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ABSTRACT

Short term forecasts of meteorological parameters play an important role in many soci-
etal processes. Until recently, seasonal autoregressive integrated moving average models
(SARIMA) have been used to make forecasts on meteorological time series data. This the-
sis deploys and evaluates three different neural network forecasting systems, based on long
short term memory (LSTM) networks. One univariate LSTM model, one multivariate LSTM
model that receives all input parameters, and one multivariate LSTM model that only re-
ceived correlating inputs. Each forecasting system uses twelve different LSTM submodels to
forecast the meteorological parameters at the measuring site, Hannover-Herrenhausen. The
forecasting systems are compared with the SARIMA approach and a simple seasonal naive
as a baseline model. For the comparison, the root mean squared error and mean absolute
scaled error were computed. The neural network based forecasting systems outperform the
SARIMA model in every parameter, except precipitation. Using only correlating inputs im-
proved just selected parameter performance. Notably, the optimal window size was analysed
to be 24 hours for the networks. The test on a second dataset from the measuring site in Ruthe
revealed that the neural forecasting systems possess the ability to generalize on unknown
data.
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1 Introduction

Short-term forecasting meteorological parameters can be of particular relevance in a magnitude of
different aspects of society. Street safety, renewable energy production, and the aviation industry are
but a few examples. For forecasting meteorological time series at singular stations, statistical methods
like Seasonal Autoregressive Integrated Moving Average models (SARIMA) or Vector Autoregression
(VAR) models have been used instead of complex numerical weather prediction methods (Wilks 2019).
However, these SARIMA models suffer from increased resource usage on larger forecast horizons dur-
ing the forecast production, because of complex long-term relations (Tran et al. 2021). Due to progress
made in theoretical informatics and graphical processing units, machine learning is on the rise and
neural networks have emerged as an alternative solution in time series forecasting. Today, neural net-
works are not only powering impressive chatbots like ChatGPT through natural language processing
(Chowdhary 2020), but also in meteorological predictions. Notably, these neural networks have been
successfully deployed to predict air temperature (Eide et al. 2021, Eide et al. 2022, Tran et al. 2021).
Over the years, different neural network architectures were proposed for forecasting air temperature in
varying situations. Kreuzer, Munz, and Schliiter 2020 combined two-dimensional convolutional neural
networks with long short term memory networks to model complex interparametrical dependencies.
Eide et al. 2022 suggested a novel method to use spatiotemporal input data from different locations in
tower networks. Alerskans et al. 2022 used the novel attention mechanism in complex decoder encoder
transformer networks. As shown by Haque, Tabassum, and Hossain 2021 recurrent long short term
memory models provide a good balance between model performance and computational efficiency
and were therefore chosen as a model architecture.

This thesis tries to implement a series of long short term memory neural networks to forecast all the
parameters listed in Table 1 which are measured at the measuring site Hannover-Herrenhausen. The
model performance shall be evaluated in comparison to the SARIMA model as a traditional statisti-
cal method as well as a seasonal naive baseline model. To evaluate the absolute model performance,
the root mean squared error (RMSE) will be used and for the relative improvement over the seasonal
naive model, the mean scaled error (MASE). Additionally, this thesis will inspect the importance of
parameters and different forecast horizons, as well as input data lengths used in the prediction proce-
dure. Finally, the models will be tested on the data for the measuring site Ruthe to check the model’s
robustness.



variable abbreviation

air temperature T,
relative humidity RH
reduced air pressure Dyl
wind speed 10 m Uy

wind speed 50 m Us

gust speed 10 m 10

gust speed 50 m G50

wind direction u component Pu
wind direction v component Oy
precipitation P

global radiation G
diffuse radiation D

Table 1: Target parameters for the neural networks. Each parameter receives its network.

The remainder of this thesis is structured as follows: First Section 2 introduces the theoretical founda-
tions required for the thesis. Section 3 provides insight into the different model architectures and the
data used for training. Finally, in Section 4 are the results of the evaluation presented and discussed.
The code for this thesis can be found at https://codeberg.org/Kleeritter/neuralcast.git.



2 Theoretical foundations

This chapter lays the theoretical foundation for concepts discussed throughout this thesis.

2.1 Statistical models

Different statistical models and methods have been developed to forecast time series data (Wilks 2019).
One of those is the SARIMA model. This model was first described by Box, Jenkins, and Reinsel 1970.
This model can be broken down into their name-giving submodules: S, AR, I, MA (Korstanje 2021).
What all these submodules require is a stationarity in time series. In a stationary time series, the char-
acteristics e.g. mean and variance are the same for slices of the same length (Wilks 2019).

The first submodule is the Autoregression (AR) term. Forecasting the next value of a series X, in time
only depends on the previous value X, ; and a random variable ¢,, representing the change between
the values (Wilks 2019). The autoregression can not only include the previous value X, ; for forecast-
ing but also the last p values (Wilks 2019). This leads to the general formula for AR processes with
order p (Box, Jenkins, and Reinsel 1970, Whittle 1951):

Xy 0 X +e (1)

I
~.
i M*@
)

Where

+ ; : model parameter
* ¢, : prediction error

« p: number of lags

Since forecasted values are calculated by previous values, which in turn are also calculated by previ-
ous values, shocks to the time e.g. outlier can propagate through the forecasting. Although this effect
decreases with time, autoregressive models can be considered long-memory models (Wilks 2019).

Contrary, the Moving Average (MA) model does not depend on the previous values of the time series,
but rather on the errors of the past forecast (Korstanje 2021). For the first value in the series, the average
w of the series is used as a forecast, being the namesake of this model. Analog to the previous formula
structure but for the last ¢ errors, the following function can be used (Whittle 1951, Box, Jenkins, and
Reinsel 1970):

q
Xy =p+ Z O;ec; + & (2)
i=1
Where
« i : mean of series X
* &, : prediction Error
+ 6, : model parameter

These two submodules can then be combined into the Autoregressive Moving Average (ARMA) model
(Whittle 1951):

p

q
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Thus, creating a model that uses past values and errors of past forecasts to forecast X, (Korstanje 2021).



Just like the AR and MA submodule, the requirement for a stationary series remains in the ARMA
submodule. Often meteorological variables, especially temperature, show strong daily and annual sea-
sonality and are therefore not stationary (Wilks 2019, Desolte and Tippet 2022). To circumvent this
problem in time series data, seasonal-differencing can be applied by subtracting the value one season
ago X, ; from the current value X, (Desolte and Tippet 2022).

X, =X, X,, (4)
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Figure 1: Example of removing daily seasonality by two times seasonal differencing. The first
graph shows temperature data with strong seasonality. The second graph shows the two times
de-seasonalized data, with first s = 1 hour and then s, = 24 hours.

This de-seasonalized data can then be used inside the ARMA submodule. The resulting two-step model
is then called the autoregressive-integrated-moving-average model and marks another submodule,
ARIMA (Box et al. 2015). Since the order of the Autoregression process p, the order of the Moving
Average process q and the number of differencing needed to reach stationarity d drastically changes
the model performance, it is common to list those parameters: ARIMA(p, d, q) (Korstanje 2021, Wilks
2019). For example, ARIMA(0, 0, 1) would be a simple MA process with an AR window of one.

To further improve the ARIMA model, seasonality in the modelling was reintroduced by the Seasonal
Autoregressive Integrated Moving Average model (SARIMA) (Box et al. 2015), which just adds another
AR and MA process for a given seasonal length s (Box et al. 2015):

p q
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Where

+ ®,,0, : model parameter

s &, : prediction error of the seasonal component
+ X, : value of the seasonal component

The model parameters of the seasonal processes ®, and ©, work as parameters analogous to their
non-seasonal counterparts ¢, and 6,. Just like ARIMA models, SARIMA models are often encountered
in their parameter form SARIMA (p, d, q) x (P, D, Q)s. Where p, d, q are the non-seasonal ARIMA
parameters and P, D, Q) are the seasonal parameters with the seasonal period s (Korstanje 2021).

As stated above, the choice of the right parameters strongly influences the forecasted values, even
more so for SARIMA. It therefore needs a designated strategy described in Section 3.2.2. Nonetheless,
SARIMA models have been used to successfully forecast various time series problems, e.g. aeroplane
passengers, (Xu, Chan, and T. Zhang 2019), air pollution (Samal et al. 2019) and wind turbine energy
production (Tena Garcia et al. 2019).

2.2 Neural networks

Although delivering promising results in forecasting, SARIMA models lack the ability to capture mul-
tiple seasonalities since the length of the seasonal period s needs to be set individually (Korstanje
2021). Furthermore, increasing complexity in the time series leads to serious performance hits. Neural
artificial networks try to solve some of these problems (Khashei, Bijari, and Hejazi 2012).

The first practical neural networks were described by Rosenblatt 1958. These took inspiration from the
signal processing of the human brain. An external stimulus creates an electrical signal that charges
a neuron over its dendrites. If the charge exceeds a certain threshold, a so-called action potential
activates. This sudden electrical impulse can then, over the synapses of the neurons, activate other
connected neurons, et cetera. Each neuron has a different threshold level and different connection
strengths to other neurons. (Hudspeth et al. 2013)

With about 84 billion interconnected neuron cells, the human brain is capable of computing complex
tasks like image recognition (Von Bartheld, Bahney, and Herculano-Houzel 2016). In an artificial neural
network, this basic concept is mimicked. A node representing a neuron gets multiple input values X,.
These values are then adjusted with a weight w,,, representing the connection strength to each input
cell, and a bias, which in turn represents the charge threshold of the biological neuron. This charge
threshold/bias acts as a barrier, to filter out values that could also be attributed to noise. If the weighted
sum of the input values exceeds the bias, the artificial neuron activates and ‘fires’ to connected neurons
(Nielsen 2015).

This gives the basic structure of a so-called perceptron with the output formula (Nielsen 2015):

0ifY w,X, +b<0

output =
P LifY w, X, +b>0

Where

+ w,, : weight for input n

« X,, rinput n

o b : bias for the neuron

One perceptron is often not enough to handle complex problems, so multiple perceptrons are stacked
in a structure commonly referred to as layers (Nielsen 2015). Each perceptron in the layer receives the
same input values but applies different weights to the values and can have different biases. This results
in different output values from the individual perceptrons in the layer. Each output value from a layer



can be then used as an input to a different layer. This produces the horizontal netlike structure seen in
Figure 2.

mputs output

Figure 2: A simple neural network (Nielsen 2015). The circles signify the individual neurons,
each row of circles one layer.

Each weight and bias acts as a little turning wheel, a variable, which can be used to create the desired
outputs. This presupposes that small changes in the weight and bias lead to small changes in the out-
come. However, using the above-mentioned formula to calculate the output, small changes in w,, or
b can lead to diametrical different outputs and as discussed later on to a problem called exploding
gradient. Therefore, the use of a scaling function, also called the activation function, is necessary for
proper training. These functions allow inputs varying from 0 to 1 and not only either 0 or 1 (Sharma,
Sharma, and Athaiya 2017).

Over the years different functions like the rectified linear unit, ReLU, have come up in literature
(Sharma, Sharma, and Athaiya 2017). Two other types which will be used in this thesis are the sigmoid
and hyperbolic tangents function (Sharma, Sharma, and Athaiya 2017). With the sigmoid being defined

by

1
Ug($) - 1 Le@ (7)
and the hyperbolic tangents (tanh) :
et — %
op(x) = prampers (8)

This was necessary to enable machine learning for this kind of network. A method often used in
training neural networks is the so-called backpropagation algorithm, which was first described by
Linnainmaa 1976.

The overall goal of the algorithm is to reduce the error of the final output of the neural network in
comparison to the actual value by making small changes to the weights and biases of the neurons. The
error may be calculated by using a loss function, e.g. the mean squared error (MSE) (Nielsen 2015).

m

MSE= 3 (3, - 5,)" (9)

i=1

Where
.y, : target value
+ g, : predicted value
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Figure 3: Graphical visualisation of the tanh and sigmoid activaition functions.

The backpropagation algorithm as described in Rumelhart, Hinton, and Williams 1986 goes backwards
through the network. Starting with the last layer, the algorithm tries to compute those weights and
biases which lead to the smallest error in the loss function. The algorithm then propagates one layer
backwards and computes the same operations once more. This continues until the algorithm has
reached the first layer of the network (Rumelhart, Hinton, and Williams 1986).

There exist several approaches to how the backpropagation algorithm finds the lowest error inducing
weights and biases (Ruder 2016). One of those is Adam, which stands for adaptive moment estimation
(Kingma and Ba 2014). Adam is an optimizer based on stochastic gradient descent (SGD), which itself
is based on the more primitive gradient descent described in Bottou 1998.

The gradient descent tries to iteratively find a local minimum of a function. After a random starting
point, the algorithm calculates the gradient V,,Q(z, w,) for this weight w, and subtracts it from the
previous weight (Bottou 2012). The speed and success of the algorithm strongly depend on the learning
rate 7). A large value of ) leads to fast results, but it may skip over the minimum. On the other hand,
smaller values of 7 can significantly slow down the algorithm (Bottou 2012) and this can be expressed

by:
1 n
Wyy1 = Wy — nﬁ Z VwQ<zz'7 wt) (10)
i=1

Where

» 7 : learning rate

o w, : weight at step t

« n : number of samples in the dataset
+ Q(z;,w,) : loss of z; with weight w,

After repeating these steps, the algorithm eventually converges to a local minimum (Bottou 2012). For
a three-dimensional function, this can be imagined, as a hiker starting at a point on the mountain and



then always taking a step in the direction with the highest slope until he reaches a point where the
slope is 0.

Since this algorithm computes the average over all the losses of the dataset, it slows down with larger
datasets. The stochastic gradient descent tries to solve this problem by approximating the gradient de-
scent stochastically. Instead of calculating the gradient for every data point in the dataset, it randomly
chooses a subset of the data for calculation and updates the parameters afterwards. (Bottou 2012)

w1 = w, — NV, Q(z, wy) (11)

Where
+ 2, : randomly selected subset

These random subsets are also called batches (Nielsen 2015). The size and number of batches are de-
fined beforehand, and the algorithm goes randomly through all available batches. After all batches
have been used, an epoch has been completed and the pool of available batches for the algorithm resets
(Nielsen 2015).

Further, optimizing the stochastic gradient descent, Adam uses a learning rate 7 for each weight. It ad-
ditionally calculates the average of the mean and variance of the gradient to find a local minimum fast
with low resource consumption (Kingma and Ba 2014). It is important to notice that none of these op-
timisation algorithms can guarantee finding the global minimum of a function, only the local minimum
reachable for the given starting points. Different initial weights can therefore lead to a varying model
performance and will be considered during optimisation (Narkhede, Bartakke, and Sutaone 2022).

Besides learning, optimal neural network performance can be achieved by selecting the best hyperpa-
rameters of the network. Hyperparameters contain the general information on the neural network, for
example, the number of layers, the number of neurons per layer or the batch size (L. Yang and Shami
2020).

Finding the optimal hyperparameters is not a trivial task (L. Yang and Shami 2020). Besides grid search,
where every parameter combination is tested, the Bayesian algorithm finds the best hyperparameters
by evaluating the choice of parameters after each iteration. First described in Mockus 1975 this algo-
rithm leads to fewer iterations needed in comparison with the grid search or random search algorithm
(L. Yang and Shami 2020). Extensive training and hyperparameter optimisation can lead to an overfit-
ting situation. Overfitting occurs when the neural network produces good results on the training set
but generalizes worse on new data. The network has not learned the general patterns in the data but
rather the explicit data sequence (Bejani and Ghatee 2021).

One simple countermeasure to overfitting is the usage of large training Datasets. If the model trains
different situations, the chances of encountering the same ones are reduced (Nielsen 2015). Besides
model evaluation, data splitting can be another viable option which is used in this thesis. The whole
dataset is split into three different subsets: training data, validation data and test data with 70%, 20%
and 10% of the original data accordingly. The training data are used for the normal training procedure
and the test data is used to test the performance of the network. The validation data on the other
hand is used to validate how the model performs on new data. The loss of the validation data can be
calculated after each training epoch. If the validation loss stops decreasing over a period of epochs, the
training can be stopped, which is called early stopping (Bejani and Ghatee 2021).

Another option to decrease overfitting is the usage of so-called regularisation terms. In the loss func-
tion, a term called weight decay or commonly referred to as L2-regularisation is added to incentivise
the usage of smaller weights (Bejani and Ghatee 2021). In the case of the MSE, this gives (Nielsen 2015):
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MSE;, = MSE + o Z w? (12)

Where A is the weight decay rate, which can be tuned as an additional hyperparameter.

2.3 LSTM models

Neural networks can solve a variety of complex problems reaching from image recognition (Wu, J.
2017) to natural language processing (Chowdhary 2020) so different network structures have evolved
for different tasks.

For forecasting meteorological time series data, Long Short Term Memory Networks (LSTM) have
shown as a viable option (Haque, Tabassum, and Hossain 2021, Tran et al. 2021). First described by
Hochreiter and Schmidhuber 1997 LSTM networks are a type of recurrent network. The network
structure mentioned in the previous chapter called a multi-layer perceptron, can not model temporal
sequences, because it lacks the concept of memory (Korstanje 2021).

In recurrent neural networks, RNN, neurons can use previous outputs of itself for the computation of
the new output. The recurrent part, which can be conceived as a loop, may also be unfolded. Each re-
current neuron can be imagined as a chain connection, which begins with the first element in the input
sequence and ends with the last. The recurrent neuron shares the weights and bias along this unfolded
series (Graves 2012). For a longer input series, this can lead to a problem called vanishing/exploding
gradient, because each element in the chain gets multiplied by the corresponding weight. If this weight
is larger than one the output value of the neuron gets exponentially larger, if it is smaller than one
vice versa, which leads to either no training at all or an unstable result (Hochreiter and Schmidhuber
1997).

Long Short Term Memory Networks try to solve this problem by splitting the memory into short and
long-term components on the one hand and evaluating which memory to preserve on the other hand.
The LSTM cell is therefore split into three gates: The input gate, the output gate and the forget gate
(Graves 2012).

The cell gets three different inputs: The previous long-term memory ¢, ;, the previous short-term mem-
ory a, ; and the input value X,. Whereas both ¢, ; and a, ; € R with h being the hidden-size of the
network. The complicated cell structure can be again broken down into submodules.

In the first submodule, the forget gate, the long-term memory input is scaled by the input X, and the
short-term memory a, ; (Graves 2012). This scaling is done by:

fg = og(wiap, +wy X, +by) (13)
and
¢, = fa O (14)

Where

* 0, : sigmoid activation function
« wy,w, : forget gate weights

* by : forget gate bias

* ¢;_:scaled long-term memory

+ ©: Hadamard product
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Figure 4: The internal structure of an LSTM cell inspired by Korstanje 2021. Different colours

visualize the three gates. In red is the forget gate, in blue the input gate and in green the output

gate. The cross symbolizes the Hadamard product and the plus matrix addition. It is worth

noting that a, ; and X, are concatenated. If arrows are orthogonal on other lines, a copy is
produced and not an XOR.

In Equation 14, the Hadamard product, denoted by ©, is a matrix operation (Million 2007). Each ele-
ment of the matrix A gets multiplied by the corresponding element of matrix B (Million 2007):

All A12 cen Aln Bll B12 cee Bl'n, All * Bll A12 * B12 cen Aln * B]"n,
A21 A22 e A2n ® 321 B22 eee B2" _ A21 N B21 A22 N 322 “ee A2n N B2n
A, Ap, o A B, B, - Bn, A, B, A, B, .. A, B,

In the second submodule, the input gate, the scaled long-term memory from the previous module gets
updated by the potential new long-term memory. The potential new long-term memory gets created
in a two-step procedure (Graves 2012). First, the new long-term memory needs to be computed by

¢, =04 <w3at_1 +w, X, + b%,») (15)

Where
s wg,w, : input gate weights

. bct : potential input gate bias
pot.

Then in the second step, the percentage of the new long-term memory that should be added to the old
long-term memory gets calculated by

Ctoo — h (w5at-1 + we X, + bqpﬂ) (16)

Where
+ 0, : hyperbolic tangent activation function
+ wsy, Wy : input gate weights

« b

e, precentral input gate bias
per
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Finally, multiplying Ct,, and Ct,,, and adding them to the scaled long-term memory results in:
G =c, te Oc (17)

In the last submodule, the output gate, the new short-term memory of the cell gets computed by using
the new long-term memory from the previous submodule. This again is a two-step process analogous
to the input gate (Graves 2012).

First, the potential new short-term memory gets computed
atpoc = 09 (’11)7Ct + batpot) (18)
and then the percentage of which to remember gets calculated:

ay . = tanhg (wSG’t—l + ngt + batper) (]‘9>

e
Which gives the new short-term memory
a, = a;q + a . © at . (20)

The output X, of the cell is equal to the new short-term memory a, (Graves 2012).
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3 Methods

This chapter introduces the data and methodology that was used in this thesis to construct and train
the forecasting model.

3.1 Input data and preprocessing

To implement and validate the model, data from the Institut fir Meteorologie und Klimatologie (IMuK)
measuring site Hannover-Herrenhausen in Lower Saxony, Germany, was used. Although measuring
a variety of meteorological parameters in high temporal resolution, the measuring site does not
comply with the WMO Standards (World Meteorological Organisation 2021). Nearby buildings and
greenhouses strongly influence the measurements, but it is nonetheless a good representation of urban
climates. The measurements were split between two sites. One is the 50 m tall tower and adjacent
measuring field, the other is the roof platform above the institute.

Measuring sites Hannover-Herrenhausen
e

Berggarten

Figure 5: Measuring sites in Hannover-Herrenhausen at 52.39° N and 9.70° E and an elevation
of 55 m. Map data from OpenStreetMap was used to create this image. The scale is 1:8000.

Data from the years 2016 to 2022 were used. Table 2 lists all measured parameters, where they were
measured and at which height above ground.

Due to measurement device outages, some values were linear interpolated to create a coherent time
series. If more than two hours of consecutive measurements were missing of any variable, the whole
day was discarded from the training procedure.

Each variable was also resampled from one-minute measurements to one-hour intervals. Using hourly
data to forecast meteorological parameters has proven as a good compromise between forecast accu-
racy and computational resources for forecasting time horizons in the short-term domain (Kreuzer,
Munz, and Schliiter 2020, Haque, Tabassum, and Hossain 2021). Resampling was done by calculating
the mean values in the resampling interval for all parameters except precipitation, which used the sum
of the values.
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parameter location unit height [m]

air temperature Tower °C 2
relative humidity =~ Tower % 2
air pressure Tower hPa 2
wind speed Tower m/s 10, 50
wind speed peaks  Tower m/s 10, 50
wind direction Tower  degree 50
precipitation Tower hits 2
global radiation Roof ~ W/m? 10
diffuse radiation Roof ~ W/m? 10

Table 2: Measured values in Hannover-Herrenhausen. All measurements have a temporal reso-
lution of one minute.

Furthermore, some variables were adjusted for the training procedure. The air temperature was recal-
culated in Kelvin, air pressure in Pa and precipitation in mm. Additionally, air pressure was reduced
to sea level height using the following version of the barometric formula (Lente and Katalin 2020):

k—1 M.g.(—h))ril

P, =P, (1 — (21)
Where

+ P, : measured pressure [hPa]

« Ty : reference temperature [K]

+ h : elevation [m)]

« R, : universal gas constant [J/(mol - K)]

« g : gravitational acceleration [m/s?|

« M : molar mass of dry air [kg/mol]

« k : ratio of specific heat capacities z—:

For proper training, it is also necessary to normalize the input values and thus scale inputs between 0
and 1 (Sola and Sevilla 1997). This was achieved with the MinMax Scaler by Scikit-learn (Pedregosa et
al. 2011). For a time series X, scaling is done like the following (Pedregosa et al. 2011):

x X —min(X) -
scaled ™ max(X) — min(X) (22)
And afterwards unscaled in the following way:
Xunscaled = Xscaled : (maX(X) - mln(X)) + InlIl(X) (23)

This scaling technique is not viable for spherical units like wind direction. So before normalizing, the
wind direction ¢ was split in u and v components. Along the unit circle, spherical units may be de-
composed into their sine and cosine parts (Stover 2023):

(EAT

pomeo((55) 9
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Figure 17 shows this graphically. This technique was chosen over other methods, e.g. one-hot-encoder,
because of implementation simplicity and ease of use.

For the multivariate LSTM, additional derived input parameters were calculated, as shown in Table 3 .
These were added to enable smaller window sizes and to explicitly use important synoptical parame-

ters.
parameter unit parameter unit
dew point K 3h dew point change K
3h pressure change Pa 3h precipitation sum  mm
3h temperature sum K vertical wind difference m/s
3h precipitation event boolean

Table 3: Additional derived input parameters.

The dew point was approximated using the following formula (Kraus 2007, Anyadike 1984):
E,, = 6.1078 - 107+
E=r. Esat

v = log b (26)
6.1078

v

td=1b-

a—v
For

7T5ifT >0
a:=<761if T < 0 over water (27)
9.5 if T < 0 over ice

and

237.3ifT >0
b:= < 240.7 if T < 0 over water (28)
265.5 if T' < 0 over ice

Where

« E, : saturation vapour pressure [Pa]
+ E : vapour pressure [Pa]

« 7 : relative humidity

+ T : air temperature [K]

« td : calculated dew point temperature

The vertical wind difference was calculated with:

Where
 w;y, : windspeed at 50 meters
« wy, : windspeed at 10 meters

Finally, the rain event is a boolean value which equals one if there was any precipitation in the last
three hours and zero vice versa. Table 12 and Figure 16 give an overview of all available parameters.
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The whole dataset from 2016 to 2022 was split into the data for training (2016-2021) and the evaluation/
test data (2022). For the neural networks the data, for training, was then split again into a training data
set (70%) and a validation dataset (30%). The splitting was done using Sklearn (Pedregosa et al. 2011).

Figure 6: Data splitting for training.

To test the models’ ability to generalize to new situations, data from a different location was used
in additional tests. The IMuK operates a second measurement field with an adjacent tower in Ruthe,
about 30 kilometres south of Hannover, which is shaped by the rural landscape. Although complying
with the WMO standards, only a subset of the parameters in Hannover-Herrenhausen is measured in
Ruthe, as shown in Table 4.

parameter unit  height [m]
air temperature °C 2
relative humidity % 2
wind speed m/s 10
wind speed peaks m/s 10
precipitation hits 2
global radiation =~ W /m? 10

Table 4: Measured values in Ruthe. All measurements have a temporal resolution of one minute.

Similar to the data for Hannover-Herrenhausen, the derived parameters shown in Table 3 were added
to the dataset, except for the vertical wind difference and the 3h pressure tendency. The dataset was
also prepared in the same way, e.g. resampled and normalized.

The tower stopped operating in mid-2021, so instead of 2022 the year 2020 was used to test the models.

3.2 Used models

This chapter provides a brief overview of the chosen model architectures and training procedures.
Generally, five different models were used: one seasonal naive model, one SARIMA model and three
models based on LSTM networks. For each of the forecasting variables mentioned in Table 1, there
exists one network to forecast this variable. There are therefore 12 submodels per model, totalling in
60 overall submodels.
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3.2.1 Baseline approach

The seasonal naive model was used as a baseline approach for model performance evaluation as de-
scribed in Wilks 2019:

nseasonal,naive = }/t’s (30)

Where s is the seasonal length, so for s = 24 hours, the seasonal naive forecast would just use the
values from 24 hours ago to make a prediction.

3.2.2 Traditional stochastic method

The SARIMA model was used as a traditional stochastic approach, because of its widespread use and
ease of implementation. To find the optimal SARIMA parameters SARIMA (p,d, q) x (P, D, Q)_ for
each forecasting variable, the AUTOARIMA function from the pmdarima package was used which was
created by Smith and others 2017.

The AUTOARIMA function finds the combination of parameters, with the minimum Akaike Informa-
tion Criterion (AIC), first described in Akaike 1974. This criterion gives the relative model performance
in relation to the other tested models by evaluating the maximum likelihood (Akaike 1974):

AIC =2k —2In(L) (31)

Where
o k : Number of model parameters
o L : maximum of the likelihood function

With the usage of the number of model parameters, the AIC tries to prevent the model from overfit-
ting (Akaike 1974). Because of the underlying model restrictions, the seasonal parameter s must be
specified for the AUTOARIMA function. A common way to find the seasonality is the Autocorrelation
Function (ACF) (Wilks 2019).

0.8 -

. .

0 5 10 15 20 25 30
lag, k [hours]

rk

Figure 7: ACF of temperature for different time lags k with the blue field being the o« = 0.05
confidence interval. The magenta-coloured line shows the most correlation with values that are
24 hours apart, which is to be expected for the temperature.

To find the optimal parameters, the following test was conducted for each forecast variable. The hourly
data, of the data for training, was split into windows with a length of 672 hours or 28 days. A win-
dow-size of 672 hours was used to capture possible synoptic phenomena and ensure a required long
time series for the SARIMA model. For each day in the year, the preceding 672 hours were used as
an input time series to calculate the best model parameters with the AUTOARIMA function for a 24-
hour forecast. The final parameters for each forecast variable were the median of the yearly parameter
distribution from that test and are shown in Table 5.
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parameter non Seasonal parameters seasonal parameters
(0,1,1),,

Air temperature

Relative humidity 0,1,1 (0,1, 1)24
Reduced air pressure 0,1,1 (0,1,1) o
Wind speed_ 10 1,1,1 (0,0, O)0
Gust speed_ 10 1,1,1 (0,0, 0)0

Wind speed_ 50 0,1,1 (0,1, 1)24
)aa

Wind direction_ sin 1,1,1 (0,0, 0)0
Wind direction_ cos 1,1,1 (0,0,0) 0
Global radiation 0,1,1 (0,1, 1)24

Diffuse radiation

( )
( )
( )
( )
( )
( )
Gust speed_ 50 (0,1,1) (0,1,1
(1,1,1)
( )
( )
( )
( )

Precipitation

Table 5: Non-seasonal parameters (p,d, q) and seasonal parameters (P, D, Q)s found by the
AUTOARIMA function with a sliding window of 672 hours. The seasonality parameter s is
displayed in hours.

It is worth noting, that the most common parameter combination in this dataset
SARIMA (0,1,1) x (0,1,1),, is a very common combination in time series forecasting and has
earned the title “airline model” based on the forecasting of airline passengers (Box et al. 2015).

The final forecast for each variable for the evaluation data was then again done by a sliding window
approach with a window size of 672 values. So in each step, 24 hours were forecasted from the preced-
ing 672 hours. After each prediction, the sliding window was shifted by 24 hours with zero overlap. To
prevent unstable predictions, none of the predicted values were used in other predictions. The sliding
window slit only over the data for 2022. For ease of use, the Darts package by Herzen et al. 2022 was
used to make predictions.
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Figure 8: Sliding window approach sliding over the multi-parameter dataset.

3.2.3 LSTM models

Three different LSTM networks were used. A univariate LSTM and two multivariate LSTM. The uni-
variate LSTM, as the SARIMA model, only receives past values of the same variable it forecasts.
Contrary, the first multivariate LSTM receives all 20 input parameters (measured + derived as shown in
Table 12) whereas the second multivariate LSTM only receives correlating variables. Which variables
correlated to the forecasting variable are shown in Figure 9.

If variables show an absolute value of the Pearson correlation coefficient above 0.2 and the p-value is
below 0.05, they were used in the prediction of the correlating variable in the correlating multivariate
LSTM.

All networks were programmed using the low-level API PyTorch introduced in Paszke et al. 2019 and
the mid-level API PyTorch lightning to reduce code boilerplate. The implemented LSTM structure is
based on Sak, Senior, and Beaufays 2014.

The univariate LSTM possesses only one input neuron for the one data feature it uses for forecasting.
The network consists of a number (num;,,..,.;) of LSTM components stacked on top of each other, where
each LSTM component receives the output of the LSTM before as an input. The long-term memory of
each LSTM component is a vector with the dimension hidden_size. An example of this structure can
be seen in Figure 18. Connected to the last LSTM in the stack is a linear layer. This diffuse layer has 24
output neurons, one for each forecasted hour. The numy, ., and hidden size are hyperparameters of
this model.
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correlating values
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Figure 9: The heatmap shows the absolute correlation matrix for all 20 parameters. The Pearson
correlation coefficient was used to calculate the correlation. Darker colours represent stronger
correlations. Correlations below 0.2 were coloured light grey.

The multivariate models are structured in the same general fashion, the only difference is the number
of input neurons. Whereas the full multivariate model uses 20 input neurons, the number of input
neurons for the correlating multivariate model depends on the number of inputs used. Both multivari-
ate LSTM models are so-called Multi Input Single Output (MISO) models. So there is one model for
each of the twelve forecasting variables. Although Multi Input Multi Output models (MIMO), exists
MISO models achieve better results in meteorological settings (Hewage et al. 2020).

The final forecast was then done again with the sliding window approach over the evaluation data.

3.2.4 Hyperparameter optimisation

The tuning of model hyperparameters is very inefficient if done by hand, as each combination of
possible hyperparameters would need to be trained and evaluated afterwards. For large numbers of
hyperparameters, this can instead be done with the Optuna package described by Akiba et al. 2019 .
Optuna uses the Bayesian algorithm to elevate the model performance after each hyperparameter
change and finds those parameters which lead to the smallest loss of the validation data. As evaluation
metric was again the MSE used.

Not all hyperparameters were tuned. Table 6 shows all hyperparameters, which were tuned for the
models, Table 13 those that were not. The limits of the search space are based on Tran et al. 2021 as
well as Kreuzer, Munz, and Schliter 2020. Also, since these models were trained on a GPU with Cuda
acceleration, the available VRAM limits the usage of more complicated models. To try out a variety of
parameter combinations, the maximum number of training epochs was also reduced to 20. Addition-
ally, unpromising trials were pruned based on their validation loss.
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parameter possible values

learning rate n 1-10°<n<1-107°
weight decay rate A 1-10°<A<1-107
dimensions of ¢, ¢, € [4,8,16,32,64,128|
number of stacked LSTM cells N, N € [1,2,4, 6]
batch length N N € {32+8n|nel0,15]}
weight initializer none, normal distribution, Glorot init., He init.

Table 6: The hyperparameters used in the optimisation process.

Figure 19 shows that the choice of hyperparameters can have a huge impact on the resulting model

performance.

For the temperature in the multivariate LSTM, Table 7 shows the optimal values for each hyperparame-
ter found by Optuna. The other hyperparameters for the other variables can be found in the appendix.

parameter optimal values
learning rate n 0.000425961
weight decay rate A 0.0000102286
dimensions of ¢, 128
number of stacked LSTM cells N 2
batch length N 60
weight initializer kaiming

Table 7: Optimal hyperparameters found by Optuna for the temperature in the multi. LSTM.

3.2.5 Training

As an optimizer during training, the Adam algorithm by Kingma and Ba 2014 was used to find the
optimal weights and bias with the MSE as a loss function. Since Adam is based on the stochastic gra-
dient descent, the training procedure was based on the batch approach. The training data was split
into batches of the length N. Each batch holds the input with the dimension (L, H,, ), with L being
the sequence length, e.g. the last 24 hours of data and H;, being the number of input variables being
used. E.g. 1 for the univariate, and up to 20 for the multivariate LSTMs. Each batch has therefore the
shape (N, L, H,,) The training was overall limited to 200 epochs, where each epoch holds

N, ...

Noasches = m%g_dm (32)
batches. If the loss of the validation data, calculated after each epoch, does not decrease after a patience
of 5 epochs, the training was stopped early to prevent overfitting. To further prevent the model from
overfitting, L2-regularisation was used inside Adam.

The initial values of the weights and biases can have a significant impact on training convergence
(Narkhede, Bartakke, and Sutaone 2022). Different weight initializer have been used during training:
none, normal distribution and uniform distribution. The uniform distribution was implemented as Glo-
rot initialization (Glorot and Bengio 2010) and He initialization (He et al. 2015). To ensure comparable
models, PyTorch was set to use a deterministic evaluation with random_seed = 45.
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3.3 Error metrics
For a final model performance evaluation, the root mean squared error (RMSE) was calculated. The
RMSE is defined as the square root of the previously mentioned mean squared error (Wilks 2019):

1 m
RMSE = \/E Z (Yimodel - Yiobserved>2 (33)
i=1

The RMSE is a popular choice in determining model performance (Kreuzer, Munz, and Schliiter
2020, Haque, Tabassum, and Hossain 2021, Liang et al. 2021), because it provides a simple and un-

derstandable metric. Smaller values characterize better predictions, with RMSE = 0 being a perfect
forecast.

Additionally, the Mean absolute scaled error, MASE, was used as a skill score to directly measure each
model’s improvement over the simple seasonal naive baseline. A MASE below one signals an improve-
ment over the baseline model and vice versa (Hyndman and Athanasopoulos 2018).

T
Zt=1 |}/tm0del B Yt
T

t=1 tseasonal naive

measured

MASE =

(34)

Y,

measured

For the precipitation forecast, additionally, the hit rate H and false alarm ratio F’ were computed (Wilks
2019):

a

H =
a+c

b
b+d

Where a,b,c,d are the number of events in the contingency table, shown in Figure 10

Observed

Forecasted

Figure 10: Contingency table inspired by Wilks 2019. Green halves signify true and red false.
For example, a is the number of observed and forecasted events and d the number of not fore-
casted and not observed events

Both range from zero to one, but have diametrically different implications. If F' = 1 every forecast was
a false alarm, and if H = 1 every forecast was a correct forecast. It is therefore detrimental for the
model to achieve a high hit rate and a low false alarm ratio at the same time. Often H and F' are shown
together in a so-called H-F'-diagram (Wilks 2019), e.g. Figure 14.

21



4 Results and discussion

This chapter provides the results of this thesis. First, the influence of different forecasting horizons
durations and sliding time window lengths were studied. Afterwards, the overall model performance
was evaluated, for the whole evaluation dataset and each month. The model performance was then
also tested on two meteorological situations and finally deployed on the Ruthe data as a robustness
test.

4.1 Influence of different temporal parameters

At first, the influence of the forecasting horizon duration and the sliding time window length, the input
data length for the model, were tested. For each permutation of window size and forecast horizon
shown in Figure 11, the multivariate LSTM with all input parameters was trained and tested on the
evaluation data to calculate the RMSE for the air temperature. Generally, the RMSE increases with the
forecast horizon as expected. An increased window-size leads to a lower RMSE up to 24 hours. Larger
window-sizes only improve the forecast below a forecast horizon of 18 hours, otherwise, the RMSE
stagnates or even gets worse. The model therefore seems to operate optimal with a window size of
24 hours for forecast horizons above 15 hours. Even though not operating optimally below a forecast
horizon of 18 hours, the increase in error for a window size of 24 hours is small in comparison to the
increased computational complexity of a larger window size. 24 hours could therefore be seen as the
optimal window size for all forecast horizons and will be used on all neural networks in this chapter.

Root Mean Squared Error for Temperature
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2.08 217 227 259 296 3.38
2.07 22 237 257 321 3.69
1.92 2.07 221 236 2.72 3.63
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Figure 11: Heatmap showing the RMSE values for different window sizes and forecast horizons.

Since 121 different models needed to be trained, the creation of the heatmaps was very resource-

heavy and was only done for the temperature. For simplicity, the window size for all LSTM
networks was set to 24 hours, although different variables could possess different optima.
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4.2 Comparing model performance

To evaluate the model performance, the RMSE and MASE were calculated for the entire evaluation year
2022, Table 8 shows the RMSE values. The three LSTM models combined reach the lowest RMSE values
in every parameter category, except precipitation. There is not a one-size-fits-all network solution,
rather different networks are required to forecast different parameters. Parameter which meteorolog-
i» RH and py, show a smaller RMSE for the
multivariate LSTM models. On the other hand, parameters that do not depend on other parameters

ical depend on a variety of other parameters, e.g. T,

that were observed, e.g. G and D were forecasted best by the univariate LSTM.

Selecting only the correlating parameters leads to some, rather small, model improvements, but this
heavily depends on the forecasted parameter. Overall, the multivariate correlating LSTM improved
the multivariate LSTM performance only if this model was already performing well and vice versa.
Therefore, providing every parameter and letting the LSTM learn on its own which input parameters
to use is the proposed tactic.

parameter seasonal naive SARIMA uni. LSTM multi. LSTM multi.corr. LSTM

T, 3.277 3.066 2.942 2.351 2.516
RH 0.138 0.12 0.116 0.099 0.098
Py 6.538 4.312 3.76 3.539 3.531
Uy 1.664 1.359 1.24 1.277 1.288
Us, 2.583 2.01 1.946 1.812 1.825
910 2.388 1.954 1.754 1.651 1.678
o 3.42 2.659 2.48 2.513 2.515
0. 0.776 0.628 0.543 0.512 0.51
0, 0.645 0.534 0.486 0.528 0.507
P 0.012 0.009 0.061 0.062 0.064
G 154.635 127.488 115.16 116.418 117.794
D 71.424 93.377 53.081 56.648 56.871

Table 8: Comparison of the RMSE values on the evaluation data. Smaller values are an indicator
of a better forecast. The bold values characterize the best model for each parameter.

Table 9 shows the MASE values and gives a clearer insight into relative model performance versus the
naive seasonal baseline. It generally reproduces the results from Table 8. The LSTM model achieves the
lowest MASE values in every parameter, with P again being the only exception. Since both evaluation
metrics favour the neural networks, this can be seen as a positive sign. Neither are there larger outliers
in the model prediction that would cause higher RMSE values, nor are the errors unevenly distributed,
resulting in worse MASE values.

The scale invariance of the MASE allows for a parameter-agnostic model performance analysis. The
most improvement over the baseline model was achieved by the multivariate LSTM for p, with
MASE = 0.454. In comparison with the SARIMA model, the largest improvement was achieved in
forecasting D with A MASE = 0.951. Overall, the neural network performance improvement in com-
parison with the SARIMA method is satisfactory.
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parameter seasonal naive SARIMA uni. LSTM multi. LSTM multi.cor. LSTM

T, 1.0 0.881 0.898 0.694 0.755
RH 1.0 0.836 0.875 0.733 0.721
Py 1.0 0.562 0.504 0.454 0.457
Uy, 1.0 0.845 0.747 0.781 0.794
Usy 1.0 0.754 0.744 0.703 0.703
910 1.0 0.849 0.74 0.69 0.71
950 1.0 0.751 0.721 0.738 0.739
O 1.0 0.823 0.816 0.724 0.728
o, 1.0 0.835 0.787 0.829 0.817
P 1.0 1.017 36.583 32.45 38.814
G 1.0 0.897 0.843 0.94 0.95
D 1.0 1.811 0.86 1.03 1.037

Table 9: Comparison of the MASE values on the evaluation data. Smaller values are an indicator
of a better forecast. The bold values characterize the best model for each parameter.

4.2.1 Seasonal influence

To study the influence of seasonality on model performance, the forecasts were split into months and
the MASE was calculated for each since most of the forecasted model parameters itself show a yearly
seasonality, e.g. G. The usage of RMSE would just mirror the seasonality. Larger values would lead
to larger possible squared errors and therefore larger RMSE. MASE does not obliviate these problems
but reduces the influence. The study was conducted for the temperature and the results are shown in
Figure 12.

MASE for temperature throughout the year
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Figure 12: Monthly MASE values for the temperature in 2022.

The MASE changes throughout the year, with lower MASE’s in the summer semester and higher val-
ues in the winter semester. It is noteworthy, that all models change similar throughout the year and
the order of model performance does not change significantly. The full LSTM performs best for each
month. The amplitude over the year can be on the one hand attributed to the yearly seasonality and
on the other hand to more complex weather situations like inversions that can not be captured by the
models. In the summer semester, however, radiation makes temperature easier to forecast.
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4.2.2 Heatwave

During the 18th and 23rd of July 2022 a heatwave hit middle Europe and led to very high tempera-
tures. At its peak on the 20th of July, T};, = 40.4 °C' was measured at Hannover-Herrenhausen. This
temperature exceeds all temperatures in the data for training and provides a good opportunity to test
the models in extreme situations. The model performance was visualized in Figure 13.

Temperature forecast for the heatwave in July 2022
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Figure 13: Graphical visualisations of the temperature forecast for all models during the heat-
wave in July 2022.

None of the models predict the temperature correctly for the 20th, but the seasonal naive gets pretty
close, just like the SARIMA model. The good performance of the simple models can be attributed to
the steady increase in temperature each day. This can be seen best on the 21st, as the observed tem-
perature abruptly changes, but these models predict nearly the same values as the day before. All three
LSTM however correctly predict lower temperatures and a smaller amplitude on this day, with the
multivariate LSTM performing best. The model can therefore handle abrupt changes well, but does
perform worse on values that are beyond the limits of the training data.

4.2.3 Precipitation

As shown in Table 8 and Table 9 the neural networks as well as the SARIMA model had severe problems
in forecasting the precipitation. To inspect this issue further, the H-F diagram was plotted in Figure 14.
The univariate LSTM and the multivariate LSTM models had the highest hit rate with H = 3 - 10~ but
also the worst false alarm ratio with F' = 0.97, resulting in only a few correct hits but almost always
raising a false alarm. These values can be explained by the second graph in Figure 14, which shows the
forecasts for a rain-intense period in December 2022. The training of the networks did not converge.
Instead of forecasting the rain events, every model got stuck in an oscillation around a similar fixed
value. Since there are only a very few precipitation events, the training data is often, if not most of
the time, zero, which can lead to model instability. For this sparse kind of data, LSTM may not be
the optimal network architecture. More complex models the combination of convolutional and LSTM
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networks, for example, have been more successful in precipitation forecasting (Shi et al. 2015). There
could also be a problem with the chosen hyperparameters, as Barrera-Animas et al. 2022 utilize LSTM
models more successfully for precipitation forecasts.

H-F diagram Precipitation in December 2022
1.0
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Figure 14: Analysis of precipitation error. The H-F diagram was plotted on the left side and a
visual comparison of precipitation forecasts on the right side for December 2022. The observed
values are shown in black.

4.3 Testing robustness on Ruthe data

At last, the robustness and therefore the models’ ability to generalize should be tested on the Ruthe
dataset. Once more the RMSE and MASE values computed for all the available parameters in Ruthe
and are shown in Table 10 and Table 11. Ruthe proposed a challenge for every tested model, especially
for the T,

wir parameter, where even the naive seasonal model performed significantly worse than in
Hannover-Herrenhausen. The multivariate LSTM had to be retrained on the original dataset of Han-
nover-Herrenhausen with only the parameters described in Section 3.1 as not all original parameters
were available in Ruthe, creating a light version of the original model. However, none of the Ruthe

data has been used in the training process, as shown in Figure 15.

Instead of the correlating multivariate LSTM, the reduced multivariate LSTM was trained, which just
used the observed parameters described in Table 4 and none derived. Overall, the neural networks
combined achieved the lowest RMSE values out of all models, with the strengths and weaknesses of
each model being similar to the original data. The air temperature marks the only exception. It seems
that not every input parameter provided leads to an increase in model performance, as the reduced
multivariate LSTM performs significantly better with fewer input parameters than the full multivariate
LSTM.
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Figure 15: Process for evaluating data on the Ruthe dataset for both multivariate LSTM models.
This was necessary because not every original model input parameter was available in Ruthe.

parameter seasonal naive SARIMA uni. LSTM multi. LSTM multi.red. LSTM

T, 5.053 5.214 4.912 9.614 4.992
RH 0.177 0.17 0.159 0.174 0.149
Uy, 2.637 2.372 1.674 1.604 1.564
910 3.068 2.784 2.299 2.406 2.416
P 0.283 0.137 0.108 0.073 0.076
G 165.147 140.502 125.159 179.133 149.239

Table 10: Comparison of the RMSE values on the evaluation data. Smaller values are an indi-
cator of a better forecast. The bold values characterize the best model for each parameter.

The relative model performance measured by the MASE was worse in almost every parameter, but
still provided an acceptable performance increase over the baseline and traditional methods, except
for precipitation. The models did therefore generalize pretty well, and the efforts to reduce overfitting
were successful.

parameter seasonal naive SARIMA uni. LSTM multi. LSTM multi.red. LSTM

T, 1.0 1.03 0.972 2.06 0.984
RH 1.0 0.978 0.911 1.007 0.866
Uy 1.0 0.914 0.664 0.653 0.626
910 1.0 0.917 0.76 0.802 0.804
P 1.0 1.038 1.731 1.271 1.304
G 1.0 0.892 0.803 1.312 1.076

Table 11: Comparison of the MASE values on the evaluation data. Smaller values are an indi-
cator of a better forecast. The bold values characterize the best model for each parameter.
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5 Conclusion and future research

The goal of this thesis was to implement and test a forecasting system for all observed parameters at the
measuring site Hannover-Herrenhausen. Three different long short term memory networks were com-
posed, one univariate and two multivariate networks for every parameter. The seasonal naive model
was used as a baseline model and a SARIMA model to compare against traditional stochastic methods.
The hyperparameters were optimized to ensure optimal model performances. RMSE and MASE have
been used to evaluate the model performance.

Overall, the neural networks combined showed an improvement in forecasting each parameter except
precipitation for both error metrics. The univariate network exceeds in forecasting meteorological
parameters that do not depend on other parameters like global radiation, whereas the multivariate
network performs best on parameters with multiple meteorological dependencies. The additional cor-
relation test done for the second multivariate LSTM did not always lead to a forecast improvement,
sometimes even to a worse performance. This additional step is therefore not advised, instead the
LSTM should learn the parameter importance on its own. For the optimal forecast of all parameters,
a combination of univariate LSTM and multivariate LSTM should be used. The univariate LSTM to
forecast uyg, 919,y G and D and the multivariate for all other parameters.

Different variations of the forecast horizons and window sizes have been studied to find the optimal
combination. For most forecast horizons in the short term domain, a window size of the past 24 hours
strikes the optimal balance between model performance and complexity for the air temperature. Fu-
ture research is needed to validate this for the other parameters. The networks showed a good reaction
to abrupt changes in the data, but struggled if the data was beyond the limits of the training data, as
shown with the heatwave in Section 4.2.2. In the context of climate change, this presents a significant
model limitation and needs further research. Precipitation forecast was another struggle for the neural
networks, and other models or different data preprocessing methods should be studied to achieve bet-
ter performance. The robustness test in Ruthe revealed some flaws in the multivariate temperature
model but showed that the models generalize pretty well overall. To test the model’s robustness, a
light version of the original model was used to comply with the lack of several model parameters.
Another interesting approach for further research could be the usage of the full pre-trained Hannover-
Herrenhausen model on the Ruthe data, with filler values in the dataset for the empty parameters.

Since only the training of the model requires time and high computational resources, but not the usage
to make a forecast, meteorological neural networks, can be deployed on low-end hardware like smart-
phones or even Raspberry Pi. As shown by Hewage et al. 2020. Although, as smartphone performance
increases, they may be used in the future to even train these models locally to make forecasts in remote
locations. As the computational resources were limited for this thesis, it would be fascinating to test
out more complex models like the Transformer models described in Vaswani et al. 2017. Additionally,
the usage of multiple weather stations as input data could provide a fascinating opportunity to develop
more robust models.

Advancements in meteorology were often tied to advancements in technology. As we accelerate the
progress in machine learning and stand at the precipice of a new era, this thesis tried to shed some
light on the underlying processes.
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Appendix

Input data for the multivariate LSTM

parameter unit mean variance
air temperature °C 284.54 7.79
relative humidity % 75 17
reduced air pressure Pa 101570,27  976.06
wind speed_ 10 m/s 2.08 1.3
gust speed_ 10 m/s 2.97 1.87
wind speed_ 50 m/s 4.46 2.01
gust speed_ 50 m/s 5.80 2.74
wind direction_ sin radian -0.17 0.74
wind direction_ cos radian -0.30 0.57
global radiation W /m? 118.91 201.77
diffuse radiation W /m? 58.76 95.17
precipitation mim 0.07 0.42
dew point K 279.66 6.1
3h dew point change K 0 0.37
3h pressure change Pa -0.01 43.09
3h precipitation sum mm 0 0.03
3h temperature change K 0 0.83
vertical wind difference  m/s 2.38 0.95
3h precipitation event boolean 0.00 0.13

Table 12: Overview of the training parameters.
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parameters of the time series

< w
= ) 15 -
o 300 E
= )
w -
-E o 10
£ T °°
. S
260 - 0-
1.0- <
~
—_ £
o
& 08" E -
z :
= S 10-
s 0.4- a
£ -g
0.2 - a 0-
2016 2018 2020 2022 2016 2018 2020 2022
date date

Figure 16: Graphical representation of the data for training. Shown are the temperature, hu-
midity, precipitation, and wind speed for the years 2016-2021.

Splitting wind direction

Figure 17: Splitting an angle 6 into the sin and cos components along a unit circle, with r = 1.
Inspired by Stover 2023.
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model structure
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Figure 18: General structure of the stacked LSTM approach with N,

cells

= 2. The input gets

used to compute the current long-term memory C; and the short term memory a,. Both get

then used as additional inputs to the second LSTM cell, which then computes C, and the short-

term memory a, again. X,, the output from the second cell, gets used by a linear diffuse layer.
For simplicity, only 2 of 24 diffuse output neurons are shown.
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Hyperparameters

hyperparameter univariate LSTM multi. LSTM corr. multivariate LSTM
optimizer Adam Adam Adam
inputs 1 20 1-20
dropout 0 0 0
patience ) ) )
training size 70% 70% 70%
validation size 30% 30% 30%
window shift 24 h 24 h 24 h
window size 24 h 24 h 24 h
epochs 200 200 200

Table 13: Hyperparameters that were not optimized.

Univariate LSTM
humidity

parameter

optimal values

learning rate n
weight decay rate A
dimensions of ¢,
number of stacked LSTM cells N,
batch length N

weight initializer

0.0004421658
0.0002617564
32
1
60

xavier

Table 14: Optimal hyperparameters found by Optuna for the humidity in the uni. LSTM.

reduced pressure

parameter

optimal values

learning rate n
weight decay rate A
dimensions of ¢,
number of stacked LSTM cells N,
batch length N

weight initializer

0.0000244618
0.0000239736
128
2
60

kaiming

Table 15: Optimal hyperparameters found by Optuna for the reduced pressure in the uni.

LSTM.
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global radiation

parameter optimal values
learning rate n 0.0002392531
weight decay rate A 0.000034903
dimensions of ¢, 64
number of stacked LSTM cells N, 4
batch length N 60
weight initializer kaiming

Table 16: Optimal hyperparameters found by Optuna for the global radiation in the uni. LSTM.

diffuse radiation

parameter optimal values
learning rate n 0.0004733867
weight decay rate A 0.0000606423
dimensions of c, 8
number of stacked LSTM cells N, 2
batch length N 60
weight initializer kaiming

Table 17: Optimal hyperparameters found by Optuna for the diffuse radiation in the uni. LSTM.

precipitation

parameter optimal values
learning rate n 0.0001622737
weight decay rate A 0.0001217253
dimensions of ¢, 4
number of stacked LSTM cells N g 2
batch length N 60
weight initializer kaiming

Table 18: Optimal hyperparameters found by Optuna for the precipitation in the uni. LSTM.
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wind 10 m

parameter optimal values
learning rate n 0.0007976957
weight decay rate A 0.0000485815
dimensions of ¢, 32
number of stacked LSTM cells N, 4
batch length N 60
weight initializer kaiming

Table 19: Optimal hyperparameters found by Optuna for the wind 10 m in the uni. LSTM.

wind 50 m

parameter optimal values
learning rate n 0.0000720454
weight decay rate A 0.000130051
dimensions of ¢, 4
number of stacked LSTM cells N, 1
batch length N 60
weight initializer normal

Table 20: Optimal hyperparameters found by Optuna for the wind 50 m in the uni. LSTM.

gust 10 m
parameter optimal values
learning rate n 0.000025003
weight decay rate A 0.000011801
dimensions of ¢, 64
number of stacked LSTM cells N g 2
batch length N 60
weight initializer kaiming

Table 21: Optimal hyperparameters found by Optuna for the gust 10 m in the uni. LSTM.
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gust 50 m

parameter optimal values
learning rate n 0.0000295239
weight decay rate A 0.0000130325
dimensions of ¢, 128
number of stacked LSTM cells N, 6
batch length N 60
weight initializer kaiming

Table 22: Optimal hyperparameters found by Optuna for the gust 50 m in the uni. LSTM.

wind direction sin

parameter optimal values
learning rate n 0.0009123493
weight decay rate A 0.0000166529
dimensions of c, 16
number of stacked LSTM cells N 1
batch length N 60
weight initializer normal

Table 23: Optimal hyperparameters found by Optuna for the wind direction sin in the uni.

LSTM.
wind direction cos
parameter optimal values
learning rate n 0.0000615112
weight decay rate A 0.0000212533
dimensions of ¢, 128
number of stacked LSTM cells N, 1
batch length N 60
weight initializer xavier

Table 24: Optimal hyperparameters found by Optuna for the wind direction cos in the uni.
LSTM.
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Multivariate LSTM

humidity
parameter optimal values
learning rate n 0.0002968177
weight decay rate A 0.0000682716
dimensions of ¢, 64
number of stacked LSTM cells N 4
batch length N 40
weight initializer kaiming

Table 25: Optimal hyperparameters found by Optuna for the humidity in the multi. LSTM.

reduced pressure

parameter optimal values
learning rate n 0.0002633076
weight decay rate A 0.0000273408
dimensions of ¢, 128
number of stacked LSTM cells N 1
batch length N 32
weight initializer kaiming

Table 26: Optimal hyperparameters found by Optuna for the reduced pressure in the multi.

LSTM.
global radiation
parameter optimal values
learning rate n 0.0000242157
weight decay rate A 0.0002955667
dimensions of ¢, 128
number of stacked LSTM cells N, 2
batch length N 40
weight initializer xavier

Table 27: Optimal hyperparameters found by Optuna for the global radiation in the multi.
LSTM.
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diffuse radiation

parameter optimal values
learning rate n 0.0000198443
weight decay rate A 0.0001357626
dimensions of ¢, 128
number of stacked LSTM cells Ny 2
batch length N 48
weight initializer xavier

Table 28: Optimal hyperparameters found by Optuna for the diffuse radiation in the multi.

LSTM.
precipitation
parameter optimal values
learning rate n 0.001
weight decay rate A 0.0000102286
dimensions of ¢, 1
number of stacked LSTM cells N, 2
batch length N 32
weight initializer kaiming

Table 29: Optimal hyperparameters found by Optuna for the precipitation in the multi. LSTM.

wind 10 m

parameter optimal values
learning rate n 0.0002728777
weight decay rate A 0.0008340642
dimensions of ¢, 128
number of stacked LSTM cells N, 1
batch length N 56
weight initializer xavier

Table 30: Optimal hyperparameters found by Optuna for the wind 10 m in the multi. LSTM.
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wind 50 m

parameter optimal values
learning rate n 0.0001669097
weight decay rate A 0.0000228338
dimensions of ¢, 64
number of stacked LSTM cells N, 1
batch length N 104
weight initializer xavier

Table 31: Optimal hyperparameters found by Optuna for the wind 50 m in the multi. LSTM.

gust 10 m
parameter optimal values
learning rate n 0.0005651945
weight decay rate A 0.0000135455
dimensions of ¢, 128
number of stacked LSTM cells N, 6
batch length N 104
weight initializer kaiming

Table 32: Optimal hyperparameters found by Optuna for the gust 10 m in the multi. LSTM.

gust 50 m
parameter optimal values
learning rate n 0.0004698578
weight decay rate A 0.0001099339
dimensions of ¢, 32
number of stacked LSTM cells N g 4
batch length N 104
weight initializer kaiming

Table 33: Optimal hyperparameters found by Optuna for the gust 50 m in the multi. LSTM.
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wind direction sin

parameter optimal values
learning rate n 0.0007038974
weight decay rate A 0.0000258223
dimensions of ¢, 64
number of stacked LSTM cells N, 1
batch length N 32
weight initializer xavier

Table 34: Optimal hyperparameters found by Optuna for the wind direction sin in the multi.

LSTM.
wind direction cos
parameter optimal values
learning rate n 0.000717075
weight decay rate A 0.000017122
dimensions of ¢, 64
number of stacked LSTM cells N, 4
batch length N 32
weight initializer kaiming

Table 35: Optimal hyperparameters found by Optuna for the wind direction cos in the multi.
LSTM.

Automatic hyperparametrisiation

3 —e— trial #1
—e— trial #2
2 trial £3
—e— trial #4
0 —e— trial #5
—e— trial #6
—eo— trial #7
—a— trial #9
trial #10
—o— trial #11
—e— trial #12
—e— trial #13

—a— trial #14

Objective Value

—e— trial #15

=
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Figure 19: Graphic produced by Optuna. For the multivariate LSTM forecasting temperature,
the different trials are shown. On the x-axis are the number of elapsed training epochs and on
the y-axis the MSE of the validation data on a logarithmic scale.
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Glossary

ACF: Autocorrelation Function

AIC: Akaike Information Criterion
GPU: Graphical Processing Unit

LSTM: Long Short Term Memory
MASE: Mean Absolute Scaled Error
MIMO: Multi Input Multi Output

MISO: Multi Input Single Output

MSE: Mean Squared Error

RMSE: Root Mean Squared Error

RNN: Recurrent Neural Network
SARIMA: Seasonal Autoregressive Moving Average Model
VAR: Vector Autoregression Model
VRAM: Video Random Access Memory
WMO: World Meteorology Organisation
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