Using an Al Chatbot to Refine Gherkin
Specifications Based on Stakeholder Comments

Jianwei Shi
Leibniz Universitidt Hannover
Software Engineering Group
Hannover, Germany
0000-0001-6228-2478

Abstract—A software project begins with capturing visions and
requirements in an understandable format, e.g., vision videos,
which represent complex software-based processes. This video
invites comments from stakeholders for validating the vision.
However, the easy-to-watch videos must be translated to easy-to-
validate requirements, which can be written in the semi-formal
Gherkin specification.

Requirements engineers use a video and obtained comments to
refine Gherkin specifications. However, this is a demanding task.
Al chatbots such as ChatGPT can be used in the refinement. We
investigated the effectiveness of using ChatGPT. Two require-
ments engineers used textual description of a vision video and
comments of 12 stakeholders to refine Gherkin specifications with
and without ChatGPT 3.5. We asked for stakeholders’ opinions
on the refined specifications with and without ChatGPT.

Results show that (1) the understandability, and (2) the
stakeholders’ satisfaction on refined specifications with and
without ChatGPT do not differentiate significantly; (3) ChatGPT
generated detailed specifications but made formulation errors.
We suggest using an AI Chatbot and learning from its answers
to achieve stakeholders’ satisfaction.

Index Terms—Gherkin, ChatGPT, specification, comment

I. INTRODUCTION

Organizations often have a vision for the long-term develop-
ment. A product vision guides the research and development
of new features. A prioritization of these features can be
oriented around the (product) vision. For a software project,
a vision also directs the definition of a software product
at the beginning, before the software implementation. By
communicating the vision among stakeholders, requirements
are discussed, defined, concretized and validated. The com-
munication helps shape a shared understanding of the vision
and the requirements during the project.

A requirements engineer can use a textual vision statement,
and simulate interactive scenarios with user interface mock-
ups in the communication. Another medium for communicat-
ing the vision is video, which visualizes the vision, and shows
interactive scenarios with the mock-ups. Schneider et al. [1]]
define vision videos for Requirements Engineering (RE): “A
vision video of a software-based system typically shows a
problem, an envisioned solution, and its impact, pretending

How to cite this working paper: J. Shi, A. Dryaev, and K. Schneider, Using
an Al Chatbot to Refine Gherkin Specifications from Stakeholder Comments,
Working Paper, 2024, Available: http://dx.doi.org/10.15488/17361

Alan Dryaev
Leibniz Universitdt Hannover
Hannover, Germany
alan.dryaev @stud.uni-hannover.de

Kurt Schneider
Leibniz Universitidt Hannover
Software Engineering Group
Hannover, Germany
0000-0002-7456-8323

the solution already exists.” Figure [I] shows two frames from
a vision video of a software called CV Parser which converts
a LinkedIn profile to an editable online CV. Figure [Th shows
entering verification code for registration; Figure shows
editing an online CV. In the vision video, the hand cursors
hovering on the ‘“create” button and the “About” text field
show the clicking and editing interactions.

Tool [Edit | About

-

Founder, some tech company|
somewhere on earth
This person does not exist

Logout

Verification code has been sent to em@mail.com

Input code here

Name:
Job/Position:
Living at:
About:

g x
(a) (b)

Fig. 1. Two frames of a vision video.

A requirements engineer can use a vision video to com-
municate requirements with stakeholders. The requirements
should be written as a specification, which can be understood
by stakeholders, developers, and testers. One such semi-formal
specification is a Gherkin specification, which is defined
by “Given (preconditions) When (actions) Then (expected
results)”. Using Gherkin specifications to obtain feedback can
identify inconsistencies with customer requirements [2]] and re-
veal hidden assumptions [3|]. Generally, Gherkin specifications
have two levels of detailing: high-level and low-level. High-
level Gherkin specifications describe functionalities without
technical details; while low-level ones contain detailed steps
which can be directly translated to test code. We use high-
level Gherkin specifications in this study, as stakeholders can
understand them and give feedback. From frame b in Fig.
high-level raw Gherkin specification could be: “Given the user
is on the edit page When the user adapts the CV Then the
changes should be saved.”

However, translating video sequences and related stake-
holder feedback to Gherkin is a demanding manual task. A
requirements engineer needs to be familiar with the video
content, and must consider the feedback properly and write the
specification in Gherkin correctly. Since the advent of large
language models (LLM) and AI chatbots such as ChatGPT,

Copilot etc., there are many new approaches to let the Al
chatbots carry out demanding manual tasks instead of humans.
In this study, requirements engineers use ChatGPT to generate
raw Gherkin specifications by feeding textual information of
a vision video and stakeholders’ comments from a previous
study. Next, the requirements engineers show stakeholders the
vision video with the raw Gherkin specifications to obtain
stakeholders’ comments.

Then, the requirements engineers refine the raw Gherkin
specifications based on obtained comments. We want to in-
vestigate this Research Question (RQ):

Research Question: How do requirements engineers re-
fine Gherkin specifications based on stakeholders’ com-
ments with the help of an Al chatbot effectively?

The aim of this paper is to propose approaches of using Al
chatbots in generating and refining raw Gherkin specifications.
In our evaluation, we investigate the effectiveness on the
refinement of raw Gherkin specifications using ChatGPT.

In this paper, we make the following contributions:

1) We propose a systematic approach with concrete steps
for working with Al chatbots, to generate and refine
Gherkin specifications based on stakeholder comments
by using a vision video.

2) We compare specifications which are refined either with
or without the help of ChatGPT, to evaluate the effec-
tiveness on refinement of Gherkin specifications.

3) We discuss the evaluation results and suggest to learn
from refined specifications by Al chatbots.

The rest of this paper is structured as follows: Section [lists
fundamentals and related work. The approach and the concrete
steps are explained in Section Section explains how
the experiment is designed and evaluates the results. Section
discusses the refined specifications from an Al chatbot and
requirements engineers. The paper is concluded in Section

II. FUNDANMENTALS AND RELATED WORK

This section starts with an introduction of the LLM and
current Al chatbots. Then we list applications of the Al
chatbots generally for Software Engineering and specially
for Requirements Engineering (RE). Next, fundamentals of
Gherkin specifications are illustrated, including related work
about best practices in formulating Gherkin specification. Last,
we indicate the novelties in this work.

A. Fundamentals of LLMs and Al Chatbots

A large language model is a generative artificial intelligence
based on transformer models [4], which has been trained
on existing texts to answer user requests (e.g., summary,
classification) [5]. Some examples of LLMs are Generative
Pre-trained Transformer (GPT) from OpenAIF_l llama from
Meteﬂ, General Language Model from Zeng et al. [6]]. Based

Thttps://openai.com
Zhttps://ai.meta.com/llama/

on the LLMs, AI chatbots are emerging in the last years,
like ChatGPT from OpenAl, Copilot from Microsoft, Wenxin
Yiyan from Baidu. A human chats with an AI chatbot to
get instant answer of a question. The answer is based on the
training data and the algorithms of the LLM.

To make the answer from AI chatbots better, the LLMs
behind the AI chatbots can be 1) fine tuned by updating the
LLMs’ parameters, or 2) given one or many demonstrations
(called one-shot or few-shot settings in Brown et al. [7]).
For the second approach, the demonstrations should clearly
indicate what the requested answer looks like. Then the one-
shot or few-shot settings can help the LLMs learn from
examples and make fewer mistakes.

B. Application of Al Chatbots

Ozkaya [8] points out opportunities and challenges of using
Al Chatbots in Software Engineering activities, including
specification generation, provision of instant feedback for
developers, generation of tests and documentations, translation
of programming language. Meanwhile, they emphasize that the
next-generation software engineers must know how to assess
trustworthiness of answers from the LLMs and deal with the
incorrect answers.

In specification generation, Xie et al. [9]] investigated the
effectiveness of 15 LLMs by feeding documentation (e.g. API
documentation, Javadoc comments) as input and receiving
specifications in real programming code as output. They
compared the LLMs with tranditional approaches and found
that the best-performing LLM StarCoder outperforms the tra-
ditional approaches. On the other hand, Xie et al. reported that
StarCoder generated a small portion of ill-formed, incorrect, or
incomplete specifications. The root causes of the failure were
among others 1) unclear/poorly written request messages, 2)
missing domain knowledge.

Many studies were presented at the 31st IEEE International
Requirements Engineering 2023 conference. Chen et al. [[10]
have used GPT-4 for creating goal models. They have fed dif-
ferent messages (long/short domain description, open/closed
questions) to evaluate the effectiveness of GPT-4. For the
same message, the prompt has been run for several times. The
answers of GPT-4 were similar between long and short domain
descriptions. Results of GPT-4 for open questions received a
better grade than results for closed questions. Chen et al. also
find out GPT-4 made less syntax error if a syntax description
is given. Moreover, they report a large variation of the answers
in an experiment: each answer covered different useful ideas.
Hence, they suggest to run the prompt for several times and
aggregate the received answers.

Also at the RE 2023 conference, Fantechi et al. [11] have
used ChatGPT 3.5 to detect inconsistency in requirements. By
comparing results from ChatGPT with ones from students with
RE experience, the students performed better detection. Ruan
et al. [12] propose to use ChatGPT to extract requirements
models by using structured input text. Zhang et al. [[13]] have
explored to feed GPT-4 with user feedback for generating
persona templates.

C. Fundamentals and Related Work of Gherkin

Smart [[14] explains that Gherkin can be used in communica-
tion about an example of a software function to be developed.
The requirements engineers (called business analysts in [[14])
write down the example in Gherkin and hand in the Gherkin
specifications to developers and testers. The Gherkin specifi-
cations are written in feature files. Each feature file contains a
user story and corresponding scenarios. A feature file related
to Fig. [[b may look like this:

Listing 1. A feature file example.
Feature: Edit CV
User Story
As user, I want to edit my CV to change the details.

Corresponding scenarios

Scenario: Instant saving while editing the CV
Given the user is on the edit page
When the user adapts the CV
Then the changes should be instantly saved.

Scenario: Editing the fonts in the CV
Given the user is on the edit page
When the user chooses font type, color
Then the chosen fonts are instantly shown.

size,

For writing the scenario steps, Wynne and Hellesgy [/15]]
propose to avoid incidental details to make the steps easy to
read, i.e. write “When the user chooses font type and size”
(high-level, declarative) instead of “When the user chooses
font ‘Calibri’, size 9 pt” (low-level, imperative). In a high-level
scenario step, every detail of the step are described; in a low-
level step, the details are hidden and need to be clarified for
the developers and testers. Wynne and Hellesgy point out that
the choice of the styles depend on among others 1) the kind
of application to be developed, 2) “domain expertise of the
programmers”, and 3) “the level of trust that the nontechnical
stakeholders have in the programming”. Similar argumentation
is found in Binamungu et al. [3]]: on the one hand, the
higher level (declarative) steps are often “closer to the domain
concepts that end users are familiar with”; but, writing the
“glue code” between the Gherkin specifications and real test
is required.

In addition, Binamungu et al. [3] investigated quality as-
pects of Gherkin specifications and found among others the
importance of understandability. In a survey, they have asked
community members (60.7% of them are developers) with
Gherkin experience and found out over 75% of the participants
agree that a scenario step should contain domain vocabulary
which is already used in other steps.

This work has following novel contributions: 1) We use
ChatGPT on generating specifications in Gherkin, a natural
language, not specifications in programming code [9]]; 2) We
consider the good practices of using ChatGPT from Chen et
al. [10] in our methodology; 3) We evaluate empirically using
not only objective but also subjective metrics, and analyze the
refined specification regarding the two related work [3]], [15].

III. METHODOLOGY

In requirements elicitation, viewing a vision video of-
ten triggers a discussion between stakeholders. Requirements
engineers can then collect comments from the discussion.
They can work with an Al chatbot to derive requirements in
Gherkin. In this work, we focus on functional requirements
from the vision video.

We have compared three free Al chatbots in autumn 2023:
ChatGPT (GPT 3.5), Copilot (was called Bing Chat), and
perplexity.ai. We used among others these criteria in the
comparison: max. number of request, time for waiting an
answer, and vocabulary consistency. We found that ChatGPT
3.5 had the best performance in the mentioned criteria. Hence,
we decided to use and evaluate ChatGPT 3.5 in our work. The
GPT 3.5 model has been trained with the data up until Sep.
20218

The general activity is described in Fig.

©)

Textual description
of a vision video

Generat(:/(:om_ments from

raw Gherkin spec. a previous study
with ChatGPT

L]

Legend:
Raw Receive§
@ Gherkin Spec. @ l information
Obtain comments <Activity>

Generates

@ information

Comments
Refine Gherkin spec. Information
with and without ChatGPT | flows in

k . <Document>
Derived Gherkin spec.

Obtain feedback

Information
flows out

Step number

Feedback

Fig. 2. The information flow diagram of our approach.

In step a, requirements engineers use ChatGPT to generate
raw Gherkin specifications of functional requirements from
a vision video and comments from a previous study. The
raw Gherkin specifications remain abstract, as the shown
functionalities in the vision video are abstract. In step b, the
raw Gherkin specifications and the vision video are shown to

3https://platform.openai.com/docs/models/gpt-3-5

stakeholders; the requirements engineers obtains comments.
In step c¢, the requirements engineers use the comments
and textual description of the vision video to refine the raw
Gherkin specifications, with and without ChatGPT (different
account than the one in step a). In step d, the potential
stakeholders express their opinions on the refined Gherkin
specifications. In this Section, we describe steps a, b, and ¢ in
detail. We evaluate steps ¢ and d in Sec.

A. Generating Raw Gherkin Specifications

We feed following texts to ChatGPT: 1) a textual description
of the vision video and 2) corresponding user stories, 3)
format description of a feature file and an example (one-shot
setting [7]). We regenerate the Gherkin specifications from
ChatGPT and select the best ones.

We use the vision video CV Parser in this step as a
preparation for the evaluation. The description of the vision
video consists of all the features presented in the vision video.
User stories are derived systematically: 1) User stories are
derived from the comments of the previous study by Fokam
Piam [16]]; 2) The derived user stories are organized in a tree:
Epic descriptions are at the top of the tree; general user stories
are under an epic; detailed user stories are under a general user
story. 3) Missing general/detailed user stories are added to the
tree. Last, we have nine general user stories and feed them to
ChatGPT.

The raw Gherkin specifications are abstract, i.e. they are
plain descriptions of the vision video, without interpretation
of the details and error handling. Example: Vision video
CV Parser shows that the verification code is sent to an e-
mail address (Fig. [Th). The raw Gherkin specification of this
function does not handle the case of an invalid e-mail address.

B. Obtaining Comments

A requirement engineers shows stakeholders the raw
Gherkin specifications and the vision video. Following mo-
tivating questions are asked to encourage feedback:

¢ Which new functions do you want / are missing for you?

« Do you want a functional change? Which one?

o Is a process too complicated? To what extend should the

process be simpler?

o Do you want an alternative scenario? Which one? What

should happen?

o What should happen, if something does not work?

o Do you want a more exact process description? What

should happen?

The raw Gherkin specifications consist of scenarios. Each
scenario is written in format “Scenario ... Given ... When ...
Then ...” (see also Listing 1). For good readability to potential
users, we write multiple times of “When ... Then ...” under a
Given-step (see also message 1 in Tab.[l), because the Gherkin
specifications are more compact than the specifications which
contain the same Given step many times. The requirements
engineer collects textual comments of each scenario. This
collection can be conducted through an online survey or an
interview meeting.

C. Refining The Raw Gherkin Specifications

A requirements engineer interacts with ChatGPT, as Fig. 3]
shows. We utilize a different ChatGPT account than the one
in step a (generation of raw specifications), to avoid possible
deviations in refinement.

1) Feed Context Information and Comments to the Al chat-
bot: At the beginning of this step, the requirement engineer
feeds the AI chatbot context information, i.e. the textual de-
scription of the vision video and the raw Gherkin specifications
(see message 1 in Tab. [). Subsequently, the requirements
engineer provides the Al chatbot with comments, requesting an
enhancement of the Gherkin specifications for each comment
individually. In this second message, a clear reference from a
comment to corresponding scenario is given (message 2a in
Tab. [[). If the requirements engineers have an impression that
the comment does not have a connection to a single scenario,
they use another message without the clear reference (message
2b in Tab. [[). For step c, we use the zero-shot setting [[7].

TABLE I
MESSAGES TO CHATGPT (TRANSLATED FROM GERMAN)

Content

Z
2l

1 | On the website of CV Parser, you can convert your LinkedIn profile
into a CV. This website is now described.

Description:

At the beginning you are not logged in and are on the login page.
Here you can click on “create link”, which will redirect you to a
registration form.

(Some content is omitted)

For this context, there is now an excerpt from the test specification in
Gherkin:

Feature 1: Registration on CV Parser

As an unregistered user, I would like to register so that I have an
account on CV Parser.

Szenario 1: Registration of a new user

Given the user is on the registration page

When the user clicks the “Create” link

Then should the user be redirected to a registration form

When the user enters his e-mail and password

And repeats the password

And clicks “Create”

Then should the user receive a confirmation e-mail

(Specifications of features 2 to 6 are omitted)

999995

2 | You are a requirements engineer and should enhance the test specifi-
cation in Gherkin.

2a | For scenario /, following comment is written: “For using this service,
I don’t want to register.” Enhance the test specification accordingly.
2b | Following comment is written from a stakeholder: “Could you add an
option that allows the user to receive a new confirmation email if it
has not arrived?” Enhance the test specification accordingly.

2) Selection of Gherkin Specifications: After feeding a
comment, the Al chatbot gives updated Gherkin specifications.
We follow the recommendation of requesting multiple answers
from Chen et al. [10] to receive alternative answers. In our
case, we click the regenerate button on ChatGPT to request
alternative answers. The requirements engineer selects the best
answer as Selected Gherkin Specifications in Fig.

Textual description ChatGPT

of the vision video

1st answer

Feed a comment 2nd answer
Feed context (Click "Regenerate" o Select] Correct
information for max. five " specifications specifications
answers) 3rd answer
* A Selected Refined
Gherkin Gherkin
4th answer specifications Specifications
Raw Gherkin

specifications

5th answer

* Supplement Activity:
If no Gherkin spec. Is selected:
Comments
Else:

Go to the next comment;

Open another chat session with the same comment;

Fig. 3. Detailed step c in Fig. [2| refining specifications with ChatGPT. Note that the activities (rectangles) in grey background can be repeated.

As Fig. [3] shows, the requirements engineer requests max.
five answers for message 2 (Tab.[I). We have set this number in
a test with a separate ChatGPT account. In our test, we found
that we could receive a good enhanced scenario by having up
to five answers.

We suggest the usage of multiple chat sessions, for the worst
case that the requirements engineers are not satisfied with any
received answers on current chat session. Then another chat
session with message 1 is opened and the above described
processes are repeated. On ChatGPT, the requirements engi-
neer clicks the regenerate button on the answer of message 1
to create another chat session. We observe that the regenerate
button for the answer of message 1 appears only before the
message 2 is sent. Hence, the requirements engineer clicks
the regenerate button two times before sending message 2.
This mechanism is shown as asterisk and the grey rectangle
“Supplement Activity” in Fig.

3) Correction: However, the selected Gherkin specifica-
tions could have some errors in formulation and syntax. A
requirements engineer corrects the specifications. We analyze
the selected Gherkin specifications in Sec. [[V]and discuss them
in Sec[Vl

IV. EVALUATION

We want to compare and evaluate the specification refine-
ment with and without ChatGPT. Based on the goal template
by Basili and Rombach [17], we define our evaluation goal:

Goal definition:

We analyze the refined Gherkin specifications from stake-
holder comments with and without ChatGPT 3.5

for the purpose of evaluation

with respect to the effectiveness

from the viewpoint of (1) the requirements engineers
who can write specifications in Gherkin and interact with

ChatGPT and (2) the potential stakeholders
in the context of a controlled online experiment by using
a vision video.

A. User Study Design

Starting from the evaluation goal, we ask:

EQ;: Are opinions of potential stakeholders the same about
Gherkin specifications refined from ChatGPT and from only
requirements engineers?

Concretely, we want to ask stakeholders their satisfaction,
understandability of derived specifications, and their accep-
tance in the first appointment. Satisfaction means to which
extend a stakeholder comment is considered in a refined
specification. To investigate possible influencing factors of an
acceptance, we ask:

EQ;: Does stakeholders’ satisfaction correlate with accep-
tance?

EQj3: Does understandability correlate with acceptance?

Figure [4] summarizes our study design in a goal-question-
metric paradigm. Table [II| explains metrics 1 to 3.

Goal Effectiveness
Questions

EQu: Difference in Correlated with

the values of the each other?

referred metrics? EQ:2 EQs

M2: Ma: Ms:
. Satisfaction Acceptance Understandability

Metrics

Mz: Acceptance
Rate

Fig. 4. The GQM paradigma.

We want to test the following hypotheses:

TABLE II
EXPLANATIONS OF METRICS 1 TO 3.

TABLE III
ASSIGNMENT OF COMMENTS.

Metric [Meaning

My Acceptance rate of each participant (in percentage)
Mo Participants’ satisfaction of a refined specification (see below)
M3 Understandability of an updated specification (see below)

Requirements For following participants

Engineer 101,102,103,104,105,112] 106,107,108,109,110,111
1 With ChatGPT Without ChatGPT

2 Without ChatGPT With ChatGPT

Participants state their agreement for M2 and M3 in Likert scale

(1: Strongly Disagree - 2: Disagree - 3: Rather Disagree - 4: Rather Agree
- 5: Agree - 6: Strongly Agree):

Ma: The enhanced specification has taken my comment well into consid-
eration.

M3: The enhanced specification is well formulated and easy to under-
stand.

Hypotheses 1 to 3: There is a difference in

Hjy: the acceptance rate (M)

Hs: the stakeholders’ satisfaction (M5)

Hj: the understandability (M3)

between the refined Gherkin specifications with and without
ChatGPT.

Hypotheses 4 and 5: The following metrics do not correlate
with each other:

H,: the stakeholders’ satisfaction (M) and the acceptance
(My)

Hjy: the understandability (M3) and the acceptance (My)
The corresponding null hypotheses assume that there is no
difference or no correlation.

Figure [5] shows the activities for a participant. Two re-
quirements engineers (with IDs 1 and 2) are involved in this
experiment. Before the first appointment, a participant learns
Gherkin in an online training and must pass the comprehension
test. In the first appointment, requirements engineer 1 shows
the participant the vision video with the raw Gherkin specifica-
tions (6 scenarios). After that, the participant is asked to write
comments (1 comment per 1 scenario) in an online survey
form. The participant does not have to write a comment for all
six scenarios. Subsequently, one requirements engineer refines
Gherkin specifications with ChatGPT; another requirements
engineer refine Gherkin specifications without ChatGPT.

Fig. 5. Activities of a participant.

! I
- — ! I
I
Gherkgntdrammg ‘ Watching !
comprehension | the vision }
P ! video S R VP 1
test } | 2nd Appointment !
—— [|
| | Readingthe || } Fillingin !
w Gherkin | i | Demographic |
| | specifications | ! ! Data }
| i ¥ 1
|
I Filling in } } Assessment of the Derived |I
} Comments | 1| 1 Gherkin Specifications }
: for each i (with and without !
i scenario "o ChatGPT) 1
L =—— e B ——]

Before the second appointment, requirements engineer 1
corrects the refined specification from ChatGPT and from
requirements engineer 2. In the second appointment, the
participant fills in demographic data. Requirements engineer
1 shows the participant the original comments which the
participant wrote in the first appointment. For each comment,
the corrected Gherkin specifications refined from ChatGPT
and from only requirements engineers are shown and the
participants state their opinions (M5, M3, M,) on both.

B. Demographics

Twelve participants took part in our experiment voluntarily
and showed their interest in using CV Parser. They are poten-
tial stakeholders. At the time of the study in Nov. 2023: One
participant worked as trained electronics engineer; One worked
as trained physiotherapist; Six were undergraduate students
(number in brackets) from subjects of English and politics
(1), mathematics (1), computer science (3), and economics
and management (1); Three were postgraduate students from
subjects of applied computer science (1) and computer science
(2). One was a PhD student in electrical engineering. Five
participants were between the ages of 20 and 24 years old,
six participants were between 25 and 29. One participant did
not state the age. Two requirements engineers are the first and
second authors: Requirements engineer 1 is the second author
who was a undergraduate student, engineer 2 is the first author
who is a PhD student. Both have studied computer science and
were between 24 and 30. Both have experience in Gherkin and
ChatGPT.

C. Answering Evaluation Questions I

Figure [6] shows the results of Mq:

100%

90%

80%

With
ChatGPT

Without
ChatGPT

70%

Acceptance Rate

60% —

50%
With ChatGPT

Without ChatGPT

Mean

85%

74%

Standard
Deviation

16%

17%

Mann Whitney U Test

u \

46.5

P \

0.134 (Two-tailed)

From one comment, specifications are refined in two ways:
one requirements engineer interacts with ChatGPT; another
requirements engineer refined without ChatGPT. To minimize
the individual influence in writing specifications, we have
mixed the assigned person, as Tab. shows:

(a) Box Plot of M1 (b) Statistical Results of M1

Fig. 6. Box-plot and statistics for the acceptance rate.

Participants have accepted more refined specifications from
ChatGPT, 85% on average. However, the Mann Whitney U

Test does not show the difference between both options. We
cannot reject the null hypothesis of Hj.

Histograms show results of M, (Fig.[7p) and M; (Fig. [7b).
We have observed a similar distribution for both metrics and
cannot find the statistical difference between both options. We
cannot reject the null hypotheses of Hy and Hs.

With ChatGPT

B without chatgPT
40-

.30~ 30-
2
3 3
gzof 520
r =
o
10- w 10-
aadl N
2 3 4 5 6 13 4 5 6
Participants' Satisfaction Understandability
(a) Histogram of M2 (b) Histogram of M3
M2 m3
With ChatGPT | Without ChatGPT With ChatGPT Without ChatGPT
Median 6 [3 5.5 6
u 1491.0 1745.5
p 0.054 (Two-tailed) 0.754 (Two-tailed)

(c) Statistical Results (Mann Whitney U Test) of M2 and M3

Fig. 7. Histograms and statistics for satisfaction and understandability.

D. Answering Evaluation Questions 2 and 3

Correlations between a dichotomous feature (M, accept
or reject) and a ordinal scale (M, and M3 in Likert scale)
should be calculated. Hence, the biserial p for shared rankings
in the ordinal scaled data [[18] is calculated to test H, and
Hs. We observed the positive p values which mean positive
correlations. Subsequently, we used the Mann Whitney U test
to test the significance of the positive correlations, according
to Bortz and Schuster [19]. Because we have noticeable
distribution of acceptance (No=96) and rejection (/N1=24), we
used the Vedooren formula (cited in Bortz [|18]]) for corrections
of the u value in Mann Whitney U Test. Table shows the
results:

TABLE IV
CORRELATION ANALYSIS.

| Test for Hy [Test for Hs

Biserial p 0.665 0.302
U 379 836

Ucorrected -5.509 -2.097
p (One-tailed) <0.0001 0.018

The p values of the Mann Whitney U test show the
significance of the correlations (significance level a=0.05). We
accept Hy and Hs.

V. DISCUSSION

Besides quantitative analysis in Sec. [[V] we examine the
refined specifications and then list threats to validity.

A. Possible Reasons of Negative Opinions

We have examined all refined specifications which were
either rejected, do not consider a given comment properly
(M3 < 3), or had low understandability (M3 < 3). First, we
analyze specifications with low understandability. From these
specifications, we list examples where obvious understanding
problems can be observed. Second, we compare rejected spec-
ifications with accepted ones refined from a given comment.
Meanwhile, we consider the satisfaction.

1) Possible Reasons for Low Understandability: Listing 2]
shows three examples of low understandability:

Listing 2. Gherkin step examples of low understandability.
Example 1, refinement without ChatGPT
And the user has a public LinkedIn profile
When the user pastes the address of her LinkedIn
profile

Example 2, refinement with ChatGPT
When the user click on the "create" link
And enters the false entered e-mail

Example 3, refinement without ChatGPT
Then the user does not find a confirmation e-mail
And the user is forwarded to a website with a
resend button

In the first example (M3 = 1), “public LinkedIn profile”
may cause confusions in understanding, because the privacy
setting of the LinkedIn profile is mentioned neither in the
video nor in the raw Gherkin specifications. In the second
example (M3 = 3), the meaning of “false entered e-mail” is
unclear. Instead, “not existing e-mail” which is written from
a requirements engineer conveys the intended meaning. The
third example (M3 = 3) is about a fallback if a user does
not get a confirmation e-mail on registration. Hence, “the
user does not find a confirmation e-mail” with the use of
“find” may cause understanding problems. For other refined
specifications of low understandability, we cannot identify
obvious understanding problems. Maybe the specifications
contain difficult vocabulary or did not fit the stakeholders’
comments.

2) Possible Reasons for Rejection and Low Satisfaction:
We want to estimate the possible reasons behind a rejection
or low satisfaction, which correlate with each other (as Hj is
accepted).

Table [V] shows examples of refined scenarios from stake-
holder comments. We have identified following possible rea-
sons of rejections or low satisfaction:

o misunderstanding: The requirements engineers made a
wrong suggestion or understood the comment wrong.
Example: Participant 101, scenario 1.

¢ too abstract: The specifications are not concrete or not
detailed. Example: Participant 101, scenario 6.

TABLE V
COMPARISON OF SCENARIOS (TRANSLATED FROM GERMAN)

Comment [Refined scenario without ChatGPT [Refined scenario with ChatGPT
Participant 101, (Rejected, comment not properly considered) (Accepted)
scenario 1: Scenario 1: Account creation without registration Scenario: Account creation without registration
I do not want to register Given the user is on the login page Given the user is on the login page
to use the service. When the user ticks “I don’t want to register” When the user clicks on “Continue without registration”
And clicks on the “Create” link Then the user should be redirected directly to the tool to create

Then the website shows “we need your email address | their CV
to send you a confirmation link”

When the user enters her email

And clicks on “Create”

Then the user should receive a confirmation email

Participant 101,

(Rejected, comment not properly considered, the spec- | (Accepted, the specification is structured in three scenarios)

scenario 6: ification is more abstract than the right one) new scenario 6.1: Display of legal notice
Legal notice missing. | Scenario 6: Displaying the “About” page Given the user is on the “About” page
Further information is Given the user is logged in to the CV Parser website When the user clicks on “Legal notice”
missing. Text tutorials When the user clicks on the “About” menu bar Then the legal notice should be displayed
would also be useful. Then the website should show further links for tuto- | New scenario 6.2: Displaying further information
rials in text form, tutorials in video form, legal notice, (Steps of this scenario are omitted)
privacy information Then further information should then be displayed
When the user clicks on a link mentioned above New scenario 6.3: Displaying textual tutorials
Then the website should show the corresponding Given the user is on the “About” page
information When the user clicks on “Textual tutorials”
Then textual tutorials should be displayed
Participant 111, (Accepted) (Rejected, comment not properly considered)
scenario 5: Scenario 5: Password reset Scenario 5: Password reset
It is unclear whether I Given the user is on their profile Given that the user is on their profile
should enter the old or | When the user clicks on “Reset Password” When the user wants to change their password
new password. And if | Then the user should receive an email Then the user has two options:
it is the new one, I When the user enters the new password - Option A: The user enters their current password and selects a
would personally prefer And repeats the new password new password.
receiving an e-mail with And clicks on “confirm” - Option B: The user requests a password reset e-mail.
a link that takes me to Then the user’s password should be reset - In this case, the user receives an e-mail with a link to reset the
the page where 1 can password.

enter the new password.

- The user clicks on the link and is redirected to a page where
they can enter a new password.
(Some steps are omitted)

Participant 106, (Accepted) (Rejected, comment not properly considered)
scenario 3: Scenario 3: Scenario 3: Extracting a CV with customization options
The possibility to | Given the user is on the “Tool” page (Some steps are omitted)
change the font and When the user uses a menu bar to adjust font type, When the user changes the font, font color and/or font size
font color, as well as | color, and size in the extracted resume And clicks on “Confirm”
font size. Then the changes should be saved immediately Then the customized font information should be saved in the CV
" Participant 106, ~ ~ | (Accepted) T T T T T T T (Rejectedy T
scenario 4: Scenario 4: Editing the CV Scenario 4: Editing and undoing changes in the CV
additional buttons | Given the user is on the “Edit” page Given the user is on the “Edit” page
where you can undo When the user customizes their resume When the user makes changes to the CV
edited steps or restore And clicks “Confirm” And clicks on “Undo”
the change. And | Then the changes should be saved immediately Then the last change made should be undone
remove the Confirm When the user clicks the “Undo” button in the menu When the user clicks on “Redo”
button so that it saves | bar Then the undone change should be restored
automatically Then the last edited step should be undone New scenario 5: Automatic saving of the edited CV
When the user clicks the “Restore” button in the Given the user is on the “Edit” page
menu bar (Some steps after the given step are omitted)
Then the step should be restored Then the changes should be saved automatically

¢ too detailed: The specifications provide too many options engineers. We also found that the requirements engineer con-
or contain unnecessary steps. Example: Participant 111, siders comments 3 and 4 from participant 106 together, Chat-

scenario 5.

GPT not always. In comment 4, participant 106 wrote “saves

o comment not properly considered: We can see obvious automatically”: This requirement is considered in scenario 3
inconsistencies between the comment and the specifica- (“saved immediately”) from requirements engineers, but not
tions. Example: Participant 106, scenarios 3 & 4. explicitly mentioned in scenario 3 by ChatGPT. Participant

106 accepted scenario 4 from requirements engineers, even

In our experiment, ChatGPT did not misunderstand the the “Confirm” button was not removed as required.

comments, while requirements engineer misunderstood. We
observe that the specifications from ChatGPT are generally
more detailed than the specifications from two requirements

B. Examples of Formulation Errors from ChatGPT

During refinement of Gherkin specifications, requirement
engineer 1 has corrected the specifications from requirements
engineer 2 and ChatGPT. We have identified and corrected for-
mulation errors from ChatGPT. Table [[V|shows two examples:

TABLE VI
EXAMPLES OF FORMULATION ERRORS FROM CHATGPT

When the user decides not to register and clicks on “Continue without
registration” instead

" Error explanation: The sentence “The user decides not to register” does
not contain an action.
Given the user is on the “Edit” page
When the user wants to add their own categories or edit existing ones
Then the user should be able to create new categories or edit existing ones

Error explanation: The use of modal verbs “wants to”, “be able to” does
not mean an action (when step) or expected results (then step).

We observed that ChatGPT tended to write Gherkin steps
which do not have a real meaning: The step is neither an
action (when step) nor an expected result (then step), but an
intention. This is a weakness of ChatGPT and should be by
all means avoided in refinement.

C. Reflection of Gherkin Specification Quality

In the study, we tried to follow the best practices [3]], [14] in
writing Gherkin specifications. After the study, we reflect on
the refined specifications according to Binamungu et al. [3]].

o The specifications should be ‘“concise, testable, under-
standable, unambiguous, complete, and valuable”. Most
refined specifications fit this quality aspect, but some
abstract specifications do not.

o The specifications should “use the terminology under-
stood by all project stakeholders”. We have some specifi-
cations, which have low understandability and may have
difficult vocabulary for participants.

o We adapted the practice that “each scenario should test
one thing”. In our study, each scenario tests one process,
which contain many “When ... Then ...” structures. The
scenario is then easy to read for potential users. For later
development and testing, the scenario can be extended to
multiple scenarios, each having only one “When ... Then
.7 structure.

D. Threats to Validity

Our results are subject to some threats to validity which we
discuss in the following according to Wohlin et al. [20].

1) Construct Validity: The formulation style of refined
Gherkin specifications without ChatGPT can vary between
requirements engineers. If a requirements engineer writes the
Gherkin specifications in a style which a participant exactly
does not understand, the comparison between ChatGPT and
requirements engineers could be biased. Hence, in deriving
without ChatGPT, the comments from six participants are
assigned to requirement engineer 1 and the comments from
another six to requirements engineer 2.

Tiredness of a participant due to long participation time may
influence their opinions. In our pilot study, we found that six
scenarios are appropriate to prevent the tiredness. In our study,
the first and second appointments took about 30 minutes each
on average. Hence, we have minimized the participation time
to avoid the tiredness.

2) Internal Validity: ChatGPT could learn after clicking
“Regenerate”. In addition, the preparation of the raw Gherkin
specifications with ChatGPT could also influence the result of
step ¢ in Fig. 2] As prevention, after refining specifications
from comments of a participant, a new chat section is opened
for comments of another participant. In addition, the experi-
ment has been carried out on a ChatGPT account which was
not previously used in the context of this work.

3) Conclusion Validity: The questions and activities for
participants should be clear, especially for the stakeholders’
satisfaction (M>). Instead of asking “Are you satisfied with the
enhanced specification?”, we ask the participants how well the
enhanced specifications take their comments into consideration
(cf. Tab. [M).

During refinement of specifications, requirements engineer
1 has corrected the errors from ChatGPT, such as formulation
errors mentioned before. This individual correction could lead
to biased evaluation. To mitigate that, requirements engineer
1 has communicated with requirements engineer 2 about the
error types. Both have agreed on the correction methods,
i.e., deleting the modal verbs or unnecessary steps, correction
according to the Gherkin syntax and German grammar.

4) External Validity: If a participant did not provide any
comments, we could not elicit requirements. To encourage
comments, we provide motivating questions (see Sec. [[II-B).
These motivating questions are generally formulated to prevent
influence on participants’ opinions.

VI. CONCLUSION AND FUTURE WORK

We have proposed a systematic and concrete approach by
using an Al chatbot for deriving specifications from stake-
holder comments. Although we chose ChatGPT for evaluation,
we argue our approach can be applied to other Al chatbots,
with adapted practices in the mentioned “regenerate” function
for requesting several answers at one time. The regenerate
function can be conducted on Copilot by sending the same
message again; on perplexity.ai by clicking the “Rewrite”
function.

We have evaluated the effectiveness of refinements with
and without ChatGPT. The evaluation results show that the
effectiveness does not differentiate significantly. In addition,
the stakeholders’ satisfaction and the understandability of a
specification are possible positive factors for an acceptance.
ChatGPT 3.5 wrote detailed specifications: Requirements en-
gineers can learn from that. We argue that communication
with stakeholders by discussing detailed specifications helps
clarify the misunderstandings, although rejections were made
on specifications from ChatGPT because of too much detail.
However, ChatGPT 3.5 wrote modal verbs and unneces-
sary Gherkin steps in specifications: Requirements engineers

should correct and avoid those errors. After knowing strengths
and weaknesses from Al chatbots, requirements engineers can
choose to work with Al chatbots if needed in refining Gherkin
specifications.

We answer the research question how requirements engi-
neers refine specifications with Al chatbots effectively:

Answer to Research Question: Requirements engineers
write a request which contains a comment and a refer-
ence to the Gherkin specifications. They require several
answers of a request, select the proper ones and correct
the answers.

Our approach can be applied in agile or hybrid software
development, where specifications are updated according to
stakeholders’ feedback during the development. A product
owner can replace the vision video with any other requirements
documentations (e.g. mock-ups, screenshots of the software
under development, user stories, goal models, explanations)
and use our approach to generate and refine specifications from
stakeholders’ feedback.

This work invites the community to evaluate efficiency for
specification refinement by AI chatbots. Also, this work can
be extended in another set-up of specification generation and
refinement. If the Gherkin specifications are already refined
from stakeholder comments, the future work could explore the
code generation from the Gherkin specifications, as Cheminiz
et al. [21] envisioned.

ACKNOWLEDGMENT

This work is funded by Deutsche Forschungsgemeinschaft
(DFG) - Project number 289386339 (ViViUse).

REFERENCES

[1] K. Schneider, M. Busch, O. Karras, M. Schrapel, and M. Rohs, “Refining
vision videos,” in Requirements Engineering: Foundation for Software
Quality, vol. 11412. Essen, Germany: Springer International Publishing,
2019, p. 135-150.

[2] J. Shi, J. Monnich, J. Kliinder, and K. Schneider, “Using gui
test videos to obtain stakeholders’ feedback,” in 2023 IEEE/ACM
International Conference on Software and System Processes (ICSSP).
Melbourne, Australia: IEEE, May 2023, p. 35-45. [Online]. Available:
https://ieeexplore.ieee.org/document/10169066/

[3] L. P. Binamungu, S. M. Embury, and N. Konstantinou, “Characterising
the quality of behaviour driven development specifications,” in
Agile Processes in Software Engineering and Extreme Programming,
ser. Lecture Notes in Business Information Processing, V. Stray,
R. Hoda, M. Paasivaara, and P. Kruchten, Eds., vol. 383. Cham:
Springer International Publishing, 2020, p. 87-102. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-49392-9_6

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, E. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper_.
files/paper/2017/file/3f5ee243547dee91tbd053c1c4a845aa- Paper.pdf

[5] NVIDIA, “Large language models explained,” last accessed 17-
01-2024. [Online]. Available: https://www.nvidia.com/en-us/glossary/
large-language-models/

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu,
W. Zheng, X. Xia, W. L. Tam, Z. Ma, Y. Xue, J. Zhai, W. Chen, P. Zhang,
Y. Dong, and J. Tang, “GIm-130b: An open bilingual pre-trained
model,” in Proc. of the ICLR. Kigali Rwanda: OpenReview.net, Oct
2023. [Online]. Available: https://openreview.net/pdf?id=- AwOrrrPUF
T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Pro-
ceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS’20. Red Hook, NY, USA: Curran
Associates Inc., 2020, event-place: Vancouver, BC, Canada.

I. Ozkaya, “Application of large language models to software engi-
neering tasks: Opportunities, risks, and implications,” IEEE Software,
vol. 40, no. 3, p. 4-8, May 2023.

D. Xie, B. Yoo, N. Jiang, M. Kim, L. Tan, X. Zhang, and
J. S. Lee, “Impact of large language models on generating software
specifications,” no. arXiv:2306.03324, Oct 2023, arXiv:2306.03324
[cs]. [Online]. Available: http://arxiv.org/abs/2306.03324

B. Chen, K. Chen, S. Hassani, Y. Yang, D. Amyot, L. Lessard,
G. Mussbacher, M. Sabetzadeh, and D. Varrd, “On the use of gpt-4
for creating goal models: An exploratory study,” in 2023 IEEE 3lst
International Requirements Engineering Conference Workshops (REW).
Hannover, Germany: IEEE, Sep 2023, p. 262-271. [Online]. Available:
https://ieeexplore.ieee.org/document/10260905/

A. Fantechi, S. Gnesi, L. Passaro, and L. Semini, “Inconsistency
detection in natural language requirements using chatgpt: A preliminary
evaluation,” in 2023 IEEE 31st International Requirements Engineering
Conference (RE), Hannover, 2023.

K. Ruan, X. Chen, and Z. Jin, “Requirements modeling aided by
chatgpt: An experience in embedded systems,” in 2023 IEEE 3lst
International Requirements Engineering Conference Workshops (REW).
Hannover, Germany: IEEE, Sep 2023, p. 170-177. [Online]. Available:
https://ieeexplore.ieee.org/document/10260857/

X. Zhang, L. Liu, Y. Wang, X. Liu, H. Wang, A. Ren, and C. Arora,
“Personagen: A tool for generating personas from user feedback,” in
2023 IEEE 3lst International Requirements Engineering Conference
(RE). Hannover, Germany: IEEE, Sep 2023, p. 353-354. [Online].
Available: https://ieeexplore.ieee.org/document/10260883/

J. E. Smart, BDD in Action: Behavior-Driven Development for the whole
software lifecycle. Shelter Island, NY: Manning, 2014.

M. Wynne and A. Hellesgy, The cucumber book: behaviour-driven
development for testers and developers, ser. The pragmatic programmers.
Dallas, Texas: Pragmatic Bookshelf, 2012.

R. A. Fokam Piam, “Erhebung und validierung von testbaren
anforderungen durch visionvideos,” Mar 2023, Master Thesis.
[Online]. Available: https://www.pi.uni-hannover.de/fileadmin/pi/se/
Stud- Arbeiten/2023/MA_FOKAM_PIAM.pdf|

V. Basili and H. Rombach, “The tame project: towards improvement-
oriented software environments,” [EEE Transactions on Software
Engineering, vol. 14, no. 6, p. 758-773, Jun 1988. [Online]. Available:
http://ieeexplore.ieee.org/document/6156/

J. Bortz, Verteilungsfreie Methoden in der Biostatistik, 3rd ed. Heidel-
berg: Springer Medizin Verlag, 2010.

J. Bortz and C. Schuster, Statistik fiir Human- und Sozialwissenschaftler,
ser. Springer-Lehrbuch. Springer, 2010. [Online]. Available: https:
//doi.org/10.1007/978-3-642-12770-0

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer Berlin
Heidelberg, 2012. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-29044-2

L. Chemnitz, D. Reichenbach, H. Aldebes, M. Naveed, K. Narasimhan,
and M. Mezini, “Towards code generation from bdd test case
specifications: A vision,” in 2023 [EEE/ACM 2nd International
Conference on Al Engineering — Software Engineering for AI (CAIN).
Melbourne, Australia: IEEE, May 2023, p. 139-144. [Online].
Available: https://ieeexplore.ieee.org/document/10164755/

https://ieeexplore.ieee.org/document/10169066/
http://link.springer.com/10.1007/978-3-030-49392-9_6
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.nvidia.com/en-us/glossary/large-language-models/
https://www.nvidia.com/en-us/glossary/large-language-models/
https://openreview.net/pdf?id=-Aw0rrrPUF
http://arxiv.org/abs/2306.03324
https://ieeexplore.ieee.org/document/10260905/
https://ieeexplore.ieee.org/document/10260857/
https://ieeexplore.ieee.org/document/10260883/
https://www.pi.uni-hannover.de/fileadmin/pi/se/Stud-Arbeiten/2023/MA_FOKAM_PIAM.pdf
https://www.pi.uni-hannover.de/fileadmin/pi/se/Stud-Arbeiten/2023/MA_FOKAM_PIAM.pdf
http://ieeexplore.ieee.org/document/6156/
https://doi.org/10.1007/978-3-642-12770-0
https://doi.org/10.1007/978-3-642-12770-0
http://link.springer.com/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2
https://ieeexplore.ieee.org/document/10164755/

	Introduction
	Fundanmentals and Related Work
	Fundamentals of LLMs and AI Chatbots
	Application of AI Chatbots
	Fundamentals and Related Work of Gherkin

	Methodology
	Generating Raw Gherkin Specifications
	Obtaining Comments
	Refining The Raw Gherkin Specifications
	Feed Context Information and Comments to the AI chatbot
	Selection of Gherkin Specifications
	Correction

	Evaluation
	User Study Design
	Demographics
	Answering Evaluation Questions 1
	Answering Evaluation Questions 2 and 3

	Discussion
	Possible Reasons of Negative Opinions
	Possible Reasons for Low Understandability
	Possible Reasons for Rejection and Low Satisfaction

	Examples of Formulation Errors from ChatGPT
	Reflection of Gherkin Specification Quality
	Threats to Validity
	Construct Validity
	Internal Validity
	Conclusion Validity
	External Validity

	Conclusion and Future Work
	References

