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A B S T R A C T

The proof of 𝛤 -convergence builds the base of the well-known Ambrosio–Tortorelli functional leading to an
energy functional for quasi-static phase-field fracture problems. Three parameters in a monolithic quasi-static
phase-field fracture model are very relevant for the quality of the results: the length-scale 𝜖, the regularization
parameter 𝜅 to avoid ill-posedness of the system and the discretization parameter ℎ. The work on hand presents
numerical results considering a pressure-driven cavity in 2d with two quantities of interest, the crack opening
displacement and the total crack volume. The focus will be to discuss the assumptions of 𝛤 -convergence which
demand: ℎ = 𝑜(𝜅) and 𝜅 = 𝑜(𝜖) and 𝜖 → 0. An error analysis of the chosen quantities of interest allows to identify
a proper setting for the three mentioned model parameters.
. Introduction

Phase-field fracture modelling is a popular approach to simulate
rack propagation in brittle materials. In the context of a quasi-static
hase-field fracture model based on the Ambrosio–Tortorelli func-
ional [1,2], we have a regularization parameter 0 < 𝜅 ≪ 1 which
egularizes the bulk energy [3]. This parameter should be as small as
ossible to avoid over-estimation of the bulk energy (resulting in an
nder-estimation of the surface crack energy). In practice, it means: the
arger the value of 𝜅, the slower the crack will grow. In [4], the model
arameter 𝜅 is introduced to prevent the positive part of the elastic
nergy density from disappearing when the phase-field is equal to zero,
hich has been observed to improve computational robustness in the
uasi-static simulations presented by Miehe et al. [5]. In the frame of
his work, we observe 𝜅 similarly to [4] as a purely numerical quantity.
ellettini and Coscia [6] showed in 1994, that the AT2 functional 𝛤 -
onverges to the Mumford and Shah functional [7] for 𝜖 → 0 and 𝜅

𝜖
ends to zero for 𝜖 → 0, where 𝜖 is the approximative crack width. In a
echanical context it is written, that Bellettini and Coscia [6] proved

he 𝛤 -convergence for 𝜅 → 0, 𝜖 → 0 and ℎ → 0 with 𝜅 ≪ 𝜖 and ℎ ≪ 𝜖,
here ℎ is the discretization parameter. This does not directly postulate

hat ℎ ≪ 𝜅.
In 1999, Bourdin et al. [8] presented the 𝛤 -convergence of the

iscretized Mumford and Shah functional [7] for image segmentation
ith the assumption ℎ ≪ 𝜅 ≪ 𝜖, because then 𝑚𝑖𝑛(𝐸𝜖,ℎ) converges to
𝑖𝑛(𝐹 ) as 𝜖 → 0. In first numerical results on images, the parameters
re chosen such that ℎ ≪ 𝜅 ≪ 𝜖. Bourdin in 2000 [9] presented

∗ Corresponding author.
E-mail addresses: leon.kolditz@stud.uni-hannover.de (L. Kolditz), mang@ifam.uni-hannover.de (K. Mang).

a phase-field fracture model based on the Ambrosio Totorelli AT2
functional [1,2] with the restrictions ℎ ≪ 𝜖 and ℎ ≪ 𝜅. Borden
in 2012 [10] determined 𝜅 = 0 for a dynamic phase-field fracture
model and argues that a positive small 𝜅 is not necessary for the 𝛤 -
convergence powered by Braides 1998 [11]. Later in 2015 and 2017,
the possible discrepancy between theoretical and numerical results with
respect to the 𝛤 -convergence are discussed [12,13].

The following work is structured as follows: in Section 2 the prob-
lem formulation of a pressure-driven phase-field fracture model is
derived. In Section 3, the 𝛤 -convergence is defined for the introduced
energy functional. In Section 4, a detailed series of numerical results is
presented and discussed to understand the conducted error analysis for
a reliable setting for 𝜅, 𝜖 and ℎ.

2. Notation and problem formulation

We start with the basic notation and problem formulation for phase-
field fracture similar to [14]. Throughout this work, we use the Lan-
dau notation for evaluating the limit behaviour of the considered
parameters:

𝑘 = 𝑜(𝑓 ) ⟺ 𝑘
𝑓

→ 0.

It means that 𝑘 tends to 0 faster than 𝑓 .
The scalar-valued 𝐿2-product is denoted by

(𝑥, 𝑦) ∶= ∫𝛺
𝑥 ⋅ 𝑦 𝑑𝛺,
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whereas the vector-valued 𝐿2-product is described by

(𝑋, 𝑌 ) ∶= ∫𝛺
𝑋 ∶ 𝑌 𝑑𝛺,

with the Frobenius product 𝑋 ∶ 𝑌 of two vectors 𝑋, 𝑌 . The domain
𝛺 ∈ R𝑑 (𝑑 = 2 for the later proposed example) is an open, connected
and bounded set. The crack 𝐶 is a lower-dimensional set contained
in 𝛺.

In the following, the energy functional given by Francfort and
Marigo [15] is provided, which describes the energy of elastic material
under stress. The functional is given by

𝐸(𝑢, 𝐶) = 1
2 ∫𝛺

𝜎(𝑢) ∶ 𝑒(𝑢) 𝑑𝑥

−∫𝐶
𝜏 ⋅ 𝑢 𝑑𝑠 + 𝐺𝐶𝑑−1(𝐶),

(1)

where 𝑢 ∶ 𝛺 → R𝑑 is a vector-valued displacement function and
= 𝜎(𝑢), the classical stress tensor of linearized elasticity is defined

s

(𝑢) ∶= 2𝜇𝑒(𝑢) + 𝜆 tr(𝑒(𝑢))𝐼,

ith the Lamé coefficients 𝜇, 𝜆 > 0 and the identity matrix 𝐼 . The
ymmetric strain tensor 𝑒(𝑢) is given by

(𝑢) ∶= 1
2
(∇𝑢 + ∇𝑢𝑇 ).

he energy functional 𝐸(𝐶, 𝑢) can be split into three terms: a bulk
energy term, a traction term and a crack energy term. Traction forces
are denoted by 𝜏. The crack energy is described by 𝐺𝐶𝑑−1(𝐶), where
𝐺𝐶 > 0 is the critical energy release rate determined by the considered
material and 𝑑−1 is the 𝑑 − 1 dimensional Hausdorff-measure.

Using 𝐸(𝑢, 𝐶), adding a pressure term, the introduced notation for
the 𝐿2-product, and following [9], the functional reads as

𝐸𝜖(𝑢, 𝜑) =
1
2
(((1 − 𝜅)𝜑2 + 𝜅)𝜎(𝑢), 𝑒(𝑢)) + (𝜑2𝑝, div 𝑢)

+ 𝐺𝐶 ∫𝛺
1
2𝜖

(1 − 𝜑)2 + 𝜖
2
|∇𝜑|2 𝑑𝑥,

(2)

here 𝑝 ∶ 𝛺 → R is a given scalar-valued pressure field. Here, the
urface energy term (the third term in Eq. (1)) was replaced by an
mbrosio–Tortorelli approximation.

The regularized problem, which is later solved, is then given by

in𝐸𝜖(𝑢, 𝜑) such that 𝜕𝑡𝜑 ≤ 0.

he inequality constraint represents the crack irreversibility. For deriv-
ng an incremental version, the constraint can be discretized in time via
lassical finite difference time discretization. Based on [3], the function
paces

𝑉 ∶= 𝐻1
0 (𝛺),

in ∶= {𝑤 ∈ 𝐻1(𝛺)|𝑤 ≤ 𝜑𝑛−1 ≤ 1 a.e. on 𝛺},

𝑊 ∶= 𝐻1(𝛺),

ead to the following weak problem formulation:
Find (𝑢, 𝜑) ∈ 𝑉 ×𝑊 with

((

(1 − 𝜅)𝜑2 + 𝜅
)

𝜎(𝑢), 𝑒(𝑤)
)

+
(

𝜑2𝑝, div𝑤
)

= 0, ∀𝑤 ∈ 𝑉 ,

and

(1−𝜅)(𝜑𝜎(𝑢) ∶ 𝑒(𝑢), 𝜓 − 𝜑) + 2(𝜑𝑝 div 𝑢, 𝜓 − 𝜑)

+ 𝐺𝐶
(

−1
𝜖
(1 − 𝜑,𝜓 − 𝜑) + 𝜖(∇𝜑,∇(𝜓 − 𝜑))

)

≥ 0, ∀𝜓 ∈ 𝑊in ∩ 𝐿∞(𝛺).

. Statement of 𝜞 - convergence

The introduced energy functional 𝐸𝜖(𝑢, 𝜑) in Eq. (2) is based on
Griffith’s idea of fracture [16]. Griffith’s law was the starting point
2

for developing the functional 𝐸(𝑢, 𝐶). Thus, we need to ensure that we
solve the same problem when minimizing 𝐸𝜖(𝑢, 𝜑) as when seeking for
the minimum of 𝐸(𝑢, 𝐶). This is where 𝛤 -convergence comes into play.
From 𝛤 -convergence it follows that a minimizer of 𝐸𝜖(𝑢, 𝜑) converges to
a minimizer of 𝐸 as 𝜖 → 0, see [17,18] for further details. The definition
f 𝛤 -convergence in the following is based on [11,17].

efinition 3.1. For a given sequence of functions (𝑓𝑗 ) ∶ 𝑋 → R̄ and a
unction 𝑓∞ ∶ 𝑋 → R̄, the sequence (𝑓𝑗 ) 𝛤 -converges in 𝑋 to 𝑓∞, if for
ll 𝑥 ∈ 𝑋 it holds

(i) for every sequence (𝑥𝑗 ) converging to 𝑥

𝑓∞(𝑥) ≤ lim inf
𝑗→∞

𝑓𝑗 (𝑥𝑗 ) (lim inf inequality),

(ii) there exists a sequence (𝑥𝑗 ) converging to 𝑥 such that

𝑓∞(𝑥) ≥ lim sup
𝑗→∞

𝑓𝑗 (𝑥𝑗 ) (lim sup inequality).

he function 𝑓∞ is called the 𝛤 -limit of (𝑓𝑗 ) and we write 𝑓∞ = 𝛤 -
im𝑗 𝑓𝑗 .

The following theorem states the 𝛤 -convergence of the functional
𝜖 to 𝐸:

heorem 3.2. The regularized functional 𝐺𝑗 ∶ 𝐿1(𝛺) × 𝐿1(𝛺) → R,
defined by

𝐺𝑗 (𝑢𝑗 , 𝜑𝑗 ) =

{

𝐸𝜖𝑗 (𝑢𝑗 , 𝜑𝑗 ) if (𝑢𝑗 , 𝜑𝑗 ) ∈ 𝐻1(𝛺) ×𝑊𝑖𝑛,

+∞ otherwise

𝛤 -converges, as

𝜖𝑗 → 0+ for 𝑗 → ∞ and 𝜅 = 𝑜(𝜖𝑗 ),

to the functional 𝐺 ∶ 𝐿1(𝛺) × 𝐿1(𝛺) → R, given by

𝐺(𝑢, 𝜑) =

{

𝐸𝑇 (𝑢) if 𝜑 = 1 a.e. and 𝑢 ∈ 𝑃𝐻1(𝛺),
+∞ otherwise,

where 𝑃𝐻1(𝛺) is the space of functions, which are piecewise 𝐻1-functions
on 𝛺. Furthermore, if (𝑢𝑗 , 𝜑𝑗 ) is a minimizer of 𝐺𝑗 , then (𝑢𝑗 , 𝜑𝑗 ) (possibly
a subsequence) converges to a minimizer of 𝐺.

For the proof of the latter theorem for the pressure-driven phase-
field fracture functional we refer to [19] based on the works of
Braides [11,17].

Remark 3.3. Note that the 𝛤 -convergence property also holds true for
the discretized problem under the assumption that ℎ = 𝑜(𝜖𝑗 ), where
ℎ is the spatial discretization parameter. Further, 𝜅 is necessary to
ensure that the stress term does not vanish when 𝜑 = 0. This in turn
means, 𝜅 must be small enough. Otherwise the bulk energy would be
overestimated. It is handled by assuming 𝜅 = 𝑜(𝜖𝑗 ).

4. Numerical studies on 𝜞 - convergence

In this section, numerical results are given to justify the impact
of the regularization parameter 𝜅 for a pressure-driven cavity while
satisfying the assumptions on 𝛤 -convergence and giving promising
results for the considered quantities of interest. We use 𝐻1-conforming
finite elements on quadrilaterals (2D). Specifically, we use bilinear
elements 𝑄1

𝑐 [20] for both, the displacements and the phase-field
variable. In accordance with Heister et al. [3], a monolithic approach
with an extrapolation of the phase-field variable in the displacement
equation is used. To treat the variational inequality, we follow [3] with
a primal–dual active set method. The used code for all numerical tests
is derived from an open-source project by Heister and Wick [21] based
on deal.II [22].
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Fig. 1. Zoom-in of the whole domain 𝛺 = (−10, 10)2 to the pre-refined crack zone in
−4, 4] × [−4, 4] with 2 global refinement steps and 1 local refinement step.

.1. A pressure-driven cavity in 2d

We consider a stationary benchmark test [14], where constant
ressure is applied in the inner of a pre-existing crack in the middle of
domain. This test setup is motivated by [23,24]. For the time being
e restrict ourselves to a 1d fracture 𝐶 on a 2d domain 𝛺 = (−10, 10)2

s depicted in Fig. 1. The fracture is centered horizontally within 𝛺
nd has a constant half crack length 𝑙0 = 0.25 and varying width.
pecifically, the crack width corresponds to 2ℎ, where ℎ is the minimal
ell diameter of the mesh. The mesh is pre-refined geometrically in the
rack zone, such that the area, where 𝜑 < 0.999, is covered with the
mallest mesh size. The driving force is given by a constant pressure
= 10−3 Pa in the inner crack. An overview of the parameter setting is
iven in Table 1.

.2. Quantities of interest

For the evaluation of the numerical results for the described bench-
ark test, two certain quantities of interest will be discussed: the crack

pening displacement (COD) and the total crack volume (TCV). The
OD is defined on an infinite domain as

OD(𝑥) ∶= [𝑢 ⋅ 𝑛](𝑥) ≈ ∫

∞

−∞
𝑢(𝑥, 𝑦) ⋅ ∇𝜑(𝑥, 𝑦) 𝑑𝑦.

n the numerical tests, the displacement jumps are computed on the
inite domain 𝛺 = (−10, 10)2. The maximum of COD is reached in 𝑥 = 0

and thus given by

CODmax ∶= [𝑢 ⋅ 𝑛](0) ≈ ∫

∞

−∞
𝑢(0, 𝑦) ⋅ ∇𝜑(0, 𝑦) 𝑑𝑦.

The analytical solution (cf. [24]) is given by

CODref = 2
𝑝𝑙
𝐸′

(

1 − 𝑥2

𝑙20

)
1
2

,

here 𝐸′ ∶= 𝐸
1−𝜈2 . The TCV can be computed numerically with

CV = ∫𝛺
𝑢(𝑥, 𝑦) ⋅ ∇𝜑(𝑥, 𝑦)𝑑(𝑥, 𝑦).

The analytical solution (cf. [24]) is given by

TCVref =
2𝜋𝑝𝑙20
𝐸′ ,

where 𝐸′ ∶= 𝐸
1−𝜈2 and 𝐸 is the Young’s modulus and 𝜈 is the Poisson

atio.
3

Table 1
The setting of the material and numerical parameters used for the numerical tests in
Section 4.

Parameter Definition Value

𝛺 Domain (−10, 10)2

ℎ Diagonal cell diameter test-dependent
𝑙0 Half crack length 0.25
𝐺𝐶 Material toughness 1.0
𝐸 Young’s modulus 1.0
𝜇 Lamé parameter 0.42
𝜆 Lamé parameter 0.28
𝜈 Poisson’s ratio 0.2
𝑝 Applied pressure 10−3

𝑇𝑂𝐿𝑡 Tolerance time step loop 10−5

𝜖 Bandwidth of the initial crack test-dependent
𝜅 Regularization parameter test-dependent

Table 2
Results of maximal crack opening displacement (CODmax), total crack volume (TCV)
and number of degrees of freedom (# dof) for different mesh sizes ℎ and the relations
of Case 1 in Eq. (4) compared to the reference values of Sneddon and Lowengrub.
ℎ CODmax TCV # dof

0.0221 0.000286517 0.000313325 43,605
0.0110 0.000274623 0.000276284 100,089
0.0055 0.000267051 0.000253393 176,709
0.0027 0.000263680 0.000239692 628,533

Ref. [24] 0.000480000 0.000376991 –

4.3. Numerical results: fails

As stated in the latter theorem, 𝛤 -convergence requires a specific
choice of the regularization parameters 𝜅 and 𝜖. Further, we need to
choose 𝜖 > ℎ in the case of low-order finite elements [25] to ensure
that the mesh does not skip the crack. This leads to the following
relations:

𝜅 = 𝑜(𝜖) and ℎ = 𝑜(𝜖), (3)

as 𝜖 → 0 (which is numerically desirable, but challenging). A possible
choice, similar to Case 4 in [26], is

𝐂𝐚𝐬𝐞𝟏 ∶𝜅 = 0.25ℎ0.5 and 𝜖 = 0.25ℎ0.25. (4)

This setting satisfies the 𝛤 -convergence conditions we introduced
in Eq. (3) for all ℎ < 0.5 and further ℎ < 𝜖 is satisfied for all ℎ < 0.5.

Remark 4.1. In contrast to [19], 𝜖, 𝜅 and ℎ are not decreased propor-
ionally, but according to the condition that 𝜅 has to tend faster to 0
han 𝜖, and ℎ faster to 0 than 𝜖.

Satisfying the relations of 𝜅 and 𝜖 as denoted in Case 1, the numer-
cally achieved COD values and TCV values are given in Fig. 2 and
able 2 for different minimal mesh sizes ℎ. One can see, that with a
maller ℎ the COD values are converging to a curve far away from the
nalytical solution proposed by Sneddon and Lowengrub [24] on an
nfinite domain.

emark 4.2. Note that the TCV value for ℎ = 0.022 is relatively close to
he exact reference. This should not be misinterpreted since TCV is the
ntegral of the COD curve and even if the exact COD is underestimated,
he approximative bell curve is wider than the exact one, which results
n a larger (or in this case more precise) TCV value.

To resolve the crack area, ℎ can be assumed to be sufficiently
mall to give satisfactory COD and TCV values, in comparison to the
iterature, e.g. [27]. One possible reason for imprecise COD values may
e the regularization parameter 𝜅. To give quantitative arguments for
his observation, in Table 3 an error analysis on 𝜅 for the TCV value is
iven.
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Fig. 2. Visualization of the COD-values for different ℎ with 𝜅 and 𝜖 set as in Case
1 in Eq. (4). The corresponding exact TCV values and CODmax values are given in

able 2.

Table 3
Error in the total crack volume (TCV error) in percentage (compared to the exact
CV = 0.000376991 on an infinite domain) for different choices of 𝜅 depending on the

diagonal cell diameter ℎ = 0.00552427 and a fixed 𝜖 = 2ℎ.
𝜅 TCV TCV error [%]

ℎ = 5.52427 ⋅ 10−3 0.000239171 36.56%
0.5ℎ = 2.762135 ⋅ 10−3 0.000290719 22.88%
0.25ℎ = 1.381068 ⋅ 10−3 0.000330106 12.44%
10−1ℎ = 5.52427 ⋅ 10−4 0.000361447 4.12%
10−2ℎ = 5.52427 ⋅ 10−5 0.000384297 1.93%
10−3ℎ = 5.52427 ⋅ 10−6 0.000386788 2.60%
10−12ℎ = 5.52427 ⋅ 10−15 0.000387067 2.67%

Ref. [24] 0.000376991 –

4.4. Numerical results: findings

In this section possible reasons for the non-satisfactory results for
two relevant quantities of interest (COD and TCV) in Section 4.3 are
identified. The idea is to analyse the TCV-error for different parameter
settings, especially for different values of 𝜅. Thus, in Table 3 detailed
test results are provided.

We can see, that with a tolerance of less than 4% in the error for
TCV, 𝜅 should be smaller than 10−5. Thus we determine

𝜅 = 0.25ℎ0.5 < 10−5,

which leads to a discretization parameter ℎ ≈ 10−9. This would yield an
unrealistic number of degrees of freedom (dof). Even if only the known
crack zone [−0.26, 0.26] × [−0.4, 0.4] is refined, the problem would have
a size of approximately 1017 dof . Thus we need to find a setting for 𝜅,
which does not violate the 𝛤 -convergence conditions but tends to zero
faster. A possible choice is given by:

𝐂𝐚𝐬𝐞𝟐 ∶𝜅 = 10−3ℎ0.75 and 𝜖 = 0.25ℎ0.25. (5)

In Case 2, ℎ = 𝑜(𝜅) and 𝜅 = 𝑜(𝜖) is satisfied and 𝜅 is small enough for
promising results of the two chosen quantities of interest with ℎ ≈ 10−5,
without exceeding the computational capacity. The behaviour of 𝜅, 𝜖
and ℎ is visualized in Fig. 3. We can see that 𝜅 is very small in Case 2,
even for larger ℎ. This is a major advantage in comparison to Case 1
since we do not need as many degrees of freedom as in Case 1. Fig. 4

provides results for the mentioned Case 2. e

4

Fig. 3. Visualization of 𝜖 and 𝜅 set as in Case 1 and Case 2. We can see that 𝜅 is very
small in Case 3 even for bigger ℎ and 𝜖 satisfies 𝜖 > ℎ and ℎ = 𝑜(𝜖) for reasonable ℎ
while being very close to ℎ.

Fig. 4. Visualization of the COD values for different ℎ with ℎ-dependent 𝜅 and 𝜖 set as
in Case 2 defined in Eq. (5). The corresponding exact TCV values and CODmax values
are given in Table 4.

Table 4
Results of computations based on the relations of Case 2 defined in Eq. (5).
ℎ CODmax TCV # dof

0.0221 0.000548804 0.000536082 43,605
0.0110 0.000531268 0.000487890 100,089
0.0055 0.000517768 0.000456257 176,709
0.0027 0.000509288 0.000435760 628,533
0.0013 0.000503050 0.000421441 2, 416, 869

Ref. [24] 0.000480000 0.000376991 –

As we can see in Fig. 4 and Table 4, the results are closer to
the reference values for Case 2 than for Case 1, but there is still a
recognizable error.

Since 𝜅 is small enough, the error in 𝜖 has to be observed in the
ext step. An analysis on the error given in Table 5 indicates that the
mpact by 𝜖 is sufficiently small for 𝜖 ≈ 3.8×10−4. We expect the error to
educe even more for smaller ℎ, which will result in smaller 𝜖. For the
rror analysis, 𝜖 = ℎ is the smallest reasonable choice since 𝜖 indicates
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Table 5
Error in TCV in percentage (compared to the exact TCV = 0.000376991 on an
infinite domain) for different choices of 𝜖 depending on the diagonal cell diameter
ℎ = 0.00552427 and a fixed 𝜅 = 10−6ℎ.
𝜖 TCV TCV error [%]

64ℎ = 0.35355328 0.000909849 141.35%
32ℎ = 0.17677664 0.000608694 61.46%
16ℎ = 0.08838832 0.000478809 27.00%
8ℎ = 0.04419416 0.000425164 12.78%
4ℎ = 0.02209708 0.000402041 6.64%
2ℎ = 0.01104854 0.000390668 3.63%
ℎ = 0.00552427 0.000384213 1.92%

Ref. [24] 0.000376991 –

Fig. 5. Visualization of the COD values for different ℎ with ℎ-dependent 𝜅 and 𝜖
et as in Case 3 defined in Eq. (6). For the smallest ℎ the numerical values and the
eference values coincide nearly perfectly. The corresponding exact TCV values and
ODmax values are given in Table 6.

Table 6
Numerical results of two quantities of interest (CODmax and TCV), and number of
degrees of freedom (# dof) for different ℎ with ℎ-dependent 𝜅 and 𝜖 set as in Case 3
defined in Eq. (6).
ℎ CODmax TCV # dof

0.0221 0.000513461 0.000432474 43,605
0.0110 0.000499444 0.000406175 100,089
0.0055 0.000489812 0.000391876 176,709
0.0027 0.000484421 0.000384389 628,533
0.0013 0.000481000 0.000380047 2, 416, 869

Ref. [24] 0.000480000 0.000376991 –

the thickness of the crack and if 𝜖 < ℎ, the numerical grid could skip
the crack. From this error analysis, we propose another setting, where
𝜖 is smaller in comparison to Case 1 and Case 2 and closer to ℎ while
not violating 𝜖 > ℎ:

𝐂𝐚𝐬𝐞𝟑 ∶𝜅 = 10−3ℎ0.75 and 𝜖 = 0.4ℎ0.7. (6)

For Conducting the same test series based on the setting in Case 3,
the numerical results are given in Fig. 5 and Table 6. Compared to the
reference solution given by Sneddon and Lowengrub [24], we achieve
very good results for small discretization parameters ℎ.
5

5. Conclusions

We considered a phase-field fracture model with a focused view
on the regularization parameter 𝜅 and the length scale 𝜖 related to
𝛤 -convergence. A proper choice, which satisfies the 𝛤 -convergence
conditions while obtaining accurate numerical results, is a challeng-
ing task. Error analyses and numerical test runs are conducted on a
benchmark test to observe the impact of the considered parameters.
The used benchmark test of Sneddon and Lowengrub [14,24] represents
a pressure-driven stationary fracture in two dimensions, where exact
solutions of certain quantities of interest are available. The best setting
for the three relevant parameters is 𝜅 = 10−3ℎ0.75 and 𝜖 = 0.4ℎ0.7 while

→ 0. In this case, we obtain a TCV error of 14.72% and a COD
rror of 6.97% even for the largest ℎ and the errors reduce to 0.81%
TCV) and 0.2% (COD) on a mesh with around 2.5 million dof. This
s a major improvement in comparison to the settings of Case 1 and
ase 2 and handles the requirements on 𝜖 and 𝜅 satisfactorily, while
ot being restricted to a too fine mesh resolution.

It has to be noticed that widely used settings as 𝜖 = 2ℎ and
set sufficiently small, can allow satisfactorily results for a certain

pplication even if 𝛤 -convergence is violated. It means that for 𝜖 → 0
e cannot guarantee that the achieved solution is the solution of the
nergy functional given by Francfort and Marigo [15].

As a future extension, one could investigate the dependency of the
arameters on the problem setting and quantities of interest. Even if we
re aware of the workload conducting such a detailed error analysis,
more general formula of Case 3 for the relation of 𝜅, ℎ and 𝜖 could

e used by a wider community with interest in reliable simulations of
pplications based on the theory of 𝛤 -convergence.
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