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1. Introduction

Aircraft engines are maintained, repaired and overhauled
(MRO) in regular intervals to ensure safe operation. Alongside
an inspection, they are disassembled to a certain stage depend-
ing on the specific maintenance task. Thus, components or as-
semblies that need to be inspected, repaired or replaced are ac-
cessed. To ensure that maintenance operations are carried out
efficiently, modern turbofan engines have a modular design and
are assembled by bolted joints. Likewise, system components
such as cooling, electrical power generation, fuel components,
hydraulic or pneumatic systems essential for the operation of
the engine are connected to the engine with threaded fastenings.

Due to the harsh operating conditions of the engines, the
assemblies, components and their fasteners change their prop-
erties, necessitating maintenance. On detailed examination of
the threaded connections, the mentioned changes in properties
lead to the joints altering. Consequently, the needed loosening
torque is increased, and the fasteners can only be loosened with
substantial effort. That, in turn, increases the risk of damag-
ing the threaded fasteners during disassembly, for example, by
tearing off the screw heads. As a result, the damaged fasten-

ers have to be removed, leading to a significant additional ef-
fort due to potential further disassembly operations, extending
maintenance intervals, and eventually financial loss, according
to a maintenance service provider.

To prevent such damages and thus minimize the risk of fur-
ther consequences, in the transfer project ”Strategies for piezo-
assisted disassembly of bolted joints” of the Collaborative Re-
search Center (CRC) 871, ”Regeneration of Complex Capital
Goods” we are researching scientific methods and strategies for
a gentle disassembly. In this article we present our research on
the early detection of damaging the threaded fastener during
the disassembly operation. By tracing the loosening torque and
rotation angle, a machine learning algorithm will monitor the
unscrewing process and forewarn of a possible tear-off of the
screw head. Eventually, this prevents a destructive and thus en-
sures gentle disassembly of threaded connections.

This paper is structured as follows: In section 2, we will give
a brief overview about related research. In section 3, we present
the procedure and methods for our investigation, followed by
the results in section 4. The paper is concluded with a discus-
sion of the investigation in section 5, followed by an outlook
for future research in section 6.
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2. Related Work

As introduced, the focus is the non-destructive disassem-
bly of threaded fasteners, to minimize the risk of costly post-
processing. Semi-destructive disassembly might also be consid-
ered, as long as the fastener is damaged and no post-processing
of the base material, i.e. the aircraft engine, becomes necessary.
When unscrewing threaded connections, the loosening torque
is normally below the tightening torque and can be calculated
according to the relevant literature [1]. However, screw locking
mechanisms, such as mechanical, using i.e. toothed surfaces, or
chemical, using adhesives, increase the loosening torque. Also,
due to environmental influences, the aircraft’s operation and
overall wear, the condition of the threaded connections alter [2].
That change of the connection lead to a significant increase of
the loosening torque. In previous work, for example, we have
demonstrated that artificial aging of bolted joints increases the
loosening torque up to 50 % [3].

While the deliberate torque-increasing effect of locking
mechanisms is known, wear causes an unknown condition of
the connection. Therefore, the disassembly of aircraft engines
is predominantly characterized by manual work. By using spe-
cialized tools and treatment methods, the individual condition
of the threaded connection can be addressed. However, dur-
ing manual disassembly, damage such as stripped or torn screw
heads occurs due to weakened screw materials and overdimen-
sioned loosening torques. In contrast, automated disassembly
operations are supervised by the control unit, monitoring the
applied torque. In their work, Apley et al. (1998) categorized
four unscrewing conditions and their torque and shaft rotation
behavior [4]. Based on the time curves of the torque and the an-
gle of rotation, they recognized a distinction between: (1) The
disassembly tool properly engages the screw’s head, and it is
unscrewed, (2) the screwdriver engages the screw’s head, but it
slips on the head due to a damaged head, (3) due to an error
in locating the screw, the screwdriver missed the screw’s head
and rotates without being engaged and (4) the screwdriver en-
gages, but the applied torque is not sufficient to unscrew the
screw. However, the detection and distinction of each category
are still challenging and part of current research. While the first
category (1) is the desired case for a non-destructive disassem-
bly, latest research focuses on improving its detection as well
as the detection of stripped non-detachable screws (2) [5] and
optimized screw head localization and engagement strategies
(3) [6]. Category (4) is easy to recognize since there is no rota-
tion of the screwdriver, and the angle of rotation is, therefore,
equal to 0 [4].

Considering closer the fourth category (4), unscrewing is
performed with a maximum torque. A further increase in torque
has not been investigated in this context, as the focus has been
on non-destructive disassembly. Rather, this was investigated
for the tightening of bolted joints. For example, the German
engineering guideline VDI 2230 specified torque-controlled,
angle-controlled and yield-controlled tightening [7, 8]. How-
ever, these guidelines were established for the safe operation of
bolted joints by minimizing variations in preload force that can

range between ±30−50 % [8]. Especially the yield-controlled
tightening was detailed in these articles. With this procedure,
the recorded torque increment is continuously divided by the
increment of the angle of rotation by the assembly tool. By
observing this difference quotient, an elastic or plastic defor-
mation of the screw can be detected, and the tightening can be
completed at the desired plastic deformation [7, 8].

For our investigation, we will use the known approaches and
transfer them to the unscrewing task for disassembly. There-
fore, this paper aims to determine the detection of unscrew-
ing by the torque and angle of rotation diagrams. With manual
disassembly, however, it is clear whether the tool engages the
screw head or slips on a damaged head. In analogy to the re-
sults of Apley et al. (1998), the categories (2) and (3) can be
omitted [4]. Furthermore, it will be analyzed whether new cat-
egories can be determined. These categories will consider the
cases: 1. the screw can be turned and is in the elastic range,
2. the screw can be turned but is in the plastic range and 3. the
screw head tears off. Since we are also mainly focusing on man-
ual disassembly, the angle of rotation is often difficult or even
impossible to record, due to the manual handling of the disas-
sembly tools. We will therefore also look at the extent to which
the angle of rotation can be excluded from the analysis. Consid-
ering that, we evaluate the applicability of supervised machine
learning approaches, such as classification techniques [9].

3. Methods

This chapter describes the approach and method for our in-
vestigation. We present the test bench where the experiments
were executed. The experiments consist of torsional tests, in
which a loosening torque is applied to a tightened screw, and
the resulting unscrewing process is measured. Next, the exper-
imental setup is presented, followed by the description of the
test planning.

3.1. Test bench

Figure 1 shows the test bench which was used for the tor-
sional tests. The test bench consists of a drive motor with a
gearbox connected to the sample mounting via a torque measur-
ing shaft. The torque, rotational speed or angle can be adjusted
through that motor. On the other side of the sample mounting is
a brake motor with a gearbox, on which a counteracting load is
set. The torsion test bench can apply and measure a test torque
of up to 1.200 Nm and a rotational speed of up to 107 rpm. It
is connected to a PC running LabVIEW to control the function-
alities and store the measured values. The sampling rate of the
recording is 200 Hz. The measuring PC logs the measured data
of the actual torque, the angle of rotation and the set torque at
each time stamp. The measurements are terminated manually
after successful unscrewing or tearing off the screw head, re-
sulting in a different number of measurement points for each
run. That prevents the recording of measurements without any
informative value.
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Fig. 1. Dynamic torsion test bench with a test torque of up to 1.200 Nm and a rotational speed of up to 107 rpm

3.2. Experimental Setup

To examine the screws on the torsion test bench, a sam-
ple mounting was manufactured in which the screws are in-
serted. Figure 2 shows the sample mount. It consists of two
parts (Fig. 2a), in which the screw to be tested is mounted.
The left side has a machined hexagon slot, in which the screw
head is inserted and fixed using grub screws (Fig. 2b). The
right side has a three-jawed thread, which clamps or locks the
thread using the torsion test bench sample mount’s retaining
screws (Fig. 2c). Grub screws secure the jaws from falling out.

The experiments are performed using galvanized steel met-
ric M8 hexagon head screws of strength class 8.8 with a length
of 20 mm and regular threaded. For the experiment prepara-
tion, the M8 sample screws are screwed by the test bench into
the three-jawed mount with a tightening torque equals 25 Nm.
The test bench’s retaining screws are then tightened to lock the
thread in place. By varying the tightening torque of the retain-
ing screws on the thread mount, a clamping effect is created on
the thread of the screw. Thus, screw connections with different
tightness are generated, replicating different altered threaded
connections due to environmental influences. The following
section will give a more detailed description of the resulting
tightness (section 4). For the experimental studies, we tightened
the retaining screws to 25 Nm, 50 Nm, 70 Nm and 100 Nm, re-
spectively. Each experiment was conducted five times.

A maximum loosening torque is set on the test bench, with
which the screws are untightened. Since the screw heads in pre-
vious attempts tore off with a torque of about 50.3±5.5 Nm,
we set a maximum torque of 60 Nm, i.e. approximately 20 %
up. Thereby we ensure that the screw head will tear off and
the torque will not discontinue beforehand. With an increase
of 1 Nm/s, the test bench then applies the set torque in the un-
screwing direction.

4. Results

As aforementioned, by tightening and clamping the screw in
the three-jawed mount, we replicate altered screws due to en-
vironmental influences, i.e., the aircraft engine’s operation. As
the tightening torque of the retaining screws increased, the max-

a)

b) c)

Fig. 2. Sample mounting: a) Side view, b) top view of the hexagon mount for
the screw head, c) top view of the three-jaw mount for the thread

imum loosening torque of the sample screws also increased.
Looking at all the study’s results in general, we observed that
all five runs for each 25 Nm and 50 Nm were elastic unscrewed.
However, one of the five screw heads was torn off when tight-
ening with 70 Nm. In all experiments with 100 Nm, the screw
heads were torn off without any recognizable damage. For a
more in-depth investigation, we examine in excerpts of our ex-
periments plotted graphs of the torque and angle of rotation
curves, which will be analyzed in more detail in the follow-
ing. We present the comparison of elastic and plastic unscrew-
ing behavior. Then, a detailed examination of the gradients is
presented, allowing a more in-depth examination. Lastly, the
developing of an algorithm for pattern recognition and classifi-
cation is presented. The curves shown are only an excerpt of all
measurements. The other curves show similar behavior.
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4.1. Torque - Angle of rotation curves

Figure 3 shows an exemplary plot of the recorded measured
values loosening the metric M8 sample screw with a tightening
of the retaining screws of 25 Nm. As described in the previous
section, the set torque grows with 1 Nm/s. At the beginning of
the measurement, the tightening torque is still applied to the
screw’s head, shown by the negative values of the recorded ac-
tual values of the loosening torque. Only minimal movement
can be detected from the measured value of the angle of rota-
tion since the torque is first built up in the unscrewing direction.
After a time of approx. 11 s, an increase in the tool’s angle of ro-
tation can be detected when the values for the loosening torque
shift into the positive range and further increase. After a time of
approx. 22.5 s, a sudden increase of the tool’s angle of rotation
can then be seen, while the torque drops off suddenly after the
continuous ascent. At this point, the sample screw starts to be
unscrewed. The unscrewing torque is then significantly lower
than the maximum loosening torque but still quantifiable due to
the clamping of the thread and the resulting increased friction
during the elastic unscrewing operation.
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Fig. 3. Curve of the measured values for unscrewing at a tightening torque of the
retainer screws of 25 Nm. Dotted line represents the set loosening torque with
an increase of 1 Nm/s; solid line represents the actual values for the loosening
torque; dashed line represents the tool’s angle of rotation

In comparison, Figure 4 shows an exemplary plot with a
tightening of the retaining screws of 70 Nm. Due to the tighter
clamping of the thread, the maximum loosening torque was
considerably higher. The measured peak loosening torque be-
fore the unscrewing movement occurred was 50.9 Nm, lying
in the range of the previously determined maximum loosening
torque at which the screw heads likely tore off. Yet, the screw
was unscrewed without any noticeable plastic deformation, as
the curve is similar to Figure 3. Also, the tool’s angle of rota-
tion curve is similar to Figure 3. However, more absolute ro-
tational movement is necessary, to build up the torque. When
the unscrewing movement begins, the rotational increases and
follows a similar behavior, as the loosening torque drops.

When tightening the retainer screws with more than 70 Nm,
the sample screw’s head tore off. Figure 5 shows the curves
for a tightening torque of the retainer screws of 100 Nm. In the
curve of the loosening torque, there is initially a steady ascent,
as before. The measured peak value for the loosening torque
in this exemplary investigation was 52.0 Nm. However, in the
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Fig. 4. Curve of the measured values for unscrewing at a tightening torque of
the retainer screws of 70 Nm.

further process, there is an apparent flattening in the range of
about 50 Nm. In this region, we expect the plastic deformation
to appear, but it was not measured further. Compared to the
previous investigations, this state continues for about 10 s, be-
tween a time of approx. 50 to 60 s, until it slowly decreases
until a time of 63 s when then the measured loosening torque
drops abruptly. The tearing off of the screw head was clearly
audible. From here on, the head rotates loosely, which can be
seen in the torque curve near 0 Nm, before the recording of the
measurement was closed.
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Fig. 5. Curve of the measured values for unscrewing with subsequent tearing
off the screw head at a tightening torque of the retainer screws of 100 Nm.

4.2. Gradient curves

As seen in the graphs (Fig. 3, 4 and 5), the beginning and
the moment of tearing off the screw head were distinguishable
from the unscrewing of the screw. This has led to potential fluc-
tuations in the results. For better visibility, e.g. manual mon-
itoring, we filtered the noisy values for the loosening torque
with the 1-D median function of MATLAB R2022a (1000th-
order one-dimensional median filter). To further examine the
behavior during unscrewing, we also calculated and plotted the
gradient of the filtered actual loosening torque and the angle of
rotation. Figures 6 and 7 show the curves for the filtered torque
(a) and the corresponding gradient (b) for 70 Nm and 100 Nm,
respectively.

As before, similarities and differences can be identified in
the curves of the gradient of loosening torque and the angle
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R. Blümel / Procedia CIRP 00 (2023) 000–000 5

of rotation: Up to the maximum release torque, a significant in-
crease in the loosening torque with a slight increase in the angle
of rotation can be identified. In the plots for 70 Nm (Fig. 6b),
the loosening of the screw and the subsequent unscrewing can
be recognized by a gradually decreasing torque right after a no-
ticeable peak. This behavior indicated an elastic unscrewing.
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Fig. 6. Curve of the evaluated values of Figure 4. a): Dotted line represents
the set torque with an increase of 1 Nm/s; dashed line represents the filtered
values of the actual loosening torque. b): solid line represents the gradient of
the filtered loosening torque and the angle of rotation

However, in the curve for 100 Nm (Fig. 7b), the gradient
is apparent flattening, although a rotational movement occurs,
seen by the increasing angle of rotation and a roughly constant
and slightly decreasing applied torque. The slight decrease is
followed by a significant drop of the torque. We also assume
that the flattening of the gradient implied the beginning of plas-
tic deformation of the screw, which subsequently led to necking
and the subsequent tearing off of the screw head. Therefore, if
a flattening gradient of the loosening torque and angle of rota-
tion is observed, possible damage, such as the tearing off of the
screw head, can be detected at an early stage. A flattening of the
gradient over the progress of the disassembly operation with an
apparent movement can indicate upcoming damage.

In summary, the gradient could detect at an early stage
whether unscrewing or plastic deformation is occurring with
subsequent tearing off of the screw head. This allows thresh-
olds to be defined for the gradient. When the thresholds are
exceeded, it can be determined whether unscrewing or plastic
deformation will occur. While recording and monitoring of the
angle of rotation are feasible for automated disassembly, they
will be complex tasks in manual disassembly. Since, the worker
exerts the tool’s movement, no detailed data on the angle of ro-
tation is available. However, the torque is measured. As seen in
the graphs, the applied torque provides sufficient data to be ad-
equate for a determination of the occurring unscrewing events.
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Fig. 7. Curve of the evaluated values of Figure 5.

4.3. Classification using machine learning

Manual monitoring of the torque and angle of rotation curves
during the disassembly process already provides promising in-
dicators for the early detection of a tear-off of the screw head.
With the help of machine learning algorithms, we aim to sup-
port the detection process. MATLAB 2022a offers the function
of a Classification Learner application. The application trains
the data and proposes the best fitting algorithm for the input.

Before the classification, the feature exploring and extraction
is necessary. That includes determining the unscrewing events
on which the classification algorithm is to be trained [10].
We used the Signal Labeler application in MATLAB to man-
ually define the regions in the unfiltered data, as in subsec-
tion 4.1, where the previously recognized events, elastic un-
screwing, plastic deformation and tearing off the screw head,
occurred. Then, the data was exported to the Classification
Learner, trained to predict the events. The input data are the
arrays containing the labeled excerpts of the loosening torque
curves and the outputs are the corresponding events. By using
the data recorded at 200 Hz, the proposed algorithm can bet-
ter distinguish between sudden action of unscrewing or tearing
off and slower plastic deformation. Entering our data of 26 ex-
tracted features, the Classification Learner will train the algo-
rithm, followed by a 5-fold cross-validation. Thus, the applica-
tion divides the data into five disjoint sets (fold). Four folds are
used as training data, while the remaining fold (held-out fold)
is used as validation data to train the model. That is done five
times, each time using a different held-out fold. The accuracy is
calculated for each iteration, while the average is the accuracy
for the model. Thereby, we both prevent over- or underfitting.
The algorithm recommended by the classification learner was
the classification decision tree [11]. Figure 8 shows the con-
fusion matrix for the validation of the Fine Tree classification
with 19 out of 26 correctly assigned features.

However, the wear-heavy test procedure had a disadvan-
tageous effect. High tension forces had to be applied to the
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tic deformation of the screw, which subsequently led to necking
and the subsequent tearing off of the screw head. Therefore, if
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tion is observed, possible damage, such as the tearing off of the
screw head, can be detected at an early stage. A flattening of the
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angle of rotation are feasible for automated disassembly, they
will be complex tasks in manual disassembly. Since, the worker
exerts the tool’s movement, no detailed data on the angle of ro-
tation is available. However, the torque is measured. As seen in
the graphs, the applied torque provides sufficient data to be ad-
equate for a determination of the occurring unscrewing events.
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Manual monitoring of the torque and angle of rotation curves
during the disassembly process already provides promising in-
dicators for the early detection of a tear-off of the screw head.
With the help of machine learning algorithms, we aim to sup-
port the detection process. MATLAB 2022a offers the function
of a Classification Learner application. The application trains
the data and proposes the best fitting algorithm for the input.

Before the classification, the feature exploring and extraction
is necessary. That includes determining the unscrewing events
on which the classification algorithm is to be trained [10].
We used the Signal Labeler application in MATLAB to man-
ually define the regions in the unfiltered data, as in subsec-
tion 4.1, where the previously recognized events, elastic un-
screwing, plastic deformation and tearing off the screw head,
occurred. Then, the data was exported to the Classification
Learner, trained to predict the events. The input data are the
arrays containing the labeled excerpts of the loosening torque
curves and the outputs are the corresponding events. By using
the data recorded at 200 Hz, the proposed algorithm can bet-
ter distinguish between sudden action of unscrewing or tearing
off and slower plastic deformation. Entering our data of 26 ex-
tracted features, the Classification Learner will train the algo-
rithm, followed by a 5-fold cross-validation. Thus, the applica-
tion divides the data into five disjoint sets (fold). Four folds are
used as training data, while the remaining fold (held-out fold)
is used as validation data to train the model. That is done five
times, each time using a different held-out fold. The accuracy is
calculated for each iteration, while the average is the accuracy
for the model. Thereby, we both prevent over- or underfitting.
The algorithm recommended by the classification learner was
the classification decision tree [11]. Figure 8 shows the con-
fusion matrix for the validation of the Fine Tree classification
with 19 out of 26 correctly assigned features.

However, the wear-heavy test procedure had a disadvan-
tageous effect. High tension forces had to be applied to the
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thread, which weakened the materials, especially for record-
ing the screw tear-off cases. The results showed that further
effort is required to complement the class for disassembly pro-
cesses with damaged screws. Although the approach generally
displays the intended result, the lack of the plastic deformation
and tear-off screw head categories is evident. Also, the manual
labeling of the data can lead to misidentifications. Further re-
search and experimental investigation, significantly expanding
on those categories, is essential. Then, live monitoring for early
detection can be developed and integrated.

5. Discussion

In the evaluation of our tests, we were able to distinguish
well between unscrewing and tearing off the screw head. As we
introduced, we aimed to determine new categories and to detect
upcoming damages during unscrewing. A more detailed analy-
sis of the recorded curves for the torque, the angle of rotation
and their gradient indicated different events for elastic unscrew-
ing, plastic deformation and tearing off of the screw head. How-
ever, we could not detect any successful unscrewing process in
which the sample screw was plastically deformed without tear-
ing off the head. The clamping of the thread also damaged the
sample mounting, so that it had to be reworked several times.
This has led to potential fluctuations in the results. In further
investigations, we are working on the extension of the experi-
ments. That includes the optimization of the sample mounting,
also to be able to record plastic unscrewing processes.

Instead of complex analysis and the learning of algorithms,
a simple decision tree could also be used, which stops any dis-
assembly process when exceeding a given maximum torque (in
this case, approx. > 50.3 minus a safety value). But, important
aspects would not be considered: On the one hand, fatigue be-
havior can weaken bolts and change torque limits. On the other
hand, our investigations show that disassembly near the torque
limits is feasible but requires monitoring. The supervision of the
given maximum torque should be integrated to the monitoring
developed from our work.

6. Outlook

An existing test environment was used for the investigation.
It is primarily designed to test friction-welded shafts with di-
ameters of up to 60 mm for torsional strength and dynamic en-
durance tests using high torques. The sample mount used for
the bolts showed usability in the results but only limited dura-

bility due to its earliest design. In future work, we plan to design
and build a test environment, with a better dimensioned range
for the investigated M8 bolts. Thus less noisy measurements are
achieved.

Also, we will examine the extent to which the e.g. aircraft
engine’s operation weakens the screws. For example, it reduces
the strength of the screw and thus reduces the torque at which
the screw head tears off. We will use artificial aging to replicate
various operating scenarios, including examining the screws of
used aircraft engines. In addition, in the case of real altered
screw connections, e.g. rusted screws, an increased friction be-
havior also occurs in the head contact surface, which is not
considered further in the case of the thread clamping, we used
in our investigation. Therefore, an optimized mounting for the
sample screws must be developed for further studies that ad-
dress both cases: thread friction and head contact surface fric-
tion. That will also allow the studies for machine learning to be
extended.
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[3] R. Blümel, A. Raatz, Research on gentle loosening of solidified bolted
joints for complex capital goods, Procedia CIRP 105 (2022) 541–546.
doi:10.1016/j.procir.2022.02.090.

[4] D. W. Apley, G. Seliger, L. Voit, J. Shi, Diagnostics in disassembly un-
screwing operations, International Journal of Flexible Manufacturing Sys-
tems 10 (2) (1998) 111–128. doi:10.1023/a:1008089230047.
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