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Excitation of Forbidden Electronic Transitions in Atoms by
Hermite–Gaussian Modes

Anton A. Peshkov, Elena Jordan, Markus Kromrey, Karan K. Mehta,
Tanja E. Mehlstäubler, and Andrey Surzhykov*

Photoexcitation of trapped ions by Hermite–Gaussian (HG) modes from
guided beam structures is proposed and investigated theoretically. In
particular, simple analytical expressions for the matrix elements of induced
atomic transitions are derived that depend both on the parameters of HG
beams and on the geometry of an experiment. By using these general
expressions, the 2S1∕2 →

2F7∕2 electric octupole (E3) transition is investigated
in an Yb+ ion, localized in the low–intensity center of the HG10 and HG01

beams. It is shown how the corresponding Rabi frequency can be enhanced
by properly choosing the polarization of incident light and the orientation of
an external magnetic field, which defines the quantization axis of a target ion.
The calculations, performed for experimentally feasible beam parameters,
indicate that the achieved Rabi frequencies can be comparable or even higher
than those observed for the conventional Laguerre–Gaussian (LG) modes.
Since HG-like modes can be relatively straightforwardly generated with high
purity and stability from integrated photonics, these results suggest that they
may form a novel tool for investigating highly-forbidden atomic transitions.

1. Introduction

In the past years there has been increasing interest in the use
of structured light fields in microscopy,[1] optical tweezers,[2] ma-
nipulating cold quantum gases,[3] as well as classical and quan-
tum communication systems.[4,5] This interest is spurred by the
unique properties of structured light such as spatially dependent
amplitude, phase, and polarization.[6,7] From a metrological per-
spective, structured light is of particular importance because of
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its potential to excite narrow-line clock
transitions with simultaneous suppres-
sion of the undesirable light shift. This
can be achieved since structured light
beams exhibit highly inhomogeneous
intensity profiles with a dark (low–
intensity) center. An atom or ion, placed
in this center, is exposed to an electric
field of low strength but high gradient,
which favors non-dipole transitions but
weakly perturbs atomic levels. Such an
“excitation in the darkness” has been suc-
cessfully demonstrated in experiments
with a single trapped 40Ca+ [8] and an
171Yb+ ion.[9] In these experiments, ions
interacted with conventional Laguerre–
Gaussian (LG) modes and the excita-
tion probability exhibited a strong depen-
dence on both polarization and applied
magnetic field orientation.[10,11] Similar
studies have been performed with optical
standing waves.[12,13]

Even though both experiments with 40Ca+ and 171Yb+ ions
have provided important steps toward operating the dipole-
forbidden transitions with structured light, they suffered from
imprecise localization of a target ion with respect to the low-
intensity laser beam center. This uncertainty in target localiza-
tion arises not only from the thermal motion of an atom in a
trap, but also from the lack of laser beam pointing stability. The
latter problem can be partially solved by using the integrated
schemes in which the light delivery optics is fabricated directly
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into the atom traps.[14–16] Such photonic integrated circuits are
produced using lithographic techniques that result in rectangu-
lar waveguide structures. The geometry of these structures al-
lows fairly straightforward excitation of free-space beams approx-
imating Hermite–Gaussian (HG) modes, which in contrast to
Laguerre–Gaussian ones do not possess the rotational symmetry.
In this contribution, therefore, we propose to use HG modes in
photonic integrated setups for precision spectroscopy on strongly
forbidden (atomic clock) transitions. To assess the feasibility of
this approach, we investigate here how a single trapped Yb+ ion
interacts with Hermite–Gaussian light.
The paper is organized as follows. In Section 2 we briefly

discuss the derivation of amplitudes for the excitation of a sin-
gle trapped atom by polarized HG beams. Based on the ob-
tained expressions we explore in Section 3 the laser–induced
2S1∕2(F = 0) → 2F7∕2(F = 3,M = 0) electric octupole (E3) transi-
tion in 171Yb+ ion localized in the dark center of the beam. Spe-
cial attention is paid to the question of how the Rabi frequency
Ω(HG) of this transition is affected by the polarization of inci-
dent Hermite–Gaussian light and the orientation of an exter-
nal magnetic field. Moreover, we present the results of calcula-
tions of Ω(HG) for realistic experimental parameters which indi-
cate that HG modes can serve as a valuable tool for studying
dipole–forbidden transitions in an integrated optical setup. Fi-
nally, Section 4 provides a conclusion and an outlook.

2. Theory

2.1. Bessel Modes

Before we analyze the process of photoexcitation by HG modes,
we first recall the simpler problem of an atom interacting with
Bessel light. Since this topic has been extensively discussed in the
literature,[11,17–19] we restrict ourselves here to basic expressions.
The Bessel beam is characterized by a well-defined projectionm𝛾

of the total angular momentum upon its propagation direction,
the helicity 𝜆, and the longitudinal component kz of the linear
momentum. Moreover, the absolute value of the transverse mo-

mentum |k⟂| = 𝜘, and hence the frequency𝜔 = ck = c
√
k2z + 𝜘2,

are also fixed. The vector potential of such a Bessel beam

A(B)
m𝛾 𝜆

(r; 𝜘, kz) = ∫ a𝜘m𝛾
(k⟂) ek𝜆 e

ikr d
2k⟂

(2𝜋)2
(1)

can be written as a superposition of plane waves with wave vec-
tors k uniformly distributed upon the surface of a cone, whose
axis coincides with the light propagation direction and whose
opening angle is given by 𝜃k = arcsin(𝜘∕k). In Equation (1), ek𝜆
is the photon polarization vector satisfying the Coulomb gauge
condition ek𝜆 ⋅ k = 0, and the amplitude a𝜘m𝛾

(k⟂) is defined by

a𝜘m𝛾
(k⟂) =

2𝜋
𝜘 (−i)m𝛾 eim𝛾𝜙k 𝛿(k⟂ − 𝜘) (2)

where 𝜙k is the azimuthal angle of the wave vector.
With the help of the vector potential (Equation (1)), we can

write down the amplitude for a radiative transition |𝛼gFgMg⟩ +
𝛾 → |𝛼eFeMe⟩. The ground and excited states of an atom are char-
acterized here by nuclear I, electron J, and total F = I + J angular

Figure 1. Geometry of the excitation of a single trapped atom by Hermite–
Gaussian modes. The angle 𝜃 defines the direction of the quantization
axis (determined by the external magnetic field) with respect to the light
propagation direction. The x–z plane is spanned by the light propagation
axis and themagnetic field. The atom is localized in the vicinity of the beam
center located at x = y = 0.

momenta, and the projection M = MF on the atomic quantiza-
tion axis. This axis is directed along the external magnetic field B,
tilted at an angle 𝜃 with respect to the light propagation direction
(see Figure 1). Moreover, 𝛼 denotes all the additional quantum
numbers that are needed for a unique specification of the states.
The transition amplitude is

(B)
Me Mg

=

⟨
𝛼eFeMe

|||||
∑
q

𝜶q A
(B)
m𝛾 𝜆

(rq; 𝜘, kz)
|||||𝛼gFgMg

⟩

= ∫ a𝜘m𝛾
(k⟂) e

−ik⟂b

×

⟨
𝛼eFeMe

|||||
∑
q

𝜶q ek𝜆 e
ikrq

|||||𝛼gFgMg

⟩
d2k⟂
(2𝜋)2

(3)

where 𝜶q is the vector of Dirac matrices for the qth electron, and
the impact parameter b specifies the lateral position of an atom
with respect to the beam axis. This parameter is introduced since
Bessel and Hermite–Gaussian modes have a complex position-
dependent structure. For Bessel beams, the case of zero impact
parameter, b = 0, corresponds to an atom located on a vortex
line.[11]

In order to compute the amplitude (Equation (3)), we need
to choose the quantization axis of the entire system “atom plus
light.” The two most obvious choices are the light propagation
axis and the magnetic field direction. Of course, physical observ-
ables are independent of a particular choice of coordinate system.
For the purposes of analysis, however, it is practical to take the
overall quantization axis along the B-field. Having defined the ge-
ometry, we can now apply the standard multipole decomposition
technique to the vector potential of the radiation field.[20] Namely,
the expansion of the plane-wave components of A(B)

m𝛾 𝜆
is

ek𝜆 e
ikr =

√
2𝜋

∑
pLMM′

iL [L]1∕2 (i𝜆)p DL
M𝜆(𝜙k, 𝜃k, 0)

× DL
M′M(𝜋, 𝜃, 𝜋) a

(p)
LM′ (r) (4)
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whereDL
M𝜆 is theWignerD-function, [L] = 2L + 1, and a(p)LM′ refers

to magnetic (p = 0) and electric (p = 1) multipole potentials. In
Equation (4), 𝜃k and 𝜙k are angles that determine the propagation
direction of each plane-wave component with respect to the beam
axis and the x–z plane, respectively. Making use of the Wigner–
Eckart theorem and integrating over k⟂, we find

(B)
MeMg

(b) =
√
2𝜋

∑
pLM

iL [L, Fg]
1∕2 (i𝜆)p (−1)m𝛾 iM

× ei(m𝛾−M)𝜙b dLM,𝜆(𝜃k) d
L
M,Me−Mg

(𝜃) Jm𝛾−M(𝜘b)
× ⟨FgMg LMe −Mg|FeMe⟩ (−1)Je+I+Fg+L
×

{
Fe Fg L

Jg Je I

}⟨𝛼eJe||H𝛾 (pL)||𝛼gJg⟩ (5)

with dLM,𝜆 and Jm𝛾−M being the smallWigner and Bessel functions,
respectively. Here we have introduced, moreover, the reduced
matrix element of the transition operator H𝛾 (pL) =

∑
q 𝜶qa

(p)
L (rq)

that does not depend on the projections of the angular momenta
of an atom and photon. As seen from Equation (5), the matrix
element(B)

MeMg
depends on the tilt angle 𝜃 of the magnetic field,

the atom’s impact parameter b, the opening angle 𝜃k, the helicity
𝜆, and the total angular momentum projection m𝛾 of the beam.
In the past, Equation (5) has been employed to study transitions
in atoms and ions exposed to Bessel and Laguerre–Gaussian
beams.[9,21] The application of this formula to the latter case is
justified when an atom is located near a vortex line, where the
phase and intensity patterns of LG and Bessel modes are almost
identical.[22]

2.2. Hermite–Gaussian Modes

Having discussed how to compute the transition amplitudes for
Bessel (and LG) radiation, we can consider now photoexcitation
of an atom byHermite–GaussianmodesHGmn. These are known
to be solutions of the paraxial wave equation in Cartesian coordi-
nates and are usually characterized by two indicesm and n, which
determine their transverse intensity profile.[23] In our study we
will focus on the modes HG00 (Gaussian beam), HG10, and HG01
that are planned to be used in future clock on a chip experiments
at PTB.
In contrast to diffraction-free Bessel solutions, the intensity

distribution of which is the same in every plane normal to the
beamaxis, thewidth ofHG intensity profile changes during prop-
agation. In planned experiments, a target atom or ion will be
placed in the plane of minimum width, at z = 0. In this plane
the vector potentials of the HG00, HG10, and HG01 modes with
the frequency 𝜔 and the beam waist w0 can be written as

A(HG00)(x, y) = eA0 e
−(x2+y2)∕w20 (6a)

A(HG10)(x, y) = eA0
2x
w0

e−(x
2+y2)∕w20 (6b)

A(HG01)(x, y) = eA0
2y
w0

e−(x
2+y2)∕w20 (6c)

where e is the polarization vector.[24] In Equation (6), the constant

A0 =
√
4P∕(c𝜖0𝜔2𝜋w2

0) is chosen in such a way that an integral of

the intensity I = c𝜖0𝜔
2|A|2∕2 over the beam cross-section gives

the total power P.[25,26] It follows from Equation (6) that the HG10
and HG01 modes have one nodal line directed along y- and x-
axes, respectively. As seen from the upper panel of Figure 2, each
of these lines separates two bright spots. Thus, in contrast to the
case of Bessel and Gaussian modes, the HG10 and HG01 solu-
tions do not have axial symmetry with respect to the direction of
light propagation.
Rigorous calculation of the transition amplitudes forHermite–

Gaussianmodes is somewhatmore complicated than for the case
of Bessel radiation. Fortunately, in the region near the beam cen-
ter located at x = y = 0 the HG00, HG10, and HG01 modes (Equa-
tion (6)) can be well approximated by a linear combination of
Bessel solutions (Equation (1)) in the paraxial regime. In partic-
ular, for the circularly polarized Hermite–Gaussian beams, we
find

A(HG00)
𝜆=±1 ≈ ±iA0 A

(B, par)
ml=0, 𝜆=±1

(7a)

A(HG10)
𝜆=±1 ≈ ±1.04

iA0√
2

[
A(B, par)
ml=+1, 𝜆=±1

− A(B, par)
ml=−1, 𝜆=±1

]
(7b)

A(HG01)
𝜆=±1 ≈ ±1.04

A0√
2

[
A(B, par)
ml=+1, 𝜆=±1

+ A(B, par)
ml=−1, 𝜆=±1

]
(7c)

where

A(B, par)
ml𝜆

(r) ≈ A(B)
m𝛾 𝜆

(r; 𝜘 ≪ kz)

= e𝜆 (−i)𝜆Jml
(𝜘r⟂) eiml𝜙 eikzz (8)

The latter expression is obtained fromEquation (1) by integrating
over k⟂ under the paraxial condition 𝜘 ≪ kz, see ref. [11] for fur-
ther details. In Equation (8), ml = m𝛾 − 𝜆 denotes the projection
of the orbital angular momentum, and e𝜆 ≡ ek∥z,𝜆 with 𝜆 = ±1
stands for the vector describing the states of right-hand and left-
hand circularly polarized radiation.
In order to approximate the HG solutions (Equation (6)) by the

paraxial Bessel beams (Equation (8)), we have also adjusted the ra-
tio of the transverse to the longitudinal photon momentum com-
ponents determined by the opening angle 𝜃k, as well as the gen-
eral prefactors. In particular, while for HG00 we have chosen 𝜃k =
arcsin[2∕(w0k)], the opening angle 𝜃k = arcsin[2.6∕(w0k)] and the
prefactor 1.04 are taken for HG10 and HG01. For these choice of
parameters, Equations (6) and (7) give almost equivalent vector
potentials in the vicinity of the beam center located at x = y = 0.
For example, for the case of the modes with wavelength 467 nm
and beam waist 3 μm displayed in the upper panel of Figure 2,
this region is bounded by −2 μm < x < 2 μm and −2 μm < y
< 2 μm. This is sufficient to describe future experiments with
Doppler cooled atoms in which atom localization near the beam
center below 40 nm is expected due to thermal fluctuations. In-
deed, we found for the μm range that the difference between
transition amplitudes, obtained within the “Bessel” approxima-
tion and by exact calculations for HGmodes, is less than 5%. For
the chosen parameters, we can also neglect the effects of the z-
dependence of the beam intensity profile, since its Rayleigh range
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Figure 2. Top: Intensity profiles for Hermite–Gaussian modes HG00 (left), HG10 (middle), and HG01 (right), linearly polarized along the x-axis. Bottom:
Corresponding probabilities of the |Fg=0, Mg=0⟩ + 𝛾 → |Fe=3, Me=0⟩ transition as a function of the magnetic field tilt angle 𝜃 for a single 171Yb+

ion placed exactly at the beam center (blue solid lines) or exhibiting spatial distribution with width parameter 𝜎 = 40 nm (red dashed lines) and 𝜎 = 100
nm (green dash-dotted lines). Calculations were performed for the wavelength of 467 nm, the beam waist w0 = 3 μm, the total power P = 1 mW, and
the pulse duration t = 1.5 ms.

of about 60 μm (i.e., the distance at which the beam width in-
creases noticeably) is much larger than the expected fluctuations
of the z-coordinate of an atom.
By making use of Equation (7), we can express the transition

amplitudes for excitation of an atom by circularly polarized HG
modes

(HG00)
MeMg

(𝜆 = ±1) ≈ ±i A0 (B, par)
MeMg

(ml = 0, 𝜆 = ±1) (9a)

(HG10)
MeMg

(𝜆 = ±1) ≈ ±1.04A0
i√
2

×
[(B, par)

MeMg
(ml = +1, 𝜆 = ±1)

−(B, par)
MeMg

(ml = −1, 𝜆 = ±1)
]

(9b)

(HG01)
MeMg

(𝜆 = ±1) ≈ ±1.04A0
1√
2

×
[(B, par)

MeMg
(ml = +1, 𝜆 = ±1)

+(B, par)
MeMg

(ml = −1, 𝜆 = ±1)
]

(9c)

in terms of their Bessel counterparts (Equation (5)). These for-
mulas can be readily used to obtain the amplitudes for linearly
polarized light

(HG00,10,01)
MeMg

(x) = 1√
2

[(HG00,10,01)
MeMg

(𝜆 = +1)

+(HG00,10,01)
MeMg

(𝜆 = −1)
]

(10a)

(HG00,10,01)
MeMg

(y) = i√
2

[(HG00,10,01)
MeMg

(𝜆 = −1)

−(HG00,10,01)
MeMg

(𝜆 = +1)
]

(10b)

where we have employed the standard relationships ex = (e𝜆=+1 +
e𝜆=−1)∕

√
2 and ey = i(e𝜆=−1 − e𝜆=+1)∕

√
2 between linear and circu-

lar polarization unit vectors.[20]

3. Results and Discussion

While the theory presented above can be applied to describe ex-
citation of an arbitrary atom by low-order HG modes, here we
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will consider the 4f146s 2S1∕2(F=0) → 4f136s2 2F7∕2(F=3) transi-
tion in the 171Yb+ ion. This 467 nm transition, proceeding via
the E3 channel, is of great interest since it serves as the ref-
erence for high-precision optical clocks and enables searches
for new physics.[27–29] Below we shall focus our attention on
the transition between the magnetic sublevels Mg = Me = 0
that can be spectroscopically resolved by the Zeeman effect.
As seen from Equation (5), the evaluation of the transition
amplitudes requires knowledge of the reduced matrix element⟨4f136s2 2F7∕2||H𝛾 (E3)||4f146s 2S1∕2⟩. Its calculation for 171Yb+ is a
very complicated task, requiring the use of sophisticated atomic
structure theories. To avoid this, we can estimate the matrix ele-
ment from the expression

⟨4f136s2 2F7∕2||H𝛾 (E3)||4f146s 2S1∕2⟩ = √
1

𝜋𝛼𝜔𝜏
(11)

which relates it to the measured lifetime 𝜏 = 4.98 × 107 s of the
2F7∕2 excited state.

[30,31] We shall also assume that the total power
of the beam is P = 1 mW and its waist is w0 = 3 μm. A similar
parameter range has been employed in recent experiments on
excitation of the E3 transition in 171Yb+ ion by LG light.[9]

3.1. Transition Probability

We are ready now to use Equation (10) to compute the proba-
bility W of excitation of a 171Yb+ ion by linearly polarized HG
modes. For a well-defined impact parameter of an atom, this tran-
sition probability is given by W(b) = |ec(HG)(b)∕ℏ|2t2∕4. This
approximate formula was derived from the analysis of Rabi os-
cillations for short interaction times t.[32] In calculations below
we assume t = 1.5 ms which is much smaller than the inverse
Rabi frequency.
As already mentioned above, in real experiments it is not pos-

sible to achieve perfect control of the atom’s position. To account
for such uncertainty, we assume that the impact parameter b fol-
lows a Gaussian distribution with a width 𝜎

f (b) = 1
2𝜋𝜎2

e−
b2

2𝜎2 (12)

With the help of f (b), we can use a semi-classical approximation
to express the transition probability for a single atom target, cen-
tered on the beam axis, as

W (HG)
x, y =

(ect)2

4ℏ2 ∫ f (b) |||(HG)
MeMg

(x, y)|||2 d2b (13)

In the past this approximation has been successfully employed
to describe experimental results obtained for LG modes.[9]

Figure 2 shows the transition probabilities as a function of
the magnetic field tilt angle 𝜃 for HG00 (left), HG10 (middle),
and HG01 (right) modes, linearly polarized along the x-direction.
Here, the blue solid line represents the results for an atom placed
exactly at the beam center (b = 0, 𝜎 = 0), while the red dashed and
green dash-dotted lines correspond to the predictions of Equa-
tion (13) for the spatial distribution f (b) with width parameters
𝜎 = 40 and 100 nm, respectively. Since beam-pointing fluctua-
tions are expected to be negligible in an integrated optics setup,

we estimated these parameters based on the thermal spread of
an spatial atomic wavepacket. In this case, 𝜎 can be derived from
the relation ma𝜔

2
r𝜎

2∕2 = kBT∕2 for a classical harmonic oscilla-
tor, where ma is the mass of an ion and T is its temperature.
With the help of this expression, we obtained the above men-
tioned widths 𝜎 for a realistic trapping frequency 𝜔r = 2𝜋 × 600
kHz and temperatures T = TDoppler = 0.5 mK corresponding to
the Doppler cooling limit and T = 3.1 mK. In the later discus-
sion of the light shift we will also consider a smaller width 𝜎 = 10
nm, which corresponds to the size of the quantum mechanical
ground-state wave function of the trapped Yb+ ion. We see that
the excitation probabilityW (HG00)

x for the Gaussian beam is insen-
sitive to variations of the target size. This can be expected since
the Gaussian beam size ≈ 3 μm is large compared to any of the
width parameters considered here. Therefore, the intensity and
phase of HG00 mode are almost constant over the entire spread
of a target. For this case, the excitation probability exhibits the
well-known plane-wave behavior,[11] reaching maximum values
at angles 𝜃 = 31◦, 90◦, and 149◦.
A different behavior of W (HG)

x can be observed for HG10 and
HG01 modes. For these two cases, the delocalization of an atom
may influence the excitation probability; however, the effect be-
comes pronounced only for very large targets, 𝜎 ≈ 100 nm. Such
a 𝜎-dependence is caused by the inhomogeneity of the electric
field distribution of HG10 andHG01 beams. Moreover, their com-
plex internal structure also affects the 𝜃-dependence of the transi-
tion probability. For example,W (HG10)

x is enhanced at 𝜃 = 0◦, 60◦,
120◦, and 180◦, which is much different from what was observed
for the Gaussian regime. In contrast, W (HG01)

x exhibits a qualita-
tively similar 𝜃-dependence asW (HG00)

x , but is strongly suppressed
and becomes observable only for large targets.
Figure 3 displays the excitation probabilities for the same

three modes, HG00, HG10, and HG01, but for linear polariza-
tion in the y-direction. As seen from the figure, HG00 and HG10
light beams hardly induce the Mg=0 → Me=0 transition, re-
gardless of the tilt angle 𝜃 of the magnetic field. This suppres-
sion of the E3 transition can be explained using symmetry ar-
guments. For example, for plane-wave radiation and the tran-
sition of interest, a detailed discussion of zero excitation prob-
ability based on the symmetry analysis of ionic states and of
incident light has been presented in ref. [11]. Similar analysis
can be performed for the y-polarized HG10 mode (as well as
for the x-polarized HG01 mode from Figure 2) if an atom is lo-
cated at b = 0. Indeed, from the properties of Clebsch–Gordan
coefficients and Wigner D-functions, it follows that both HG
modes produce the excited state |𝜓e⟩ = [|Fe=3, Me=+2⟩ − |Fe=
3, Me=−2⟩]∕√2 when the quantization axis of the system coin-
cides with the light propagation direction, that is, if 𝜃 = 0. This
result is consistent with symmetry considerations. Namely, the
state |𝜓e⟩ is invariant under rotation about the z-axis through an
angle of 180◦, thus reflecting the symmetry of the electric field of
HG modes. To extend the analysis to an arbitrary orientation of
the quantization axis, one can perform a rotation of the coordi-
nate system, which shows that the probability P0 = |⟨Fe=3, Me=
0| 1√

2

∑
M′

e
[dFe+2,M′

e
(𝜃) − dFe−2,M′

e
(𝜃)]|Fe = 3, M′

e⟩|2 of finding an ion in
the excited state |Fe=3, Me=0⟩ is zero, regardless of the orienta-
tion of the magnetic field. The above analysis is not fully justified
for a delocalized atom. Nevertheless, for the latter case, 𝜎 > 0,
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Figure 3. Same as Figure 2, but for the linear polarization along the y-axis.

the probability of the E3 transition induced by HG10 (y-polarized)
mode is very tiny and hence is not seen in the middle panel of
Figure 3. In contrast, excitation with HG01 is possible for small
and large tilt angles and is most pronounced for 𝜃 = 0◦ and 180◦.

3.2. Rabi Frequency and Light Shift

As seen from Figures 2 and 3, the results obtained for a perfectly
localized atom, b = 0 and 𝜎 = 0, differ only little from the predic-
tions of Equation (13) for 𝜎 = 40 nm at Doppler temperature. We
argue therefore that the atomic spread effects can be neglected in
the analysis of future experiments in which the size of a target is
much smaller than the beam waist. As mentioned above, this is
the case for planned studies at PTB, where an integrated optics
scheme improves the pointing stability of the laser beam rela-
tive to the ion. The approximation of a perfectly localized atom
allows one to derive simple analytical expressions for the Rabi
frequency

Ω(HG) = ec
ℏ

|||(HG)
MeMg

(b = 0)||| (14)

Indeed, by making use of Equations (10) and (14) for the case of
the |Fg=0, Mg=0⟩ + 𝛾 → |Fe=3, Me=0⟩ E3 transition, induced
by various linearly polarized Hermite–Gaussian modes, we find

Ω(HG00)
x ≈

√
6P

ℏ𝜔k2w2
0𝜏

||sin 𝜃(5 cos2 𝜃 − 1)|| (15a)

Ω(HG10)
x ≈ 2.7

√
3P

ℏ𝜔k4w4
0𝜏

||cos 𝜃(15 cos2 𝜃 − 11)|| (15b)

Ω(HG01)
y ≈ 2.7

√
3P

ℏ𝜔k4w4
0𝜏

||cos 𝜃(5 cos2 𝜃 − 1)|| (15c)

Ω(HG00)
y = Ω(HG10)

y = Ω(HG01)
x ≈ 0 (15d)

wherewe have employed the paraxial approximation of the Bessel
amplitude obtained from Equation (5) for small opening angles
𝜃k.
In Figure 4we shownon-zero Rabi frequenciesΩ(HG00)

x ,Ω(HG10)
x ,

andΩ(HG01)
y , calculated for the set of parameters mentioned at the

beginning of Section 3.We see that while the Rabi frequencymay
reach Ω(HG00)

x ≈ 2𝜋 × 90 Hz for the Gaussian mode and 𝜃 = 31◦

or 149◦, its maximum values are Ω(HG10)
x = Ω(HG01)

y ≈ 2𝜋 × 12 Hz
for the HG10 andHG01 light beams and B ∥ kz. It is also informa-
tive to compare Ω(HG10) and Ω(HG01) with the corresponding Rabi
frequencies for Laguerre–Gaussian modes that were used in the
previous experiments.[9] By using Equation (8) and the theory
from above, we find that Ω(HG10)

x ∕Ω(LG01)
x = Ω(HG01)

y ∕Ω(LG01)
y =

√
2,

Ann. Phys. (Berlin) 2023, 535, 2300204 2300204 (6 of 8) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 4. Rabi frequencies (Equation (15)) as a function of the magnetic
field tilt angle 𝜃 for HG00 (black line) and HG10 (blue line) modes linearly
polarized in the x-direction and for HG01 (red line) mode linearly polarized
in the y-direction. The atom is placed in the beam center (b = 0, 𝜎 = 0).
All other parameters are the same as in Figure 2.

thus indicating that excitation probability of the E3 transition in-
duced by HG modes is two times larger than that obtained by
LG light. Moreover, we estimated for our beam parameters and
an optimal excitation geometry that an 171Yb+ ion placed in the
center of HG10 or HG01 modes experiences the light shift in the
range from Δ𝜈 = 50–8 Hz if the target size varies from 𝜎 = 100–
40 nm.[30,33] An even smaller light shift of about Δ𝜈 = 0.5 Hz
can be achieved for the “quantum-mechanical” width 𝜎 = 10 nm.
These values are comparable to light shifts for LG01 modes and
are much smaller than Δ𝜈 = 205 Hz obtained for a Gaussian
beam with power adjusted to provide a similar Rabi frequency.

4. Conclusions and Outlook

In this paper we propose using Hermite–Gaussian modes pro-
duced photonic integrated circuits to induce dipole-forbidden
atomic clock transitions. In order to investigate the feasibility of
this scheme, we present a theoretical analysis of the excitation of a
single trapped atom byHGmodes. Approximating theHG vector
potentials by their Bessel counterparts, written in the paraxial ap-
proximation, we were able to derive simple analytical expressions
for the Rabi frequencies Ω(HG) of the photoinduced transitions.
These expressions allow one to analyze the dependence of Ω(HG)

both on the parameters of HG beams and on the orientation of
the external magnetic field, used to define the quantization axis
of a target ion. The developed theory was applied to investigate
the case of the 2S1∕2 →

2F7∕2 E3 transition in an 171Yb+ ion lo-
calized in the beam’s center. Calculations, performed for exper-
imentally feasible parameters, helped us to determine optimal
combinations of incident light polarization and orientation of
the magnetic field, resulting in rather large Rabi frequencies. For
HG10 and HG01 modes, we have estimated that Ω(HG) lies in the
range of tens ofHz, which can exceedΩ(LG) of the previously used
“standard” Laguerre–Gaussian light for the same beamwaist and
power. This suggests that Hermite–Gaussian beams can serve as
a useful tool for studying highly-forbidden atomic transitions.
In the present theoretical study we have used a “semiclassi-

cal” approach, Equation (13), to account for the delocalization of
a target ion with respect to the beam center. Even though this ap-
proach is expected to provide reliable qualitative predictions for
the dependence of the Rabi frequency on the geometry of the ex-
periment and on the state of the incident HG beam, it should be

probed against the fully quantum theory in which the center-of-
mass motion of a target atom is quantized. Similar studies have
been performed for a atomic target exposed to standing electro-
magnetic waves.[13] The fully quantum analysis employing the
time-dependent density matrix approach[34] is currently under-
way and will be presented in a follow-up publication.
Following our theoretical analysis we propose a photonic in-

tegrated circuit (PIC) frequency reference based on an octupole
transition in Yb+ ions that can be used in a PIC-based optical
clock. Such a clock will be orders of magnitude more compact
compared to existing setups and have lower power consumption
and higher pointing stability, making it well suited for applica-
tions outside the laboratory, including deep space navigation and
geodetic measurements. As a first experiment in this direction,
we plan to use x-polarized HG10 or y-polarized HG01 modes in a
“clock-on-a-chip” setup. For lowest light shifts, we plan to operate
the clock with 173Yb+ which offers ten times larger transitionma-
trix elements and thus a 100 fold reduction of the light shift on
its clock transitions.[30,35] Since the linewidth of the atomic tran-
sition is still narrower than the laser linewidth, depending on the
laser noise spectrum the suppression factor can be even larger.
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