + δ

[2]
j +

iπ

2
+ iϵ

[2]
j , v̄

[2]
j = xj + δ

[2]
j − iπ

2
− iϵ

[2]
j ,

(6.44)

where j ≤ L
2 and δ

[k]
j , ϵ

[k]
j are small real deviations. For even system sizes, the ground

state of the system is realised in the sector h1 = h2 = 0 with ϵ
[2]
j ≡ 0. See Figure 6.1 for

the ground state of the L = 18 chain. The low-energy spectrum is described by various
root configurations. In this work, we focus on a particular class of states described by the
following additional roots outside these four-string configurations:

i) Level-1 roots placed on the line iπ
2 ,

ii) Level-2 roots placed on the line iπ,

iii) Level-2 roots placed on the real line,

subject to the constraint (6.28).
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6.5 Root density approach for the ground state
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Figure 6.1: Bethe root configuration of the ground state for L = 18 and γ = 0.4 plotted in the
complex u-plane. Blue (red) symbols denote level 1 (2) roots. One can clearly see the pattern
described in (6.44).

6.5 Root density approach for the ground
state

For even L, the ground state is parameterized by roots arranged in the configuration (6.44)
where j runs from one to L

2 and ϵ[2]j is set to zero. Further, we find numerically that the

remaining deviations δ[k]j , ϵ
[1]
j in (6.44) tend to zero as L → ∞. Hence, we can study the

ground state in the root density approach as discussed in the preliminaries. By inserting
(6.44) into the Bethe equations and taking the logarithm, one obtains the following counting
function for the real centres:

zx(x) =
1

2π
ψ(x, 2γ) +

1

2πL

L
2∑

k=1

χ(x− xk, 4γ) , (6.45)

where again have

χ(x, y) = 2 arctan (tanh(x) cot(y)) , ψ(x, y) = 2 arctan (tanh(x) tan(y)) . (6.46)

Upon differentiation, we obtain the following linear integral equation for the root density
defined by ρx(x) = ∂xz

x(x):

ρx(x) =
1

2π
ψ′(x, 2γ) +

1

2π

∫ ∞

−∞
dx′ χ′(x− x′, 4γ)ρx(x′) . (6.47)

The equation is easily solved by the Fourier transform. It yields

ρx(x) =
1

2(π − 4γ)

1

cosh( πx
π−4γ )

. (6.48)

The density is positive and becomes singular at γ = π
4 , giving additional support to

our choice of the parameter domain (6.43) for γ. Similarly, the dressed energy ϵx(x)
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6.6 Analysis of the finite-size spectrum

of excitations corresponding to the removal of a four-string is obtained from the same
linear integral equation as (6.47) but with the driving term ψ being replaced by ϵx0(x) =
ϵ0(x+ iπ

2 − iγ) + ϵ0(x− iπ
2 + iγ), where ϵ0 has been defined in (6.34). For γ in the domain

(6.43), these excitations turn out to be gapless with a linear dispersion. The corresponding
Fermi velocity is

vF =
1

2π
lim
Λ→∞

1

ρx(Λ)

d

dΛ
ϵx(Λ) =

π sin(2γ)

π − 4γ
. (6.49)

Finally, using (6.48), we obtain the energy density e∞ in the thermodynamic limit

e∞ = −sin(2γ)

2

∫ ∞

−∞
dω

sinh(2γω)

sinh
(
πω
2

) 1

cosh(12(π − 4γ)ω)
. (6.50)

6.6 Analysis of the finite-size spectrum

As the model is critical, the spectrum of low-energy excitations can be described within the
framework of a conformal field theory. One can easily show that

eiPL = exp

{
2iπ

(
h1

ϕ1
2π

+ h2
ϕ2
2π

)}
. (6.51)

The relation (2.94), suggests

∆− ∆̄ = h1
ϕ1
2π

+ h2
ϕ2
2π

mod 1 . (6.52)

To proceed further in our analysis, we rely on numerical methods, the results of which we
present in the following sections.

6.6.1 Compact part
In this section, we investigate two classes of fundamental excitation patterns. In terms of
the Bethe roots, the first class is simply built from configurations following the structure
(6.44) but with a non-zero h1 in contrast to the ground state. Here, the eigenvalue h2 of
the U(1)-charge h2 is kept the same as for the ground state, i.e. h2 = 0. See Figure 6.2 for
an illustration.

The second class of excitations gives h2 a non-vanishing value. This is accomplished on
the level of the Bethe roots by mechanism i), i.e. by placing additional level-1 roots on the
line iπ

2 . We have illustrated this type of excitation in Figure 6.3.

We start our numerical analysis by investigating the scaling behaviour of the ground
state energy E0. We obtain5

ceff = 4 . (6.53)

Further, for periodic BCs ϕ1,2 = 0, we have constructed the RG trajectories for various
excited states based on the mechanisms discussed above. Exemplary plots of the numerical

5Recall the definition of the effective central charge ceff = − limL→∞
6L
πvF

(E0 − Le∞)
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Figure 6.2: The left (right) plot displays the Bethe-root configuration in the complex
u-plane of an excited state for L = 18, γ = 0.4, ϕ1,2 = 0 in the sector h1 = 4 (8). The
blue (red) symbols denote level 1 (2) roots. This excitation corresponds to removing 2 (4)
four-strings from the configuration of the ground state; see Figure 6.1.
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Figure 6.3: The left (right) plot displays the Bethe-root configuration in the complex
plane of an excited state for L = 18, (19), γ = 0.4, ϕ1,2 = 0 in the sector h1 = 4 and
h2 = 2, (3). The blue (red) symbols denote level 1 (2) roots. This excitation is built by
placing 2(3) level-1 roots (×) on the line iπ

2 in addition to the bulk roots (•).

data for finite L calculated by the Bethe ansatz and their extrapolations to L → ∞ are
given in Figure 6.4-6.5. Here, the extrapolation procedure is based on the assumption that
the effective scaling dimensions are rational functions of 1

log(L) . We conclude that they flow
to the following effective scaling dimensions:

XCom
eff = − 4

12
+

(h1)
2

2k
+

(h2)
2

2k
. (6.54)

In (6.54), the first term accounts for the effective central charge and agrees with our
findings (6.53). Note the exchange symmetry of h1 and h2 observed in the spectrum. The
parameter k specifying the amplitudes is related to the anisotropy by (recall (4.74))

k =
π

γ
. (6.55)
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Figure 6.4: Finite-size scaling up to L ∼
2000 of the ground state (black) and states
with pattern (see Figure 6.2) similar to the
ground state with h2 = 0 but with differ-
ent U(1)-charge h1, i.e., h1 = 1, 2, 3, 4, 6 in
increasing order from below. The crosses
are the numerically obtained effective scaling
dimensions. The dashed lines are given by
formula (6.54) with the associated h1,2. Solid
lines are given by a rational extrapolation.
Here γ = 0.4 and ϕ1,2 = 0.

Figure 6.5: Finite-size scaling up to L ∼
2000 for states with similar root configura-
tion, as depicted in Figure 6.3. Crosses are
the numerically obtained effective scaling di-
mensions. The U(1)-charges (h1, h2) take the
values (4, 0), (4, 1), (4, 2), (4, 3), (4, 4) labelled
from below. Dashed lines are given by equa-
tion (6.54), and the solid lines are given by
a rational extrapolation. Here γ = 0.4 and
ϕ1,2 = 0.

Spectral flow of the compact modes under twists

We now turn to the extension of formula (6.54) to small non-vanishing twist angles. The
analytic expression (6.52) and symmetry arguments suggest the following generalization

XCom
eff (h1, h2, ϕ1, ϕ2) =− 4

12
+

(h1 + k ϕ1

2π )
2

4 k
+

(h2 + k ϕ2

2π )
2

4 k
+

(h1 − k ϕ1

2π )
2

4 k
+

(h2 − k ϕ2

2π )
2

4 k
.

(6.56)

We have numerically verified the above expression by using the data of the periodic
model by applying the following iterative method: We start with a solution {u[1], u[2]}ϕ

in
1

ϕin
2

of the BAE (6.24) in logarithmic form with a particular initial set (ϕin1 , ϕ
in
2 ) of twist

values e.g., (ϕin1 , ϕ
in
2 ) = (0, 0). We see that the maximal error using {u[1], u[2]}ϕ

in
1

ϕin
2

as

an initial approximation for the BAE for new values (ϕin1 + ∆ϕ1, ϕ
in
2 + ∆ϕ2) behave as

max {|∆ϕ1|, |∆ϕ2 −∆ϕ1|}. Hence, by taking the steps sizes ∆ϕ1,∆ϕ2 small enough, we
can iteratively obtain the state at some (ϕend1 , ϕend2 ).

Note that the above form of the effective scaling dimensions is compatible with the
symmetries (6.16), (6.38). To interpret these results further, recall the conformal weights
of a compact free boson given in (2.54). By comparing (2.54) and (6.56) we see that the
excitations (6.56) mimic two independent twisted compact bosonic modes with the same

compactification radii R1,2 =
√

k
2π with charges n1,2 = h1,2 and zero windings. Despite

extensive study of root patterns of the low-lying excitations, we have not been able to
identify any state with non-zero winding. Note that the functional dependence on the
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6.6 Analysis of the finite-size spectrum

compactification radii induced by non-zero twists ϕ1,2 is exactly the same as for two compact
bosons, as expected from the symmetries of the model.

We want to end this section with the following important remark. The above expressions
for the scaling dimensions capture the leading finite-size behaviour only. Corrections to
scaling can arise, e.g., due to perturbations of the fixed-point Hamiltonian by terms involving
irrelevant operators present in the lattice model (6.33) [60]. In the presence of a marginally
irrelevant operator, one expects these subleading corrections to contain logarithms [151].
In the present case, we observe such corrections, see, e.g., Figures 6.4 and 6.5. However,
as found in previous chapters, in the present case, these corrections are a signature of
non-compact degrees of freedom in the effective theory describing the critical behaviour.
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Figure 6.6: The left (right) plot displays the Bethe-root configuration in the complex
plane of an excited state for L = 19, (18), γ = 0.4 in the sector h1 = 1 and h2 = 0. The
blue (red) symbols denote level 1 (2) roots. This excitation is built by placing 2(3) level 1
roots (×) on the line iπ

2 and 2,(3) level-2 roots (□) on the line iπ in addition to the bulk
roots (•). Further, one (and a half four-string) has been removed with respect to the lowest
energy state configuration in this sector.
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Figure 6.7: The left (right) plot displays the finite-size Scaling up to L ∼ 2000 in the
sectors (h1, h2): (0, 0) × , (2, 0) ⋄ ((1, 0) △) for states with Mπ = 0, 1, 2, 3 in increasing
order from below (blue, red, green, cyan). The solid lines are rational extrapolations. One
can see clearly the logarithmic dependence of the scaling dimensions. The parameters are
set to γ = 0.4 and ϕ1,2 = 0.
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6.6.2 Continuous part

Interestingly, there exist excitations whose scaling dimensions coincide with compact ones
(6.56) up to logarithmic corrections. These excitations are characterised by the presence
of roots of type ii) and iii). Consider first the ones of type ii). Examples of their root
configurations are displayed in Figure 6.6. By replacing more and more four-strings by
roots of type i) and ii), one generates an infinite tower of excitations labelled by the number
Mπ of type ii) roots. All of them flow to the same scaling dimension (6.56), see Figure 6.7.
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Figure 6.8: The left (right) plot displays the Bethe-root configuration in the complex
plane of an excited state for L = 19, (18), γ = 0.4 in the sector h1 = 1 and h2 = 0. The
blue (red) symbols denote level 1 (2) roots. This excitation is built by placing 2(3) level-1
roots (×) on the line iπ

2 and 2,(3) level-2 roots (△) on the real line in addition to the bulk
roots (•). Further, one (and a half four-string) has been removed with respect to the lowest
energy state configuration in this sector. It is the state displayed in Figure 6.6 transformed
by u[2] + iπ, and so it has the same energy.
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Figure 6.9: The left (right) plot displays the Bethe-root configuration in the complex
plane of an excited state for L = 18, γ = 0.4 in the sector h1 = 0 and h2 = 0. The blue
(red) symbols denote level 1 (2) roots. This excitation is built by placing 2(4) level-1 roots
(×) on the line iπ

2 and 1,(2) level-2 roots (△) on the real line and 1,(2) level-2 roots (□) on
the line iπ in addition to the bulk roots (•). This is an excitation of both non-compact
modes.
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Figure 6.10: The left (right) plot displays the finite-size scaling up to L ∼ 300 in
the sectors (h1, h2): (1, 0) ◦, (2, 1) △ ((1, 1) ×, (2, 2) □) for states with (M0,Mπ) =
(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2) in increasing order from below (black, blue, cyan, green,
red, orange). The solid lines are obtained by a rational extrapolation. The dashed lines
depict the limiting value given by (6.56). One can see clearly the logarithmic dependence
of the scaling dimensions. The parameters are set to γ = 0.4, ϕ1,2 = 0.

Using the symmetry u[2]j → u
[2]
j + iπ that exchanges the ii) and iii) types of roots, one

deduces that the RG trajectories of excitations with root configuration built by mechanism
iii) instead of ii), see e.g. Figure 6.8, also flow to the same scaling dimensions. Let’s label
them by the number M0 of type iii) roots.

Moreover, it turns out that combinations of the two above excitation patterns are possible,
see Figure 6.9 for the Bethe root configuration of a mixed state of both fundamental
excitations ii) and iii). Further, see Figure 6.10 to see how such states fit in within the
scaling behaviour of other states.

The obtained numerical data for various RG trajectories with different M0,Mπ can be
used to extract the form of the logarithmic corrections: The rational extrapolation in Figure
6.10 suggest a general quadratic decay as ∝ 1

log(L)2
. Further, the existence of two excitation

mechanisms refines this ansatz to ∝ C1
log(L)2

+ C2
log(L)2

with state-dependent constants C1,2.
As the Z2 symmetry interchanges these two contributions, we conclude that we must have
C1 = C2. Multiplying the numerical data with log(L)2 extrapolating L → ∞, we can
access, by considering ratios, the dominant state dependence for each |ΨL⟩. This numerical
work reveals the following behaviour:

Xeff = XCom
eff (h1, h2, 0, 0) +

A(γ)(M0 +
2
3)

2

log(L/L0)2
+

A(γ)(Mπ + 2
3)

2

log(L/L0)2
. (6.57)

Here, L0 is a non-universal, state-dependent constant, which we do not attempt to calculate.
We are left to extract the amplitude A(γ). As it is the same for all states, we determine it
by considering the effective scaling dimensions of the ground state where we expect the
subleading logarithmic corrections to be the smallest:

XGS
eff (L) = − 4

12
+

8

9

A(γ)

log(L/L0)2
. (6.58)
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Figure 6.11: The amplitude A(γ) calculated via (6.59) for L1 = 2000, L2 = 1000 for
various γ-values. The dashed line is the conjecture (6.60). One sees a fairly good matching.
At the boundaries γ ≈ 0, (π4 ) one sees deviations which are assumed to be due to increasing
finite-size corrections, see also [20].

Following [20], we eliminate L0 by using data points for two system size L1 and L2 and get

A(γ) =
9

8

[
log(L

1

L2 )

(XGS
eff (L1) + 4

12)
− 1

2 − (XGS
eff (L2) + 4

12)
− 1

2

]2
. (6.59)

The numerical results are displayed in Figure 6.11. Based on these, we conjecture that

A(γ) =
5π − 4γ

4γ
. (6.60)

The mechanism of how the above leads to two continuous components in the spectrum
of scaling dimensions resembles the one discussed around (4.72). We recall it here for the
reader’s convenience: we have defined the RG trajectories |ΨL⟩ by keeping the numbers
M0,π fixed, leading at first view to infinite degeneracies in the scaling limit. However, we
can also organize the RG trajectories differently. Instead of keeping M0,π fixed, we can also
let them run under the RG flow. In particular, we group states into trajectories |ΨL⟩ such
that

M0 ∼ log(L) , Mπ ∼ log(L) . (6.61)

Here (6.61) is subject to the constraint M0,π ≪ L such that |ΨL⟩ is still a low energy state
for any finite L, i.e. its energy obeys (2.96). This restriction is essential as RG trajectories
leave the low energy spectrum once M0,π ∼ L. In fact, it is straightforward to show within
the root density approach that the state with M0,π = L is highly excited: in comparison to
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the energy Le∞ of the ground state (6.50), its energy is of the order ∼ L (similar as e.g. in
the staggered sl(2|1) superspin chain [18]). This supports the interpretation of the findings
above as evidence for the existence of continuous components in the conformal spectrum.

The redefinition (6.61) of RG trajectories enables that (6.57) can tend as L → ∞ to
a different scaling dimension than XCom

eff (h1, h2, 0, 0). In fact, by suitably arranging the
concrete behaviour (6.61), the scaling dimensions can take any value larger or equal to
XCom

eff (h1, h2, 0, 0). Note that Xeff for trajectories with similar M0,π(L) for fixed L become
densely distributed (∼ 1

log(L)), leading to a continuous spectrum of scaling dimensions. As
the two excitation mechanisms labelled by M0 and Mπ are independent of each other, we
must have two continuous variables, call them s0 ∼ M0

log(L) , sπ ∼ Mπ
log(L) , whose limits label

the state in the scaling limit. The existence of two continua is also further supported by
our finding for finite twist angles discussed below.

We want to stress that for the identification of the underlying CFT with two continuous
components, a more rigorous definition of the scaling limit than in (6.61) is needed. A proper
scaling limit can be defined in inhomogeneous models, where the logarithmic corrections
can be parameterized by the quasi-momentum operator. However, the definition of this
operator in these models relies on their inhomogeneity and is therefore not applicable
to our model. An interesting further research direction could be additional investigation
within the framework of chapter 3: searching for a more general algebraic structure, i.e. a
generalized YBE (3.2) from which one could define a suitable quasi-momentum operator,
e.g. see (3.19).

Spectral flow for continuum states

Having identified the finite-size spectrum for vanishing twist angles, we now turn to the
question of what happens when these angles are turned on. We follow the procedure
described below eq. (6.56) starting from (ϕin1 , ϕ

in
2 ) = (0, 0) and iterating to the higher twists.

This procedure can be technically involved, as certain roots of a given configuration can
tend to infinity as the twists approach certain values. If these specific twist values are
exceeded, then the infinite roots come back to a finite value. To avoid numerical problems
caused by these infinities, it is suitable to transform to a different coordinate set. By using
the rational chart ζ = e−2u infinitely large roots are mapped to zero.

We start by discussing the lowest states (M0 =Mπ = 0) in the two continua first. Some
of our results are represented in Figure 6.12. One can see that for small twist angles,
the scaling dimensions follow (6.57) but with the first term replaced by (6.56) with a
non-vanishing twist. However, after critical values of the twists given by

ϕc1,2 = 2γ(h1,2 + 1) =
2π(h1,2 + 1)

k
, (6.62)

the behaviour changes drastically to

Xeff = XCom
eff (h1, h2, ϕ1, ϕ2)−

(h1,2 + 1− k
ϕ1,2

2π )2

2(k − 2)
, ϕc1,2 < ϕ1,2 < ϕ̃c1,2 , (6.63)

with the absence of logarithmic corrections. Numerical work suggests that the choice
between 1 and 2 in the above formulae seems to be taken in a way such that the second
term in (6.63) always incorporates the bigger twist angle and, if both twists are equal,
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Figure 6.12: The left (right) plot displays the effective scaling dimensions for the lowest
state in the continuum in the sectors (h1, h2) = (0, 0), ((1, 0)) for L = 2000, (1999), under
various twists (ϕ1, ϕ2) = (ϕ, 0), (0, ϕ), (ϕ, ϕ), (ϕ, 12ϕ) (Black, Blue, Red, Green). The solid
lines display the expected behaviour (6.56) for small twist angles, excluding the strong
logarithmic corrections. The crosses or circles display the numerical data obtained from the
Bethe ansatz for twist angles as far as possible in the numerical procedure. The vertical
lines designate the critical twist values, where the agreement with (6.56) breaks down. The
dashed lines indicate the conjectured formula (6.63) for the scaling dimensions valid beyond
the critical points. Note that the matching with the conjecture is extremely accurate. We
interpret this as the emergence of discrete states having less logarithmic corrections.

minimizing the critical twist angle (see Figure 6.12). It turns out that (6.63) is valid just
until the twist exceeds another critical twist angle ϕ̃c1,2. For example, for twisting only with
ϕ1 or ϕ2 in the lowest sector h1 = h2 = 0, we find that

ϕ̃c1,2

∣∣∣
h1=h2=0

= 2π − ϕc1,2
∣∣
h1=h2=0

. (6.64)

So far, we have considered only the lowest states in the continua. If we twist excited
states, their scaling dimensions follow (6.63) but are again spoiled by decreasing logarithmic
corrections. To investigate this phenomenon further, we have searched for twists for which
the Bethe root configurations are again regular enough to define RG trajectories. We find
that a suitable point is (ϕ1, ϕ2) = (π, 0). Here, the Bethe roots parametrising the low-energy
states consist mainly of

u[1] −→ xj +
iπ

2
− iγ − iϵ

[1]
j , xj −

iπ

2
+ iγ + iϵ

[1]
j ,

u[2] −→ zl +
iπ

2
, l = 1, . . . ,Mz,

wk −
iπ

2
, k = 1, . . . ,Mw .

(6.65)

In addition, there are level-1 roots sitting exponentially close to the following values
depending on the parity of dN :=Mz −Mw:

iγ,−iγ if dN even ,
2iγ, 0,−2iγ if dN odd .

(6.66)
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Figure 6.13: The left (right) plot displays the Bethe-root configuration in the complex
u-plane of an excited state for L = 18, γ = 0.4, ϕ1 = π, ϕ2 = 0 in the sector h1 = 0 and
h2 = 0. The blue (red) symbols denote level 1 (2) roots. The left figure shows the ground
state configuration, while the right excitation is built by unbalancing, dN = 4, the number
of level-2 on the lines ± iπ

2 . The two level-1 roots with vanishing real parts have imaginary
parts close to ±γ.

Plots of typical configurations are shown in Figure 6.13. It turns out that states with
different distributions dN of level-2 roots on the two lines ± iπ

2 flow to the same conformal
dimensions (6.63) with ϕ1 = π and ϕ2 = 0, see e.g. Figure 6.14. We find that the scaling of
dimensions of excited states for ϕ1 = π, ϕ2 = 0 are given by

Xeff = XCom
eff (h1, h2, ϕ1, ϕ2)

∣∣
ϕ1=π,ϕ2=0

−
(h1 + 1− k ϕ1

2π )
2

2(k − 2)

∣∣∣∣∣
ϕ1=π

+ Ã(γ)
dN2

log(L/L̃0)2
,

(6.67)

where again L̃0 is a non-universal constant, which we do not attempt to calculate here.
Further, the above formula also holds true for small deviations around the twist angles, i.e.
ϕ1 ≈ π, ϕ2 ≈ 0 with the obvious modifications. We conjecture that the amplitude Ã(γ) is
given by

Ã(γ) =
2(2− 5γ)γ

3(1− 4γ)2
. (6.68)

Recall that from the previous chapters, we have seen the possibility of the existence of
discrete states that do not possess logarithmic corrections. Further, we have seen that a
state belonging to a continua can become a discrete state under the variation of the lattice
parameters, e.g. recall Figure 4.9. We interpret our findings in this section in an analogous
way. Consider a state whose scaling limit is described by the two continuous variables s0, sπ.
Under a twist, one of the continuous variables changes its class to the discrete one, while
the other remains in the continuous family. The latter still induces logarithmic corrections
on the level of the lattice regularization as seen in (6.67).

Ultimately, this conjecture should imply the existence of purely discrete states (apart
from the dN = 0 state) without any logarithmic corrections. We have checked that this
is indeed the case. Starting from the twist (ϕ1, ϕ2) = (π, 0), we turn on the second twist
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Figure 6.14: Effective scaling dimensions up to L ∼ 2000 for ϕ1 = π, ϕ2 = 0, γ = 0.4 in
the sector h1 = h2 = 0 for dN = 0, 1, 2, 3, 4 in increasing order from below (black, blue,
cyan, green, red). The crosses are the numerical data obtained from the Bethe ansatz. The
solid lines are rational extrapolation. Further, the dashed pink line is given by the constant
limit value (6.63). In order to obtain the numerical data, we have assumed that the roots
which are exponentially close to (6.66) actually sit on these values. This leads to a small
offset (see the green and blue crosses on the far right) for small system sizes, as here the
approximation is inducing an error.
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Figure 6.15: Effective scaling dimensions for small L and ϕ1 = 9π
10 , γ = 0.4 + i0+ in the

sector h1 = h2 = 0 for dN = 0, 1, 2, 3 (black, blue, green, red) under variation of the second
twist ϕ2. The slightly complex value of the anisotropy and offset of the first twist angle
from π is due to numerical purposes. The black solid line displays XCom

eff (h1, h2,
9π
10 , ϕ2)

while the blue line is given by (6.69). The black vertical line hallmarks the appearance of a
purely discrete state.
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6.7 Chapter summary

significantly. The first excited states dN = 1, 2 in the sector h1 = 0 = h2 become purely
discrete states when the second twist angle exceeds the critical value ϕ2 = 2γ. It has
effective scaling dimensions

Xeff = XCom
eff (h1, h2, π, ϕ2)−

(h1 + 1− k π
2π )

2

2(k − 2)
−

(h2 + 1− k ϕ2

2π )
2

2(k − 2)
with ϕ2 > 2γ . (6.69)

Note that this check can be done on the level of small L, as we expect this state to possess
no logarithmic corrections; see Figure 6.15. The purely discrete scaling dimensions (6.69)
are valid for large twist angles only; however, one can analytically continue back the scaling
dimensions (6.69) to zero twist. For the lowest state with h1 = h2 = 0, we obtain:

Xeff = − 4

12
+

1

k − 2
. (6.70)

Assuming that the conformal weights ∆, ∆̄ vanish in this procedure as it is, for example, in
the twisted staggered six-vertex model or the A(2)

2 model [23], we obtain on very speculative
grounds that the central charge is given by

c = 4− 12

k − 2
= 2

(
2− 6

k − 2

)
, (6.71)

which formally coincides with two Black Hole CFTs.

6.7 Chapter summary

We have generalised the periodic D(2)
3 spin chain [146] to the twisted case. The induced

BCs are parameterized by two twist angles ϕ1, ϕ2. We have solved the twisted model by
means of the analytic Bethe ansatz (6.20), (6.24). Since the rank of D(2)

3 is two, the Bethe
ansatz possesses two-level nesting.

The model has a variety of symmetry transformations, e.g. (6.14), (6.16), (6.17). The
most useful result is a generalization (6.14) of the Z2-symmetry of the lower-rank case D(2)

2 .
It originates from the quasi-periodicity of the R-matrix while on the level of the Bethe
ansatz, it maps states among each other whose level-2 Bethe roots differ by the quasi-period
p = iπ. In addition, we have found that the transfer matrix is CPT-invariant (6.17) while
on the Hamiltonian level, this symmetry reduces to CP-symmetry (6.38).

Turning to the analysis of the scaling limit, we have focused on the regime of the anisotropy
γ ∈ (0, π4 ). The spin chain is found to be critical, as it possesses gapless excitations with a
linear dispersion relation. Hence, the effective theory of its low-lying excitations arising in
the thermodynamic limit L→ ∞ should be governed by a conformal field theory. We have
identified certain classes of the low-lying energy states parameterized by the U(1)-charges.
We have found that their effective scaling dimensions give rise to two compact modes in the
scaling limit. More precisely, these modes mimic two compact bosons with zero winding
(6.56). Indeed, despite considerable numerical effort, we did not find any non-zero winding
states. Whether non-trivial winding states exist is left open for future investigation.

In addition to the two compact modes, we found two types of decreasing logarithmic
corrections. The corrections are generated by the number of level-2 Bethe roots on the
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6.7 Chapter summary

real line and the line with imaginary part π. We provide evidence that these logarithmic
corrections give rise to two non-compact degrees of freedom in the scaling limit. The
two non-compact modes are interchanged by the Z2 symmetry (6.14). Furthermore, we
have considered the influence of large twists. We found that some of the logarithmic
corrections disappear beyond certain critical twist angles. We interpret this phenomenon
as the emergence of discrete states under twists. For the case of ϕ1 = π and small ϕ2,
one of the continua becomes purely discrete while the other persists. For the extreme
case of ϕ1 = π and large ϕ2, we observe the existence of purely discrete states (6.69). By
analytical continuation of its effective scaling dimension to zero twists and assuming that
the conformal dimensions vanish there [23, 108], we can speculate about the value of the
true central charge (6.71). Formally, it agrees with the sum of two Black Hole CFT central
charges.

For a rigorous identification of the underlying CFT, we would need a conserved operator
that parameterizes the non-compact degrees of freedom on the lattice. The search for such
an operator, maybe among the lines of chapter 3, might be an interesting research direction,
supporting the analysis of the scaling limit. It could help identify the space of states in the
scaling limit, especially calculating the density of states of the continua as done in chapter
4.

Further, it should be possible to study the influence of open BCs for selecting certain
sectors of the underlying CFT, as has been done in chapters 4, 5 for the lower rank case
D

(2)
2 , which is equivalent to the staggered six-vertex model. It might also be interesting to

investigate the different parameter regimes γ ∈ (π4 ,
π
2 ).
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7 | Conclusion

In this thesis, we considered the influence of BCs on the scaling limit of integrable lattice
models. The principal example was the staggered six-vertex model, which is known to
possess a non-compact degree of freedom in the scaling limit when twisted BCs are imposed.
We explored the impact that different BCs for the lattice model have on the spectrum of
critical dimensions.

The starting point of our study was the formulation of a uniform framework of vertex
models with periodically repeating inhomogeneities (staggered models), which enables
one to generalise earlier found factorisation identities [106, 107]. We showed how the
basic properties of an elementary R-matrix translate to the characteristics of a composite
R-matrix. The requirement of locality of the associated Hamiltonian led, in the open case,
to two inequivalent staggerings, alternating and quasi-periodic. In the latter case, the
quasi-momentum operator is trivial. For the alternating staggering, it is not, and we were
able to express it in the language of the composite R-matrix. This is of interest for the
following reason: in all the known cases, the fundamental definition of the quasi-momentum
relies on the inhomogeneity of the model. However, the transfer matrix, when expressed in
terms of the composite R-matrix, contains no inhomogeneity parameters. We hope that
our result facilitates the study of homogenous models with non-compact spectrum.

The two different cases of staggerings were discussed in depth using the example of the
six-vertex model, in particular for the choice of Uq(sl(2)) invariant BCs. The name originates
from the fact that, with such BCs imposed, the model possesses Uq(sl(2)) symmetry. Hence,
all energies appear in multiplets, characterised by the Casimir operator C of the Uq(sl(2))
algebra; see (4.11). We found an expression for the Q-operator in the Sz = 0 sector, which
enabled us to apply the analytic Bethe ansatz to solve the model (as an alternative to
the earlier algebraic approach in [124]). Further, the Q-operator formula allowed us to
systematically study the Bethe root configurations of the model, which forms the basis of
our analysis of the scaling limit.

For the alternating case, we investigated a critical phase of the lattice model. We observed
that the Uq(sl(2)) symmetry is spontaneously broken. In addition, strong logarithmic
corrections in the finite-size spectrum for a specific class of states were found. We showed —
for the first time for open BCs — that the defined quasi-momentum operator parametrises
these logarithmic corrections and, in turn, the continuous degree of freedom in the scaling
limit. Motivated by previous studies, we proposed that the scaling limit is related to
the SL(2,R)/U(1) gauged WZW model. In the latter, discrete states also exist. When
realised on the lattice, they are expected to possess no logarithmic corrections and be
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7. Conclusion

characterised by a purely imaginary quasi-momentum. We indeed identified such states in
the lattice model. In addition, our analysis generalized one of the main results of the work
[54] concerning periodic BCs to the case of Uq(sl(2)) invariant BCs: the universal behaviour
is the same for all values of the staggering parameter α as long as γ < α < π − γ.

For further analysis, we restricted to the self-dual case. We employed the ODE/IQFT
approach: based on a detailed numerical study of certain sums over the Bethe roots,
we concluded that the ODEs governing the scaling limit of the lattice model fall within
the same class which appears in the model with twisted BCs. This enabled us to carry
over many results concerning the ODEs. We obtained a quantization condition for the
quasi-momentum and checked its validity via a detailed spectroscopy study for intermediate
lattice sizes. The latter was facilitated by the formula we previously obtained for the
Q-operator. Using the quantization condition, the space of states in the scaling limit was
fully classified. In particular, we obtained the density of states characterising the continuous
spectrum of scaling dimensions, as well as all characters for discrete states. Unfortunately,
the results on branes for the SL(2,R)/U(1) sigma model studied in the work [12] seem to
be inapplicable to our study.

The model with quasi-periodic staggering was studied via a spectral flow to the model
with alternating staggering. In contrast to the previous work [27], the flow is, by definition,
integrable, as it was developed in the uniform framework of the composite R-matrix. Hence,
we were able to explicitly investigate the behaviour of the Bethe roots under the flow,
where a drastic change in their pattern signals the onset of a phase transition. We found
that the two models are separated by two first-order phase transitions. The intermediate
phases are not of physical interest as the associated Hamiltonians are non-local. This is
consistent with the different properties of the corresponding spectra observed previously
(for the quasi-periodic staggering, the spectrum of critical exponents does not possess a
continuous component).

For the antidiagonal BCs, which reduce the symmetry of the model to a discrete Z2 ×Z2

symmetry, we started our analysis by generalising1 the well-known derivation of the
Baxter Q-operator [88] to the inhomogeneous case. Thereby, we found a genuinely explicit
expression of the operator’s matrix elements, which does not involve any implicit matrix
multiplication or inversion in contrast to [88]. This expression for the Q-operator allowed us
to systematically deduce the Bethe root configuration corresponding to the low-energy states.
In the Black Hole regime, the root configurations, e.g. for the ground state, significantly
change when the system size is increased. Despite our efforts to study intermediate system
sizes L ∼ 15, we were not able to obtain any insights into the scaling limit of the lattice
model due to the presence of logarithmically increasing scaling dimensions. Hence, we
conclude that the Black Hole phase is incompatible with antidiagonal BCs. The other
non-trivial phase of the lattice model is governed by a CFT constructed from two U(1)
twisted Kac-Moody algebras.

Our study of higher rank generalisations of the staggered six-vertex model has shown
that an increase in rank can lead to multiple continuous components in the spectrum of
scaling dimensions. In the D(2)

3 model two independent continua were identified. Further,

1Note that this derivation is used as an example in the preliminaries of the thesis.
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we showed the presence of purely discrete states by considering the influence of twisted
BCs. The analysis was based on symmetry arguments and numerical evidence of strong
logarithmic corrections. An open question is the definition of operators that parameterise the
non-compact degrees of freedom directly on the lattice. Analogues of the quasi-momentum
operator of the rank 1 model would drastically facilitate the identification of the scaling
limit. Among other things, they would be important for computing the density of states
using the ODE/IQFT correspondence.

Another exciting generalization of our results consists in consideration of different inte-
grable BCs for the D(2)

3 model such as given in [117] or the study of the whole higher rank
family D(2)

n , similar to [114] for the A(2)
n series.

There are many interesting further research directions regarding the study of the Uq(sl(2))
invariant staggered six-vertex model. The ODE/IQFT correspondence has only been applied
to the case of alternating staggering. To fully classify the scaling limit of the model with
the quasi-periodic choice of inhomogeneities, one should deduce the ODE governing the
scaling limit. Moreover, one can generalise the analysis of the alternating staggering to the
case of arbitrary strength ξ of the two anti-parallel boundary magnetic fields ξL = −ξR.
Research along these directions may yield an explicit connection — which the present work
did not produce — to the D0 brane and the one-parameter family of D1 branes of the
Black Hole sigma model considered in [12]. Regarding the other extreme case of BCs in the
staggered six-vertex model, the antidiagonal ones, the identification of the scaling limit in
the ‘Black hole regime’ remains open.
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A | Evaluation of the partition
function as path integral

This appendix is based on [37].

The non-compact case

The partition function of the free massless boson in two dimensions can also be evaluated
in the path integral formalism. We take the world sheet to be the torus C/Z2 generated
by the two complex numbers t1, t2 as basis vectors such that we can impose the following
periodicity condition

φ(x+ n1t1 + n2t2) = φ(x) . (A.1)

The partition function then takes the form

Z(τ) =
√
A

∫
Φ\φ0

Dφ exp

[
−1

2

∫
d2x (∂x1φ)

2 + (∂x2φ)
2

]
(A.2)

where we integrate over all fields except the diverging contribution from the zero mode φ0,
and A is the area of the torus given by Im(t2t

∗
1). We can partially integrate to obtain1:

Z(τ) =
√
A

∫
Φ\φ0

Dφ exp

[
1

2

∫
d2xφ(x)∆φ(x)

]
. (A.3)

To evaluate this further, we need to study the properties of the Laplacian on a torus spanned
by t1,2. Any function on the tours can be expanded in the countable set of eigenfunctions
of the Laplacian, which take the form:

φm1,m2(x) = exp [2iπ⟨x,m1k1 +m2k2⟩] (A.4)

where the scalar product ⟨, ⟩ mimics the one in R2 induced by the indification of C ∼ R2

and k1 and k2 are the dual vectors to t1, t2 defined by the relation

⟨ti, kj⟩ ∈ Z . (A.5)

This ensures the periodicity condition (A.1). Explicitly, we have

k1 = − it2
A
, k2 =

it1
A
. (A.6)

1Note that the boundary terms vanish due to the periodicity condition
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A. Evaluation of the partition function as path integral

Direct computation shows that the eigenvalues −λm1,m2 of the Laplacian are

−λm1,m2 = −4π2||m1k1 +m2k2||2 . (A.7)

Hence, we obtain for the partition function

Z(τ) =
∏

m1+m2 ̸=0

√
2π

λm1,m2

=
√
A exp

{
1

2
G′(0)

}
where we defined the function

G(s) =
∑

m1+m2 ̸=0

1

λsm1,m2

. (A.8)

In general, this quantity is divergent and so needs to be appropriately regularized. In the
following, we sketch the method of ζ-function regularisation. First, let us introduce the
modular parameter τ = t2/t1 again which leads to

G(s) =
∑

m1+m2 ̸=0

1

|m2 +m1τ |2s

∣∣∣∣ A

2πt1

∣∣∣∣2s . (A.9)

Splitting the sum gives∣∣∣∣2πt1A
∣∣∣∣2sG(s) = 2ζ(2s) +

∑
m1 ̸=0

∑
m2

1

|m2 +m1τ |2s
, (A.10)

where ζ is the Riemann ζ-function. We write τ = τ1 + iτ2 and assume τ2 > 0 to obtain∑
m2

1

|m2 +m1τ |2s
=

√
π

Γ(s)

∑
n∈Z

∫ ∞

0
dt ts−

3
2 exp

(
−tm2

1τ
2
2 + π2n2/t− 2iπnm1τ1

)
, (A.11)

where we have used the following identities for the Γ-function

1

zs
=

1

Γ(s)

∫ ∞

0
dt ts−1e−zt , Γ(s) =

∫ ∞

0
dt ts−1e−t . (A.12)

Splitting the contributions of n = 0 from the rest, we obtain by direct calculations∣∣∣∣2πt1A
∣∣∣∣2sG(s) = 2ζ(2s) + 2

(τ2
π

)1−2s Γ(1− s)

Γ(s)
ζ(2− 2s)

+

√
π

Γ(s)

∑
m1 ̸=0

∑
n̸=0

e2iπnm1τ1

∫ ∞

0
dt

(
π|n|
|m1|τ2

)s− 1
2

ts−
3
2 exp

(
− |m1n|πτ2

(
t+

1

t

))
.

(A.13)
Expanding the function G(s) around s ≈ 0, we can evaluate the integrals explicitly in the
first order in s. This yields

G(s) ≈ −1 + s

−2 log

∣∣∣∣At1
∣∣∣∣+ πτ2

3
+
∑
m1 ̸=0

∑
n̸=0

e2iπnm1τ1 1

|n|
e−2π|nm1|τ2

 . (A.14)
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The double sum can be evaluated in the following way by using the definition (2.45)∑
m1 ̸=0

∑
p̸=0

e2iπpm1τ1 1

|p|
e−2π|pm1|τ2 =

∑
m1,p>0

2

p
(qm1p + q̄m1p)

= −2 ln

( ∏
m1>0

(1− qm1)(1− q̄m1)

)
= −2 ln

(
|η(q)|2

)
− πτ2

3
.

When evaluating the double sum and using the explicit values of the ζ we get

G(s) ≈ −1− 2s

(
log

∣∣∣∣At1
∣∣∣∣+ ln

(
|η(q)|2

))
. (A.15)

And so we obtain

G′(0) = −2 log

(∣∣∣∣At1
∣∣∣∣ |η(q)|2) . (A.16)

Using
√

ℑm(τ) =
√
A/t1, we get

Z =
1√

ℑm(τ)|η(τ)|2
. (A.17)

The compact case

For the compactified boson, we have the following BCs in the path integral formalism

φ(x+ n1t1 + n2t2) = φ(x) + 2πR(n1ϑ1 + n2ϑ2) (A.18)

where n1, n2, ϑ1, ϑ2 ∈ Z and R is the compactification radius. The path integral runs over
all field configurations which obey this periodicity condition. Note that since the boson is
compactified, the zero mode does not contribute an infinite amount to the path integral.
The integration will be done for fields with fixed (ϑ1, ϑ2) and we sum over all ϑ1, ϑ2 ∈ Z.
In a given sector (ϑ1, ϑ2), we spilt the field into two parts:

φ(z) = φcl
ϑ1,ϑ2

(z) + φ̃(z) (A.19)

where φ̃ is the standard periodic field and φcl
ϑ1,ϑ2

(z) is the solution of the classical equations
of motions ∂µ∂µφcl

ϑ1,ϑ2
(z) = 0 obeying (A.18). It is given by

φcl
ϑ1,ϑ2

(z) = 2πR

[
z

ω1

ϑ1τ̄ − ϑ2
τ̄ − τ

− z̄

ω∗
1

ϑ1τ − ϑ2
τ̄ − τ

]
. (A.20)

The action is then given by the sum of the actions as the cross terms vanish by integration
by parts and ∂µ∂µφcl

ϑ1,ϑ2
(z) = 0:

S[φ] = S[φ̃] + S[φcl
ϑ1,ϑ2

] (A.21)

141



A. Evaluation of the partition function as path integral

The integration over φ̃ can be carried out analogously to the non-compact case. The action
of the other part of the field is

S[φcl
ϑ1,ϑ2

] = πR2 |ϑ1τ − ϑ2|
2Im(τ)

. (A.22)

Hence, we obtain

Z =
R√

2Im(τ)|η(τ)|2
∑

ϑ1,ϑ2∈Z
expπR2 |ϑ1τ − ϑ2|

2Im(τ)
. (A.23)

Using the re-summation formula of Poisson

∑
n∈Z

exp
(
−πan2 + bn

)
=

1√
a

∑
k∈Z

exp

(
−π
a

(
k +

b

2iπ

)2
)

(A.24)

with

a =
R2

2ℑm(τ)
b =

πmR2ℜe(τ)
ℑm(τ)

, (A.25)

one obtains

Z(τ) =
∑
n,ϑ∈Z

q
1
8π (

n
R
+2πRϑ)

2

q̄
1
8π (

n
R
−2πRϑ)

2 1

|η(τ)|2
. (A.26)
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B | Proof of (3.36b) for KL

This appendix is based on the author’s publication [32].

Using the definitions of the composite quantities in the LHS of the reflection algebra
(3.36b), we obtain (we omit the prefactor of KL and set ijkℓ = 1234 for notational clarity):

R1,2|3,4(−u+ v,−θ,−θ)KL,t1,2
1,2 (u, θ)M−1

1,2R3,4|1,2(−u− v − 2η,−θ,−θ)M1,2K
L,t3,4
3,4 (v, θ)

=R1,4(−u+ v − θ)R1,3(−u+ v)R2,4(−u+ v)R2,3(−u+ v + θ)

×
(
P1,2K

L
2 (u− θ

2
)M1R1,2(−2u− 2η)M−1

1 KL
1 (u+

θ

2
)

)t1t2

M−1
1 M−1

2

×R3,2(−u− v − 2η − θ)R3,1(−u− v − 2η)R4,2(−u− v − 2η)R4,1(−u− v − 2η + θ)

×M1M2

(
P3,4K

L
4 (v −

θ

2
)M3R3,4(−2v − 2η)M−1

3 KL
3 (v +

θ

2
)

)t3t4

.

Resolving the transpositions and reordering the permutation operators gives

R1,2|3,4(−u+ v,−θ,−θ)KL,t1,2
1,2 (u, θ)M−1

1,2R3,4|1,2(−u− v − 2η,−θ,−θ)M1,2K
L,t3,4
3,4 (v, θ)

=P3,4R1,3(−u+ v − θ)R1,4(−u+ v)R2,3(−u+ v)R2,4(−u+ v + θ)

×
(
KL

1

(
u+

θ

2

))t1

M−1
1 R2,1(−2u− 2η)M1

(
KL

2

(
u− θ

2

))t2

M−1
1 M−1

2

×R4,1(−u− v − 2η − θ)R4,2(−u− v − 2η)R3,1(−u− v − 2η)R3,2(−u− v − 2η + θ)

×M1M2

(
KL

4

(
v +

θ

2

))t4

M−1
4 R3,4(−2v − 2η)M4

(
KL

3

(
v − θ

2

))t3

P1,2 .

From now on, we present also the graphical proof for maximal clarity:
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2

1

4

3

−u+ v − θ

−u+ v

−u+ v

−u+ v + θ

−u− v − 2η
−u− v − 2η + θ

−u− v − 2η

−u− v − 2η − θ

−2u− 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

−2v − 2η

=P3,4R1,3(−u+ v − θ)R1,4(−u+ v)R2,3(−u+ v)

×R2,4(−u+ v + θ)

(
KL

1

(
u+

θ

2

))t1

M−1
1

×R2,1(−2u− 2η)M1

(
KL

2

(
u− θ

2

))t2

×M−1
1 M−1

2 R4,1(−u− v − 2η − θ)

×R4,2(−u− v − 2η)R3,1(−u− v − 2η)

×R3,2(−u− v − 2η + θ)M1M2

(
KL

4

(
v +

θ

2

))t4

×M−1
4 R3,4(−2v − 2η)M4

(
KL

3

(
v − θ

2

))t3

P1,2 .

Cancelling the operator insertions gives

2

1

4

3

−u+ v − θ

−u+ v

−u+ v

−u+ v + θ

−u− v − 2η
−u− v − 2η + θ

−u− v − 2η

−u− v − 2η − θ

−2u− 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

−2v − 2η

=P3,4R1,3(−u+ v − θ)R1,4(−u+ v)R2,3(−u+ v)

×R2,4(−u+ v + θ)

(
KL

1

(
u+

θ

2

))t1

M−1
1

×R2,1(−2u− 2η)

(
KL

2

(
u− θ

2

))t2

×M−1
2 R4,1(−u− v − 2η − θ)

×R4,2(−u− v − 2η)R3,1(−u− v − 2η)

×R3,2(−u− v − 2η + θ)M1M2

(
KL

4

(
v +

θ

2

))t4

×M−1
4 R3,4(−2v − 2η)M4

(
KL

3

(
v − θ

2

))t3

P1,2 .

Using the YBE to pass the weight −2u− 2η to the right side gives

2

1

4

3

−u+ v − θ

−u− v − 2η−u+ v

−u− v − 2η − θ

−u+ v
−u− v − 2η + θ

−u− v − 2η

−u+ v + θ

−2u− 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

−2v − 2η

=P3,4R1,3(−u+ v − θ)R1,4(−u+ v)

(
KL

1 (u+
θ

2
)

)t1

×M−1
1 R4,1(−u− v − 2η − θ)R3,1(−u− v − 2η)

×R2,1(−2u− 2η)R2,3(−u+ v)R2,4(−u+ v + θ)

×
(
KL

2

(
u− θ

2

))t2

M−1
2 R4,2(−u− v − 2η)

×R3,2(−u− v − 2η + θ)M1M2

(
KL

4

(
v +

θ

2

))t4

×M−1
4 R3,4(−2v − 2η)M4

(
KL

3

(
v − θ

2

))t3

P1,2 .

Using the reflection algebra (2.116) and moving the KL-matrix with weight v+θ/2 upwards,
we obtain:
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B. Proof of (3.36b) for KL

2

1

4

3

−u+ v − θ

−u− v − 2η
−u+ v

−u− v − 2η − θ

−u+ v
−u− v − 2η + θ

−u− v − 2η

−u+ v + θ

−2u− 2η

−2v − 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

=P3,4R1,3(−u+ v − θ)R1,4(−u+ v)

(
KL

1 (u+
θ

2
)

)t1

×M−1
1 R4,1(−u− v − 2η − θ)R3,1(−u− v − 2η)

×R2,1(−2u− 2η)R2,3(−u+ v)

(
KL

4

(
v +

θ

2

))t4

×M2R2,4(−u− v − 2η)M−1
2

(
KL

2

(
u− θ

2

))t2

×R4,2(−u+ v + θ)M−1
2 R3,2(−u− v − 2η + θ)M1

×M2M
−1
4 R3,4(−2v − 2η)M4

(
KL

3

(
v − θ

2

))t3

P1,2 .

Using (2.116) again this yields:

2

1

4

3

−u+ v − θ

−u− v − 2η
−u− v − 2η − θ

−u+ v

−u+ v
−u− v − 2η + θ

−u− v − 2η

−u+ v + θ

−2u− 2η

−2v − 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

=P3,4R1,3(−u+ v − θ)

(
KL

4

(
v +

θ

2

))t4

M1

×R1,4(−u− v − 2η − θ)M−1
1

(
KL

1

(
u+

θ

2

))t1

×R4,1(−u+ v)M−1
1 R3,1(−u− v − 2η)

×R2,1(−2u− 2η)R2,3(−u+ v)

×M2R2,4(−u− v − 2η)M−1
2

(
KL

2

(
u− θ

2

))t2

×R4,2(−u+ v + θ)M−1
2 R3,2(−u− v − 2η + θ)M1

×M2M
−1
4 R3,4(−2v − 2η)M4

(
KL

3

(
v − θ

2

))t3

P1,2 .

Reshuffling the operator insertions by using the invariance of the R-matrix under M , we get

2

1

4

3

−u+ v − θ

−u− v − 2η
−u− v − 2η − θ

−u+ v

−u+ v
−u− v − 2η + θ

−u− v − 2η

−u+ v + θ

−2u− 2η

−2v − 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

=P3,4R1,3(−u+ v − θ)

(
KL

4

(
v +

θ

2

))t4

M−1
4

×R1,4(−u− v − 2η − θ)

(
KL

1

(
u+

θ

2

))t1

M−1
1

×R4,1(−u+ v)R3,1(−u− v − 2η)R2,1(−2u− 2η)

×R2,3(−u+ v)R2,4(−u− v − 2η)

(
KL

2

(
u− θ

2

))t2

×M−1
2 R4,2(−u+ v + θ)R3,2(−u− v − 2η + θ)

×M1M2R3,4(−2v − 2η)M4

(
KL

3

(
v − θ

2

))t3

P1,2 .

By using the YBE to bring the weight −2v − 2η to the top we obtain:
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B. Proof of (3.36b) for KL

2

1

3

4

−u− v − 2η − θ

−u+ v
−u+ v − θ

−u− v − 2η

−u− v − 2η
−u+ v + θ

−u+ v

−u− v − 2η + θ

−2u− 2η

−2v − 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

=P3,4

(
KL

4

(
v +

θ

2

))t4

M−1
4 R3,4(−2v − 2η)

×R1,4(−u− v − 2η − θ)R1,3(−u+ v − θ)

×
(
KL

1 (u+
θ

2
)

)t1

M−1
1 R3,1(−u− v − 2η)R4,1(−u+ v)

×R2,1(−2u− 2η)R2,4(−u− v − 2η)R2,3(−u+ v)

×
(
KL

2

(
u− θ

2

))t2

M−1
2 R3,2(−u− v − 2η + θ)

×R4,2(−u+ v + θ)M1M2M4

(
KL

3

(
v − θ

2

))t3

P1,2 .

Similar as above we use the reflection algebra (2.116) twice to get

2

1

3

4

−u− v − 2η − θ

−u+ v
−u− v − 2η

−u+ v − θ

−u− v − 2η
−u+ v + θ

−u+ v

−u− v − 2η + θ
−2u− 2η

−2v − 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

=P3,4

(
KL

4

(
v +

θ

2

))t4

M−1
4 R3,4(−2v − 2η)

×
(
KL

3

(
v − θ

2

))t3

R1,4(−u− v − 2η − θ)M1

×R1,3(−u− v − 2η)M−1
1

(
KL

1 (u+
θ

2
)
)t1

R3,1(−u+ v − θ)

×M−1
1 R4,1(−u+ v)R2,1(−2u− 2η)R2,4(−u− v − 2η)

×M2R2,3(−u− v − 2η + θ)M−1
2

(
KL

2

(
u− θ

2

))t2

×R3,2(−u+ v)M−1
2 R4,2(−u+ v + θ)M1M2M4P1,2 .

We reshuffle the operator insertions again to obtain:

2

1

3

4

−u− v − 2η − θ

−u+ v
−u− v − 2η

−u+ v − θ

−u− v − 2η
−u+ v + θ

−u+ v

−u− v − 2η + θ
−2u− 2η

−2v − 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

=P3,4

(
KL

4

(
v +

θ

2

))t4

M−1
4 R3,4(−2v − 2η)

×
(
KL

3

(
v − θ

2

))t3

R1,4(−u− v − 2η − θ)M1

×R1,3(−u− v − 2η)M−1
1

(
KL

1

(
u+

θ

2

))t1

M−1
1

×M−1
3 R3,1(−u+ v − θ)R4,1(−u+ v)R2,1(−2u− 2η)

×R2,4(−u− v − 2η)R2,3(−u− v − 2η + θ)

×M3

(
KL

2

(
u− θ

2

))t2

R3,2(−u+ v)M−1
2

×R4,2(−u+ v + θ)M1M2M4P1,2 .

Now, we can use the YBE to bring the weight −2u− 2η back to the left.
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B. Proof of (3.36b) for KL

2

1

3

4

−u− v − 2η − θ

−u− v − 2η
−u− v − 2η

−u− v − 2η + θ

−u+ v

−u+ v + θ

−u+ v − θ

−u+ v

−2u− 2η

−2v − 2η

u+ θ
2

u− θ
2

v + θ
2

v − θ
2

=P3,4

(
KL

4

(
v +

θ

2

))t4

M−1
4 R3,4(−2v − 2η)

×
(
KL

3

(
v − θ

2

))t3

R1,4(−u− v − 2η − θ)M1

×R1,3(−u− v − 2η)M−1
1

(
KL

1

(
u+

θ

2

))t1

M−1
1

×M−1
3 R2,4(−u− v − 2η)R2,3(−u− v − 2η + θ)

×R2,1(−2u− 2η)R3,1(−u+ v − θ)R4,1(−u+ v)

×M3

(
KL

2

(
u− θ

2

))t2

R3,2(−u+ v)M−1
2

×R4,2(−u+ v + θ)M1M2M4P1,2 .

Now we reshuffle the operator insertion a last time to finally obtain:

2

1

4

3

−u− v − 2η − θ

−u− v − 2η−u− v − 2η

−u− v − 2η + θ

−u+ v

−u+ v + θ
−u+ v

−u+ v − θ

−2v − 2η

−2u− 2η

v + θ
2

v − θ
2

u+ θ
2

u− θ
2

=P3,4

(
KL

4

(
v +

θ

2

))t4

M−1
4 R3,4(−2v − 2η)M4

×
(
KL

3

(
v − θ

2

))t3

M1M2R1,4(−u− v − 2η − θ)

×R1,3(−u− v − 2η)R2,4(−u− v − 2η)

×R2,3(−u− v − 2η + θ)M−1
1 M−1

2

(
KL

1

(
u+

θ

2

))t1

×M−1
1 R2,1(−2u− 2η)M1

(
KL

2

(
u− θ

2

))t2

×R3,1(−u+ v − θ)R4,1(−u+ v)M3R3,2(−u+ v)

×R4,2(−u+ v + θ)M1M2M4P1,2 .

Now we proceed algebraically. We reorder the permutation operators

R1,2|3,4(−u+ v,−θ,−θ)KL,t1,2
1,2 (u, θ)M−1

1,2R3,4|1,2(−u− v − 2η,−θ,−θ)M1,2K
L,t3,4
3,4 (v, θ)

=

(
KL

3 (v +
θ

2
)

)t3

M−1
3 R4,3(−2v − 2η)M3

(
KL

4 (v −
θ

2
)

)t4

P3,4M1M2

×R1,4(−u− v − 2η − θ)R1,3(−u− v − 2η)R2,4(−u− v − 2η)R2,3(−u− v − 2η + θ)

×M−1
1 M−1

2

(
KL

1

(
u+

θ

2

))t1

M−1
1 R2,1(−2u− 2η)M1

(
KL

2

(
u− θ

2

))t2

P1,2

×R3,2(−u+ v − θ)R4,2(−u+ v)M3R3,1(−u+ v)R4,1(−u+ v + θ)M1M2M4 ,
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B. Proof of (3.36b) for KL

and reintroduce the transposition, while using (2.103) to obtain

R1,2|3,4(−u+ v,−θ,−θ)KL,t1,2
1,2 (u, θ)M−1

1,2R3,4|1,2(−u− v − 2η,−θ,−θ)M1,2K
L,t3,4
3,4 (v, θ)

=

(
P3,4K

L
4 (v −

θ

2
)M3R3,4(−2v − 2η)M−1

3 KL
3 (v +

θ

2
)

)t3t4

M1M2

×R1,4(−u− v − 2η − θ)R1,3(−u− v − 2η)R2,4(−u− v − 2η)R2,3(−u− v − 2η + θ)

×M−1
1 M−1

2

(
P1,2K

L
2 (u− θ

2
)M1R1,2(−2u− 2η)M−1

1 KL
1 (u+

θ

2
)

)t1,t2

×R3,2(−u+ v − θ)R4,2(−u+ v)M3R3,1(−u+ v)R4,1(−u+ v + θ)M1M2M4

=KL,t3,4
3,4 (v, θ)M1,2R3,4|1,2(−u− v − 2η,−θ,−θ)M−1

1 KL,t1,2
1,2 (u, θ)R1,2|3,4(−u+ v,−θ,−θ) ,

which completes the proof.
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C | Expressions (4.30) and (4.181)
in Pauli matrices

This appendix recalls some results of the author’s works [31] and [32].

The expression for H

The Hamiltonian (4.30) reads in terms of the Pauli-matrices σαj :

Uodd
H (−iα)HUodd

H (iα) =− 1

2 sin(γ)ξ(−iα)ξ(iα)

{
− 2 sin2(γ)

2L−1∑
j=1

cos(γ)σzjσ
z
j+1 + 2 cos(α)(σ+j σ

−
j+1 + σ−j σ

+
j+1)

+ cos(γ) sin2(α)

2L−2∑
j=1

σzjσ
z
j+2 + 2(σ+j σ

−
j+2 + σ−j σ

+
j+2)

+ sin(α) sin(2γ)

2L−2∑
j=1

(−1)j+1σzjσ
+
j+1σ

−
j+2 + (−1)jσzjσ

−
j+1σ

+
j+2

+ sin(α) sin(2γ)
2L−2∑
j=1

(−1)j+1σ+j σ
−
j+1σ

z
j+2 + (−1)jσ−j σ

+
j+1σ

z
j+2

+ sin(γ) sin(2α)

2L−2∑
j=1

(−1)j+1σ−j σ
z
j+1σ

+
j+2 + (−1)jσ+j σ

z
j+1σ

−
j+2

+ cos(γ) sin2(α)(σz1σ
z
2 + σz2L−1σ

z
2L)

+ i(sin(α) cos(2γ)− sin(α)e2iα)(σ+1 σ
−
2 + σ+2L−1σ

−
2L)

− i(sin(α) cos(2γ)− sin(α)e−2iα)(σ−1 σ
+
2 + σ−2L−1σ

+
2L)

+ 2iξ(iα)ξ(−iα) sin(γ)(σz1 − σz2L)

+ cos(γ)(L cos(2α) + (1− 2L) cos(2γ) + L− 1)

}
(C.1)

where Uodd
H (iα) is the rotation of the spin variables on the odd lattice sites by −iα in the

x, y-spin plane

Uodd
H (iα)σ±2j−1 U

odd
H (−iα) = e∓iασ±2j−1 , j = 1, ..., L. (C.2)
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C. Expressions (4.30) and (4.181) in Pauli matrices

The expression for B̄qp

The quasi-momentum (4.181) in terms of the Pauli-matrices σαj reads:

Qqp
=

{
2 cos(γ)

2L−2∑
j=1

(σ−j σ
+
j+1σ

z
j+2 − σ+j σ

−
j+1σ

z
j+2 + σzjσ

−
j+1σ

+
j+2 − σzjσ

+
j+1σ

−
j+2)


+

cos(γ)

sin(γ)

2L−2∑
j=1

(−1)j(2(σ−j+2σ
+
j + σ+j+2σ

−
j ) + σzjσ

z
j+2)


− 2i sin(γ)(σ+1 σ

−
2 − σ−1 σ

+
2 ) + 2i sin(γ)(σ−2Lσ

+
2L−1 − σ+2Lσ

−
2L−1)

− iσz1 + iσz2 + iσz2L−1 − iσz2L

}
1

i cos2(γ)
.

(C.3)
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D | Asymptotic coefficients C
(±)
p,s

In this appendix, which is based on [34], we recall a closed form expression for the coefficients
C
(±)
p,s (w) that has been obtained in the work [133]. This is of particular interest as they

enter into the quantization condition (4.108a), (4.108b). It is

C(±)
p,s (w) = C(0,±)

p,s Č(±)
p,s (w) , (D.1)

where we have

C(0,±)
p,s =

√
2π

n+ 2
2−p± i(n+2)s

n (n+ 2)−
2p

n+2
Γ(1 + 2p)

Γ(1 + 2p
n+2) Γ(

1
2 + p± is)

. (D.2)

This is the coefficient for d = 0. In the more general case, they can be computed via the
determinant of the d× d matrix:

Č(±)
p,s (w) =

(∓1)d det
(
wb−1
a U

(±)
a (b)

)∏d
a=1wa

∏
b>a(wb − wa)

∏d
a=1

(
2p+ 2a− 1± 2is

) (D.3)

where

U (±)
a (D) = (D − 1)2 −

(
2p+ 2 + n∓ 2wa +

d∑
b ̸=a

4wa

wa − wb

)
(D − 1)

+ 1
2 n

2 +
(
p+ 3

2

)
n∓ (n+ 1 + 2p+ 2is) wa + 2p+ 1 (D.4)

+

( d∑
b̸=a

2wa

wa − wb

)2

+
(
2 (2p+ 1 + n∓ 2wa)− n

) d∑
b ̸=a

wa

wa − wb
.
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E | BAE for the twisted D
(2)
3

model

This appendix is based on [33].

In this appendix, we sketch a derivation of the result (6.20) for the eigenvalue t(u) of the
twisted transfer matrix. The starting point is the known [146] eigenvalue of the periodic
transfer matrix

t(u)
∣∣∣
ϕ1=ϕ2=0

=(4 sinh(u− 2iγ) sinh(u− 4iγ))LA(u) + (4 sinh(u− 4iγ) sinhu)L
4∑

ℓ=1

Bℓ(u)

+ (4 sinh(u− 2iγ) sinhu)LC(u) ,
(E.1)

where the explicit form of A(u), Bℓ(u), C(u) is presented in (6.21).

Following the work [146], we apply the analytic Bethe ansatz. The monodromy matrix
possesses the asymptotic behaviour

M(u) ∼
u→∞

(e2u−4iγ)L
{

diag
(
e−2iγh1 , e−2iγh2 ,1 ,1 , e2iγh2 , e2iγh1

)
+ . . .

}
(E.2)

where the ellipsis stands for unimportant off-diagonal terms. From this, we know that the
twisted transfer matrix (6.8) develops the following asymptotic behaviour

t(u) ∼
u→∞

(e2u−4iγ)L

21+

2∑
j=1

(
eiϕje−2iγhj + e−iϕje2iγhj

)
+ . . .

 . (E.3)

Let us now make the following ansatz for the eigenvalue t(u):

t(u) = (4 sinh(u− 2iγ) sinh(u− 4iγ))L aA(u) + (4 sinh(u− 4iγ) sinhu)L
4∑

ℓ=1

bℓBℓ(u)

+ (4 sinh(u− 2iγ) sinhu)L cC(u) (E.4)

where the parameters a , bℓ , c are yet unknown. Denote by |Ψ⟩ a normalised eigenstate of
the transfer matrix, which is also an eigenstate of the U(1) charges (6.10) with eigenvalues
h1 and h2. We obviously have

⟨Ψ|t(u)|Ψ⟩ = t(u) . (E.5)
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E. BAE for the twisted D
(2)
3 model

We can determine the asymptotic behaviour for u→ ∞ of the LHS of (E.5) by keeping in
mind (E.3):

⟨Ψ|t(u)|Ψ⟩ ∼
u→∞

(e2u−4iγ)L
{

eiϕ1e−2iγ(L−m1) + eiϕ2e−2iγ(m1−m2)

+ 2 + e−iϕ1e2iγ(L−m1) + e−iϕ2e2iγ(m1−m2)
}
. (E.6)

We can evaluate the RHS of (E.5) using (E.4)

t(u) ∼
u→∞

(e2u−4iγ)L
{
a e−2iγ(L−m1) + b1 e−2iγ(m1−m2)

+ b2 + b3 + b4 e2iγ(m1−m2) + c e2iγ(L−m1)
}
. (E.7)

A comparison of (E.6) and (E.7), suggests the relations

a = eiϕ1 , b1 = eiϕ2 , b2 = b3 = 1 , b4 = e−iϕ2 , c = e−iϕ1 , (E.8)

which is the result given in (6.20).
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F | Symmetries of the D
(2)
3 model

This appendix is based on [33].

We briefly discuss here the proofs for a couple of the symmetries in the D(2)
3 model noted

in chapter 6.

F.1 Crossing symmetry (6.12)

To prove that t(u) given in (6.8) has the crossing symmetry (6.12), we start with the
transposed transfer matrix

t
t(u; {ϕj}) = tr0 (K0({ϕj})R0L(u) . . .R01(u))

t0t1···tL

= tr0Rt0t1
01 (u) · · ·Rt0tL

0L (u)Kt0
0 ({ϕj})

= tr0K0({ϕj})R10(u) · · ·RL0(u) . (F.1)

Here, we have applied the PT-symmetry and the fact that the twist matrix (6.7) is symmetric,
i.e. Kt = K, to reach the third line. Note that the transfer matrix itself can be rewritten as

t(u; {ϕj}) = tr0 (K0({ϕj})R0L(u) . . .R01(u))
t0

= tr0Rt0
01(u) · · ·R

t0
0L(u)K

t0
0 ({ϕj})

= tr0 V
t0
0 R10(4iγ − u)V t0

0 · · ·V t0
0 RL0(4iγ − u)V t0

0 K0({ϕj})
= tr0K0({−ϕj})R10(4iγ − u) · · ·RL0(4iγ − u)

= t
t(4iγ − u; {−ϕj}) . (F.2)

To reach the third line, we again used the PT- and the crossing symmetry. The fourth
equality is obtained by using the fact that

V K({ϕj}) = K({−ϕj})V . (F.3)

Finally, for the last line of (F.2), we applied the result (F.1).
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F. CP symmetry of the Hamiltonian (6.38)

F.2 W (0) symmetry (6.15)

The conjugate action of W (0)⊗L on the transfer matrix (6.8) yields

W (0)⊗L
t(u;ϕ1, ϕ2)W (0)⊗L =W (0)⊗L tr0 (K0(ϕ1, ϕ2)R0L(u) . . .R01(u) )W (0)⊗L

= tr0K0(ϕ1, ϕ2)WL(0)R0L(u)WL(0) . . .W1(0)R01(u)W1(0)

= tr0K0(ϕ1, ϕ2)W0(u)R0L(u)W0(u) . . .W0(u)R01(u)W0(u)

= tr0K0(−ϕ2,−ϕ1)R0L(u) . . . R01(u)

= t(u;−ϕ2,−ϕ1) . (F.4)

To reach the third line, we used (6.6), and to obtain the fourth equality, we have taken the
following fact into account

W (u)K(ϕ1, ϕ2)W (u) = K(−ϕ2,−ϕ1) . (F.5)

F.3 CPT symmetry (6.17)

A good starting point to prove the CPT symmetry (6.17) of the transfer matrix (6.8) is
that the parity operator (6.18) acts on it as

Π t(u; {ϕj})Π = tr0Π(K0({ϕj})R0L(u) . . .R01(u))Π

= tr0K0({ϕj})R01(u) . . .R0L(u) . (F.6)

The additional conjugate action of V ⊗L yields

V ⊗LΠ t(u; {ϕj})ΠV ⊗L = tr0K0({ϕj})V1R01(u)V1 . . . VLR0L(u)VL

= tr0K0({ϕj})V0R10(u)V0 . . . V0RL0(u)V0

= tr0 V0K0({ϕj})V0R10(u) . . .RL0(u)

= tr0K0({−ϕj})R10(u) . . .RL0(u)

= t
t(u; {−ϕj}) , (F.7)

where we used (F.3) to reach the fourth equality, and to obtain the last one, we applied
(F.1).

F.4 CP symmetry of the Hamiltonian (6.38)

Let us recall the expression of the Hamiltonian (6.33) after we have explicitly evaluated the
derivative:

H ∼ t
−1(0) t′(0) =

L−1∑
i=1

Hi,i+1 +K−1
L HL,1KL , Hi,i+1 = Pi,i+1R′

i,i+1(0) . (F.8)

In the following, we will demonstrate that the bulk and boundary terms are separately
invariant.
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The bulk terms in (F.8) transform under parity as

ΠHi,i+1Π = HL+1−i,L−i = PL+1−i,L−iR′
L+1−i,L−i(0) . (F.9)

Then, the additional action of V ⊗L yields

V ⊗LΠHi,i+1ΠV
⊗L = PL+1−i,L−i VL−i VL+1−iR′

L+1−i,L−i(0)VL−i VL+1−i

= PL+1−i,L−iR′
L−i,L+1−i(0)

= HL−i,L+1−i . (F.10)

The summation over i yields

V ⊗LΠ

(
L−1∑
i=1

Hi,i+1

)
ΠV ⊗L =

L−1∑
i=1

HL−i,L+1−i =

L−1∑
j=1

Hj,j+1 . (F.11)

So, the bulk part is invariant under CP.

The transformation behaviour of the boundary term in (F.8) under parity is given by

ΠK−1
L HL,1KLΠ = K−1

1 H1,LK1 . (F.12)

Further,

V ⊗LΠK−1
L HL,1KLΠV

⊗L = V1 VLK−1
1 H1,LK1 V1 VL

= K1 V1 VLH1,L V1 VLK−1
1

= K1HL,1K−1
1

= K−1
L HL,1KL , (F.13)

where we have used (F.3) in passing to the second line while the crossing symmetry was
applied to reach the third line and to obtain the final equality, we have employed the fact
that

[HL,1 ,KLK1] = 0 . (F.14)

So we conclude that the boundary term is also CP invariant, hence, the full Hamiltonian
(F.8) is CP invariant.
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