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Abstract

In this thesis, we use the generalized Whitham flow to construct symmetric higher
genus g > 1 CMC surfaces in R3. It is well-known that the existence of a conformally
immersed CMC surface f : M — R3 is equivalent to the existence of a family of flat
connections satisfying the intrinsic (periodicity of the conformal metric) and extrin-
sic (periodicity of the immersion) closing conditions. The generalized Whitham flow
preserves the intrinsic while varies the extrinsic closing conditions. Thereby, the flow
parameter, denoted by p, determines the genus of the resulting CMC surface. At the
initial value p = 0 a torus has to be chosen, which in our case is the 3-lobed Wente
torus T2. For tori, the monodromy of the associated family can be parameterized by
algebraic data on a hyperelliptic curve, called the spectral curve. The spectral curve of
the 3-lobed Wente torus has spectral genus 2 and hyperelliptic reduction allows us to
characterize the spectral data in terms of data on elliptic curves. This will help us to
derive closing conditions at the initial value p = 0.

In order to constructed closed symmetric higher genus CMC surfaces in R?, we will
study families of flat connections on higher genus Riemann surfaces as the pullback
of Fuchsian systems on the 4-punctured sphere, i.e., logarithmic connections on the
holomorphically trivial rank two bundle. By that, the underlying Fuchsian system
will be parameterized by flat line bundle connections on a torus. This particularly
provides useful coordinates to study closing conditions of higher genus CMC surfaces.
Investigating the spectral data shows that we have to open two double points outside
the unit circle and increase the genus of the spectral curve to 6. By an implicit function
theorem argument, we will show that the closing conditions are satisfied for p € (—e, €)
and prove the existence of compact and branched higher genus CMC surfaces in R3.

Kurzzusammenfassung

In der vorliegenden Arbeit wird der ’generalized Whitham flow’ genutzt, um sym-

metrische CMC Flichen in f : M — R3 vom Geschlecht g > 1 zu konstruieren. Dabei

wird von der Eigenschaft Gebrauch gemacht, dass sich CMC Flichen in Raumfor-

men durch Familien von flachen Zusammenhéngen, die intrinsische und extrinsische

Schliefungsbedingungen erfiillen, parametrisieren lassen. Wir werden solche Familien

durch den Riicktransport von Fuchschen Systemen auf der 4-fach punktierten Sphére

konstruieren. Parallel dazu werden diese Systeme durch flache Linienbiindel Zusam-

menhéngen auf einem Torus, der die 4-fach punktierte Sphére doppelt iiberlagert,

parametrisiert. Dieses Setup eroffnet eine andere Betrachtungsweise, um die Schliefungs-
bedingungen zu studieren.

Der ’generalized Whitham flow’ erhélt die intrinsische, wahrend die extrinsische
SchlieBungsbedngung variiert wird. Zum Zeitpunkt p = 0, wobei p der Flussparameter
ist, muss ein initial Torus gewahlt werden. In unserem Fall ist dies der 3-lobed Wente
Torus. Die besondere Eigenschaft von Tori ist, dass die assoziierte Familie V* in die
direkte Summe von Flachen Linienbiindel Zusammenhéngen splittet. Die Monodromie
von V*, und damit auch die SchlieBungsbedingungen, konnen durch algebraische Daten
auf einer hyperelliptischen Kurve parametrisiert werden. Diese Kurve wird auch Spek-
tralkurve genannt. Die Spektralkurve des 3-lobed Wente Torus hat Geschlecht 2 und
hyperelliptische Reduktion erlaubt es uns die Spektraldaten tiber elliptische Kurven zu
beschreiben. Diese Eigenschaft nutzen wir, um die SchlieBungsbedingungen des 3-lobed
Wente Torus zu charakterisieren und dann iiber das implizite Funktionen Theorem die
Existenz von kompakten und verzweigten Flachen vom hoherem Geschlecht g > 1 in



R? zu beweisen.

Schlagworter in deutscher und englischer Sprache:
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Chapter 1

Introduction

The study of constant mean curvature (CMC) surfaces is classical. Such surfaces
are critical points of the area functional under the constraint of enclosed volume. A
particular class of CMC surfaces are minimal surfaces with mean curvature H = 0 and
the study of those goes back to the 18th century. In 1760, Lagrange studied surfaces
in R? with given boundary which locally minimize the area and the task of finding
such surfaces is nowadays known as the Plateau problem [Lag60]. About 100 years
later, Weierstrass and Enneper parameterized all minimal surfaces in R? in terms of
data of meromorphic functions on simply connected domains [Nit89]. An immediate
consequence of this result is that minimal surfaces in R? are never compact.

Another subset of CMC surfaces is such where the mean curvature is H # 0. In the
1840s, Delaunay constructed CMC surfaces of revolution in R®. General examples of
constant mean curvature surfaces were rare. In the 1950s, it was conjectured by Hopf
that the only compact immersed CMC surface in R? is the round sphere. Alexandrov
showed that this is indeed true if we restrict to embedded surfaces [Ale56]. It took
another 30 years until Wente showed the existence of infinitely many CMC surfaces
of genus one and was finally able to disprove Hopf’s conjecture [Wen86]. The Wente
tori have beautiful symmetries. Abresch [Abr87] has shown in 1986 that they naturally
arise as solutions to the sinh-Gordon equation under the constraint of admitting planar
y = const curvature lines. Additionally, a consequence of this constraint is that the
x = const curvature lines lie on spheres. Moreover, Walter [Wal87] gave an explicit
parameterization of the Wente tori in terms of elliptic integrals. The discovery of the
Wente tori and the connection to the underlying integral system was the starting point
of many new advances regarding conformally immersed CMC tori not only in R? but
also the other two space forms S% and H3.

In [PS89], Pinkall and Sterling constructed all conformally immersed CMC tori in
R3. Similarly, Hitchin [Hit90] studied harmonic maps from the torus to the three sphere
S3. These publications were accompanied by [Bob91bl, Bob91a], where Bobenko gave
explicit parameterizations of doubly periodic solution to the sinh-Gordon equation in
terms of Riemann theta functions. In all these works, the task of finding a conformally
immersed CMC torus was translated to algebraic data on another compact Riemann
surface, called the spectral curve 3. The genus of ¥ is called the spectral genus.

To any such conformally immersed CMC torus 72 in R3, one can associate a family
of flat connections [Hit90]

VA=V +A 13- 2\o* (1.1)

on the trivial rank two bundle C*> — T2, where ® is a holomorphic sl(2, C)-valued



(1,0)-form. The family V* satisfies the following properties [Hit90]:
1. V and ® have only diagonal and off-diagonal entries, respectively, and det(®) # 0.
2. V* is unitary along \ € S'.

3. There exists a point A\; € S! such that the monodromy HZ’,\ of V* at p € T? along
both generators of 71 (T2, p) expands in a neighborhood of A = \; as

H) ~ +1d + O((A — A1)?). (1.2)

The first fundamental group of a torus is abelian and thus both monodromies of V*
commute. This allows us to define the spectral curve ¥ of a CMC torus as the charac-
teristic polynomial of one of the monodromies of V* since defining it along the other
one yields the same curve. In particular, choosing a different base-point ¢ € T2 is
equivalent to conjugating the monodromy by the parallel transport from p to ¢, which
leaves the spectral curve invariant. The remarkable property in this setup is that there
exists a group homomorphism

U :T? = Jac(D) (1.3)

into the Jacobian of the spectral curve. The existence of ¥ implies that the whole
construction can be reversed and it is sufficient to study the spectral data in order
to draw conclusion of the underlying CMC torus. This is what makes the associated
family V* so interesting: having a family satisfying the three properties listed above, it
is possible to reconstruct the immersion (which is, up to isometries, unique for spectral
genus g < 2 [Hit90]). Since the first fundamental group of the torus is abelian, there
exists a basis which, generically in A, simultaneously diagonalizes both monodromies of
V?. The eigenvalues of the monodromies are functions on ¥ and they can be character-
ized explicitly in terms of Riemann theta functions [Bob91b]. Phrased differently, the
construction of CMC tori in R? boils down to finding functions on hyperelliptic curves
satisfying the three conditions listed above. Bobenko further showed that there do not
exist spectral curves of compact CMC tori in R? of spectral genus g = 0,1 [Bob91h].
In fact, the g = 2 case corresponds to the spectral curve of the Wente tori. Moreover,
Jaggy [Jag94] showed that for every spectral genus g > 2, there exists a corresponding
CMC torus in R3.

That the immersion can be reconstructed from given spectral data has further im-
plications. Deformations of CMC tori and doubly periodic CMC cylinders in R? can be
expressed on the level of deformations of the spectral data. Such deformations, which
have the additional property of preserving the intrinsic closing conditions, i.e., the dou-
bly periodicity of the conformal metric, are called Whitham deformations [KS07]. As
the subspace of compact CMC tori in R3 is discrete, we have to open the extrinsic
closing conditions, i.e., the immersion has no periods, in a particular way in order to
flow to a compact torus. On a dense subset of the time interval, one can find values
where the cylinder closes to a compact CMC torus [Kewl5]. During the flow, is it
further possible to increase the genus of the spectral curve by opening double points.

Having talked so much about constant mean curvature surfaces of genus one, what
about higher genus CMC surfaces in R3? Evidently, the theory that worked so great
for CMC tori does not directly translate to higher genus CMC surfaces since the first
fundamental group is no longer abelian. It turns out that examples of such surfaces are
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rare. Although the existence of compact CMC surfaces for arbitrary genus in R? has
been proven by Kapouleas in [Kap95], the author of this thesis is not aware of further
publications which show the existence of other compact higher genus CMC surface in
R3. In this thesis, we want to fill the gap and construct such higher genus surfaces.

We will proceed as follows: The Riemann-Hilbert correspondence states that all
representations 71 (CP! \ {p1,..,ps},*) — SL(2,C) are realizable as the monodromy
representation of a Fuchsian system, i.e., a connection with simple poles at prescribed
points on the holomorphically trivial rank two bundle C* — CP' \ {pi,...,ps}. The
eigenlines of the residues of the Fuchsian system define a parabolic structure on the
trivial bundle, i.e., a filtration at each fiber at p;, with prescribed parabolic weight

p € (0,3). The (AMindependent) local monodromies at the singular points are then

conjugated to the matrix
2mip 0
e
< 0 6—27rip> . (14)

To show that there exists a C*-family of flat connections V* on some higher genus
Riemann surface g > 1, denoted by N, inducing a conformal CMC immersion f :
N, — R3, we will impose symmetries on the resulting surface. Assume that 7, : N, —
CP\ {p1,...,p4} admits a g-fold cover over the 4-punctured sphere branched at four
distinct points p; € CP!. The map mq allows us to study families of Fuchsian systems
and then pull them back to N,. It turns out that on IV, the singular points of the
Fuchsian systems become apparent for every A € C*, i.e., it is gauge equivalent to a
regular connection. In this way, we obtain families of flat connections on higher genus
CMC surfaces induced by the underlying Fuchsian systems.

The relationship of the parabolic weight to N, is obtained by letting p € N with
ged(p, ¢) = 1 and setting g = p. Hence, by varying p € Q, we are continuously changing
the genus of the resulting CMC surface. Combined with ¢, the integer p determines the
umbilic and branch order at prescribed points. To ensure the unitarity along A € S?,
we will use the theorem of Mehta-Seshadri: the stability of a parabolic vector bundle
is equivalent to the existence of a unique Fuchsian system with unitary monodromy
representation [MS80].

In [HHI7], useful coordinates parameterizing the underlying Fuchsian system were
introduced. We will briefly recall the construction. The difference between two Fuch-
sian systems inducing the same parabolic structure is a strongly parabolic Higgs field.
The eigenlines of such a Higgs field are not well-defined on the 4-punctured sphere but
only on a double covering branched over the singular points, which is a torus. The
pullback of the Fuchsian system with respect to the eigenlines of the strongly parabolic
Higgs field determines a 2:1-correspondence between flat line bundle connections on a
torus and Fuchsian systems on CP!\ {p1,...,p4} with prescribed local monodromies
[HH17]. In this way, abelianization coordinates are introduced which give an explicit
realization of the 2:1 correspondence. Moreover, using such coordinates, the Mehta-
Seshadri section can be realized as mapping holomorphic to anti-holomorphic structures
of a flat line bundle connection on a torus such that the underlying Fuchsian system is
unitary with respect to some hermitian metric.

Summarized, we consider families of flat connections on higher genus surfaces in-
duced by the underlying Fuchsian system, which in return can be parameterized by flat
line bundle connections on a torus. In this setup, the parabolic weight p can be used



as an additional flow parameter, which determines the genus of the Riemann surface
on which the analytic continuation of the CMC surface closes. Hence, we are not only
performing deformations on the level of the spectral curve but also change the genus
of the CMC surface, thus calling it the generalized Whitham flow [HHS15, [HHS18].

In this thesis, we will show the short time existence of the generalized Whitham flow
in the case that the initial torus is the 3-lobed Wente torus. As all closing conditions
have to be satisfied, we need to characterize the Wente tori’s spectral data. The spectral
curve is a hyperelliptic curve of genus two. Hence, for a full description of the spectral
data, Riemann theta functions have to be studied. However, the symmetries of the
Wente tori translate to symmetries on the spectral curve and it turns out that Wente
tori can be completely characterized by elliptic data. Having this knowledge helps
us to apply implicit function theorem arguments to shows the existence of compact
(branched) higher genus CMC surfaces for small weight p. The main theorem is the
following

Theorem 1.0.1. Let the conditions of proposition [5.4.0 be satisfied. The surface
f:N, - R (1.5)

is a compact and branched CMC surface in R3. Quver the four branch points {0,1,m, o0}
on CP', the surface has umbilic branch points.

i. If q is odd, then the genus of f is g = q—1. The surface branches with order 2p—1
at the points over z = 0 and z = oo and with order ¢ — 2p — 1 at the points over
z =1 and z = m. The umbilic order is 2p — 1 at the points over z =1 and z =m
and g — 2p — 1 at the points over z =0 and z = oo.

i. If q is even, then the genus of f is g = 4 — 1. The surface branches with order
p — 1 at the points over z = 0 and z = oo and with order g —p—1 at the points
over z =1 and z = m. The umbilic order is p — 1 at the points over z = 1 and
z=m and%—p—l at the points over z =0 and z = 0.

The main technical lemma needed to prove this lemma The thesis is struc-
tured as follows.

In chapter [2] we recall some basic properties of Riemann surface theory. Starting
with the introduction of hyperelliptic curves, we come to the definition of abelian in-
tegrals and reciprocity laws. The motivation to view abelian integrals as sections in
holomorphic line bundles brings us to the definition of the Jacobian of Riemann sur-
faces. Finally, we will define elliptic functions and Riemann theta functions and their
reduction to Jacobi theta functions.

Chapter [3| recalls the integrable surface theory approach for conformally immersed
CMC surfaces in R? and closing conditions will be derived. Afterwards, we will restrict
solely to the case of the Riemann surface being a torus. In this manner, the spectral
curve is defined and we show how CMC tori in R? can be completely characterized by
data on the spectral curve. In the last pages of this chapter, we discuss the Whitham
flow.

Chapter [4] is all about the Wente tori. Starting from a hyperelliptic curve of genus
two, spectral data will be defined and closing conditions will be discussed. Via hyper-
elliptic reduction, the spectral curve admits two branched double coverings of elliptic
curves which allow the reduction of Riemann theta to Jacobi elliptic functions. This
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will allow us to derive some known properties of these tori and restate the closing con-
ditions in terms of data on elliptic curves.

The construction of families of flat connections on higher genus Riemann surfaces is
the topic of chapter [5] After introducing the key concepts of parabolic vector bundles,
the abelianization of Fuchsian systems on the 4-punctured sphere is performed. Since
the families of flat connections on the 4-punctured sphere and on the higher genus
Riemann surfaces are related to each other by pullback, we use the abelianization co-
ordinates to parameterize those.

In the final chapter [6], we will introduce suitable Banach function spaces and adjust
the Whitham flow to control the pole order of the associated family at A = 0. After
opening two double points and increase the genus of the spectral curve from 2 to 6, an
implicit function theorem argument show the short time existence of the generalized
Whitham flow in the case that the initial torus is the 3-lobed Wente torus. This will
prove the main theorem of this thesis.






Chapter 2

Fundamentals

In this chapter, we recall some basic properties of Riemann surface theory. The
first section introduces hyperelliptic curves, which have various applications in every
chapter of this thesis.

Afterwards, we define abelian differential, i.e., holomorphic and meromorphic, dif-
ferentials on compact Riemann surfaces. Thereby, the Riemann bilinear relations will
be proven and important corollaries deduced. Abelian differentials are a key ingredient
in Riemann surface theory and they can also be viewed as sections of holomorphic line
bundles. These subjects are treated in the second section where the Riemann-Hurwitz
theorem and the Jacobian of compact Riemann surfaces are discussed as well.

Finally, the last section completes this chapter with the exposition of Riemann theta
and Weierstrass elliptic functions. These functions are indispensable for the analysis
of the spectral data of Wente tori. Suitable references for the Riemann surface theory
are [Mir95, Bob11l, [FK92] while we refer to [AS72, [Akh90, Law13] for the subject of
elliptic functions.

2.1 Hyperelliptic curves

The simplest example of a compact Riemann surface M is the simply connected, i.e.,
with trivial first fundamental group, complex projective space M = CP! of genus g = 0.
More complicated surfaces are complex tori which are no longer simply connected and
have genus g = 1. It turns out that a convenient way to construct compact Riemann
surfaces of higher genus g > 2 is to take branched double coverings of CP!, which are
called hyperelliptic curves [Mir95, p. 60].

Definition 2.1.1. Let g € N and h(\) = Hiffl(/\—ai) be a polynomial of degree 2g+1
with only simple zeros a; € C. We call the compactification of the set

Zo = {(\y) € C*|y* = h(N)} (2.1)
a hyperelliptic curve and denote it by 3.

Let U := {(\,y) € Xo|X # 0} be a subset of ¥g. Set pp = 1/X and k(p) =
p29t2h(1/ ). We define

Se = {(1,w) € C [0 = k(u))}. (2.2)

The polynomial k& has only simple zeros since h does. For V := {(u,w) € Yoo |t #
0} C Yo we have an isomorphism

¢:U =V, (Ay) e (nw) = (1/Ay/A"), (2.3)
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which glues the spaces ¥ and Y,. Under this construction, we obtain the hyperelliptic
curve Y. Since the compact sets

{hy) e Bl A <1}, {(pw) € Beo | [ul < 1} (2.4)

cover Y, it is compact. The complex numbers a; are called the branch points of ¥. The
condition a; # a; for any ¢ # j ensures that the hyperelliptic curve is smooth. On 3,
the projection map (\,y) — A has degree two ramified at the branch points of ¥. By
an abuse of notation, we will simply denote this projection map by A : ¥ — CP!.

Definition 2.1.2. Let 3 be a hyperelliptic curve. Then we call the map
the hyperelliptic involution of 3.

The fixed points of o are exactly the branch points of ¥. Hyperelliptic curves play
an important role in every chapter of this thesis. We will see that the spectral curve
of a compact conformally immersed CMC torus in R? is a hyperelliptic curve [Bob91al,
Appendix].

One of the benefits of hyperelliptic curves is their favorable local description. Set
f(\y) = y? — h()\) where h()) is the polynomial in definition with only simple
zeros of degree 2g + 1. Then 0f/0y = 2y vanishes at branch points of ¥. Hence, by
the implicit function theorem A is a chart away from the branch points. Otherwise,
whenever y = 0, then df /90X # 0 and, as a consequence of the implicit function theorem,
y is a chart. As functions on X, we can calculate their zero and pole order. Generically,
we will study hyperelliptic curves with branch points at A = 0.

Proposition 2.1.1. Let the hyperelliptic curve X be defined as in definition|2.1.1] with
a1 =0, i.e., X is branched at A = 0. Then

1. X has a zero of order 2 at zero and a pole of order 2 at infinity.
2. y has simple zeros at a;,i = 1,...,2g + 1, and a pole of order 2g + 1 at infinity.

3. the differential d\ has simple zeros at a;,© =1,...,29 +1 and a pole of order 3 at
infinity.

Proof. The hyperelliptic curve is branched at zero. Since Y admits a 2-fold cover over
CP' we can take a local chart  near A = 0 and write y> = A. Thus, A has a zero of
order two at the point over A = 0. To investigate the points over infinity, we change
coordinates p = 1/\ and w = yu9™! and get

2g9+1 1 2g+1
| <u - a¢> =p [T = ap). (2.6)
=1 i=1

By construction we have u — 0 as A — oco. At pu = 0, the map w is a chart. In
particular, infinity is a branch point. Similar local analysis as with A shows that p has
a zero of order two at the point over infinity which implies that A has a pole of order
two at infinity.

For the second statement, as y is a chart at the branch points of 3 we obtain that y
has zeros at {a;}i=1,.. 2g+1. The right hand side of vanishes to order two at w = 0.
Since p has a zero of oder two at infinity, we obtain from y? = w?/u?9%2 that y has a
pole of over (2g + 1) at infinity.
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In order to calculate the zero and pole behavior of d\, note that h'(\)d\ = 2ydy. If
y = 0 then A/(\) does not vanish and y is a chart. This implies that the zeros of d\ are
the same as of y. At infinity, d\ = —du/p?. Since w is a chart at g = 0, the one-form
dw does not have any zeros or poles. Hence,
1 2 2yps?
w 2y

A\ = ——dy = ———_dw =
2 g (1)

1 g () 27

where by g(u) we denote the polynomial on the right hand side of . Since y and p
have a pole and zero of order 2g+ 1 and two at the point over infinity, respectively, and
¢'(1) is non-vanishing, the right hand side of equation has a pole of order three
at infinity. This also proves the last statement. O

Proposition [2.1.1] allows us to construct differentials on ¥ which prescribed zero
and pole behavior. For arbitrary Riemann surfaces, such differentials are also called
abelian.

2.2 Abelian differentials and holomorphic line bundles

Generically, there are three different kinds of meromorphic differentials on a compact
Riemann surface. Every other meromorphic differential is given as a linear combination
of those.

Definition 2.2.1. Let w be a differential on a Riemann surface M. Then w is called
an abelian differential of the

1. first kind, if w is holomorphic.

1. second kind, if w is meromorphic with poles but no residues. If w has a single pole

of order k at a point p we denote the differential by wl()k).

1. third kind, if w is meromorphic with a pair of simple poles at two points p,q € M
with residues £1, respectively, but no other singularities. These kind of differentials
are denoted by wpq.

Let A\, Ao € M be arbitrary points. The integral f/\); w 18 called an abelian integral.

The nomenclature abelian comes from viewing differential forms on compact Rie-
mann surfaces as sections in holomorphic line bundles, which have rank one. We will
come to that matter shortly. But firstly, we give some examples of the differentials
introduced in definition We assume that M = X is a hyperelliptic curve of odd
degree 2g + 1 with branch points at zero and infinity.

i. The space of holomorphic differential forms on a compact Riemann surface is com-
plex g-dimensional. From proposition [2.1.1| we directly see that

o d)
{xl} (2.8)
Y )i=1,.g4

forms a basis on the space of holomorphic differentials on ..

ii. As zero and infinity are branch points, the differentials

@ _ dX (g AdA
w0 2y’ Woo! = 2y
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have a pole of order two at these points, respectively, and no other singularities.
Taking local coordinates A = 2(2] and A\ = 1/z2, around the singular points, respec-
tively, yields the asymptotic behavior

2 dZO dzoo
W(() )~ 2 wc(g) ~ .

— (2.10)
0 22,

iii. For differentials of the third kind wy,, where p, ¢ are not branch points, we see that

y—ylp) y—ylg)dA
qu:( A—p  A—g >2y (2.11)

has simple poles at p and ¢ with residues +1, respectively.

On a compact Riemann surface M of genus g, the first homology group H;(M,Z) is
isomorphic to Z29. Further, it is well-known that there exists an isomorphism between
Hy(M,Z) and the abelianization of the first fundamental group

T (M, po)
(71 (M, po), m1(M,po)]’

which does not depend on the base-point py € M. A special choice of these 2¢g elements
generating Hi(M,Z) is the following.

Hy(M,Z) = (2.12)

Definition 2.2.2. Let M be a compact Riemann surface and assume that the ele-
ments {A1, By, ..., Ay, By} generate Hi(M,Z). We call the basis {A1, By, ..., Ag, By} a
canonical homology basis if their intersection numbers are

Al'Bj :(51']‘, Al'Aj ZBl'Bj =0 (2.13)

forl,j€{1,...,9}. The elements Ay, By € H1(M,Z) are also called cycles. The integral
of an abelian differential w over a cycle is called a period.

Notice that a canonical homology basis is not unique. For hyperelliptic curves, such
a canonical basis can be depicted rather explicitly. In this case, it is convenient to let
the generators A; encircle two branch points such that A; stays on a single sheet of the
Riemann surface while the Bj lies in both sheets. A visualization of such a canonical
homology basis for a genus two hyperelliptic curve is given in figure [2.1
Since the space of holomorphic differentials on a compact Riemann surface is g-
dimensional we can add an appropriate linear combination of differentials of the first
kind to differentials of the second and third kind, such that wj(,k) and wp, have vanishing
Aj-periods but the form of the singularity is kept.

Definition 2.2.3. An abelian differential of the second or third kind is called normalized
if it has vanishing A;-periods, i.e.,

/w;’f)zo, /wpqzo, (2.14)
A A

foralll=1,..,g.

Generically, abelian integrals of the form

f(p) = / w (2.15)
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Figure 2.1: Canonical homology basis of a genus two hyperelliptic curve. The thick blue
line represents branch cuts connecting pairs of branch points while the thick gray line denotes
the branch cut from zero to infinity. Dashed lines denote paths on the other sheet of the
hyperelliptic curve.

are not well-defined since the integral might have periods. Let {A;, By, ..., A4, By} be a
canonical homology basis of M. Via the isomorphism , we can think of elements
in Hi(M,Z) as (modulo homotopy) closed curves on M based at pg. In particular, in
this way we view the compact Riemann surface as a 4g-polygon with sides bounded by
{A1, By, ..., Ay, B4}. By removing these 2g generators, we obtain a simply connected
domain M where abelian integrals are well-defined.

Definition 2.2.4. Let M be a compact Riemann surface of genus g with canonical
homology basis {A1, Bu, ..., Ag, By} € H1(M,Z) with common base point pg € M. Then
we call the simply connected Riemann surface obtained by removing these 2g generators
the simply connected model of M.

The following theorem is known as Riemann bilinear relations |[GHI14, p. 231].

Theorem 2.2.1 (Riemann bilinear relations). Let {A1, B, ..., Ag, By} be a canonical
homology basis and w,w two closed differentials on a compact Riemann surface M.

Then
/Mwm:g[/mw/&@_/&w/m@]. (2.16)

Proof. On the simply connected model M of M there exists a smooth function f such
that w = df. Then it follows by Stokes theorem that

/Mw/\oD:/Mdf/\a):/Md(fa)): e (2.17)

We have OM =9 | Aj+ B, + Al_1 + Bl_l. Let pg € M be arbitrary and let p and p’
be two points on A; and Al_l, respectively, which are the same on M. Consequently,

/

P P P
/ w—/ w:/ w=—B (2.18)
Po Po P’

where the path of integration stays inside M. Similarly, for two points ¢, ¢’ on By, B;” L

respectively, we obtain
q q q
/w—/ w:/w:Al. (2.19)
Po PO q

11
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All together we get

/Mwszzg:[Alf@+ Al_lfdz+/Blf(I;+/l_lfw]

=1
g

Ml el

=1

(2.20)

O]

Combined with the Residue theorem, we can deduce some strong results from the
Riemann bilinear relations. We list a few applications of which will all be used in this
thesis.

i. Let w and @ be abelian differentials of the first kind. Then it follows from 2.2.1]

that
O:Z[/Alw/Blw—/Blw/Al@]. (2.21)

=1

(k)

ii. Let w =wyp ' and @; be differentials of the second and first kind, respectively, and
z a local centered chart around p € M such that the differentials have expansion

w= <C;€ + O(l))dz, @j = (bo + b1z + O(2?))d= (2.22)

where k > 2. Additionally, assume that f A, w;j = 0;; and w is normalized. Letting
flp) = f;} @ for some base point py € M, we obtain

b_oa_
/B w},’f)zzwi%al’“. (2.23)

J

iii. Let w and @ = w;q be differentials of the first and third kind, respectively, where
@ has expansion of the form

&= (1 + 0(1)>dz, &= (—1 + (’)(1)) dz (2.24)

Zr Zq

for two centered charts z,. and z; around r and ¢, respectively. Let f(p) = P,

Po
Then we have

zg: [/Al W/Bl v /Bl W/Al ‘;’] =2mi(f(r) = f(q))- (2.25)

=1
Remark: The equations relating integrals of cycles with residues of abelian differ-
entials are also known as reciprocity laws. For example, item two would be called a

reciprocity law for abelian differentials of the second and first kind.

12
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2.2.1 Holomorphic line bundles and the Riemann-Hurwitz theorem

As already mentioned above, we can also view abelian differentials on Riemann
surfaces as sections of holomorphic line bundles. The main motivation for this lies
in our definition of the Jacobian of a compact Riemann surfaces which will be given
in the next subsection. A common way to define the Jacobian is to take a basis of
differentials of the first kind and calculate their A; and B; periods. These values span
the Jacobian. Using this approach, one can actually completely forgo the exposure of
holomorphic vector bundles. However, we would rather like to view the Jacobian as the
moduli space of holomorphic line bundles of degree zero and parameterize it in terms of
holomorphic structures. This subsection follows the exposition of [Bob11l Chapter 1.7].

Let J;c; U be an open cover of a compact Riemann surface M and
Gij * U, N Uj — C* (2.26)

holomorphic functions for 7,j € I satisfying the cocycle condition g;jgjr = gir on
UiNU; N Uy. For triples (p,U;, &) with p € U;,i € 1, € C we define the equivalence
relation

(0, Ui, 6) ~ (¢, Uj,n) ©p=qec U NUj, &= gij(p)n. (2.27)

Definition 2.2.5. A holomorphic line bundle L — M is defined as the union of sets
U; x C under the equivalence relation . The map 7 : (p,U;, &) — p is called the

canonical projection map and its preimage Ly, := 77 1(p) is called the fiber over p € M.

For two holomorphic line bundles L and L over M , the tensor product bundle
L ® L is another holomorphic line bundle defined by the pointwise tensor product at
each fiber. We denote by L* the dual of the bundle L. If f : M — N is a holomorphic
map between compact Riemann surfaces and L — N a holomorphic line bundle then
the pull back bundle f*L is a holomorphic line bundle over M. If a line bundle L
has transition functions g;; = 1 for all 7, j, we call it trivial and denote it by C. An
important example of a holomorphic line bundle is the canonical bundle.

Definition 2.2.6. Let z; and z; be local charts of M. We call the holomorphic line
bundle with transition functions

0i5(p) = jj;ﬂ(p) (2.28)

the canonical bundle Ky — M over M.

Using the complex structure on M we can identify the canonical bundle with the
cotangent bundle Ky = T*M of M, i.e., the space differential one-forms.

Holomorphic line bundles can be constructed by taking quotients of meromorphic
functions on M. Let ¢; : U; — C be local meromorphic functions on M. Assume that
for all 7, j, the ratio ¢;/¢; is holomorphic. Then the transition functions

o O

ij qu
define a holomorphic line bundle L. Via g;; the locally defined sections glue to a global
section ¢ of L — M and on each subset U; the section ¢ restricts to ¢;. The space of
sections of a holomorphic vector bundle L — M is denoted by I'(M, L). In particular,
we see that the zero and pole order of a meromorphic section completely determines
the line bundle.

:U; N Uj — C* (2.29)

13
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Definition 2.2.7. Let M be a compact Riemann surface and fix a point p € U C M
with centered chart z. We cover M by the two open sets {Uy,Us} where Uy = U and
Uy = M\ {p}. The line bundle L(kp) — M with holomorphic transition function
gi2 = 2% : U\ {p} — C* is called point bundle over M.

The point bundle L(kp) — M admits a globally defined holomorphic section with
a single zero of order k at p. Its dual bundle is denoted by L*(kp) = L(—kp) — M
and admits a meromorphic section with a pole of order k at p and everywhere else
holomorphic without zeros. If £ = £1 we will simply write L(%p).

Definition 2.2.8. The degree of a holomorphic line bundle L over a compact Riemann
surface M is defined as

deg(L) := i /M FV, (2.30)

where FY is the curvature of an arbitrary connection V on M.

It can be shown that this definition is independent of the connection and takes
values in Z [GHI14, p. 144]. It follows from equation that the degree of the tensor
product bundle L ® L is given by deg(L ® L) = deg(L) + deg(L). The compactness of
M and Stokes theorem imply that deg(L*) = —deg(L). The degree of the canonical
bundle is deg(K) = 2g — 2 where g is the genus of M.

Definition 2.2.9. Let M be a compact Riemann surface. A holomorphic line bundle
S — M with the property that S ® S = K is called a spin bundle.

The degree of a spin bundle is ¢ — 1. On a compact Riemann surface of genus g,
there exist exactly 49 different, i.e., non-isomorphic, spin bundles [Ati71]. For us, the
most relevant cases are spin bundles over Riemann surfaces of genus g = 0, 1.

i. Let M = CP'. We view CP! in the usual way with open covering Uy = C and
Usw = C*U {0} and charts glued along C* via z +— w = 1/z. The transition
function on the tangent bundle TCP! — CP! is given by

0 1
0, = a—:“aw =—2
From the point bundle construction (cf.definition we see that T'M admits
a global holomorphic section with a single zero of order two at infinity. Hence,
we identify TCP!' = L(200). As T*CP! = K¢p1, we obtain Kgpr = L(—200).
Then the bundle S = L(—o00) admitting a meromorphic section with a simple
pole at infinity is a spin bundle of CP'. Notice that the choice of centered chart
z was arbitrary. Via holomorphic isomorphisms from CP' — CP!, i.e., Mobius
transformations, we see that every holomorphic line bundle of degree minus one is
holomorphically isomorph to L(—oc). Hence, there exists exactly one spin bundle
on CP!. This bundle is also called the tautological bundle and is denoted by
O(-1) — CP!.

Do (2.31)

ii. If M =T? = C/T is a complex torus, the canonical bundle has degree zero and is
isomorphic to the trivial line bundle K72 = C. After fixing a base point [0] € C/T,
the four spin bundles are given by S; = L([w;] — [0]) where w; is one of the four half
lattice points of I. The trivializing sections of L([w;] —[0]) are given by quotients of
Jacobi theta functions. Evidently, these four spin bundles all square to the trivial
one C = Kp2.

14
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We conclude this section by proving the Riemann-Hurwitz theorem. A holomorphic
map f : M — N between Riemann surfaces is called branched at p € M if its derivative
df : TM — TN vanishes at this point. This leads us to the Riemann-Hurwitz theorem
[GHI4, pp. 216-219].

Theorem 2.2.2 (Riemann-Hurwitz theorem). Let f : M — N be a holomorphic map
between compact Riemann surfaces of genus g and g', respectively. Then

29—2=b+n-(2¢ —2) (2.32)
where b is the branch order of f and n is its degree.

Proof. We view df as a holomorphic section of I'(M, Ky ® f*I'N). The degree of the
holomorphic vector bundle Kp; ® f*I'N is given by

deg(Kpy ® f*TN) = deg(K ) + deg(f*TN). (2.33)
But deg(f*T'N) = deg(f)deg(T'N). Since deg(T'M) = deg(K};) = 2 — 29, we obtain
the desired result. O

One application of the Riemann-Hurwitz theorem is the calculation of the genus of
hyperelliptic curves. Let ¥ be defined as in definition [2.1.1} Since X is a degree two
map branched at 2g + 2 different points we obtain

29(%) — 2 = deg(M\)(29(CP') — 2) + (29 +2)
=2(-2)+2g+2=29—-2.
Hence, the number g indeed was the genus of ¥ all along. In the case that g = 1, we call

a hyperelliptic curve an elliptic curve which is equivalent to ¥ being a complex torus
after identifying the meromorphic functions (y, A) with Weierstrass elliptic functions.

(2.34)

2.2.2 The Jacobian

After having established the basic properties of holomorphic line bundles, we can
discuss the Jacobian of a compact Riemann surface M. Let Ky — M be the anti-
canonical bundle, i.e., the space of (0, 1)-forms on M.

Definition 2.2.10. A holomorphic structure oon a holomorphic line bundle L — M over
a compact Riemann surface is an operator 0 : T'(M,L) — QU(L) = T'(M, Ky ® L)
satisfying the Leibniz rule

O(fs) = (0f)s + f(0s) (2.35)
foralls e T'(M,L) and f : M — C.
We say that a section of L — M is holomorphic if it lies in the kernel of 0. Since

holomorphic line bundles have holomorphic transition functions, this is well-defined.
The space of global holomorphic sections is denoted by H°(M, L). We denote by

¢ : T(M,C) — Q% (M, C) (2.36)

the trivial d-operator acting in the usual way on functions. Let d; and d2 be holo-
morphic structures on C. We say that 0; and 0, are holomorphically equivalent if
there exists a smooth function f on M such that 0,.f = 0o where O.f is the gauged
holomorphic structure defined by

s
=

Equivalences between holomorphic structures lead to the definition of the Jacobian.

O.f =fltodof=0+ (2.37)

15
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Definition 2.2.11. The Jacobian Jac(M) of a compact Riemann surface M is de-
fined as the space of holomorphic structures on the trivial rank one bundle C modulo
holomorphic equivalence.

There are other, equivalent, definitions of the Jacobian of a compact Riemann
surface. One of them is to realize Jac(M) as a g-dimensional complex torus. For this
identification we need Serre duality.

Theorem 2.2.3 (Serre duality). Let L — M be a holomorphic line bundle over a
compact Riemann surface. Then we have

i. HO(M, L) is finite dimensional.
. HY(M,L)* = (I'(M, Ky ® L)/Tm(0))* = HO(M, K); ® L).
For a proof of the Serre duality theorem, we refer to [HuyO05, p. 171].

Lemma 2.2.4. Let C — M be the trivial line bund_le over a compact Riemann sur-
face with holomorphic structure 0. Let o € T'(M,Kpys). Then there exits a unique
holomorphic one-form w € H°(M, Kyy) and smooth function f € T'(M,C) such that

of =a— . (2.38)

Proof. Let 0 : T'(M,C) — Q%(M,C) be the holomorphic structure. By Serre duality
0 is Fredholm and hence realizes the space of sections of Ky as T'(M, Kj;) = Im(9) &
coker(9), which is orthogonal with respect to the L? scalar product on I'(M, Kj;). We
have coker(9) = HY(M,C) = H°(M, Ky;)* by Serre duality Furthermore, since
the pairing

HO(M, K ) x HO(M, K )

(2.39)

(p, ) = / (A D.
is non-degenerate, it induces the isomorphism H®(M, Kjy;)* = HO(M, Kys), which
proves the lemma. ]

With respect to a frame, every holomorphic structure on the trivial bundle can be
written in the form

d=0%+p (2.40)

for a pu € T'(M, Kyr). Gauging with g = e/ brings 0 into the form
8.9:8C+ﬂ+7:8(c+ﬁ+8cf. (2.41)

By lemma [2.2.4] there exists a unique v € H°(M, Kj;) such that 7 = fi + 9Cf. Notice
that the solutlon

o) =ep( [ =)+ - m) (2.42)

20

to the equation OC f = o — [ is well-defined if and only if the periods of f are multiples
of 2miZ. This gives us another representation of the Jacobian.

16
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Proposition 2.2.5. Let M be a compact Riemann surface and let HO(M, K);) denote
the space of anti-holomorphic one-forms on M. Then we have

Jac(M) = HO(M, Kr)/A (2.43)
where A is given by
A={®w e H(M,K)| /(—w + ) € 2miZ forally € Hi(M,Z)}. (2.44)
gl

Since Hy(M,Z) is generated by 2¢g elements, proposition realizes Jac(M) as a
g-dimensional complex torus. In particular, we will often be interested in the case that
M is an elliptic curve with lattice I' = (X1 +14Y1)Z + (X2 +1Y2)Z for X;,Y; € R. Then
the paths v;(t) = t(X; +1iYj),j = 1,2, with t € [0, 1] are closed on M. Via the global
anti-holomorphic one-form dw we can identify the lattice of Jac(M) with

A WZ(Xl + in) + WZ(XQ + iYQ) . (2.45)

T XY, — XoV)

2.3 Elliptic integrals and Riemann theta functions

In this section we summarize the basic properties of elliptic and Riemann theta
functions. These will in particular be important in chapter [4] for the description of
spectral data of Wente tori. We start by introducing incomplete elliptic integrals of the
first and second kind. Then, Riemann theta functions are defined and their reduction
to Jacobi elliptic functions in the genus one case are stated.

2.3.1 Elliptic integrals

Definition 2.3.1. The incomplete elliptic integral of the first kind F(¢,m) is defined
as

¢ do
mez/ (2.46)
0 v1—msin?6
where 0 < ¢ < 5 and 0 < m < 1. In the case that ¢ = 5, we call F(5,m) a complete
elliptic integral of the first kind and denote it by K(m).

The real number m is called the elliptic modulus. Notice that for m = 0 we have
K(0) = 7/2 while K(m) diverges as m — 1. Elliptic integrals can be expressed as
inverse functions. The equation

(2.47)

¢ do
sn_l(singb,m):/ _—
0 v1—msin?6
defines the inverse of the Jacobi elliptic functions sn(x,m). Then we simply have
sn~1(1,m) = K(m). The Jacobi elliptic functions cn(u, m) and dn(u,m) are defined
by the relations

2 2
sn“(u,m) +cn“(u,m) =1
() + (s m) .
msn®(u, m) + dn*(u,m) = 1.

The functions cn(u, m) and dn(u, m) satisfy

en(sn~! (sin ¢, m), m) = cos ¢

2.49
dn(sn~!(sin ¢, m), m) = /1 — m sin® ¢. (249)
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Definition 2.3.2. The incomplete elliptic integral of the second kind E(¢, m) is defined
as

E(¢,m) = /0¢ V1 —msin?6df (2.50)

where 0 < ¢ < § and 0 < m < 1. In the case that ¢ = 5, we call E(5,m) a complete
elliptic integral of the second kind and denote it by E(m).

Notice that E(0) = 7/2 and E(1) = 1 is finite.

The complementary modulus is m’ = 1 — m and we use the notation F'(¢,m) =
F(¢,1 —m) and E'(¢,m) = E(p,1 —m). Legendre’s relation in terms of complete
elliptic integrals is

K'(m)E(m) + K(m)E'(m) — K(m)K'(m) = (2.51)

T
5
Taking the derivative of K(m) and E(m) with respect to m, we have the two formulas

dK(m) _ _E(m) _ K(m) dE(m) _ E(m) - K(m) (2.52)

dm  2m(1l —m) 2m dm 2m

Definition 2.3.3. The incomplete elliptic integral of the third kind I1(n, ¢, m) is defined
as

¢
I(n, ,m) = / (1 —n sin?0)~Y(1 — msin?0)~/2 do (2.53)
0

where 0 < ¢ < 5,0 <m <1 andn € R. In the case that ¢ = 5, we call II(n, 5,m) a

complete elliptic integral of the third kind and denote it by II(n,m).

Depending on the value of the parameter n every complete elliptic integral of the
third kind can be expressed purely in terms of (incomplete) elliptic integrals of the first
and second kind [Lawl3, p.69].

2.3.2 Riemann theta functions

Every meromorphic function on a compact Riemann surface can be expressed by
quotients of Riemann theta functions. In the case that the Riemann surface is an elliptic
curve, they reduce to Jacobi’s theta functions. Generically, we will not be working
with Riemann theta functions since Wente tori can be described explicitly in terms of
elliptic data via hyperelliptic reduction of Riemann theta functions. Nonetheless, they
will appear in the description of spectral data on a hyperelliptic curve of genus g > 2
as solutions to the sinh-Gordon equation (cf. equation (4.24))). For further information
on Riemann theta functions, we refer to [Fay06, [FK92].

Definition 2.3.4. Let g € N. The Riemann theta function is defined by

0(z,7) = Z expmi(< N, 7N > +2 < N,z >) (2.54)
NeZ9

where z € CY and 7 is a symmetric g X g matriz with positive definite imaginary part
which is called the period matrix.
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The condition that 7 has positive imaginary part ensures that the theta function
converges for any z € C9. Usually, we will fix 7 and consider 8 as a holomorphic map
from CY to C. The Riemann theta function is even in z and has the transformation

property

1
O(z + Iy + T, 7) = expmi [—utz - 2/Lt7',u:| 0(z,7) (2.55)

where p, u' € Z9.

Definition 2.3.5. Let e,¢/ € 7Z9. Then the 2 X g matrix
€ _ €1 € ... €4 9
L’} |:€/1 ey ... e;] (2.56)

is called the theta characteristic. If <e,e’> = 0 mod 2, the characteristic is called
even. Otherwise it is called odd.

We will also denote theta characteristics by [e; €]. Whereas the theta function
defined in equation (2.54)) above is even, the characteristics give variations such that it
is even or odd, depending on the parity of the characteristic. We define

€ AL t L ¢ €
0 y (z,7) :=expmi 16 Te +ez+ S€€ 0(z + 15 + 7'5,7'). (2.57)

There are 229 different types of theta functions where 2971(29+41) are even and 297 1(29 —
1) are odd. For example, for g = 1, these are exactly the four Jacobi theta functions (see
below). Riemann theta functions with characteristics have further periodic properties.
The following proposition is from [FK92] p. 285].

Proposition 2.3.1. Let [e; €] be a theta characteristic. Then
0 [66,] (24 e®) 1) = exp 2mi '6—’“}0 LG,] (z,7),

- /
0 LE,] (z+ 7% 7) = exp2mi| — 2, — Thk E—k} 6 [;] (z,7), (2.58)

0 Lﬁ] (—2,7) = exp 2mi Gt;}a L,] (2,7),

where e®) and %) are the k-th column of the identity and the T-matriz, respectively.
e, and €), are the k-th entries of the g-dimensional vectors € and €, respectively.

The proof follows from an application of (2.55)). As already mentioned, in the case
of g = 1 Riemann theta functions reduce to Jacobi elliptic functions. With the notation
of [WW20, p.464] they are given by

1 - :
—0 ) (z,7) =01(m2,7) =2 Z ¢tV sin](2n + 1)72]

- - n=0
= 0
0 o] (z,7) =Va(mz,7) =2 Zl g t1/2? cos[(2n + 1)7z]
- o (2.59)
0 o
0 0 (z,7) =V3(mz,7) =142 Z:lq cos(2nmz)
L~ n=
o 0 .
0 1| (z,7) =V4(mz,7) =1+ 22_:1(—1)”(]” cos(2nmz)
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where ¢ = €™ and 7 has positive imaginary part. Finally, the relationship between

Jacobi theta functions and Jacobi elliptic functions is given by [WW20l p. 492]

N

sn(z m) _ 03(0,7') 191(Z 795 (077_)77_)
’ 02(0,7) ¥a(293%(0,7), 7)
_ 94(0,7) P2(2 95°(0,7), 7)

CH(Z7 m) = Q92(07 7_) 194(2 19;)12(0’ ,7_)7 ,7_) (260)
dn(z,m) = D4(0,7) dal(05 (0, 7). 7)
’ 03(0,7) ¥4(295%(0,7),7)

with 7 = iK’(m)/K(m) and v/m = 9%(0,7)/9%(0,7), vVm/ = 93(0,7)/93(0, 7).
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Chapter 3

Conformal CMC immersions into
]R3

In this chapter, we will study conformal immersions into the euclidean space R3.
Their description in terms of 2 x 2-matrices leads us to the definition of an extended
frame and the associated family of flat connections. We derive the Sym-Bobenko for-
mula which allows us to reconstruct the immersion from an extended frame. Afterwards,
we will solely restrict our attention to the case that the Riemann surface is a torus. To
that effect, the spectral curve is defined and closing conditions will be discussed. In
the final section, we will examine the Whitham flow for CMC tori in R3. This chapter
is based on the works of [SKKR07, Bob94] and [KSO7].

3.1 The sinh-Gordon equation

Consider the Lie group SU(2) and let Ly : SU(2) — SU(2),h — gh be the left
translation on SU(2). Via L, we can identify the tangent bundle T'SU(2) = SU(2) x
su(2) where su(2) is the Lie algebra of SU(2). The Maurer-Cartan form on SU(2) is
defined by

0 :TSU(2) — s5u(2), vy (dLg-1)4vy (3.1)

which satisfies the Maurer-Cartan equation
2d0 + [0 A 6] = 0. (3.2)

Let M be a compact Riemann surface. For a map F' : M — SU(2) the pullback
a = F*0 satisfies as well. Conversely, on a simply connected Riemann surface N,
every solution a to comes from a smooth map F': N — SU(2) such that o = F™*6
[SKKROT, p.564].

We now want to discuss conformal immersions into R3. Identify the euclidean space
R3 with the Lie algebra su(2) via

3
X =-iY Xo; € 5u(2) (3.3)
i=1
for some vector X = (X1, Xo, X3) € R?, where o; are the Pauli matrices

(0 e (0 ) e () ”
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3.1. THE SINH-GORDON EQUATION

The inner product between two vectors X,Y € R? is given by trace
1
< X,Y >= —§tr(X Y) (3.5)

with the usual matrix multiplication in the brackets. Now assume that f: M — su(2)
is a conformally immersed CMC surface and fix a local coordinate z = x+iy on an open
and simply connected subset U C M. Then f being conformal means that there exists
a smooth function v : U — R such that < f,, fz >= %e“ and < f., f, >=< fz, fz >=0.
The Hopf field and mean curvature of the immersion can be calculated via the equations

1
Q=<foz; N> JHe" =< fiz, N >, (3.6)

where N : U — S? is the Gaul map normalized by < N,N >= 1. The preceding
equations then imply

feo=uafs 4 QN, fos =usfo+ QN, [z = Le"HN. (37)

The triple (fz, fy, V) is a moving frame of the surface. We now define on U the unitary
matrix F : U — SU(2) by the relations

= iez FooF 1L, = —je2Fo F~', N =—iFo3F ", 3.8
Yy

which determine F uniquely up to a sign. The first two equations of (3.8)) are equivalent
to

u 0 0\ .1 , = (0 1\
fz—e2F<_1 0>F , fz—e2F<O O)F . (3.9)

Let « = F~'dF. The integrability condition f,; = fs, and the normalization det(F) =
1 imply that « is of the form

(3.10)

1 ( —uydz 4 uzdZ die”2Qdz + 2¢eZHdz>
4 )

T 2ie? Hdz + 41'67%Qd2 uydz — uzdz

which is su(2)-valued by construction. From the discussion in the beginning of this
section we see that a satisfies the Maurer-Cartan equation (3.2)). A calculation reveals
that this is equivalent to

Lo, — o, (3.11)
Lo
26 z = 2

If f is a CMC surface then the mean curvature H is constant and equation
tells us that the Hopf field () is holomorphic. The zeros of the quadratic holomorphic
differential Qdz? are called umbilic points of the surface. If U C M does not contain
an umbilic point, then, by a change of coordinate, we can achieve H = 1 and ) = %

Hence, the first equation of (3.11]) takes the form

uzz + sinh(u) =0 (3.12)
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CHAPTER 3. CONFORMAL CMC IMMERSIONS INTO R?
which is called the sinh-Gordon equation.

Remark: If M = T? is a compact CMC torus we can write (3.12)) globally. This
is possible since the Hopf field is a global holomorphic elliptic function on a compact
Riemann surface and hence constant. In particular, it cannot be totally umbilic @ = 0
since this case corresponds to the standard sphere. Therefore, compact tori in R? have
no umbilic points.

It is well-known that there exists the additional freedom to rotate the Hopf field by

Qr— QN1 (3.13)

for some A € S' which leaves the equations (3.11)) invariant. The parameter \ is called
spectral parameter. We denote the a from equation (3.10|) under the shift of (3.13]) by

oL —uydz + uzdz die" 2 A1Qdz + 2iez Hdz (3.14)
AT 4\ 26es Hdz + die™ 5 \Qdz uydz — uzdz ' '
Then ay is su(2)-valued for all A € S' and we have a@y_; = —ay. Another way

to interpret « is to view it as the connection one-form of a family of connections
V» := d + a) on the trivial rank two bundle which is unitary along A € S'. As
the (1,0) and (0,1)-parts o/, and o of ay, respectively, extend holomorphically to
zero and infinity, respectively, we obtain a C*-family of connections. Furthermore, by
construction, F 1is a parallel frame of V* for \ € S.

Definition 3.1.1. We call

1/ —u die 2 \71Q 1 Uz 2ies H
A z z _
— d - u d - u = d 1

Vi=dty <2¢62H s ) *y <4i€2/\Q s ) z (3:15)

the associated family of connections on M and Fy an extended frame of V.

The curvature of V* is day + %[a A A @y, which is independent of A\. Moreover, vA
is flat if and only if equations (3.11)) are satisfied. We summarize this observation in
the following proposition.

Proposition 3.1.1. Let f : M — R? be a conformally immersed CMC surface in R3.
Let z be a coordinate on a simply connected subset U C M such that QQ = %7H =1
and v : U — R is a smooth function. Then there exists a solution to the sinh-Gordon

equation if and only if V> is flat for all A € C*.

Conversely, for a given «) we can solve the Lax pair
(F\). = Frahy, (F\): = Fra) (3.16)

for F\ with initial value F(0) = Id if and only if the Maurer-Cartan equation is satis-
fied. Therefore, proposition also gives rise to an extended frame. This property is
well-known and for a proof of this statement we refer the reader to [FKR06, Proposition
3.1.2].

3.2 The Sym-Bobenko formula

The freedom to rotate the Hopf field by the spectral parameter A = ¢ means that
we obtain a one-parameter family of surfaces which are all isometric, i.e., have the same
metric, but a Hopf field rotated by A. For a given extended frame we can reconstruct
the immersion from the Sym-Bobenko formula.
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3.2. THE SYM-BOBENKO FORMULA

Theorem 3.2.1 (Sym-Bobenko formula). Let M be a simply connected Riemann sur-
face and F : M x S* — SU(2) an extended frame. Let A = e € S'. Then f) : M — R3,
defined by

1 1 _
= =25 (O F\)Fy 1y iz PaosF L (3.17)

is a CMC surface with mean curvature H and Hopf field \™1Q.

Proof. We write ay = oy + o with type decomposition

1/ —u 4ix"lem2Q 1 Uz 2iez H
/:7 uZ d ”:7 Zu— d_ 1
Ny <2ie2H us > oMy <4i)\62Q —uz> 2 38)

and calculate

o a0 2xeTE QN L, 0 et H
Z[a)"g3]_(—egH 0 , ialy, o8] = e t0 0

, 0 A le z2Q " 0 0 (3:19)
Oheey = (0 0 > Gy = <—Ae—’5Q 0> ‘
Taking the derivative of , we obtain
(f2): = —H 'F\(2(0a) — ilaly, a3]) Fy
= e%F)\ (_01 8) F;l (3:20)
and
(fr)z = —H ' Fx(2(0a”) — i[o", a3] Fy !
—an (D 520

which coincides with the two equations in (3.9). Therefore, F) is, up to a sign, the
extended frame obtained from fy. In particular, the surface is a conformal immersion

with conformal factor e*. The normal vector N is given by N = —iFo3F ! from which
we calculate that the mean curvature is H. Taking the derivative of (3.20]) with respect
to 2 shows that < (f)).., N >= A71Q. O

Remark: Similar formulas for the reconstruction of CMC surfaces into the other
two space forms S® and H? also exist (see, e.g., [FKR06, section 5]).

As we are interested in non-simply connected Riemann surfaces, the immersion has
to satisfy closing conditions. The extrinsic closing condition asserts that the immer-
sion descends to a well-defined immersion to a Riemann surface which is not simply-
connected. For this we need to investigate the monodromy of the extended frame.

Definition 3.2.1. Let F) : M — SU(2) be an extended frame defined on the universal
cover M of a Riemann surface M. The monodromy of Fy with respect to v € w1 (M, p)
is defined as

H) : m(M,p) — SL(2,C)

7o BxG)EA(3(0)! (322)

where 7 is the unique lift of v to M such that ¥(0) = p is the point lying over p.
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CHAPTER 3. CONFORMAL CMC IMMERSIONS INTO R?

Recall from proposition that the associated family is flat if and only if the sinh-
Gordon equation is satisfied. Since the monodromy of a flat connection only depends
on the homotopy class of a closed loop, definition [3.2.1] is well-defined. In particular,
as the associated family is unitary along A € S* the monodromy is unitary as well, i.e.,
(HI;\il)* = (HZ’,\)_l. Furthermore, the monodromy does not depend on z since both
F\(3(1)) and Fy(%(0)) give rise to the same unique solution of dFy = Fyay on M.

Now consider the parallel frame F) undergoing a non-trivial loop v on M based at
p. This changes the Sym-Bobenko formula to

FG) = 2 @) RGO FA(0)) ()™

L iL ) (4) FA(3(0))os i L (5(0) ) (7) !

H P
=—2i8tHA(7)H$(7) —QHH;?( MOFAFO)Fy H(7(0) Hpy (7)™ (3.23)
+Z§Hﬁ( MEAF0)as Fy  (3(0) Hy (7)™

- zﬁatH;mH;(v)*l + Hp (7) f(3(0)) Hp (7)™

f(5(0)) gives rise to the frame F(5(0)) whereas f(5(1)) gives rise to the frame F(5(1)) =

;‘( JFA(7(0)). Since the extended frame is uniquely defined up to a sign we must have
H;‘( ) = £Id. But from equation (3 this implies that 0;H. )‘( ) = 0. Therefore, we
obtain a well-defined surface in R? via the Sym-Bobenko formula if and only if

OH)(v) =0, Hp)(y)==+Id (3.24)

along any generator v € 71 (M,p).

The monodromy depends on the base point p. Let g be another point on M and
choose a path s : [0,1] — M from s(0) = p to s(1) = ¢q. Then the monodromy matrices
H;‘ and H, ;‘ are related by

H)(y) = (PY) o H)Ny) o PY (3.25)

where PSVA € SU(2) for A € S' is the parallel transport of V* along s, i.e., the mon-
odromy matrices are conjugated to each other. A quick calculation reveals that if
the monodromy satisfies the equations in at p then they are also satisfied at q.
Therefore, choosing a different base-point yields the same immersion.

We summarize the conditions needed in order to obtain conformally immersed sur-
face in R3. Satisfying all these conditions is also known as solving the monodromy
problem:

i. F) € SU(2) for all X € S'.
ii. O H () =0.
iii. H(y) = +Id.

Here, \g € S and v € m1(M, *). Generally, we will assume that the point where these
conditions are satisfied is A\g = 1 and call this point a Sym-point. If the Riemann
surface is a torus we can express these conditions in terms of data on a hyperelliptic
curve. This will be our concern in the following section.
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3.3. SPECTRAL CURVE OF CMC TORI
3.3 Spectral curve of CMC tori

Given a conformally parametrized CMC surface in R?, we have seen in the previous
section how to obtain an extended frame. Vice versa, the surface can be reconstructed
by the Sym-Bobenko formula from such a frame. For surfaces of genus g > 1, we have
to control the monodromy of the extended frame in order to obtain closed surfaces.
The simplest non-trivial example is the case that M = T? is a torus. It turns out that
a helpful concept in the description of compact CMC tori in space forms is the spectral
curve. Notice that the exposition in this section translates under mild variations to
CMC tori in space forms other than R? [Bob91h, section 3].

Let ~;,j = 1,2, generate 71 (T 2 p). Since the first fundamental group of the torus is
isomorphic to Z @ Z, i.e., it is abelian, the monodromies H;‘(m) and H;\(’YQ) commute.
We use this fact for the following proposition.

Proposition 3.3.1. Fiz A\ € C* and let p € T?. Assume that H?(’yl) has only 1-
dimensional eigenspaces. Then the eigenvectors of H};\(yl) are also eigenvectors of

Hp (72)-

Proof. Let v be an eigenvector of HZ;\(’yl) to the eigenvalue u, i.e., H];\(’yl)v = pv. As
the monodromy matrices Hz;\ (71) and H;‘(’)/Q) commute, we obtain

H) (M) H) (y2)v = H)(v2)Hp (71)v = pH,) (72)v (3.26)

which implies that H;‘('yg)v is also an eigenvector of H;‘('yl) to the eigenvalue p. How-
ever, since, by assumption, ng\(fyl) has only 1-dimensional eigenspaces, there exists a
constant ¢ € C with H];\ (72)v = cv which implies that v is an eigenvector of H;\(’YQ). O

Proposition implies that to every simple eigenvalue there exists a basis which si-
multaneously diagonalizes both monodromies and, since the monodromies are SL(2, C)-
valued, we can assume that it has the form

me = (7 ,5) (3.27)

with distinct eigenvalues p; # £1. If ¢ is any other point on T? then the monodromies
Hg‘ and H ,;‘ are related by conjugation of the parallel transport from p to g (cf. (3.25])).
Since conjugated matrices have the same set of eigenvalues, we can define the following.

Definition 3.3.1. The spectral curve of a CMC torus in R3 is defined as the normal-
ization and compactification of

2= {(\, p1) € C* x C* | det(H) (1) — pald) = 0} (3.28)
where 1 is the eigenvalue of Hg‘(’yl).

Unraveling the equation in (3.28) we have the two solutions

1
p =5 h(A) £ v hi(A)? — 4] (3:29)
where hi()) is the trace of the monodromy with respect to the generator 7;. Thus,

¥ is branched at the odd order zeros of hi(A)? — 4 and by [Hit90, Proposition (2.3)]
there exist only finitely many of those. Moreover, the odd order zeros of hi()\)? — 4
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CHAPTER 3. CONFORMAL CMC IMMERSIONS INTO R?

are also odd order zeros of ha(\)? — 4, where ho()) is the trace of the monodromy with
respect to the second generator vo [Hit90, Proposition (2.10)]. Therefore, we equally
could have defined with respect to H;‘ (v2) which yields the same spectral curve.
To fulfill the property that equation can be compactified, one has to add branch
points at zero and infinity as described in section three of [Hit90)].

The fact that the monodromy is SL(2, C)-valued defines a double covering A : ¥ —
CP!'. Hitchin has shown that the eigenvalues of the monodromy are well-defined only
on a double covering of CP! branched at zero and infinity [Hit90, Theorem (8.1)].
Therefore, we associate to the spectral curve the following hyperelliptic curve

g
v =2 [ —a(r—a;h) (3.30)

i=1
parameterizing the eigenvalues of the monodromy. The branch points of are
given by the odd order zeros of hi(A)? — 4. For conformally immersed CMC tori in
space forms, the curve is smooth [Bob91a, Appendix]. With an abuse of nota-
tion, we will also denote the hyperelliptic curve by ¥ and also call it spectral
curve.

¥ naturally possesses a hyperelliptic involution o : ¥ — ¥ sending (y, A) — (—y, A).
Furthermore, it comes equipped with an anti-holomorphic involution (real structure)
p: Y — ¥ commuting with the projection map X : ¥ — CP! and inducing the map
A — A"l on CP! with S! as its fixed point set. To be more precise, with respect to
the coordinate A on CP', the anti-holomorphic involution can be written as

—1

p:(y,\) = (GATWTD X, (3.31)

We summarize the action of the involutions on the eigenvalues of the monodromy and
some additional properties in the following proposition [Hit90, Theorem (8.1)].

Proposition 3.3.2. Let ¥ be the spectral curve of an CMC torus in R3.

i. The eigenvalues of the monodromies jij,j = 1,2, are holomorphic functions on
YAAL({0,00}) and have essential singularities at the points over zero and infinity.

it. The actions of the involutions o and p on u; are

*

o W= :uj_1> p ;= /]j_1> T =(00p) ;= [i;. (3.32)

iti. The logarithmic derivatives 0; = dInp; of pj are abelian differentials of the second
kind with a second order pole at zero and infinity.

. The principal parts of 0; are linearly independent.

The principal parts of the one-forms 6; determine the conformal type of the complex
torus T2. Moreover, from (3.32)) we obtain that ; behave under the involutions as

0'*9]‘ = —9]‘, p*ej = —9]‘, T*Qj = éj. (333)

Definition 3.3.2. Fiz a point p € T%. The eigenspace bundle L,(&) on the hyperelliptic
curve X\ A71({0,00}) is defined by

Ly(€) C ker(Hp(m) — pa1d) (3.34)
for all £ € 2\ A71({0,00}) with A(§) = .
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3.3. SPECTRAL CURVE OF CMC TORI

Since the eigenspaces of the holonomy are generically 1-dimensional, the eigenspace
bundles are line bundles. Via parallel transport, they extends to holomorphic line
bundles on L — T2 ® X\ A~1({0,00}). Investigating the limiting behavior, Hitchin has
also shown that the eigenspace bundles extend holomorphically to zero and infinity to
become eigenspace bundles of a Higgs field, i.e., a global holomorphic one-form on T2,
and its dual, respectively [Hit90, section 8]. It turns out that the change of p € T2
yields an eigenline bundle flow in the Jacobian of the spectral curve which is linear in
p [Hit90, section 7).

Theorem 3.3.3. Fiz a point pg € T?. The map
U:T? = Jac(X), pr Lp® Ly} (3.35)
s a group homomorphism.

Theorem tells us that it is possible to reconstruct the immersion purely in
terms of data on the spectral curve [Hit90, section 8]. From proposition we know
that the Jacobian is a complex g-dimensional torus. The holomorphic line bundle
E, = L,® L;()l is real with respect to the fixed point free involution 7 on X, i.e.,
there exists an isomorphism F,, = @ which squares to the identity [Hit90, p.667].
Therefore, the image of ¥ is mapped into the real g-dimensional torus Jac®(X).

3.3.1 Closing conditions

We have already seen the closing conditions for a compact Riemann surface in
section Here we will investigate them again in case of M = T? being a torus.
The concept of the spectral curve will allow us to rewrite them completely in terms of
conditions on the spectral data.

Intrinsic closing conditions

Recall the map ¥ defined in . Since the associated family came from a dou-
bly periodic metric, the eigenbundle flow is doubly periodic as well. This asserts the
intrinsic closing condition: the existence of a two-dimensional subtorus 72 C Jac®(%)
with doubly periodic metric [GPS09, section 2].

We want to give more insight into this statement and show that the intrinsic closing
conditions can be expressed purely in terms of properties of spectral data. Let X be a
hyperelliptic curve of the form equipped with an anti-holomorphic involution p
covering the map A — A~! on CP'. Denote the hyperelliptic involution by . Assume
that there exist two abelian differentials 6; of the second kind with poles of order two
at zero and infinity satisfying p*0; = —§j and 0*0; = —0;. We further impose that the
periods of 6; all are 2miZ-valued

0; € 2riZ, 0; € 2mi (3.36)
A B

for [ =1,...,g where g is the genus of X. This implies that there exist globally defined
holomorphic functions p; on ¥\ A71({0, 00}) with essential singularities at zero and
infinity such that 6; = dlnpu;. As 0; are differentials on a hyperelliptic curve we can
write them down explicitly in terms of the coordinates (A, y). We have seen in section

2.2 that
{x‘—l‘u} (3.37)
Ay i=1,...,g+2
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Figure 3.1: Canonical homology basis of a genus two curve X with homology basis as in
(13.39). The thick blue lines represents branch cuts connecting pairs of branch points reflected
along S! while the thick gray line denotes the branch cut from zero to infinity. Dashed lines
denote paths on the second sheet of X.

is a basis for meromorphic differentials with a pole of order two at zero and infinity.
For the 6; this implies

g+2 A
@:ZEZdMA%JXQ (3.38)
=1
where d;; € C. By the reality condition p*0; = —éj, we obtain that the coefficients

of 8; satisfy d;; = dj;4+3—i. In particular, the space of differentials of the second kind
with reality p*0; = —0; is real (g +2)-dimensional. Hence, we have 29 — (¢ +2) = g—2
constraints for the existence of a ; such that the periods are 2miZ valued.

We fix the homology basis on ¥ in such a way that

p(Ar) = -4

p(B)) = By — A+ Zg: A; (3.39)

=1

where the three lines equality sign means modulo curves homological to zero (see figure
. A homology basis satisfying (3.39) forces the A;-periods of the abelian differentials

0;
—/ sz/ 9j=/ P*9j=—/9_j=—/ 0; (3.40)
Al p(Al) A]' Aj A]'

to be real. Hence, the assumption that the periods are 2wiZ-valued implies that the
differentials 6; are normalized, i.e., have vanishing A;-periods. Let

9 -1
AT
I (3.41)
=1
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with ¢ = 1, ..., g be a basis of abelian differentials of the first kind normalized in such a
way that fAz w; = 01, i.e., (vy) = (Cy)~! where

i—1
Cy = / AT AN (3.42)
ALY

If the principal parts of 6; are linearly independent, they define a lattice in R2. To be
more precise, we define the two differentials d€2y and df)o, by the relations

0, = 2(dQOOJ171 — dQody 1)

. (3.43)
0y = 2(dQuoda,1 — dQdy1).

Comparing the asymptotic behavior around A = 0 and A = oo, we see that df)y and
df)s, are normalized abelian differentials of the second kind with a pole of order two
at zero and infinity, respectively, and holomorphic everywhere else. Let z2, = 1/ be
a local coordinate near infinity. Then d€ has the expansion dQy, ~ —dzs/ zgo near
infinity. With respect to the same coordinate, the local expansion of w; near infinity is
w; ~ —20;9dzo0. A reprocity law for abelian differentials of the second and first kind

yields
/ ono/ Wy —/ wi/ ono = —/ Qoo = —47TZ"UZ'g (3.44)
A By Ay B B;

1
since w; and df2s, are normalized. Set

X1 — Y, Xo — Y
LT gy, =22 (3.45)

di1 =
1,1 4 ) s 4

with real numbers X;,Y;. Under the assumption that the Bj-periods of 0; are 2miZ-
valued we obtain
1
6 -
XY — XoYq

for all i = 1,...,g (compare also with (2.45)). Since d;; and dg; are R-linearly inde-
pendent, the lattice

I=(X1+iV1)Z+ (X2 +iY2)Z (3.47)
is well-defined. Rewriting we get
204(X1Y2 — XoY1) € (Xh +Y1)Z + (X2 +iY2)Z (3.48)
fori=1,...,9. Let vjy = B; + ic;. Then the left hand side of equation is
20(X1Y2 — Xo¥1) = 2(X1 +iY1)(i Xs — B;Y2) — 2(Xa + iY2) (e X1 — BiY1)  (3.49)
and equation is equivalent to the matrix
o) (o o %) 530
being an integer matrix (compare also with [Bob91al p.225]). If the two horizontal real
g-dimensional vectors of are linearly independent, they span a lattice plane in
RY and hence they give rise to a subtorus 72 = C/I' with lattice T in the real

g-dimensional Jacobian. These observations allow us to express the intrinsic closing
conditions only in terms of spectral data on the hyperelliptic curve.
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Definition 3.3.3. Let {Ay, By, ..., Ay, By} be a canonical homology basis of . Denote
by 0; for j = 1,2, abelian differentials of the second kind with a pole of order two at
zero and infinity. We call the condition

9j € 2miZ, 9]' € 2mi. (3.51)
A B,

forall j =1,2,1=1,...,g the intrinsic closing condition.

Extrinsic closing conditions

The intrinsic closing condition on its own is not enough to obtain compact CMC
tori, we further need periodicity of the immersion. We have already seen in equation
(3.24) that the monodromy of the extended frame needs to satisfy

O H) () =0, Hp(y)==+Id (3.52)

for some A = e € S where the monodromies were defined with respect to the base
point p € M. For M = T? being a torus, we can rewrite (3.52) to conditions on the
eigenvalues of the monodromy on the spectral curve. Notice that the following definition
is independent of p € T? since the spectral curve is invariant under conjugation of the
monodromies.

Definition 3.3.4. Let 11;(\) denote the eigenvalues of the monodromy of the associated
family on a torus. Let A € S*. Then we call the conditions

i) = £1,  Ohpi(A) =0 (3.53)
the extrinsic closing condition.

A point A € S! where both conditions are satisfied is called a Sym point. If
there are multiple Sym-points, the reconstruction of the surface is no longer uniquely
determined by the Sym-Bobenko formula and one can bifurcate to different surfaces
(see section. For conformal CMC tori into R? we will fix the Sym-point to be A = 1.

The sign in the first equation of is meaningful in the sense that it determines
the spin class of the immersion [Bob94] Lemma 3]. On a Riemann surface of genus
g = 1 there exist 4 spin bundles (cf. definition [2.2.9). This is relevant for us since we
want to describe spectral data in terms of holomorphic structures on a torus, i.e., maps
from the spectral curve into the Jacobian Jac(7?), and a spin bundle corresponds to a
half-lattice point of the lattice generating Jac(7T?). However, we will not go into detail

for the description of spinors on compact Riemann surfaces. For further reference we
advise the reader to [Bob94l [KS96].

3.3.2 The associated family in terms of holomorphic structures

Let f : T? — R3 be a conformally immersed CMC torus. We saw that the immersion
can be equipped with the associated family of flat connections V* (cf. definition .
As the eigenline bundle L,(¢) of the monodromy along one generator of 71 (7%, p) is
also an eigenvector for the monodromy along the other generator (cf. proposition,
there exist a gauge which brings the associated family into the form

_ a(§)dw — x(§)dw 0
VE=d+ ( 0 —a()dw + X(g)dw) (3.54)
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on the trivial rank two bundle C* = L,(¢) @ L;(€) [Hit90]. Since changing the base-
point from p to ¢ amounts to conjugation of the monodromy (cf. equation ), this
is independent of the chosen base-point. By an abuse of notation, we will also call
the associated family, even though it differs from the original one by a gauge
which is singular at the points where the eigenlines coalesce. The maps

x: 2\ A (o0) = Jac(T?), a: X\ AH0) — Jac(T?) (3.55)

parameterize the holomorphic and anti-holomorphic structure of a family of flat con-
nections on T2, respectively. Here, dw is the global holomorphic one-form on 72. By
definition, the associated family is unitary along S' which implies a (&) = x(€) for all
Eex1(sh).

The associated family of holomorphic and anti-holomorphic structures 9* = (V)"
and 0* = (V*)’ extend holomorphically to infinity and zero, respectively. Under the
hyperelliptic involution ¢ : (A,y) — (A, —y), the diagonal entries of are inter-

changed since o*L = L*. However, under the SL(2, C)-gauge

9= <_01 é) (3.56)

we get back the original connection one-form. Therefore, the gauge class of the associ-
ated family is invariant under the hyperelliptic involution o.

Next we want to write down the explicit form of the holomorphic structures y. Away
from the branch points we fix the coordinate A on ¥. Comparing the monodromies of
the associated family with the lattice in equation (3.47) we see that dx is given by

) i O1do1 — 02d i 0o (X Y1) — 61(X Y-
dy = Lan,, = L OdzamOdin 0 2(X1 +14Y1) — 01(Xo +iY5) (3.57)
2 ddiday —doadin 2 X1Ys — XoYh
by equation (3.43)). By reality,
do = —%dQO. (3.58)

Notice that dx and da have a pole of order 2 at infinity and zero, respectively. As long
as the intrinsic closing conditions in definition [3.3.3] are satisfied, the integral

A
x(A) =/0 dx +c (3.59)

is a well-defined map in Jac(T?) of T? = C/T with lattice T' = (X1 +iY])Z+ (X +iY2)Z
(cf. equation ([2.45)). Since x is odd with respect to the hyperelliptic involution on 3,
the integration constant ¢ € C must be a half-lattice point of the lattice generating

Jac(T?). In fact, it determines the spin class of the corresponding CMC immersion
[Bob94, p. 96].

3.4 The Whitham flow for CMC tori in R?

Whitham deformations are deformations on the spectral curve of a CMC torus which
keep the intrinsic closing conditions satisfied. Such deformations were first introduced
in [KS07] in the study of constant mean curvature cylinders in S3, which uses the results
obtained by Grinevich and Schmidt [GS95]. As the intrinsic closing condition for both
CMC immersion of compact tori in S and R3 are the same, we can use the results
from [KS07]. Only for the extrinsic closing conditions the formulation is different.
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3.4.1 Deformation of spectral data

We consider a CMC immersion in R? with spectral curve X of the form
g
S = A= a) (A —a; ") = Aa(N) (3.60)
i=1

where a(\) is a polynomial of degree 2g. Recall from equation (3.38) that the abelian
differentials of the second kind 6; = dIn p1; are of the form

g+2

i dX dX
0; = dj) ITy = dj(A)ry (3.61)
i=1

where d;; € C are complex numbers. We want to derive the differential equation system

of the Whitham flow. In the following we will view the polynomials a()) and d;(\) as
time dependent variables.

Intrinsic closing conditions

Throughout the deformation we want to preserve the intrinsic closing condition
to guarantee that the conformal metric stays doubly periodic and the eigenvalues of
the monodromy are globally defined at all times. Let {A, By, ..., Ay, By} be a canon-
ical homology basis on X. We impose that locally the basis does not depend on the
deformation parameter t. Hence,

o 6;,=0, 6;=0. (3.62)
A B

This implies that the integrals of 0;8; over all periods in H;(X,Z) vanish. Therefore,
the functions

8,5 In ;L](A) = at/ﬂj (363)

are globally defined. We have to determine the zero and pole behavior of 0;1In ;
[HKS12| p.30]. Let z; = /A —a;,i =1,...,29+ 1, where a; € C denotes a branch point
of ¥, be local coordinates around each branch point except infinity. From equation
we obtain that In u; has the following asymptotic in A near A\ = a;

In ,ul()\) ~ fl(A)\/ A — a; (3.64)

where f;(\) are holomorphic in A. Taking the derivative of (3.64)) with respect to ¢t we
obtain

; fi(A)a;
Alnp(A) ~ fiMVA—a — F—— 3.65
t /’Ll( ) fZ( ) 1 m ( )
which has a first order pole at z; and the dot denotes the derivative with respect to
t. An analogous computation shows that 0;In 1 must also have a first order pole at
infinity. Clearly, the same calculation holds for 9 In u9, too. Therefore, we can assume
without loss of generality that

¢j(A)
y

Orlnp;(N) =14 (3.66)
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where ¢;j(\) are polynomials of degree g + 1 in A satisfying the reality condition
A9, (N) = ¢j(A7Y). Taking the derivative with respect to A and imposing the
integrability condition 83)\ Inp; = 8/2\t In j1;, we obtain the following deformation system
[KS07, p. 14]

2a(A)dj(N) — a(N)d;(N) = 2iAa(N)e5(A) — iAd'(V)ej () — ia(N)ej (M) (3.67)

where the dot denotes the derivative with respect to ¢ and the dash denotes the deriva-
tive with respect to A. Each side of the equation is a polynomial of degree 3g + 1,
meaning we get 3g 4 2 equations for the coefficients of a(A) and d;(\). As this equation
should hold for j = 1,2, we have 6g + 4 equations all together. Notice that by the
reality of the spectral data there are 6g + 8 real parameters. Hence, in order to have
unique solutions of the deformation system, we have to fix the remaining parameters
via the extrinsic closing conditions.

Extrinsic closing conditions

As we are mostly interested in closed CMC surfaces, we also need the extrinsic
closing conditions to be satisfied. Assume that the Sym-point is located at A = 1. The
extrinsic closing conditions are equivalent to the four equations

Inp(1) € miZ, OxInp;(1) =0. (3.68)
But now we want to vary ¢ and still find closed surfaces. We make the ansatz
O¢lnpi(1) =0, OxInp;(1)=0 (3.69)

while letting the deformation parameter ¢ vary continuously. The equations (3.69)) are
equivalent to the four conditions

(1) =0, dj(1)=0. (3.70)

From this, we get 69 + 8 equations for our deformation ODE which match the 6g + 8
parameters from . However, with these initial conditions the only solution is the
constant one. In order to get non-trivial deformations, one could vary the coefficients
in such a way that [Kew15l section 4.2]

d;(1) =0, e(1)=0, e(1)=h (3.71)

where h is a function on the spectral curve which is not allowed to vanish at any
time. The geometric interpretation of the equations is that we keep one part
of the extrinsic closing conditions while opening the other one. This corresponds to
deformations of CMC cylinders in R3.

In order to obtain closed CMC tori, we extend the intrinsic closing condition in such
a way that we allow Inj(A) € miQ at A € S*. Then the torus will close on a suitable
covering. Using ¢1(1) = h # 0, i.e., O Inpi(1) # 0, allows us to search for values of ¢
where In y;(\)/mi € Q. Thus, for a flow which satisfies all other closing condition, we
obtain closed surfaces on a dense subset of the time interval [Kew15, Lemma 4.7].

In chapter 4] we will examine the Whitham flow for the family of Wente tori where
we will find an explicit solution in terms of elliptic integrals which satisfy .
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CHAPTER 3. CONFORMAL CMC IMMERSIONS INTO R?
3.4.2 Bifurcation of spectral curves

Using the Whitham flow, we deform the spectral data and obtain, possibly non-
compact, CMC immersions for fixed spectral genus. It turns out that it is also possible
to increase, respectively decrease, the spectral genus at certain times throughout the
flow. We call this procedure bifurcation of spectral curves to higher, respectively lower,
genus. Points where this is possible are called double points.

Definition 3.4.1. We call a point A\ € ¥ a double point if j1;(X\) = £1 for j = 1,2 but
the spectral curve is not branched.

Double points naturally occur on any compact CMC torus in R? since by definition
the Sym-points are such points. However, we will generically be interested in such
points which are no Sym-points of the surface. Assume there exists a double point
Adp € S! lying on the unit circle and define the following polynomials

a(A) = (A = Aap)®a(N),  d(N) = (A = Aap)d(N) (3.72)

which are of degree 2¢g + 2 and g + 2, respectively. a(\) defines a singular hyperelliptic
curve ¥ with arithmetic genus g + 2. Nevertheless, since the abelian differentials 0;
are invariant under the addition of double points as in , the closing conditions
remain untouched and we have the same solutions to the sinh-Gordon equation. After
desingularising ¥ we would then obtain a new pair of branch points reflected across the
unit circle [HKS12) section 9]. This would then defines a smooth hyperelliptic curve of
genus g + 1 which is the spectral curve of a conformally immersed torus.

Vice versa, starting from a spectral curve X of a compact CMC and finding double
points satisfying allows us to decrease its genus. A way to do this is to use the
Whitham flow to move a branch point to the unit circle. As the real structure on X
implies that the branch points are reflected across the unit circle, they come in pairs
and a(\) obtains a zero of order two at this point. In particular, by continuity of the
flow, we would have p;(\) = £1 at the double point as we started with a branch point.
Therefore, we again have obtained a singular hyperelliptic curve and, after normaliza-
tion, we get a spectral curve of a CMC torus with lower genus than the one we started
with.

So far, the discussion above restricts to the case that the double point lies on the
unit circle. There is a difference between opening double points on and inside the unit
circle. If there exist double points inside the unit circle, which would imply that we
also have a double point outside the unit circle by reality of the spectral data, we would
have to open both of them to maintain the reality of the spectral curve. Therefore,
a(\) would be shifted by a polynomial of order four. Finding double points in this case
is more complicated since the condition In y;(\) € miQ for some A € C*\ S', which is
a necessary condition for closed surfaces, is much harder to satisfy.
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Chapter 4

The Wente tori

In 1986 Wente showed the existence of compact CMC tori in R? [Wen86] and with
this, he was able to disprove the conjecture by Hopf claiming the only immersed closed
CMC surface in R3 is the round sphere. We know from chapter [3| that to any such
torus, we can associate a spectral curve and vice versa reconstruct the immersion if the
spectral data satisfy certain closing conditions. Our aim in this chapter is to present
the description of the spectral data for different Wente tori.

In this context, we start this chapter with the definition of a hyperelliptic curve of
genus two which has the additional symmetry i : A — A~ and we write down the two
abelian differentials of the second kind 6, j = 1,2, with a pole of order two at zero and
infinity (cf. proposition. The assumption that 6; are symmetric (in the sense that
i*0; = (—1)7710;) each differential can independently be pushed down to a different
elliptic curve. As a byproduct, we will investigate solutions of the sinh-Gordon equation
in terms of Riemann theta functions and the hyperelliptic reduction to Jacobi theta
functions will be performed. From this, we can deduce that the genus two hyperelliptic
curve we started with is indeed the spectral curve of a Wente torus. After that, closing
conditions are discussed and we recapture the result that Wente tori are characterized
by the rationality of an elliptic integral. In our setup, this result will be expressed
purely in terms of data on the spectral curve. Finally, we will close the chapter with
the discussion of double points.

4.1 Spectral data

Assume that we want to reconstruct a closed CMC immersion f : 7?2 — R? from
a given spectral curve ¥ with appropriate data. In the case that the spectral genus
is g < 2, our task comes to a quick end: it turns out that the intrinsic and extrinsic
closing conditions cannot simultaneously be satisfied and the immersion would not be
compact. In fact, the cases ¢ = 0 and g = 1 correspond to CMC cylinders and De-
launay surfaces in R3, respectively [Bob91al, section 13]. For g > 2, there are enough
parameters in the abelian differentials 6; (cf. equation (3.38])) satisfying the constraints
of the closing conditions. Therefore, if we want to study compact CMC tori in R?, we
already have to deal with hyperelliptic curves. In this section, we consider the spectral
genus two case which, as we will see, is the appropriate setup for studying Wente tori.

Consider the following smooth hyperelliptic curve

Yyt =MA—a)A—a H(A—a)A—a ) (4.1)



4.1. SPECTRAL DATA

with a € C inside the unit circle with non-vanishing imaginary part. We readily see
that ¥ has genus two and it admits the symmetries

oMy = A=), oAy e AL EATD)

_ 4.
i (Ny) = AL yATS), vi=pis (N y) = (A7) (4.2)

Notice that the branch points inside the unit circle are conjugated to each other. More-
over, y is real for A € R.

We have seen in chapter [3]that the spectral curve X of a conformally parameterized
CMC torus in R? is defined as the characteristic polynomial of the monodromy of the
associated family along a generator of 71 (T2, p). In particular, ¥ does not depend on
the base point p € T2 and the choice of generator 7 (T2, p). By proposition the
eigenvalues (1,7 = 1,2, of the monodromies have essential singularities at zero and
infinity and define abelian differential of the second kind 6; = dlnp; with a pole of
order two at zero and infinity. Since X has genus two, these can be written as

01 =dInpy = (dig +diah +dis\ + d1,4/\3)%\

di (4.3)

0o = dn pig = (da1 + dao) + da 3\ + d2,4A3)7y

for d; ; € C. Assume that 0; satisfy the reality condition p*0; = —G_j. This implies that

dj1 = Jj74 and djo = Jj,g. We fix a canonical homology basis {A1, By, A2, Ba} on
with the same properties as in (3.39)

p(A) = — A,

2
p(B)=Bi— A+ ) A 4

I=1
for [ = 1,2. The equality with three lines means modulo closed curves homotopic to
zero. Then the involutions v and i act on the A;-cycles as

i(A)) = —Ay, i(A2) =—-A;

V(Al) = A2, V(AQ) = A (4'5)

Since v is orientation reversing, it also reverses the intersection form and therefore acts
on the B; cycles

I/(Bl) = 7B2, V(BQ) = *Bl. (46)
Generically, arbitrary choices of abelian differential of the second kind as in (4.3) sat-
isfying the reality condition p*#; = —6; (and suitable choices of closing conditions)

do not yield the symmetric Wente tori as discussed in [Abr87, Wal87]. We enforce a
symmetry behavior on ¢; with respect to the involution i : ¥ — ¥. Henceforth, we will
assume that

i"01 = 01, "0y = —0s. (4.7)

These equations force 61 and 0 to have only imaginary and real coefficients, respec-
tively, and they take the form

dA
01 = dInpy = (dii(1—N°) +dia(X - AQ)))\*

di’ (4.8)
Oy = dIn iy = (da1(1+ N°) + doo(A + AQ))ry‘

In particular, since d;; are R-linear independent, they span a rectangular lattice. We
summarize these observations in the following lemma.
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Lemma 4.1.1. Assume that 0;,j = 1,2 are two abelian differentials of the second kind
on the genus two hyperelliptic curve ¥ with a pole of order two at zero and infinity.
Assume that

p*ej = —9_]', i*gj = (_1)]'—19],‘ (49)
If the principal parts of 0; are non-vanishing, they span a rectangular lattice in R2.
Notice that 0yInp;(1) = 0 already vanishes and hence one part of the extrinsic
closing condition (3.53)) is already satisfied.
4.2 Hyperelliptic reduction

The involution ¢ defined in (4.2)) has two fixed points over the point A = 1. We can
compose the hyperelliptic o involution with 7 and get

oi: (Ay) = AL —yAT?) (4.10)

which now has two fixed points over the two points A = —1. Taking the quotient by
these two involutions ¢ and oi defines two ramified double coverings

7r1:2—>21, 7T2:E—>22. (411)

By the Riemann Hurwitz formula we see that X; are Riemann surfaces of genus one,
i.e., elliptic curves. The algebraic equations of the curves are

$1=2/; t2=(54+2)(s—E)(s—E)

_ (4.12)
o =%/ig : t3=(s—2)(s — E)(s — E)
where the coverings are explicitly given by the formulas [Bob91al p.238]
E=a+a ! s=X+2""1
(4.13)

ti=A+DyA\ 2 ta = (A —yr~?

which define new coordinates on the elliptic curves. The complex number a in the defi-
nition of F is the branch point of the genus two curve X. Equivalently, the hyperelliptic
reduction defines the two maps

T]jiz—>2j

()\’ y> — ()\ 4 /\717 A+ (/\_21)i+1 y) ) (4'14)

Notice that the coordinate s identifies the points zero and infinity in the covering A :
¥ — CP!. Using (s,t;) enables us to rewrite differentials on ¥ as a linear combination
of differentials on ¥;

d\ 1 d d d\ 1] d d
M2t )B s E|, Do 88
y 2 t1 to y 20 t1 t (4.15)
dx 1 ds ds d\ 1[ds ds )
pRAcA . VIS e I O Rl FR A
y 2[(8+ )751 e )tQ]’ y Q{tl tQ]
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Since the differentials 6; satisfy i*61 = 61 and (0i)*¢2 = 6o, they descend to well-
defined differentials on the elliptic curves ¥ and Yo, respectively. Using (4.14)) and the
formulas (4.15)), they take the form

ds
(m)«0r = =(di1(s +1) + )5~ =i 91
' (4.16)

(m2)+b2 = (d2,1(s — 1) + da2)— =: Va.

Whereas 6; have a pole of order two at A = 0 and A = oo the newly defined differentials
9¥; on ¥; only have poles of order two at s = oo. This is a consequence of s = A 4 A1
identifying the points over zero and infinity.

4.2.1 Canonical homology basis on ¥;

The canonical homology basis on the genus two curve ¥ defines a canonical ho-
mology basis on the elliptic curves. As before, we denote the basis on ¥ with the
property by {A1, B1, Az, B} and for the elliptic curves ¥; we denote the basis by
{a9) @)} Following the approach of [EKT93], under s = A+A~! the unit circle A € S*
is mapped to the closed interval [—2,2]. By our choice of homology basis on ¥, the
Aj-cycles are defined by closed curves encircling a pair of branch points reflected across
the unit circle. Therefore, closed curves encircling the two points £ and E and going
through [—2, 2] determine the homology classes al¥). Assume that ¢ is a differential on
31 which pulls back to a differential ¥ via ;. Then

[ o= [ wio= [ o= wo=[ (4.17)
n1 (A1) Ax i(A1) Az —n1(Az)

where i*¢ = ¢ and (4.5) were used. An analogous consideration for a differential on
the other elliptic curve ¥y yields

(A1) = (—1)n;(Az) = al. (4.18)

Similar to the al) cycles, we can define the ) cycles by pushing them down to 25
As we are particularly interested in the integration of normalized differentials of the
second kind we have the following lemma.

Lemma 4.2.1. Let w; be a normalized differential on ¥;, i.e., vanishing a9 -periods,
which pulls back to differentials on ¥ via n;. Then we have

/ w]' :/ wj :/ (Uj. (419)
n;(B1) (—=1)In;(Ba) b(@)

Proof. The proof uses similar arguments as in the discussion with the a()-periods in
equation (4.17). Consider a normalized differential w; on ¥; which pulls back to X.
From equation (4.6)) we obtain

/ w1 =/ mwi :/ (pm) w1 = —/ (pm) w1 :/ wp - (4.20)
m(Bi) i(B1) v(B1) By —m(Bz2)

where the property that w; is normalized was used in the last step. An analogous
computation with a differential ws gives an additional minus sign which already yields
the assertion. ]

Visualizations of the canonical homology basis of 3; are depicted figures and
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Figure 4.1: Canonical homology basis for the elliptic curve ;. The thick gray lines denote
branch cuts. Dashed lines denote paths on the other sheet of the Riemann surface.

Figure 4.2: Canonical homology basis for the elliptic curve Xs. The thick gray lines denote
branch cuts. Dashed lines denote paths on the other sheet of the Riemann surface.

4.2.2 Reduction of Riemann theta functions

In [Bob91a], Bobenko showed that a real solution of the sinh-Gordon equation
can be given explicitly in terms of Riemann theta functions. In the case of the Wente
tori, we will see that solutions can be given in terms of Jacobi theta function via hyper-
elliptic reduction of Riemann theta functions. This allows us to read off the intrinsic
closing conditions from the conformal factor in the conformal metric and the lattice of
the torus.

Define the two abelian differentials d€)y and d€)., by

1 91 92 ) 1( 92 01 )
A0 = —= (22 + 2 d0, = -2 7L 421
0 4<d1,1 da 1 4\doy1 di (421)

which we have already encountered in equation 1’ Let VX = zp and VA = 1/24
be local coordinates around zero and infinity, respectively. Then (4.21) have second

41



4.2. HYPERELLIPTIC REDUCTION
order poles at zero and infinity, respectively, with the following asymptotic
dz
—20, A—=0
Z
0 (4.22)
dZso

A — 00.

2 )
ZOO

dQ ~ —

dQoo ~ —

As 01/(4a1) has only real coefficients, p*61/(4a1) = 61/(4a1) and hence
P Qo = dQs. (4.23)

Assume that d€), and df2y are normalized. For a conformally parameterized CMC
immersion f : T2 — R3, the conformal factor u : R> — R is of the form

(4.24)
where ¥ = —1/(4m)(Uz + VZ),A = (3,3) € R? and

Ul:/ A, w:/ dQ (4.25)

with | = 1,2 [Bob91al, Theorem 4.1]. (¥, 7) denotes the Riemann theta function with
respect to the period matrix TI] (cf. definition [2.3.4]). By the reality condition (4.23))

and the normalization, we have U = V. Using (pi)*dQs = dQ, we further obtain

from ({4.6))

/ dQs = —/ dQeo = a + i3 (4.26)
By By
and therefore
1 _ 1 (By—ax
U—_ - 4.2
Am (Uz+V2) 27 <a:n + ﬂy) (4.27)

where z = x + iy.

To reduce the Riemann theta functions, we need to calculate the period matrix
7. For this, consider the space of holomorphic one-forms on ¥ which is spanned by
{dX\/y, \d\/y}. Define the following integrals

Vo[ [
Al y Al y
/ I / I\ (4.28)
N = —, M' = A—.
Bl y Bl y
We further set
1 dA AdA
dup = N— - M—
1 AdA dA )
= N - M—
SR R V2 ( y Y >
which are holomorphic one-forms on 3. Using the identity i(A;) = — A, we see that

these differentials are normalized in the sense that | A, duj = d;5. The integral of the

!Notice the different normalization of the Riemann theta function here and in [Bob91al

42



CHAPTER 4. THE WENTE TORI

normalized holomorphic differentials along B; determine the period matrix 7, which in
return defines the Riemann theta functions. We can read off from equation (4.29)) that
the upper left and upper right entry of the period matrix has the form
1 1
Tnzm(NN’—MM’), TlQ:m(NM/—MN/), (4.30)
respectively. A reciprocity law for normalized abelian differentials of the first kind
similar to (2.21) shows that the period matrix is symmetric, i.e., 7917 = 72. For the
lower right entry 792, we use equation (4.6 to obtain

1 - I
729 — dU2:7(MN/*NM/). (431)
/32 N2 _— M2

On the other hand, by equation (4.4) we have
M =-N -M, N=-M—-N (4.32)

which implies that all together the period matrix takes the form

(4.33)

= NM' — MN' NN’ — MM

1 <NN’—MM’ NM’—MN/>
N2 — M2

From (4.32)) we can quickly deduce that the conformal factor is real. Indeed, we have
_ 0 1
T=—-T-— <1 0) (4.34)

< N, 7N >= — < N, 7N > —2mwinins (4.35)

where N = (nj ng)'. This already shows that 6(z,7) = 6(z,7). Moreover, from (4.27)
we know that ¥ is real which already implies that u(z,z) is real. In order to reduce
the Riemann theta function to Jacobi elliptic functions, we express the period matrix
in terms of data on the elliptic curves 3; and Ys. For this, consider the following
differentials

and therefore

d’U1 = dU1 - d'UQ = 1 <d)\ — Adk) = 1 @

N-M\y Y N-—-Mt (4.36)
dvg = du1 + dUQ = 1 <d>\ AdA) = 1 @

N+M\y Y N+ M to

where we used (4.15). From equation (4.18|) we obtain that dv; are normalized holo-
morphic differentials on X; satisfying

/ dv1 = / dvg =1. (437)
11 (A1) n2(A1)

These differentials further define period matrices on ¥;, i.e., complex numbers, via

N/ _ Ml N/+M/
7'1_/ dm:i, 7'2_/ dvgzi. 4.38
n1(B1) N-M n2(B1) N+M ( )

By reality, we have

Ti=1—1, Tm=—-1—m7n (439)
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which highlights the rhombic structure of the elliptic curves X; where 7 and 72 have
real part % and —%, respectively. Notice that defining 7; by the integral along n;(B>)
instead of 7;(B1) does not change 7o but multiplies 71 with an additional minus sign
similar to . Using equation we bring the period matrix 7 into the convenient
form

1 _
r=c (2T T (4.40)
2\ —1 T+ T

We can use this result to reduce Riemann theta functions with help of the following
proposition [BBMES6, p. 11].

Proposition 4.2.2. Let the period matriz T of the hyperelliptic curve ¥ of genus two
be as in . Let [e; €] be a theta characteristic on X. Then we have the following

transformation property of the Riemann theta functions

o [j] (2,7) =0 [5(61 + 62)} (21 + 22, 272)0 P(e? _;22)] (1 — 20,27 )+

€/+€/
b (4.41)

1 1
s(e1+€)+1 s(e1 —e3)+1
o[H ) e (K sz

Using (4.27) and proposition we rewrite Riemann theta function with zero
characteristic, i.e., € = ¢ = 0. Further using (2.59) for the identification of Riemann
and Jacobi theta functions, we obtain

O(¥, 1) = V3(By, 212)03(ax, 271) + ¥2(By, 272) V2 (o, 271)

O(U + A, 1) = 93(By, 2m)93(ax, 211) — Yo By, 212) 02 (o, 271 ). (4.42)

In the second equation of (4.42)) we also used the first equation of proposition m
which gives the additional minus sign before 5. Bringing these results together, we
see that the conformal factor takes the form
Vs (az, 211) ¥2(By, 212)
tanh(u/2) = . 4.43

(42) = G, 0w, 2m) OBy, 2m2) (449
Solutions to the sinh-Gordon equation of the form of (4.43)) were considered in [Wen86),
Wal87, [Abr87] for the description of Wente tori f : T2 — R3. Denote the surfaces
principle curvatures by k; and kp. Since CMC tori in R3 have no umbilic points, we
either have ky > kg or k1 < ko. Let the k1 and ka-curvature lines be denoted by

z= f(z,y), v fa,y), (4.44)

respectively. We summarize the following properties which one can deduce by studying
solutions of the sinh-Gordon equation of the form (4.43) [Abr87].

i. With respect to a Frenet frame the torsion of the ko-curvature line vanishes, i.e.,
it lies in a plane (cf. figure |4.3).

ii. The kj-curvature lines lie on spheres (cf. figure 4.3)).
iii. If k1 < ko then the immersion cannot close up to a compact CMC torus.

In our setup, the geometric interpretation is that the closing conditions [3.3.3] and [3.3.4]
for the Wente tori split into closing conditions of the curvature lines described by elliptic
integrals on the respective elliptic curves ¥; and ¥5. We will give further insight on
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Figure 4.3: The 3-lobed Wente torus and a half-cutaway of it, visualized by using Mathe-
matica. The blue curvature line lies on spheres while the red curvature line lies in a plane. The

illustration is based on Mathematica files provided by Wjatscheslaw Kewlin (private communi-
cation).

the geometric interpretation of the curvature lines in section when discussing the
lattices generating the Wente tori.

We finish the section by bringing the conformal factor (4.43]) in a more convenient
form. The reason for this is that, in the following, we want to work with elliptic

integrals instead of Jacobi theta functions. Recall the definition of the elliptic curves

Y, in 1) Let ¢ = s —2 and E — 2 = re®. Then the algebraic equations for the
elliptic curves are

Spc ] = (E+4)(E —re?) (€ —re™) (4.45)
Yo t% =¢(€ - rei‘s)(f — Te_i‘s). '
We want to rewrite the conformal types 7;,j = 1,2, of the respective elliptic curves
as defined in (4.38) in terms of complete elliptic integrals, which is equivalent to ex-
J

pressing the al?) and 1) periods of d¢ /t; in terms of complete elliptic integrals. Notice

that by reality of the spectral data, the al?)-periods of the one-forms d¢ /t; are purely
imaginary and real, respectively.

Consider a simply closed curve ¥ on CP! around the two points —4 and —oo. Recall
that the homology basis of ¥; is denoted by {a™),b(1)}. Since the lift of v to 1, which
is denoted by the same symbol, is a non-trivial loop, we have

v = ma) 4+ npV) (4.46)

with m,n € {—1,0,1}. As ~ does not intersect a® but pM exactly once, we can
conclude that n = 0 and m = +1. After choosing a sign, we use [BF13], eq. 243.00] to

obtain
—4
/ g _ 2/ g _ _,Klm) (4.47)
o 1 o b1 sl/4
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4.3. CLOSING CONDITIONS

where K (m;) is the complete elliptic integral of the first kind and m; and s have the
form

 —4—rcosd++/s
= NG ,
Similar arguments also work for j = 2 and in this case we use [BF13| eq.241.00] to get

s _, [*de _  K(ma)
/G(Q)t2_2/0 = (4.49)

my s =16 4 1% 4 8rcos . (4.48)

where
90
mg = cos”| 3 . (4.50)
With the help of (4.39), we further get

/b % - i(—K'(ml) +iK(m1))

ot st/ (4.51)
e 2, , '
== S (K K
L5 = = ma) + iR )
ie.,
1 K'(m) 1 K'(mg)
] ——§+272K(m1), To = §+272K(m2) (4.52)

where K'(m;) = K(1—m;j). We use these forms of 7; to simplify Jacobi theta functions.
From the definition of the Jacobi theta functions, we have

99(z,27;) = Vs <z, /;((Zj)) > D3(z,27;) = V4 <z, if{l((;lj)) ) (4.53)

After replacing the Jacobi theta constant by [AST2] eq.16.36.6]

w4 (0.5

and using the equations of (2.60), we see that the conformal factor (4.43) can be

rewritten as

u(z, y) = darctanh Km}m,2>l/4cn(2a‘”f<(ml), m1> cn<2fryf<(m2),m2ﬂ . (455)

) = 2K (m;) (4.54)

Here cn(z, m) is the Jacobi elliptic function which is related to the Jacobi theta functions
by equation . Notice that the conformal factor already is doubly periodic with
respect to some lattice in R? since cn(z,m) is a doubly periodic elliptic function. Hence,
the intrinsic closing condition [3.3.3] which guarantees the doubly periodicity of the
conformal metric, is already satisfied.

4.3 Closing conditions

In order to obtain a compact CMC immersion f : 7% — R3, closing conditions have
to be satisfied. As we have seen in chapter [3| these are expressible in terms of data of
the spectral curve. The conditions we need are the intrinsic [3.3.3] and extrinsic [3.3.4]
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closing conditions. For the Wente tori, the closing conditions are conditions on the
spectral data of a hyperelliptic curve of genus two. In particular, this gives equations
involving hyperelliptic integrals, which are generally hard to deal with.

In the present case, we assumed that the logarithmic derivative of the eigenvalues
of the monodromy 0; = dlnuj, j = 1,2, satisfy i*0; = (—1)7710; where i : ¥ — ¥ is the
involution covering the map A — A~! on CP!. This additional symmetry allows
us to view each 0; as a differential on the following respective elliptic curves

St = (E+4)(E—re?)(E —re ™)
Yo 12 =E(6 —re®) (€ —re ).
It would be desirable to also express the closing conditions in terms of elliptic integrals.
As we will see in the following, this is indeed possible and we will formulate the closing

conditions on each elliptic curve independently. In this way, we gather more informa-
tion on the spectral data, which will be useful in the subsequent sections.

(4.56)

Throughout the section, we let {Aj, Bi, Ao, Bo} denote the canonical homology
basis on ¥ satisfying equations 1’ and inducing a canonical homology basis {a(j ), bl )}
on Xj, as described in subsection {.2.1}

4.3.1 On the elliptic curve X,
Intrinsic closing conditions

The intrinsic closing conditions ensure the doubly periodicity of the conformal
metric. We have seen in equation (3.40)) that the intrinsic closing conditions imply that
the integral of 0 along the A;-cycles vanishes

Ay n2(A1) a®

Here we used equation (4.18]) and 99 is given by (4.16[). After the substitution £ = s—2
in (4.16) and further setting

_doy tdap
o= P21 7022

4.58
i (4.58)

equation (4.57) can be reformulated as
—1id
" (§ — k)dg
reis  \/E(E —rel®) (€ — re=1)

which defines k = k(r,d) as a function of r and 6. After the substitution u = &/r, the
first term of equation (4.59) takes the form

=0 (4.59)

udu

" B : 4.60
f/eia \/u(u _ eié)(u . e—ig) ( )

Proceeding as in [Bob91al, p.239], we substitute u = ¢ and choose the integration
contour from e to —1 and then from —1 to e*. Hence, equation (4.60)) takes the
form

\/? / T _cosndy +\/? / T _cosydy (4.61)
2 Js +/cosd — cosy 2 /. V/cos§ — cosy
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4.3. CLOSING CONDITIONS

Replacing v by 27 — v in the second term of (4.61]), we bring them together and obtain

™

Var [ oeosdy (4.62)
s /cosd — cosy

There exists a unique solution dy € (0, %) such that this integral vanishes [Bob9lal
p. 239]. Therefore,

k(r,d0) = 0. (4.63)
Applying similar transformations as above for the second term in equation (4.59) it is

also easy to see that k(r,d) = rk(1,d). Summarized, we have the following lemma.

Lemma 4.3.1. Let 65 on X be given by equation @ and k = —(day + d22)/d21.
Then the intrinsic closing conditions imply that k(r,d0) = r&(1,00) = 0 for a
%0 €(0,%) and all r € R.

We can also formulate the intrinsic closing condition in terms of complete elliptic

integrals. Using [BF13| eq.289.03], we see that the vanishing of equation (4.62) is
equivalent to

2E(my) — K(mgy) =0 (4.64)

where my = cos?($).

Extrinsic closing conditions

The extrinsic closing conditions ensure the closedness of the immersion. As-
sume that the Sym point, i.e., the point were the immersion is reconstructed via the
Sym-Bobenko formula, is located at A = 1. For 65 = dIn s, these conditions consist of
the two equations

OxInpa(1l) =0, Inps(l) € miZ (4.65)

From @, one immediately sees that the first equation implies do1 + d22 = 0, i.e.,
k=0 (4.58)), for all (r,0) € Rx (0, §). In view of lemma we see that the extrinsic
closing conditions force us to take & = Jg if the intrinsic closing conditions are satisfied

as well.
For the second part in (4.65)), consider the following differential on X
y(L)A dA
= A/2%a 4.
6= Y22 (4.66)

which has a pole of order one at the points lying over A = 1 with residue +1 and —1,
i.e., it is an abelian differential of the third kind. Furthermore, it has a zero of order
twoat A=0and A\ =

Let f(A) = f;; 02 with respect to some base point Ao € ¥ be an abelian integral. As
in section f(A) is well-defined on the simply connected model of ¥ (cf. definition
. Assume that 6y is normalized. By the reciprocity law for abelian differentials
of the third and second kind , we have

2 [/Al e /Bl ¢ /Bl 02 /Al ¢] = 2mi y  vesy(fo). (4.67)

=1

Since 62 has vanishing A;-periods, we can apply lemma [4.2.1

/B 1 0y = /B 2 0> (4.68)
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CHAPTER 4. THE WENTE TORI
and the left hand side of equation (4.67) is

Lo 1.)

But we also have i*¢ = ¢ and hence
¢ =— ®. (4.70)
Ay Ao

which implies that (4.69) is zero. The only residues of f¢ are the two points over A = 1
and as 0™ In p; = —In p;, we get

> resy(f¢) =Inpa(1) — o™ Inpp(1) = 21n iy (1), (4.71)

We have obtained the following lemma.

Lemma 4.3.2. Let 05 = dlnus on X be given by equation @ If 05 has vanishing
Aj-periods, then
In pe(1) = 0. (4.72)

As ¥y contains the information about the ka-curvature lines (cf. subsection ,
the extrinsic closing conditions are equivalent to the closedness of these curves. For
the Wente tori, the planar closed curve is a figure eight lying perpendicular to the
symmetry plane which cuts the k-spheres, k > 3, of the Wente tori in half [Abr87].

4.3.2 On the elliptic curve

Now we want to reformulate the closing conditions for the differential §; = dln u;
on X in terms of elliptic data on the curve ;. Our aim is to identify more conditions
the spectral data has to satisfy in order to get closed surfaces.

From the discussion about the elliptic curve Yo in the above subsection we
saw that the closing conditions fix the angle ¢ of the branch point re?® of ¥ j- Therefore,
we are left with a real one dimensional parameter r € RZ%. We expect that the closing
conditions on the differential ; = dlnpuy give rise to equations which determine 7.
Indeed, after reducing differentials on ¥ to elliptic ones on ¥, we will see that the
parameter r is determined by the rationality of an elliptic integral.

Intrinsic and extrinsic closing conditions

The intrinsic closing conditions, which determine the lattice where the immersion
is well-defined, are given by the equations

0, = 0, 01 € 2miZ (4.73)
A By

where [ = 1,2 and n € Z. Again, assume that the Sym-point is A = 1. For the
differential 6; = d1In p; the extrinsic closing conditions are given by the two equations

OInpi(1) =0, Inpi(l) € miZ. (4.74)

The condition 9y In p1(1) = 0 is already trivially satisfied as we see from equation (4.8)).
However, opposed to equation (4.72)), the second part of (4.74) give non-trivial closing
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4.3. CLOSING CONDITIONS

conditions. Combined with the intrinsic closing conditions, it determines the parameter
r in the elliptic curves ¥;. For this, we take a closer look at the differential

( JA dA
¢="7 ” (4.75)
that we have already used in (4.67). As p*¢ = ¢,
o=~ [ 6=-[ (4.76)
Ay Ay A

and therefore the A;-periods of ¢ are imaginary. Moreover, since i*¢ = ¢, this differ-
ential descends to a well-defined differential on 3; where we have ¢1(§ = 0) = 2r and

therefore or dé
2m)etd = . (4.77)

£t
2(m)«¢ has simple poles at the two points over 5 = 0 with residues £1, respectively.
Assume that 67 is normalized. As in equation (4 , we use the reciprocity law for the
differentials #; and ¢. Again, denote by f(\) f X 0, the single valued functions on
the simply connected model of 3. After applying lemma 1| for the Bj-periods of 61,

we have
/ 01 = —/ 0. (4.78)
By By

Let {a(M, (1} be the canonical homology basis on ¥ as described in subsection
With the help of equation (4.70]), we obtain

S[fnfo fnfo|=afnf o= foof TE wo

1

where lemma and equation (4.77)) were used in the last step. On the other hand,
on the right hand side of equation (4.79)), we have

2mi Y resy(f¢) = 2mi(ln py(1) — o Iy (1)) = dariIn gy (1). (4.80)

In order to derive (4.79)) and (4.80]), we only used the assumption that ; has vanishing
Aj-periods. Now assume that the full set of equations of the intrinsic and extrinsic
closing conditions are satisfied, i.e.,

Inp1(1) = mim, Y1 = 2min (4.81)
b(1)

for some m,n € Z. Bringing (4.79) and (4.80|) under the conditions of equations (4.81)

together, we obtain

1 / 2rd¢ B
210 Ja E/(€+4)(€ — re®)(€ —re )

As p*¢ = ¢ and p(A;) = —A;, the integral is purely imaginary by equation and
the right hand side of is indeed real. Hence, we have found an equation which
relates the radial coordinate r of the branch point 7e? in the elliptic curves Y, to the
closing conditions on ;.

While the angle § = dg € (0, 5) is fixed by the closing conditions on ¥ (cf. lemma
, the radius r is determined by satisfying equation . Let us denote the
integrand of by ®(r,d). We have obtained the following result.

SE

(4.82)
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Proposition 4.3.3. Let 3 be the hyperelliptic curve of genus two as defined in
and let 01 be a normalized abelian differential of the second kind on X. Assume that
0, = el’fBl 0, = —fB 01 = 2min and Inpy(1) = mwim, where i : ¥ — 3 is the
involution defined in and n,m € Z. A neccessary condition for the existence of
closed Wente tori is that 2m [,y ®(r,0) is the rational number —=

We will now study the values of ®(r,d) in the limit cases r — 0 and r — oo. This
will give constraints which possible values the ratio 7 attains. While varying r, we will
fix 6 = dp € (0, 5).

Proposition 4.3.4. Let ®(r,6) and m,n € Z be as in proposition .
. In the limit r — 0, the integral [, ) ®(r,d0) converges to 2mi.
i. In the limit  — oo, the integral [ ) ®(r,d0) converges to 4mi.

In particular, a neccessary condition for closed Wente tori is 1 < * < 2. Furthermore,
m € Z and n € Z must have opposite signs.

Proof. The proof consists of calculating contour integrals for the different limiting be-
haviors. Notice that, by construction, the integral does in fact converge for any r € R=°.
Without loss of generality, we will parameterize the a(!)-period enclosing a pair of
branch points on ¥; by the path going twice from re’ to re* and intersecting the
horizontal segment [—4,0) (see also subsection . Since ®(r, dp) is holomorphic on
[—4,0), this is indeed well-defined.

We begin with the limit » — 0. With the substitution u = £/r we rewrite as

e—150

/ 2rdu
e uy/(ur + 4)(ur — reio)(ur — re=id)

(4.83)

where the path of integration goes trough the interval [—4,0). Pulling out a 472 term
in the square root cancels the factor 2r in the numerator and letting » — 0, the integral
simplifies to

e—i50 du
. 4.84
/eiéo uy/ (u — €i%) (u — e~i0) (4.84)

Now let C be the closed upper semi circle excluding the pole at © = 0 and going
through the point €% on S' as shown in figure By the residue theorem

1.0

Figure 4.4: The path C; used for calculating the integral 1)

du
=0. 4.85
/611 'LL\/ 67,50 ef’iéo) ( )

o1



4.3. CLOSING CONDITIONS

We can evaluate this integral by splitting it into different paths in the following way

/ du _ ) d(p N
o uy/(u — et0) (u — e~id0) 0 /(€% — e0) (el — ¢—i%)
T dy —e du

] ‘ , , — + lim , —+ 4.86
5o /(€% — ei0)(eiv — e=id0) 0] 1 uy/(u — ei0)(u — e~i0) (4.86)
d 1
lim ¢ ‘ , 1 , — + lim du —.
e—0 T \/(eeuf’ — 6160)(66“'0 — 6*150 e—0 € U\/ 6150 6*150)

In equation , we start the integration at u = 1 and go along the path C; counter-
clockwise. In the limit ¢ — 0, the fourth term is —mé¢. The third and fifth term are
purely real since the square root is positive for real u. This implies that the imaginary
part of the first plus the second term equals mi. Let us take a closer look at the first
term which can be written as

4o d
! (2 5 2 )
Ve ( cc()ssgo— co;. 0) 5 . (4.87)
_ i / 0 cos Sdp 1 0 sin §dyp
V2 \V/cos p — cos &y \/§ o /cosp — cosdy

Since cos ¢ — cos dg > 0 for ¢ € [0,0p), the first and second term of equation (4.87)) are
imaginary and real, respectively. Substituting

. 2 4o
e ﬂsm% . V2cos Z & sin® % do (4.88)

V/cos p — cos &y’ (cos p — cos )%

and using the identity sin? %0 = %, the imaginary part of 1) takes a simple
form and we can explicitly integrate

cos %dcp ) dx

i
-t P
V2 ] +/cosp — cosdy 1+ 22

=i -arctan. (4.89)

Hence, in the limit ¢ — 0, the integral (4.89)) vanishes while for ¢ — d¢, it converges to
i%. Since the imaginary part of the first plus second term in (4.86]) equal 7, each term
independently is 5. To finally obtain the first statement of the proposition, notice that

(4.84) can be written as

s 2m—0dg
dp_ 4 / ___ dv __— (4.90)
=V

7 5 \/(eicp — eiéo)(ew — e—zéo) el — ezéo)(eup _ 6—1(50)

" dy " dy
i . A . — — A , . — = (4.91)
8o \/(eup _ 6160)(6“0 _ 6—150) 5o \/<ezgo _ 6160)(6190 _ 6—150)
. [T dyp > .
2¢tIm| 2 : : : : =T 4.92
< o /(@ — o) (e — c-) )

where the substitution ¢ — 27 — ¢ was used in the second line. This proves the first
statement.

For the second case r — oo, the argument is similar. Again, consider the integral
1) where we use for a(!) the same integration path as before. Pulling out an r in
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the denominator cancels the r in the numerator. In the limit » — oo, the exponential
functions cancel each other out and we are left with the integral

re~ %0 2d€
—_— 4.93
/7"6"50 §V(E+4) ( )

The path of integration again goes trough the interval [—4,0) and we choose the path
as shown in figure 4.5

reldo

-8

re?%o

Figure 4.5: Schematic visualization of the integration path for equation 1) The gray
bar denotes the branch cut from —4 to —ooc.

[ e e e

veito EJE+4)  Js Vier+4 ), e /(E+4) (4.94)
limi/_ﬁ ee¥dyp B _TA_H» %_502‘1790

=0 Jr (—d+ee)Weer S &JE+4)  Jr Vrev 14

In the limit ¢ — 0, the third term on the right hand side of equation vanishes.
Furthermore, we also see that in the limit » — oo, the first and fifth terms of
vanish. The second and fourth term of equation add up and it is a known result
from complex analysis that

—4
4d¢
——— =27 (4.95)
/_oo EV(E+4)
which proves the second claim of the statement. O

By proposition the integers m,n in (4.82) must have opposite signs. Hence,
without loss of generality, we can from now assume that n € N and —m € N. We
want to show that the imaginary part of In u1(1) is monotonically decreasing in r. This
would imply that for every ratio m/n € (1,2) there exists exactly one r which satisfies
equation . For this, we will first gather some information about the coefficient
dy,1 in the differential

V1 = —(d11(§ +3) +di2)

d§
o (4.96)

which was the pushforward of 6; = dInp; on X to the elliptic curve ¥; (cf. equation
(4.16).
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Proposition 4.3.5. Let di1 be a coefficient of the normalized abelian differential 91
m equation . Assume that

Y = 2min (4.97)
b(1)

where n € N. Then we have di 1 = m'K(ml)/sl/4 where s = 16+8r cos 6 +712 and m; =
44—#\/25%/5. Moreover, for fived § € (0, %), the imaginary part of dy,1 is monotonically

decreasing in r.

Proof. Using the assumption that 11 is normalized and (4.97)), a straight forward cal-
culation implies that d; 1 is given by

Ju &
di1 = —2min a o
f(l) fb(l (£+4 & fbl f(l) £+4

The differential % has a pole of order two at infinity. If we take a local coordinate

(4.98)

E+4 = Z% such that zo, = 0 at infinity, it expands as . Similarly,

oo

f—f ~ —2dzs,. We define the abelian integral f(§ f ¢ d—f Wthh is well defined on the
simply connected model of ¥;. By the recipromty laW for abelian differential of the
first and second kind on elliptic curves (which is essentially the Legendre relation)

/ g [ (E+4)de [ dg W‘Udf:zwz’ZReSp@(G;)dé) (4.99)

a® t1 Jp) 1 b t1 S 31
= 8.
For the numerator in , we use the first equation of and obtain
dig = niK(my)/s'/* (4.100)

where my and s are as in (4.48|). To show that d; 1 is monotonically decreasing in r,
we take the derivative

Oy = —2;7’;/4((4 + V5K (my) — SE(my)). (4.101)

From [OLBCI10, p. 494] we have the inequality E(m,)/K(m1) < 1 and therefore 0,d; ; <
0 is equivalent to 8/(4 4+ 1/s) < 1. The term 8/(4 + +/s) attains its maximum value at
r = 0 where it equals 1, which shows that the imaginary part of d; 1 is monotonically
decreasing in r. O

Using proposition we now show that the imaginary part of Inuq(1) is, for
fixed § € (0, %), monotomcally decreasing in r.

Proposition 4.3.6. Assume that the conditions of proposition [{.3.9 are satisfied and

let Inpy1(1) be defined by equation . Then O, Inp1(1) # 0 for all r € RZ° and
5€(0,%).

Proof. Inp1(1) is given by equation (4.82)). Taking the derivative of In (1) with

respect to r we obtain
6716
du
OprInpq(1) = —2n/ 19, , ,
rlnpm(1) et Tu\/(u-r+4)(u—e’5)(u—6*15)

(4.102)

—1id

¢ du
/. (w7 + D)= D) (u— e )
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To show that this is non-vanishing, we express O, Inp;(1) in terms of dj; and its

derivative O0,d; 1. We have from (|4.98))

—id

ond _n/e udu
Ny (w-r+4)/(u-r+4) (u—ed)(u—e 1)

—15

du
a [ Vu-r+4)(u—e®)(u— e ) (4.103)
_/ o 4du
s (u-r+ 4/ (u-r+4)(u—ed)(u—e )

1 1
=——dy11— -0,1 1).
oy 11— [ Or n (1)

After using equations (4.100) and (4.101)), we see that O, In p1(1) = 0 is equivalent to

E(mq)
K(m1)

=1. (4.104)

We make use of the inequality [OLBCIO0L p. 494]

- B(my)
Yot < )

9 \f lo 1 > (4.106)

and hence 0, In p1 (1) cannot vanish for ( eR=2x(0,%). O

(4.105)

where m} =1 — my, but

Using both propositions and we obtain the following corollary.

Corollary 1. Assume that the conditions of proposition [[.3.5 are satisfied. For fized
6 € (0, 3), the imaginary part of In 1 (1) is monotonically decreasing in r.

Remark: Notice the similarity of proposition with equation in section
about the Whitham flow. In particular, we now see that if the equations are
satisfied, we indeed only have trivial Whitham deformations for the Wente tori since
in this case the ratio m/n is constant, i.e., we start and end at the same torus.

4.3.3 Lattices and new notation

So far, we have studied the intrinsic and extrinsic closing conditions. Instead of
working on the genus two hyperelliptic curve ¥, we saw that the closing conditions
were expressible in terms or elliptic data on the elliptic curves

St =(E+42—5)(E—re®) (& —re ) (4.107)
for j = 1,2. In particular, we saw that
i. The closing conditions on X fix the angle 6 = dp € (0, §) via equation (4

ii. The closing conditions on ¥ determine the radial coordinate r € RZ0 by satisfying
4.82)). For every rational m/n € (1,2) there exists exactly one r € R>? such that
4.82) is satisfied.
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We will now introduce a new notation for the Wente tori. In order to differentiate
between different Wente tori, we will attach the index (m,n) to them where m,n € N
and ged(m,n) = 1. The subscript (m,n) comes from the dependency of the radial
coordinate r in the branch points of the elliptic curves ¥; via equation (4.82)). Then
the torus with rectangular lattice spanned by the principal parts of the differentials
; = dln p; is denoted by T (Qmm) =C/ f(m,n)' The reason for the hats becomes apparent

shortly. It follows from the calculations in equation 1' that the lattice f(m,n) is given
by

L imm) = 4d11|Z + dida, Z. (4.108)

where d; 1 are the coefficients of the principal parts of 6;.

In proposition we have studied d;; and wrote it down in terms of complete
elliptic integrals. On the other hand, the coefficient ds 1 is still undetermined since we
have not considered the Bj-periods, | = 1,2, of the differential 5 yet. The intrinsic
closing conditions imply that these must be integer multiples of 27i. In particular,
if we assume that the extrinsic closing condition is satisfied, i.e., k in vanishes
at & = &g, then fBz O = 0 for [ = 1,2 (cf.lemma cannot be possible since a
reciprocity law for abelian differentials of the first and second kind would show that
this contradicts Legendre’s relation. Therefore, assume from now on that

/ 0y = 2w (4.109)
By

forl=1,2.

Definition 4.3.1. Let [ = 1,2 and m,n € N with gecd(m,n) = 1. Let 0; = dlnpu; for
7 = 1,2 be normalized meromorphic differentials given by equation (@ We denote
the Wente torus with spectral data

/ 0, = 2min(—1)""1, / 0y = 2mi
B, B, (4.110)

Inpq(1) = —mim, In p9(1) =0
and lattice
Ly = Ald1|Z + did, ) Z. (4.111)
72
by T(m,n)'

It turns out that T(an) is actually a double cover of a compact CMC torus T, (Qm,n) =
C/ I (mm,n) since the immersion f : T(an) — R3 already closes on a smaller lattice. The
reason for this is the following: The symmetry group of the Tfmn) Wente tori is D, X Zo
if m is even and Dy, X Zg if m is odd, where Dy, is the dihedral group of order k [Abr87,
p.169]. The figure eight ke-curvature lines (cf. ) lie in planes orthogonal to the
symmetry plane which generates the Zy symmetry. In particular, their vertices lie on
[Abr87, p.169]

i. the
z — f(z,0) (4.112)

curvature line if m is even.
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CHAPTER 4. THE WENTE TORI
ii. the
x — f(x,0)

Tr — f($,2d271) (4'113)

curvature lines if m is odd.

Therefore, the immersion already closes on a smaller lattice. We now want to determine
the lattice I'(,, ) of the smaller torus T(zmn). Recall the expression of the conformal
factor of the conformal metric given by equation . The Jacobi elliptic function
cn(z) has periods cn(z + 2K (m),m) = —cn(z,m) and cn(z + 4K (m),m) = cn(z,m).
Thus, we see from the definition of the conformal factor that u(x,y) is doubly
periodic if we shift  and y by

2 2
xr—>x+i, yr—>y+—7r, (4.114)
o g
respectively, where @ and 8 are given by the relation
) 0 01 ) 27 2min
dQs = a+1if = — = — 4.115
/31 Oo P B <4d2,1 4dy 1 4dyy  4di; ( )

(cf. equation (4.21])). Since d; 1 and dy; are imaginary and real, respectively, we obtain
that the T(Qm n) Wente tori are spanned by the following lattice.

Lemma 4.3.7. Let f : T(Qm ny R? denote the conformal immersion of an (m,n)
CMC Wente tori. Assume that ged(m,n) = 1. Then the lattice of T(zm n) s spanned by

L mn) = {(2ld11],0), (0, 4d2,1)} (4.116)
if m is odd and by
Limmy = {(2|d11],2d2,1), (0,4d2,1) } (4.117)
if m is even.
Hence, if m is even the lattice is of rhombic type while for odd m the lattice remains
rectangular.
4.4 Double points on Wente tori

In the last section of this chapter, we will investigate the existence of double points
for T(2m n) Wente tori, i.e., points where the eigenvalues of the monodromy of the asso-

ciated family on T’ (Zm,n) satisfy 11;(A\)? = 1. At such points, the holomorphic structure

3.57)) is a half-lattice point in the lattice /A\(m,n) generating J ac(T(Qm n)). However, we

are actually interested on the existence of double points on the smaller torus T(2m n)°

Since T(van) doubly covers T(2m7n), half (and quarter) lattice points of A(,, ) correspond
to half-lattice points of [\(m’n). In the next chapter, we will see that double points are
related to the stability of the underlying parabolic structure. For example, it is not
allowed to have unstable parabolic structures along S since the associated family is
unitary along S', which implies that it is at least semi stable.

o7



4.4. DOUBLE POINTS ON WENTE TORI

To verify the existence of double points, we first need to further investigate some
properties of the coefficients of 6;. It is convenient to define

_ do 1+ da2 L di1 —di2
doq di1

(4.118)

where d;; are the coefficients of the respective differentials §; in equation (4.8)).

Lemma 4.4.1. Let v be given by . Assume that the conditions of proposition
[£.3.5 are satisfied. Then we have

v = \/§<2£E”W?1)) - 1) (4.119)

where s = 16 + 8r cos ) + 1"2 and myp = 44_#\/5;4‘\/5‘ MO’FGO’U@T’, v > 4 with equalzty ’Lf

and only if r = 0.

Proof. To show that v has the desired form we use a reciprocity law for the following
two abelian differentials
d€ (E+4—v)d %

= —— 4.12
(E+ Dty t1 dig’ (4.120)

which have a pole of order two at —4 and oo, respectively. As ¢ is normalized, a
reciprocity law yields

_ g (+4-—v)df  2min ¢ 8miv
/a<1) &+t /b(1> ty - diq /a(l) €+ 4 =, (4.121)

To treat the integral concerning the aW-period in (4.121)), we use equation (4.102) to
obtain

g 2
/a<1> (E+4)t O In pir (1) (4.122)

and hence

4vd 1

dig +2ropdiy = (4.123)

by equation (4.103)). From the formulas in the proof of proposition we obtain

v = \/5(2 IE(EZ?) - 1) (4.124)

which shows the first claim of the proposition.
To validate the last assertion, set mj = 1 — m; and make use of the inequality
[OLBCI0, p.494]

/ E(ml)
"= K (my)

(4.125)

with equality at m} = 1, i.e., v > /s(24/m)| — 1). Clearly, s > 0 for all (r,0) €
R>% x (0,%) and y/m} = 1 for » = 0. Moreover, v/s(2y/m} — 1) is monotonically
increasing in r and has its minimum at r = 0, where it equals 4. Since F(m1) = K(my)

at r = 0, this also proves the last claim. O
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CHAPTER 4. THE WENTE TORI

It turns out that there are always points where the eigenvalue of the monodromy
w1 equals +1.

Proposition 4.4.2. Let fb(1> Y1 = 2min with n € N. Then Inu1(—1) = —2n7i inde-
pendent of r.

Proof. Consider the following differential of a third kind

AdA
*= 5t Ty (4.126)

on the genus two spectral curve ¥ which has simple poles at the two points over A = —1
with residues £1, respectively. Similar considerations as in equation (4.70)) yield

/ o= [ o (4.127)
Ay As

/Bl " </A1 ¢- /AQ ¢> = 0. (4.128)

On the one hand, a reciprocity law for abelian differentials of the second and third kind
yields

Therefore, we obtain

Inp(—1)=0. (4.129)
On the other hand, by definition we have

4
Inpi(—1) :hlul(l)—dl,l/o (§+4—1/)Ctif. (4.130)

Proposition implies that v > 4 and as the imaginary part of d;; is positive
(cf. ), both terms in equation have the same sign. In particular, we
obtain that |In i (—1)| > |In w1 (1)]. Notice that this does not contradict since
equation equals up to a Bj-period of ;. We confirm this in the following
calculation. Consider the limit r — oo on the right hand side of equation . From
proposition we know that In (1) = —2min in this limit. However, the second
term in goes to zero as r tends to infinity. Hence, Inui(—1) = —2min in the
limit. But the whole calculation is independent of the chosen r by . Therefore,
In 1 (—1) = —27in for all » € RO, O

We also see that f0£ Y1 is purely imaginary along & € [—4,0]. In particular, its
imaginary part is monotonically increasing in £&. As A+ A"! — 2 = ¢ € (—4,0) has two
solutions in A € S, we can conclude the following.

Corollary 2. Let [, 1 = 2min and In pu1(1) = —mim for some fized values of (r,d) €
R>% % (0, %) with m,n € N with ged(m,n) = 1. Then Im[In yu1(A)] € [—7m, —27n7] for
A€ St Since 2n > m by , there exist exactly 2(2n — m) points \; € S' where

In 1 (N\;) € —miN. In particular, two of those points lie on +1 € S1.

To finalize the discussion about double points, we must also look at the other
eigenvalue In p1o. Since the coefficient da; in the abelian differential > diverges with
order /r as r — 0, it is generally hard to rule out the existence of points where
Inpe € miZ throughout variations of r. Nevertheless, assuming that r stays large
enough, we can still argue that there cannot exist points where both eigenvalues of the
monodromy u; = £1 for j = 1,2.
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4.4. DOUBLE POINTS ON WENTE TORI

Lemma 4.4.3. Let [, U2 = 2mi. If r > 4 and § = &y (cf. equatwn) then
|In o (N)| < 7 for all X € St. In particular, In ua(\) = 0 if and only if A = 1.

Proof. We have

. dé

¢
Inpip(§) = Inpa(1) + 052,1/0 (€—r)~

(4.131)
to

where ¢ € [0,4] for A € S. Recalling that In p2(1) = 0 by lemma and k(r,d9) =0
for all r, equation (4.131) simplifies to

¢ .d
In /12 = d2 1 / E (4132)

Assume that r > 4. Since |Inp2(€)| is monotonically increasing in &, consider the

integral
—r g
do. / §d¢
o t2

which gives an upper bound of for £ € [0,4]. With the help of equation ,
the coefficient da 1 is easy to determine. The vanishing of the integral of £d¢/ty along
a?) at § = & shows that do; = K(ma)//r, where my = cos ( 0). After substituting
u = ¢/r, equation takes the form

d21 / S _ K(ms / udu , (4.134)
0 \/u u — €0)(y — =)

which is independent of . We use [BE13| eq.243.03] to rewrite

(4.133)

d 4

/ uau = <2E(m’2) — K(m) — 2cos 0) (4.135)
Vu(u — et0)(u — o) 2

where mf +mg = 1. Using the Legendre relation (2.51)) and the fact that K(mg) =

2E(mg) at § = g (cf. (4.64))), we get 2E(mf) — K(mb) = w/(2E(mg)) and the upper

bound (4.133)) is
—r g
dsy / £dg
0o L2

If we show that K (ms)cos(%) < 7 we are done. But this inequality is satisfied since
K(mg) = 2E(mg) < m with equahty if and only if mo = 0, which cannot happen for
5€(0,%). O

= ’ﬂ — 2K (my) cos <520> ’ (4.136)

Remark: Another way to analyse In pus(—1) is to define the abelian differential of
the third kind ¢ = AdA\/(\ + 1)y which has simple poles at the two points over A = —1
with residues =£1, respectively, and descends to a differential on 5. A reciprocity law
similar to expresses In pa(—1) in terms of complete elliptic integrals of the third
and first kind similar to (8.18)).

Even tough lemma [£.4.3]is only true for r > 4, it already captures the case of the
3-lobed Wente torus T(24 3) by the estimation of r in Appendix|8.1.2| Hence, it also true
for every other Wente torus with 4/3 < m/n < 2.
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Chapter 5

Irreducible flat connections on
compact Riemann surfaces

We have seen in chapter [3| that to any conformal CMC immersion f : M — R3 of
genus g, we can associate a family of flat SL(2, C)-connections (cf. definition[3.1.1)). On
the other hand, given a C*-family of flat connections V* with parallel frame Fy € SU(2)
for all A € S! and monodromy that expands around a A; € S as +Id + O((A — A\1)?)
along all generators of 71 (M, *), we obtain closed CMC surfaces via the Sym-Bobenko
formula The point A\; € S! is called the Sym-point. Hence, in principle, we can
construct higher genus CMC surfaces from families of flat connections satisfying these
conditions. However, finding such families is highly non-trivial.

In the case of M = T2 being a torus we have seen in section [3.3|that we can param-
eterize the monodromies of V* in terms of data on a smooth hyperelliptic curve, which
is called the spectral curve. Closing conditions on the torus, e.g., trivial monodromy at
the Sym point, can be restated as conditions on the spectral data. However, it is clear
from the very definition of the spectral curve that this construction heavily relies on the
fact that the first fundamental group of a torus is abelian. Thus, a naive generalization
of this setup for genus g > 1 surfaces does not work and we need a different approach.

The idea we are going to follow is to study logarithmic connections, i.e., connec-
tions with simple poles at prescribed points, on the 4-punctured spheres. As punctured
surfaces are not simply connected, we will have a non-trivial first fundamental. This
allows us to study logarithmic connections with non-trivial local monodromy represen-
tations. We will then pull these connections back to a suitable covering N — CP! of a
Riemann surface N with genus g > 1. After desingularising them, we obtain families
of flat connections on a higher genus Riemann surface with controlled monodromies.
Finally, in order to get closed (and possibly branched) CMC surfaces in R3, the pulled
back connections have to satisfy the closing conditions listed above. Since the families
of connections are related to each other via pullback, we can adjust the covering and
monodromy such that these conditions are satisfied.

5.1 Logarithmic connections and parabolic structures

In this section, the basic concepts of logarithmic connections on Riemann surfaces
and parabolic structures are introduced. For now, we let M be an arbitrary compact
Riemann surface. Throughout this section, £ — M denotes a holomorphic rank two
vector bundle with trivial determinant A2E = C. The holomorphic structure on E will
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5.1. LOGARITHMIC CONNECTIONS AND PARABOLIC STRUCTURES

be denoted by 9. We will also set

D ={p1,....pn} (5.1)

as a finite set of distinct points on M. For further references of logarithmic connections
and parabolic structures, we refer the reader to [MS80, [Kon93].

Firstly, we show how we can introduce poles for sections of vector bundles. Recall
the definition of the point bundle construction [2.2.7] The holomorphic line bundle
L(—kp) - M with k € N and p € M admits a nowhere vanishing section with a pole
of order k at p and holomorphic everywhere else. We define

L(D) = L(—p1) ® ... ® L(—pn) (5.2)

which means that a section s € I'(L(D)) has n poles which are all of order one. In this

way, poles at certain points are introduced. In the following, we will use the notation
E(D) := E® L(D).

Definition 5.1.1. A logarithmic SL(2,C)-connection V = 0p + 0¥ on E — M is a
C-linear map

oV :H(U,E) - H'(U, K\ ® E(D)) (5.3)
on some neighborhood U C M such that

i. it satisfies the Leibniz rule V(fs) = sdf + fVs for a local holomorphic map f and
local holomorphic section s.

#. the induced differential operator on A’E = C is the trivial connection.

Logarithmic connections generalize the notion of connections on vector bundles
as they are allowed to have poles at certain points. In particular, every logarithmic
connection V on M \ D is already flat as the curvature of V is

Fv:5E06v+8vogE, (5.4)

which is zero on holomorphic sections. The singularities of a logarithmic connection
are, by definition, contained in its (1, 0)-part. At each singular point p; € D,i =1,...,n,
we have well-defined traceless residues

Resy, (V) € End(E),). (5.5)

A logarithmic connection induces a parabolic structure on £ — M, i.e., weight fil-
trations at each fiber E,, of p; € D. Assume that each residue has only real
eigenvalues +p; where p; > 0. The eigenlines of each residue Resy, (V) to the positive
eigenvalue p; define subspaces of the fibers F,

L,, = ker(Res),,V — p; 1d). (5.6)
Thus, we obtain a weight filtration of each fiber E,, by

Ep, O Ly, 2 {0}

A (5.7)
—pi < pi-

The notation of (5.7) means that we equip each L, with the positive weight p; and
E,,\ Ly, with the weight —p;. For stability reasons (cf. subsection|5.2.2), we will further
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assume that the eigenvalues lie in the interval p; € (0, %) and the local monodromies of

the logarithmic connections at each singular point are conjugated to [Del06, Theorem
1.17]

(exp(?ﬂi,@i) 0 > , (5.8)

0 exp(—2mip;)

Definition 5.1.2. Let D C M be a finite set of distinct points. A parabolic structure
P on E — M is given by a filtration of each fiber E,, at the singular points p; € D
and a collection of weights p; € (0, %) as in . A wector bundle with a parabolic
structure is called a parabolic vector bundle.

Subbundles V' C E of parabolic vector bundles have induced parabolic structures.
We equip each complex vector space V,, C E,, with the positive weight p; if it equals
the eigenline L,,, of the logarithmic connection to the positive eigenvalue p; and with
the weight —p; if it does not.

Definition 5.1.3. Let V C FE be a holomorphic subbundle of the parabolic vector bundle
E — M. The parabolic degree of V is defined as

pardeg(V') = deg(V) + Z’n (5.9)
i=1

where vy; = p; if Vp, is the eigenline of the logarithmic connection to the positive eigen-
value p; and ~v; = —p; otherwise.

Definition 5.1.4. A holomorphic parabolic vector bundle E is called stable (respectively
semi-stable) if for every holomorphic subbundle V' C E we have

pardeg(V) < 0 (respectively <). (5.10)
Otherwise, it is called unstable.

The importance of stability in our setup comes from the famous theorem of Mehta-
Seshadri, which manifests the relation between stable parabolic vector bundles of degree
zero and irreducible unitary representations on the first fundamental group, i.e., unitar-
ity monodromy of the underlying flat logarithmic connection. A proof of the following
theorem can be found in [MS80) p. 238].

Theorem 5.1.1. There is a 1:1 correspondence between

1. stable parabolic vector bundles E — M and logarithmic connections with irreducible
SU(2)-monodromy representations.

1. semi-stable parabolic vector bundles E — M and logarithmic connections with re-
ducible SU(2)-monodromy representations.

Let V and V be two logarithmic connections on E — M with the same underlying
holomorphic structure. A natural question that arises is: when do V and V induce
the same parabolic structure P? Since (V)" = (V)”, the difference V — V =: ® is an
endomorphism valued (1, 0)-form with at most simple poles at p; € D. The flatness of
the connections implies that ® is holomorphic. Generically, we cannot expect that V
and V + @ induce the same parabolic structure.

However, assume that the eigenlines L,, at each residue of the logarithmic con-
nection V lie in the kernel of the residues of ® at the respective poles. Then L,, is
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also an eigenline of V + @ to the same eigenvalue p;. Therefore, they give rise to the
same parabolic structure P. On the other hand, if V and V induce the same parabolic
structure then they give rise to the same weight filtration of the bundle £ — M and
share the same set of eigenvalues. In particular, both connections have the same local
monodromies at each residue. But this implies that the eigenlines of V (or V) must lie
the kernel of ®.

The deeper reasoning of these arguments is that the tangent space to the moduli
space of stable parabolic bundles of degree zero is isomorphic to the space of strongly
parabolic Higgs fields [BR94) section 6].

Definition 5.1.5. Let V be a logarithmic connection on E — M which induces a
parabolic structure as in (5.6). Let ® € H°(M,End(E) ® Ky (D)) be traceless such
that

Respi(q))(Lpi) =0, (5.11)

where Ly, are the eigenlines of the logarithmic connections at each residue to the pos-
itive eigenvalue p;. Then ® is called a strongly parabolic Higgs field to the logarithmic
connection V.

A parabolic vector bundle equipped with a strongly parabolic Higgs field will also
be called a parabolic Higgs bundle. By the Mehta-Seshadri theorem if B - M
is a stable parabolic vector bundle then there exists a unique strongly parabolic Higgs
field ® such that V + ® has irreducible unitary monodromy representation.

5.2 Fuchsian systems on the 4-punctured sphere

We have already seen in section that a logarithmic connection on a rank two
vector bundle equips it with a parabolic structure. In this section, we will discuss
the case where E = C? is the trivial bundle and the underlying Riemann surface the
4-punctured sphere in detail. Logarithmic connections on the trivial bundle over the
4-punctured sphere are also called Fuchsian systems. For our purpose, the study of
Fuchsian systems is the foundation for the construction of families of flat connections
on higher genus Riemann surfaces. We will see in the subsequent sections that every
such family that we construct comes from the pullback of a Fuchsian system to the
higher genus surface. This section follows the lines of [LS15, HHI7, HH22].

5.2.1 Parabolic structures and Higgs fields

Throughout this section, let E = C?> — CP! denote the trivial bundle over the
complex projective line equipped with the trivial holomorphic structure. Let D =
{p1,...,pa} C CP'. By a suitable choice of Mobius transformation, we can always
accomplish that p; = 0,p2 = 1,p3 = m and py = oo where m € C\ {0,1}. The open
Riemann surface CP! \ D is called the 4-punctured sphere. Consider smooth loops
v (t),i = 1,..,4, based at some point 2 € CP'\ D encircling the four singular points
p; € CPL. These curves generate the first fundamental group 71 (CP*\ D, z) and satisfy
the relation

4
[y =1a (5.12)
=1

In the case that the structure group is SL(2,C), the Riemann Hilbert problem has
been solved for the n-punctured sphere [Dek79]. This means that any representation
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of m(CP'\ D,z) — SL(2,C) can be realized as the monodromy representation of a
Fuchsian system.

Definition 5.2.1. A Fuchsian system on the 4-punctured sphere is a logarithmic SL(2, C)-
connection on the trivial C> — CP'\ D bundle with local non-zero residues at all points
in D.

Let z be a coordinate on C € CP'. We equip C? with the trivial holomorphic
structure and a Fuchsian system is of the form

dz dz
AY 1
143 . (5.13)

V% =d+ Ai‘% + AY
z z—
where the A} # 0 are trace-free endomorphisms. Note that the connection also
has a simple pole at infinity with residue A} := —A} — Ay — AY.
The eigenlines of the residues of the Fuchsian system determine a parabolic structure
on the trivial bundle. Without loss of generality, we can assume that the parabolic lines
L,,, with respect to some frame are given by

0 1 u 1
= (O), tmc(1). to=c(t). mo=c(l) o

where u € C. The eigenlines are equipped with the weights p; while E,, \ L,, has the
weight —p;. Notice that u is given by the cross section of the four lines and
hence it is invariant under Mobius transformation on CP!. In this way, the parabolic
structure P on C? is parametrized by the complex number .

For our purpose, i.e., the construction of higher genus CMC surfaces, it is not nec-
essary to have four different eigenvalues at each residue of V% and we restrict to the
following convention.

Convention I: For the following, we will restrict to the case that all eigenvalues p; are
the same, i.e., p; = p € (0, 3).

Proposition 5.2.1. Let V¥ be a Fuchsian system on the 4-punctured sphere of the
form such that the eigenlines of A} to the positive eigenvalue p at the respective
poles are given by . Then the A} are gauge equivalent to

U __ *:5 0 U __ ﬁ 0 U __ *pA Qﬁu U __ ﬁ *Qﬁu

Proof. The proof follows from a straightforward calculation by using and notic-
ing that in the limiting case p — 0 the local monodromies are all the identity.
Therefore, the singular points become apparent, i.e., there exists a gauge such that the
connection one-form of V* extends smoothly to all of CP!. O

We have seen in section that two Fuchsian systems induce the same parabolic
structure if and only if their difference is a strongly parabolic Higgs field. With the
choice of eigenlines in , we can write down parabolic Higgs fields on the 4-
punctured sphere rather explicitly. With respect to the coordinate z on C Cc CP!,
the most general form of a Higgs field with simple poles at p; € D is

u L4z w Az u dz
P :¢17+¢2z71+¢3z—m (5.16)
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where the ¢}' are holomorphic and tr(¢;') = 0. Notice that ®* also has a simple pole
at infinity with residue ¢} := —¢ — @5 — ¢5. As the bundle is trivial, the entries in ¢;
are holomorphic functions on CP!, i.e., constants. The definition of strongly parabolic
Higgs fields implies that the eigenlines L,, of the residues A must lie in the kernel of
¢. The representation of the Fuchsian system given in (5.15]) and the properties of the
strongly parabolic Higgs field determine ¢}' uniquely

_ _ 2 )
S ) IR ) I G PR (A R CRL

Here, v € C is the same as in parameterizing the vector bundle’s parabolic
structure. Altogether, we obtain that every Fuchsian system with strongly parabolic
Higgs field and local monodromies on the trivial bundle C? — CP'\ D is gauge
equivalent to

V4 = V¥ 4y (5.18)

where V* is the Fuchsian system with connection one-form given by and v € C.
The complex numbers (u, v) parameterize the space of parabolic structures and strongly
parabolic Higgs fields, respectively, as long as u ¢ {0,1,m, 00} since in this case the
residues of ®“ are non-vanishing.

5.2.2 Stability

We now determine under which conditions the parabolic structure induced by a
Fuchsian system is stable, semi-stable or unstable. By the Mehta-Seshadri theorem
stability of parabolic vector bundles correspond to irreducible and unitary Fuch-
sian systems. In particular, semi-stable parabolic structures correspond to unitary re-
ducible Fuchsian systems. In the later pages of this thesis, we want to have a family of
Fuchsian systems parameterizing the associated family of flat connections (cf. definition
of a higher genus CMC surface. The unitarity along the unit circle is vital for
the existence of such surfaces.

Again, let E = C? be the trivial holomorphic bundle over the 4-punctured sphere
with induced parabolic structure from a Fuchsian system. By definition a rank
two holomorphic vector bundle E is parabolic stable if pardeg(V) < 0 for any holo-
morphic line subbundle V' C E. Hence, we need to determine the possible holomorphic
line subbundles of the trivial bundle C2. By the Birkhoff-Grothendieck theorem, every
holomorphic line bundle on CP? is of the form O(k) for some k € Z where O(k) is the
bundle which admits a unique section with a zero, respectively pole, of order k if k£ > 0,
respectively of order —k if k < 0 |Gro57, Theorem 2.1].

Proposition 5.2.2. Let C? — CP! be the trivial holomorphic bundle and V C C? a
holomorphic subbundle. Then deg(V') < 0.

Proof. Assume that there exists a holomorphic line subbundle of positive degree, which
must be of the form O(k) with k& > 0. We realize the inclusion map i : O(k) — C? as

i= (Z) (5.19)

where a,b € T'(CP', O(—Fk)). Since O(k) C C? is a holomorphic line subbundle, the
sections a, b have to satisfy

da = db =0 (5.20)
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with respect to the holomorphic structure d on O(—k). However, this is a contradiction
as O(—k) is a line bundle of negative degree and hence does not admit holomorphic
sections. O

Let P be the parabolic structure on C? — CP'\ D induced by a Fuchsian system
as described in subsection With the convention of equal weights, the parabolic
degree is

4
pardeg(V) = deg(V) + Z% (5.21)
i=1

where 7; = p if V), is the eigenline L, (cf. of the Fuchsian system to the positive
eigenvalue p of AY and ; = —p otherwise. Since p € (O,%), we see that for any
subbundle V' C E with deg(V') < —1 we already have pardeg(V') < 0. Therefore, only
the two cases V' = C and V = O(—1) have to be further studied [HHI1T, p. 6].

i. Assume that V = C. The fiber over any point z € CP! is constant. If u # {0, 1,00}
then we either have v; < 0 for alli =1, ...,4 or ; > 0 for one ¢ if the fiber is one of
the eigenspaces of the residues of the Fuchsian system. In either case, the parabolic
structure is stable. For u € {0,1, 00}, there exist exactly two ¢ such that v; > 0
and we have semi-stability.

ii. Assume that V = O(—1), i.e., it is the tautological bundle on CP'. The fiber over
any point z € CP! is given by

V,=C- G) . (5.22)

If u ¢ {0,1,00}, we have v; > 0 for three i. If u € {0,1,00} then we also have
~; > 0 for three i. Hence, in both cases the parabolic structure is stable. Finally, if
u = m then we have v; > 0 for all ¢ = 1, ..., 4, and the parabolic structure is stable
if and only if p < i.

We summarize these results in the following proposition.

Proposition 5.2.3. For u ¢ {0,1,00,m}, the parabolic structure P on C* — CP'\ D
induced by the Fuchsian system V%Y is stable. If

e u € {0,1,00} then the parabolic structure is semi-stable.

e u =m then the parabolic structure is stable if and only if p < %. For p = i 1t 18
semi-stable. Otherwise, it is unstable.

Note that stability of the parabolic bundle only imposes conditions on the weight
p and hence (u,v) in equation (5.18) remain viable coordinates to parameterize the
moduli space of stable parabolic structures and strongly Higgs fields.

5.3 Abelianization of Fuchsian systems

In the previous section, we have studied Fuchsian system on the trivial rank two
bundle E = C2 over the 4-punctured sphere. The eigenlines of the residues of a
Fuchsian system give a filtration of the vector bundle’s fibers at the punctures and
induce a parabolic structure P. In our convention, each eigenline is equipped with
the same weight p € (0, %), which is related to the stability of a parabolic bundle by
proposition [5.2.3] In particular, in the present case here, the parabolic structures are
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parametrized by a single complex number u € C (cf. ) Since the space of strongly
parabolic Higgs fields with stable parabolic structure on C?> — CP? \ D is complex one-
dimensional as well, we concluded that any Fuchsian system inducing a stable parabolic
vector bundle is, up to conjugation, of the form

VY = V4 0@ (5.23)

with prescribed local monodromies (5.8) and V* and ®* are of the form (5.15) and
(5.17), respectively. Hence, for fixed weight p, the coordinates (u,v) € C? parameterize
the space of stable parabolic structures and strongly parabolic Higgs fields, respectively.

In this section, we will pullback the Fuchsian system to a double cover 72 — CP!
branched over the punctures and gauge it with respect to the eigenline frame of a
strongly parabolic Higgs field. Then the connection takes a convenient form and we
will see that Fuchsian systems can be parameterized by flat line bundle connections on
T2. This procedure is called the abelianization of Fuchsian systems which we want to
develop here. The section follows the lines of [HHIT].

5.3.1 Eigenlines of the strongly parabolic Higgs field

Fix the four points p; = 0,ps = 1,p3 = m and ps = oo on CP!. Without loss of
generality, we have m # {0,1,00}. For the time being, assume that v # {0,1,m,o0}.
Then the parabolic structure is stable (cf. proposition [5.2.3)) and the determinant of the

strongly parabolic Higgs field (5.17) is

dz?
det % = -1 — . .24
et @ = ulu—1)(m —w) s (5.24)
The eigenvalues of ®“ are given by
dz
Tvu(u —1)(u—m) (5.25)

\/z(z —1)(z—m)

which implies that the eigenlines of ®* are not well-defined on CP!. We define a double
cover of CP' branched over the points p; by the algebraic equation

T? . y? = 2(2 — 1)(z — m). (5.26)

Via z : T? — CP', we can pullback the strongly parabolic Higgs field to 72 where its
eigenlines are well-defined. We will denote the lattice of 72 = C/T by I' = Z + 77Z.
Denote by wq, ..., w4 the preimages of py, ..., ps under z such that

wi = [0], ws = [a , wy = {1;1 ,wy = M (5.27)

are the half-lattice points of I'. A straightforward calculation reveals that the eigenlines
of the strongly parabolic Higgs field are generated by

(=1 +mu)uz F y/u(lu —1)(u —m)z(z = 1)(z —m)\ __
< —2>/Z’+m(—1—|—u+z) ) =: 5% (5.28)

The eigenline bundles will be denoted by L* — T2
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Proposition 5.3.1. The eigenline bundles L™ — T? are holomorphic line subbundles
of the trivial bundle C* — T? of degree —2. In particular, they are isomorphic to the
point bundles (cf. definition

L* = L(—3wy) ® L(PF) — T? (5.29)
where Pt = (2, y*) € T? are given by

m—um
Tt =—— yi::I:

— o (5.30)

and
k? = u(u —1)(u—m). (5.31)

Proof. The pullback of the eigenlines of ®* via z are line subbundles of the trivial
bundle C2 — T2. The sections s* in span these eigenlines. Since z : T? — CP!
has a pole of order two at w4 and a zero of order two at wy, the first entry of s* has a
pole of order three at w4. On the other hand, s have a simple zero at P*, respectively.
As st do not have any other poles or zeros, this shows the assertion. ]

5.3.2 Abelianization coordinates

We will now compute the pullback of a Fuchsian system with respect to the eigenline
frame of its strongly parabolic Higgs fields. Following the description of [HH17, section
3], the abelianization coordinates (x, ) € C? will be derived. To avoid repetition, we
sketch the computational part only at the branch point z = 0. For the other branch
points the calculations are very similar.

Let F = (s*,s7) be the eigenline frame of the strongly parabolic Higgs field
(cf. equation ([5.28))). Consider the Fuchsian system

dz
Z—DPi

3
Vi=d+ ) AY =d4w (5.32)
=1

with connection one-form given by (5.15)). With respect to the frame F', the connection
one-form of V* is given by
F7lwF + F7ldF. (5.33)

Near the branch point z = 0, take a local coordinate w on T2 such that w? = z. Then
y ~ wy/m. Expanding the frame F' and its inverse at w = 0 in w yields

1 1
F o <—w\/ﬁk wﬁk)) : F_l ~ ( 2\/1ﬁkw 2m(fi¢—1)> ) (5'34)

m(u — 1) m(u —1 2/mkw 2m(u—1)

Using (5.34)) shows that near z = 0 the term F~lwF is given by

o 0 25\ dw
FlwF <2[3 o) (5.35)

For the derivative dF', we expand up the lowest order and obtain

dF ~ (‘tg)/m W(”) dw (5.36)
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which implies that
11
F7ldF ~ < 2 1?) dw. (5.37)
2 2

For the other branch points the calculations are analogous. Hence, the pullback of the
Fuchsian system (5.18)) to 72 via the degree two map z : T2 — CP! has local residues
at the branch points given by

* U,V i 2/5 ~1
Resy, (2 V%) = 2/32_ L2 (5.38)
2

where w;,i = 1,...,4, are the half-lattice points of the torus. Equation (5.38) suggests
a new convention for the parabolic weights.

N[ =

Convention II: Define the shifted parabolic weight p := 2p — % Then the condi-
tion p € (0,1) implies that p € (—3, 3).

To get rid of the poles at the diagonals in equation (5.38]), we will tensor the
pullback connection with a meromorphic line bundle connection that we introduce in
the following proposition. Denote by ¢’ the derivative of the Weierstrass p-function.

Proposition 5.3.2. Let T? = C/T with I' = Z + 7Z and wy = [3]. There exists a
unique flat meromorphic connection V° on the point bundle S := L(—2wy) — T? such
that

1dp'(w — wy)

Vs _guw, =
S 2’Ll)4 2 p,(w_w4)

S_2wy (539)

where $_g,, is the unique global section of the holomorphic line bundle L(—2w4) — T?
with a pole of order two at wy and everywhere else holomorphic without zeros. In
particular, the monodromies of V° are all —Id.

Proof. Consider the point bundle L(—w; — ws — w3 —wy) — T? which admits a unique
meromorphic section S_u;, —wy—ws—w, With four simple poles at the half-lattice points.
Denote by V the unique connection such that Vs_y,, —yy—w;—ws = 0. The Weierstrass
¢-function has simple zeros at the half-lattice points ws, ..., w4 and a pole of order 3 at
wy. Via @' (w—wy) we identify L(—w; —wy — w3 —wy) with the point bundle L(—4wy).
In particular, via this identification, there is an induced logarithmic connection on
L(—4wy) such that V(é3_4w4) = 0. Now let V be a connection on L(—2w4) without
poles. Notice that L(—2w,)® L(—2w4) = L(—4w,). The difference V-V ®V = 6 is an
endomorphism valued one-form with simple poles at the four singular points wy, ..., wy4.
Defining V¥ = V + %, we have by construction

1dp' (w —wy)

VS gw, =
T Y g w— w)

S_2wy (540)

which gives the first part of the proposition.
For the second part, notice that , /552“,4 is a parallel frame of V<. Since 5 2w, 18

globally defined, one only needs to calculate the monodromy of v/¢’. Then the assertion
follows from an application of the residue theorem. O
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We now continue to analyse the pole behavior of the pullback of the Fuchsian
system. We have seen that with respect to the frame F = (s, s7), the connection
2*V™%" on the holomorphic rank two bundle

LYo L™ —T? (5.41)

where L* are the eigenlines of the strongly parabolic Higgs field, has poles at the
diagonals by equations (5.38). Consider the dual connection (V*)* of the connection V*
we introduced in proposition Then 2*V*? @ (V5)* is a meromorphic connection
on

S*@(LTeL )= Et@E — T? (5.42)

where E* € Jac(T?) are holomorphic line bundles of degree zero. In fact, E* are the
point bundles which admit a section with a simple zero at P* and a simple pole at wy,
respectively. Denote by o the elliptic involution on T2. Since o(P*) = P~ (cf. -
and the half-lattice points are fixed by o, we have c*ET = E~. We now deﬁne a frame
where the one-form of 2*V*? @ (V*)* has smooth diagonal entries. For this, define the
following function on 72

! (7I"UJ - T, 7-) 278 (g —apg ) (w— w)

t = -7
=(w) 7T191(7rw — TWy4, T <

(5.43)

Here 91 (w, 7) is the odd Jacobi theta function (cf. equation (2.59))) having a simple zero
at w = 0 and satisfying the periodic relations (cf. proposition [2.3.1)

I (rw 47, 7) = =9 (7w, 7), V1 (rw + 77, 7) = =01 (7w, T)e T eI, (5.44)

Hence, as long as x ¢ wy + I, the function ¢, (w) is doubly periodic in w and has a pole
of order one at w4 and a simple zero at w = x. Consider the new frame defined by

F’::(i

1
— S, ®S7) (5.45)
ta

Sow, @ 3+7 ‘
—x

where P¥ = [+z]. Notice that F has neither poles nor zeros. A straight forward
calculation reveals that z*V*? @ (V5)* on ET @ E~ — T? with respect to the frame
has smooth diagonal entries [HHI17, section3]. Therefore, after tensoring the
pullback of the Fuchsian system with (V*)*, it is gauge equivalent to

dw — xdi 3
PO @ X
VOO — g < o _adw+xdu_}> (5.46)

for some o € C and holomorphic structure y given by

271 1
X = mi (w — ) : (5.47)
T—T 2

The superscript p in #VX highlights its dependence on the parabolic weight of the
underlying Fuchsian system.

Let A'(T?) denote the moduli space of flat line bundle connections on 72 and
Af)((CP1 \{p1, ..., pa}) the moduli space of Fuchsian systems on the 4-punctured sphere
with local monodromies conjugated to

271'12”"'1 0
) -

The above calculations show the following theorem [HHI17, Theorem 1].
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Theorem 5.3.3. Let p € (—%,%) Away from the punctures {p1,...,pa}, there is a

2:1-correspondence between an open dense set of AY(T?) and an open dense set of

A/%(CPl \ {p1, .-, p4}).
The function t, defined in (5.43)) satisfies

(04 2™ (a: - ;) D)ty = (5 — xdd)ty = 0 (5.49)

T—T
and thus identifies E* = L(P*) ® L(—w4) with
E* = (0 — ydw). (5.50)

Under this identification, we view the off-diagonals % as meromorphic sections of the
line bundle L(0 + 2xdw) — T?. Furthermore, 8% can be written down explicitly in
terms of theta functions. By ((5.38]), the expansion of S8~ in w at a half-lattice w;
point is

BT ~ _r + O(w?) (5.51)
(w —w;)? ' '

Since f* € L(042xdw) and because of equation (5.51)), a calculation reveals that they
are given by [HHI17, p. 11]

4

BEw) = af ()t (w — wi)dw (5.52)
i=1

where

(x) _ ei;iri (z—wy) (w;—b;) 191(7rw7; + T, T) 19/1(0, 7') ‘
V1 (mw; Frx, 7) 01 (£27x, 7)

of (5.53)

Notice that if p = 0, the connection ([5.46]) is totally reducible.

Throughout the calculations above we have assumed that the parabolic structure
u is not equal to one of the exceptional values u € {0,1,m, 00}, as in this case the
eigenlines of the strongly parabolic Higgs field coalesce. After identifying 72 with its
Jacobian Jac(T?) via equation ({5.47))

z€T?— L(J — xdw), (5.54)

we see from equation that at these values x is a half-lattice point of T2, i.e.,
the right hand side of is a spin bundle. An asymptotic analysis shows that
it is possible to extend the 2:1-correspondence of theorem to the points u €
{0,1,m, 00} and gives the following result [HH17, Theorem 2].

Theorem 5.3.4. Let Jac(T?) = C/A. The 2:1-correspondence of theorem induced
by the flat line bundle connection

d+ a(y)dw — ydw (5.55)

extends to the spin bundles x € %A if and only if a(x) expands in a neighborhood of
X=7€ 3A as

Ami pny

a(x) ~+ + 7 + higher order terms in x (5.56)

T—TX—%
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where
p, ifyeEN(eu=m

0, ify€IA\A (& ue{0,1,00}).

The sign of the residue in equation determines the stability of the parabolic
structure: for positive residue, the parabolic structure is stable, while it is unstable for
negative residue. For p~, = 0, the parabolic structure is semi-stable.

For the final part of this subsection, we consider Fuchsian systems with unitary
monodromy representation and the role of (y,«) in this setup. The Mehta-Seshadri
theorem [5.1.1] states that for every stable parabolic structure, there exists a Fuchsian
system with irreducible unitary monodromy representation. The coordinate u € CP!
introduced in subsection [5.2.1] parameterizes the moduli space of parabolic structures
on the trivial rank two bundle C? over the 4-punctured sphere. We see from equation
, that this moduli space is, via u, identified as CP' with three double points at
u=0,1,00 (see also [LS15, p.1011]) which is doubly covered by the elliptic curve

k2 = u(u —1)(u—m), (5.58)

we had already defined in (5.31)). In fact, the discussion following theorem m
shows that the elliptic curve is actually the Jacobian Jac(T?) parameterizing
the space of holomorphic structures on T2. Therefore, theorem also induces a
2:1-correspondence between the Jacobian Jac(7?) and the moduli space of parabolic
structures on the 4-punctured sphere. Then the Mehta-Seshadri theorem implies the
existence of a real analytic section af)\/l 9 in the affine bundle A'(T?) — Jac(T?) [HHIT,
p. 19]

ap® 1 Jac(T?) — AY(T?)

e i (5.59)
[0 — xdw] = [d + o (x)dw — xdw]

as long as x ¢ 3A, where A is the lattice generating Jac(7?) = C/A. Here, ay(x) e C

is determined such that VX2 (X) has irreducible unitary monodromy representation.

The following lemma summarizes certain properties of the map (5.59)) as shown in
[HHSI8, Lemma 3.1] and [HHI7, Proof of theorem 4].

Lemma 5.3.5. Let aé”s € I'(Jac(T?), A (T?)) be the unitarizing section of and
X & A where A is the lattice generating the Jacobian Jac(T?) = C/A. Let p € (—%,1).

u

i. ay satisfies the functional properties
2mi 2mi
ay(x + -7) = a,(x) + —7
T—T T—T (5.60)
Uiy + 2me ) u(y) + 2me
@ =« .
A — A —

7. The section aé\/ls

holomorphic structure to its dual, i.e.,

ap(=x) = = (x)- (5.61)

is odd with respect to the involution on Jac(T?) sending the

iii. If T? is a rectangular or thombic torus, then we further have

ag(x) = o, (X)- (5.62)
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Proof. 1. Consider the flat line bundle connection given by the upper left entry of the
connection VX% in equation (5.46))

A% = d+ adw — xdw. (5.63)

The following C*-gauge transformations

271 ( _ —) 27

g]. = eT—T7 w—w s 92 — eT—T (’77"11)—’7'117]) (564)

are well-defined on T2 = C/T" with lattice I' = Z + 7Z. Gauging dX® with respect
to g1 and g9, we obtain

271 271
g1 =d+ (a+ ——=)dw — (x + —)dw
T—T T—T
. ‘ (5.65)
o 2w 271 3
d¥%.go =d+ (o + —7)dw — (x + —7)dw.
T—T T—T

Combined with the uniqueness of ay, these calculations give the first assertion.

ii. For the second statement, notice that VX% and PV™X7% give rise to the same
underlying Fuchsian system on the 4-punctured sphere. Therefore, af,v‘fs must be
odd with respect to the involution which sends the holomorphic structure to its

dual. On the universal covering of Jac(T?), this is equivalent to ay(—x) = —ag(x)-

iii. Symmetries on the torus T2 exhibit symmetries of the map (5.59). On the complex
conjugated torus, 9 — ag(x)dw is a holomorphic structure. If T2 is rectangular or
rhombic then there exists an isomorphism 72 = T2 by sending w ~ w. The

uniqueness of a;, implies m = ag(X)-

O

5.4 Pullback of Fuchsian systems to higher genus Rie-
mann surfaces

Our aim in this section is the construction of families of flat connections on higher
genus Riemann surfaces. These families will be constructed as the associated family of
the GauB map of a conformally immersed CMC surface f : M — R3 [Hit90, Proposition
1.9]. Viewing S? C S® as the fixed-point set of the involution g — —g~! on SU(2),
such a family is of the form

VA=V + A 1o - \o*. (5.66)

Under the constant gauge

g:<é_i) (5.67)

we have
Vg=V, &.g=—-9o (5.68)

and consequently V*.g = V. Thus, V is reducible and splits into the direct sum of flat
line bundle connections. The diagonal entries of the Higgs field are zero but det(®) # 0.
Taking a local coordinate on M, it can be shown that V* is gauge equivalent to the
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associated family in definition [CLP13| section 4] and the immersion is reobtained
via the Sym-Bobenko formula (cf. theorem [3.2.1)).

In this section, we will study Fuchsian systems and strongly parabolic Higgs fields
which have the symmetry . After pulling such families back to a suitable cover
of the 4-punctured sphere, the singularities become apparent, i.e., there exists a gauge
transformation such that they vanish. In this way, well-defined families of flat con-
nections on a higher genus Riemann surface are constructed. We show that the corre-
sponding higher genus CMC surface in R? coincides with the analytic continuitation of
the surface obtained from ?VX“ (cf. equation (5.46))).

It should be noted that our aim here is to find out properties, i.e., the branch and
umbilic orders, of such surfaces in the case that they exist. The existence of these
surfaces where the initial torus is the 3-lobed Wente torus will be proven in the next
chapter.

5.4.1 Semi-stable Fuchsian systems

Let g be the gauge in (5.67). We want to study Fuchsian systems and strongly
parabolic Higgs fields on C* — CP™\ {0, 1, m, co} which satisfy V.g = V and ®.g = —®.
The condition V.g = V is very restrictive and such Fuchsian systems have a simple
form.

Lemma 5.4.1. Let V be a Fuchsian system such that V.g = V where g is the gauge
. Then we must have u € {0,1,00} and V is gauge equivalent to

20+1 (14542
V=d+t ”: <Z+Z—1O+z—m L )dz (5.69)

where (e1,€2) € {(—1,1),(=1,-1),(1,-1)} for u € {0, 1,00}, respectively.

Proof. By proposition we know that for u € {0,1, 00} the parabolic structure is
semi-stable and a holomorphic line subbundle meets exactly two eigenlines. Comparing
the residues and as V.g = V, the connection must gauge equivalent to the stated
one. O

A direct consequence of lemma [5.4.1] is the following.

Lemma 5.4.2. Let V be a Fuchsian system satisfying V.g = V where g is the gauge
. The space of strongly parabolic Higgs fields to such Fuchsian systems is complex
two-dimensional. In particular, the strongly parabolic Higgs fields satisfy ®.g = —P.

Proof. Consider a Fuchsian system V of the form . Since the eigenlines of the
residues of V lie in the kernel at the respective residues of ®, the upper-right entry of
® has the form a(df - Zi;) for some a € C*. Here, p; € {1, m, 00} depends on the
values of €; and €5 in lemma [5.4.1] But this implies that the lower-left entry of ® is of
the form b(zf"‘p2 - zf;g) with b € C*, where py, p3 € {1, m, 00}, pa # ps and both py and
p3 are different from p;. Taking into account that the residues of ® are nilpotent, we
further conclude that ® is zero at the diagonal, i.e., ®.g = —®. Therefore, the space
of strongly parabolic Higgs fields to a Fuchsian system satisfying V.g = V is complex

two-dimensional. O

75



5.4. PULLBACK OF FUCHSIAN SYSTEMS TO HIGHER GENUS RIEMANN SURFACES

5.4.2 Pullback to higher genus Riemann surfaces

We define
N, Y= (Z—l)fZ—m) (5.70)
of genus g = ¢ — 1, which admits a ¢-fold covering
Ty : Ny — CP! (5.71)
branched at four points. In terms of the coordinate z on CP', we have a2z = Z. We
further set
Ny = Ny \ w5 1({0,1,m, 00}). (5.72)

The following theorem shows that the pullback of families of Fuchsian systems to N,
can be desingularised. In view of chapter [6] we will study the case uw = 1 which is
equivalent to x € == + A.

Theorem 5.4.3. Let g be the gauge in . Let A € C* — V* be a holomorphic
family of Fuchsian systems on the 4-punctured sphere with asymptotic in A at A =0 of
the form

VA=A1d+V+.. (5.73)

where NV and ® are as in lemma|5.4.1| and |5.4.4 with u = 1, respectively. Let N, be
defined as in and % = 2p4—+1 with ged(p, q) = 1. Then the pullback connection of

VA to N, via g is gauge equivalent to a non-singular family of flat connections

V=104V 4. (5.74)
such that V.g =V, ®.g = —® and det(®) # 0. Moreover,
i. if q is odd, then the upper right entry of ® vanishes to order

e 2p — 1 at the points over z =0 and z = o0

e ¢ —2p—1 at the points over z =1 and z =m
while the lower left entry of ® vanishes to order

e 2p — 1 at the points over z =1 and z = m.

e g —2p—1 at the points over z =0 and z = 0.
ii. if q is even, then the upper right entry of ® vanishes to order

o p—1 at the points over z =0 and z = ©

o 2 —p—1 at the points over z =1 and z =m

while the lower left entry of ® vanishes to order

e p— 1 at the points over z =1 and z =m

o 1 —p—1 at the points over z =0 and z = co.
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Proof. By lemma the Fuchsian system Vatu=1Iis gauge equivalent to

. plo 1 _ 1 0

zZ—m

while the strongly parabolic Higgs field takes the form (cf.lemma |5.4.2))

- 0 a%
o= (b (zh_z}m) 0>dz (5.76)

where a,b € C*. We have to differentiate between the ¢ odd and g even case.

i. Let g be odd. Let U C Ny be a neighborhood around Trq_l(O) with centered chart

y satisfying y? = z. Then the pullback of V* near T, 1(0) is given by

_1M
VA =d+ P A dy + n(y) + (5.77)
Tq \—1b=m)gyi~! —p yrny) .. :

where 7(y) is a A-independent holomorphic one-form with zero off-diagonal entries.

Define the following matrix
_(y" O
hy = ( 0 yp> . (5.78)

On U\ 7Tq_1(0), gauging with h is well-defined and we obtain

*@)\ h=d —1 0 aqy2p_1 -1
ﬂ'q No= —+ )\ b(l—m)qu721’71 0 dy —+ h n(y)h =+ ... (579)

m

which is well-defined on U. Notice that h~'n(y)h is diagonal. Equation (5.79)
shows the vanishing order at z = 0. As the upper-left entry of the Fuchsian system
5.75)) has a pole of order one at z = oo with residue g, we can use the same gauge

5.78) at infinity to desingularize ﬂ;‘@)‘. This shows that in a local coordinate
near z = 0 and z = oo the upper-right entry of the A™'-term in vanishes
to order 2p — 1, while the lower-left entry vanishes to order ¢ —2p — 1. At z =1
and z = m, the upper-left entry of the Fuchsian system has simple poles with

residue —g. Near these points, the gauge which desingularizes ﬂ;@/\ is given by

h~!. Hence, the vanishing orders of z = 1 and z = m are reversed to the z = 0
and z = oo case.

ii. Let g be even. Consider N g which admits a 2-fold covering Tg N g — CP!. Asin
the odd case, we take a neighborhood U C Ng¢ around 74 (0) with centered chart
2

y satisfying y% = z. A problem that arises is that gauging with

y2 0
hoy = < 0 y§> (5.80)

is not well-defined since p is odd. To overcome this obstacle, consider the following
logarithmic line bundle connection

1 (dz d d
ds—d+<z—z— Z> (5.81)
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on the 4-punctured sphere. The pullback of d° to N g has local monodromies
—1 around each marked point 75 '({0,1,m, 00}). Therefore, gauging the pullback
2

of the connection V* @ d5 to N g with (5.80) is well-defined. A straightforward
calculation as in the odd case shows the vanishing order of the Higgs field.

For odd ¢, there exists a globally defined gauge transformation H on ](\)/' ¢ such that
near z = 0 and z = oo (respectively z = 1 and z = m), it restricts to the local gauge
h defined in (5.78)) (respectively h~!) [Hell4, p.646]. After tensoring the Fuchsian
system with d° as defined in , the same applies for even ¢ but with local gauges
defined by and its inverse. By construction, we obtain a holomorphic family of
flat SL(2, C)-connections on Ny (respectively N g ) for odd ¢ (respectively even ¢) which
has the properties stated in the theorem. O

Notice that the vanishing order of ® comes in pairs at the points over z =0,z = oo
and z = 1,z = m. The reason for this is that the parabolic directions induced by the
underlying Fuchsian system are the same at z = 0,00 and z = 1, m.

A necessary condition for the existence of closed CMC surfaces f : M — R? is that
at the Sym-point, the monodromy of the associated family takes values in +Id. The
following proposition is an extension of [HHSIS| p. 33].

Proposition 5.4.4. Let V be as in lemma with w = 1. Let N, be the Riemann
surface defined in and set g = % where ged(p, q) = 1.

i. If q is odd, then the monodromy of ©*V is trivial.

ii. If q is even, then the monodromy of 7 (V @ d°) is trivial, where d° is the flat line
bundle connection on the 4-punctured sphere defined in .

Proof. Again, we have to distinguish between the odd and even case.

i. Assume that ¢ is odd. Notice that

dy 1 dz dz dz
A 5.82
Y qﬁ < z z—1 z- m> ( )
where Y is the global meromorphic function on N, defined by equation (5.70)). We
see that
Y7 0
= < 0 Yp> (5.83)

is a global meromorphic parallel frame of 7*V. Therefore, the monodromy of 7*V
is Id.

ii. Now let g be even and consider the Riemann surface Nq¢. As in theorem the
. . 2
difference to the odd case is that

Y=5% 0

is no longer single-valued and hence does not give rise to a globally defined parallel
frame. Let d° be the connection (5.81)) and consider the pullback of V ® d° to
N g A straightforward calculation shows that Fo ® Y=iisa globally well-defined

parallel frame of 7% (V ® d°).
2
O
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5.4.3 Relation to the spectral data of a CMC torus in R3

In the final part of this chapter, we will relate the spectral data of CMC tori
in R? with certain initial conditions to the abelianization coordinates (x, ) which
parameterize an open dense set of the moduli space of Fuchsian systems on the 4-
punctured sphere.

Consider the connection PVX“ given in , which was derived from the pullback
of a Fuchsian system. For p = 0, this connection is totally reducible. We want to show
that in a neighborhood of p = 0 we still obtain a C*-family of flat connections on 72
and relate the analytic continuation of this surface to IV, defined in . This would
allow us to parameterize families of flat rank two connections on higher genus Riemann
surfaces by holomorphic structures of flat line bundle connections on a torus. The
following theorem is an adjustment of [HHSI8, Theorem 3.2] and parts of our proof are
motivated by it. Since the lattice of the 3-lobed Wente torus is rhombic (cf. equation

(4.117)), we will restrict to such cases.

Theorem 5.4.5. Let p € (—3,3) \ {0} and let A : £ — Di ¢ be a double covering of
a disk of radius (1 + €) branched at finitely many points. Let T? = C/T" with rhombic
lattice spanned by I' = Z + 7Z where Re(r) = 5. Define the paths

I = {[tﬂ 1te0,1]}, lp= {[; +t;] It e0,1]). (5.85)

Let x : & — Jac(T?) = C/A, where A = 2ZL(Z + 17Z), be an odd map with respect to
the holomorphic involution o on X. Consider the lift

¥ = d — xdw + adw (5.86)

of x to the moduli space of flat line bundle connections on T? satisfying the following
properties:

1. x(0) € =X + A is a half-lattice point of Jac(T?).

T—T

2. a(€) has a first order pole at & = \71(0).

(
(
3. a(§) has a first order pole satisfying the condition at every & € X with
X(&s) € A and no further singularities.

4. for all € € A71(S1) we have a(€) = ay(x(§)) where ay(x(§)) € C is determined by

p
the map in

Then there exists a C*-family of flat connections
VA=V + A 1o - )0 (5.87)

on C* — T2\ (I1 U ly) which is unitary along X € S and satisfies V.g = V and
®.g = —D where g = diag(i, —i). Moreover, if

5. there exists a point Esym over Asym € St such that x(&sym) €
respect to the spectral parameter X, we have Ox\x(Asym) = 0

T} + A and, with

T

then there exists a well-defined CMC' immersion
f:T?\ (huly) —R? (5.88)

with spectral data (X, x, ).
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Proof. Let z : T?> — CP' be the projection map branched over the four points
{0,1,m,00}. We denote the preimages of these points by wi,...,ws in the same way
as in equation . Let o be the hyperelliptic involution on ¥. As x and « are odd
with respect to o, the family #VX(&):() defines a C*-family V* of flat connections on
CP'\ {p1,...,ps}. By item (1), we have x(0) € =
semi-stable parabolic structure u = 1 (cf. equation (5.57)). By lemma [5.4.1] and [5.4.2]
we can assume without loss of generality that

VA=d*+ vV (5.89)

where V is as in lemma with v = 1. By lemma the family of strongly
parabolic Higgs fields ®* is given by

(5.90)

0 a(A)d;>

= (bw (- )

Recall that the connection PVX* was derived in section by gauging the Fuchsian
system with the eigenlines of the strongly parabolic Higgs fields. In the present case,
the eigenline frame of ®* is

Va(\) )2(z — 1)(=z —/a(\)(m —1)z(z — 1)(z — m)
< b(/\) (m—1) VoV z(m — 1) > . (5.91)

This implies that the diagonal terms of VA.F in are completely determined by
the strongly parabolic Higgs fields ®*. Since a(§) has a first order pole at £ = 0 by
item (2), we see that both a(A) and b()) in must have a first order pole at A = 0.
In particular, since x and « are odd in &, the Higgs fields X are odd in . Therefore,
the asymptotic expansion of V* in A at A = 0 is of the form

VA=A104+V+ ... (5.92)

where V and ® are as in lemma and [5 respectively. Pulling this family back
to T2, we obtain a C*-family V’\ on T2 \ {wl, ..., w4} with the same asymptotic as in
(5.92)). By item (3), there exist gauge transformations such that #VX© extends to the
points where x € 1A. Furthermore, for p € (=3, 1)\ {0}, the connection #VX(&)-(¢)
is generically irreducible and reducible if and only if L(0 — xdw) € Jac(T?) is a spin
bundle. The fourth condition implies that the family is unitary along A € S! and by
the arguments of [Helldl p.641] we obtain a well-defined family of flat connections on
T%\ {w1, ...,ws} of the form

VA= \"1d 4V - \®* (5.93)

which is unitary along A € S' with respect to a A-independent hermitian metric and
satisfies V.g = V, ®.g = —® where g = diag(i, —i). Since T2\ (I1Uly) C T?\{w1, ..., w4},
we also obtain a family on 7?2\ (I; Uly) by restriction.

Item (5) ensures that V* has trivial monodromy at the Sym-point and the right
asymptotic behavior. To validate this, we need to show that at Asym € S* the underlying
Fuchsian system has trivial monodromy. At the points where y is a half-lattice point of
the lattice generating Jac(T?), the connection PVX is gauge equivalent to a reducible.
In particular, at Agym € S L where X (Asym) J i-stable
parabolic structure with u(Asym) = 1. A straight forward calculation using the eigenline
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A A
VA

Figure 5.1: Lattice of 72 with cuts [; and ly. The paths 7;,7 = 1, ..., 4, generating the
homology basis of T2 \ (I; Uls) are also shown.

frame of the parabolic Higgs field as shown in [HHSIS8| p. 25] yields that the underlying
Fuchsian system is gauge equivalent to

. p/loL 1 0

zZ—m

Now it remains to prove that the pullback of to T2 has trivial monodromy
on T2\ (I; Uly). By the Seifert-Van Kampen theorem, the first fundamental group
71 (T?\ (I3 Uly)) is generated by the generators of m1(72) and paths encircling [; and
lo. Consider the paths ~v;,7 = 1,...,4, as indicated in figure Let s be parallel with
respect to the line bundle connection d — %z*(@ — 4z _ _dz ) For example, we have

z z—1 z—m
for the path ~3

/dsz/ p<dz_ dz _ dz ):0 (5.95)
v S 2(y3) 4\ % z=1 2-m

since the closed path z(73) encircles the two points z = 0 and z = 1 on CP!. A similar
consideration for the other 3 curves shows that the pullback of the Fuchsian system has
trivial monodromy.

Lastly, the parabolic structure u : Jac(T?) — C (cf. equation ) composed with
X is a well-defined map on the spectral curve, which is also well-defined on C since x is
odd with respect to the hyperelliptic involution. Taking the derivative with respect to
A at A = 1 implies that dyu(1) = 0. Moreover, since the connection is unitary at A = 1,
the derivative of the anti-holomorphic structure at A = 1 vanishes as well. Hence, the
derivative of the monodromy of V* along any generator ; at A = 1 vanishes. O

Remark: Notice that we actually only need a double cover of the disc Dy, of
radius (1 + €) in theorem m This is because as long as we can ensure unitarity
along S! with a simple pole at A = 0, then the family is gauge equivalent to one which
extends holomorphically to A = oo with a simply pole by the Schwarzian reflection
lemma [Hell4, proof of Theorem 6].

Recall that we pulled back a family of Fuchsian systems V* on CP'\ {0,1,m, o0}
to a C*-family of flat connections W;V)‘ to Ny in theorem We can apply the same
arguments as in theorem [5.4.5 which shows that the family is gauge equivalent to one
of the form

VA=)\"10 4V - \p* (5.96)
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which is unitary along A € S! with respect to a fixed hermitian metric. Then we have
two C*-families of flat connections parameterized by the underlying family of Fuchsian
systems V*:

i. The pullback of V* to T2\ (I; Uly) as described theorem
ii. The pullback of V* to N, as described in theorem m

The link between the two families on 72 \ (I; Ul2) and N, is given in the following
proposition.

Proposition 5.4.6. Assume that 2p4—+1 = g € (0,3) with ged(p,q) = 1 and assume

that there exists a point Asym € St such that X(Asym) € % + A and O\x(Asym) = 0.
The analytic continuation of the surface

F:T?\ (LUly) — R? (5.97)
n theorem parameterized by the spectral data (X, x, ), coincides with the surface
f:N, —»R3 (5.98)

obtained from[5.4.5

Proof. Consider the associated families V%Q and V;\Vq on T?\ (I; Ulp) and N,, respec-
tively. The pushforward of these families to CP! \ z(l; U l3), where z : T? — CP! is
the double covering, is gauge equivalent to a family of Fuchsian systems V*. Without
loss of generality, we can assume that all three families are unitary along A € S! with
respect to the same hermitian metric. Moreover, as they have the same asymptotic in A
at A = 0, the A\-dependent gauges between the associated families extend holomorphi-
cally to A = 0. By unitarity along A\ € S!, they also extend holomorphically to A = oo,
which implies that they must be constant in A\. Hence, the analytic continuation of the
surface f agrees with f. O

It is well known that the entires of the A™! part of the family of flat connections
determine the umbilic and branch order of the corresponding surface [FKRO6] section
4.3]. Hence, we obtain from theorem the following result.

Theorem 5.4.7. Let the conditions of proposition be satisfied. The surface
f:N, =R (5.99)

is a compact and branched CMC surface in R®. Owver the four branch points {0,1,m, oo}
on CP', the surface has umbilic branch points.

i. If q is odd, then the genus of f is g = q— 1. The surface branches with order 2p—1
at the points over z = 0 and z = oo and with order g — 2p — 1 at the points over
z =1 and z = m. The umbilic order is 2p — 1 at the points over z =1 and z =m
and q — 2p — 1 at the points over z =0 and z = co.

i. If q is even, then the genus of f is g = 4 — 1. The surface branches with order
p — 1 at the points over z = 0 and z = oo and with order 4 —p — 1 at the points
over z =1 and z = m. The umbilic order is p — 1 at the points over z = 1 and
z=m and 2 —p—1 at the points over z =0 and z = co.
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Similar results have been obtained in [HHSIS, [HHS15], where the initial surfaces
admit an additional Z;-symmetry, [ > 2, induced by the hyperelliptic involution. The
surfaces constructed in these papers are unbranched at certain values of p and have
some of the symmetries of the Lawson (k,[)-surfaces.

The surfaces constructed here are branched in any case. At p = 299—;12 € (0, %), we
have ¢ — 2p — 1 = 0 (respectively 4 —p — 1 = 0) and therefore, we can accomplish that
the surface is no longer branched at z = 1 and z = m. However, the points z = 0 and
z = oo remain branched nonetheless.

It should be mentioned that theorem does not imply the existence of the map
f:Ng— R3. All we have done so far is to prove properties of such surfaces in the case
that they exist. Their existence will be proven in the next chapter via the generalized
Whitham flow.
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Chapter 6

The generalized Whitham flow

Let f: T? — R3 be a conformally immersed CMC torus. To such an immersion, we
can associate a spectral curve X which parameterizes the eigenvalues of the monodromy
of the corresponding associated family (cf. chapter . The existence of X allows to us
to deform CMC tori in R? by deformations on the level of the spectral data. Such
deformations are called Whitham deformations, which we have discussed in section [3.4]
They preserve the intrinsic closing conditions, i.e., the unitary of the associated family
along the unit circle, while opening the extrinsic closing conditions. Throughout the
flow it is possible to search for values where the extrinsic closing conditions are satisfied
as well and we obtain compact CMC tori in R3 on a dense time interval. Nevertheless,
the Whitham flow only allows us to flow between CMC tori, i.e., the genus of the
immersion is fixed, while possibly changing the genus of the corresponding spectral

curve (cf. subsection [3.4.2]).

We have seen in the previous chapter that by pulling back Fuchsian systems on
the 4-punctured sphere to a g-fold cover N, of CP! via 7y Ny — CP! (cf. subsection
we obtain families of flat connections on higher genus Riemann surfaces g > 2.
The eigenvalue at the residues of the underlying Fuchsian system is a real number
pE (—%, %) and changing p is equivalent to changing ¢ and hence the genus of V,. In
this sense, we extend the Whitham flow by introducing an additional flow parameter p
which changes the genus of the Riemann surface. Starting from a CMC torus 72, i.e.,
p = 0, which satisfies the intrinsic and extrinsic closing conditions, we want to apply
the implicit function theorem. This would show the existence of the flow for p in a

neighborhood of zero such that the associated family satisfies all closing conditions.

The 2:1-correspondence of theorem|[5.3.3|allows us to parameterize Fuchsian systems
via holomorphic structures of flat line bundle connections on T2. Consequently, we can
translate the deformation of families of flat rank two connections on N, to deforma-
tions of holomorphic structures of flat line bundle connections. Such deformations are
functions on the spectral curve of the initial torus and we need to introduce suitable
Banach function spaces.

6.1 Banach function spaces

In this section, we will introduce Banach function spaces of holomorphic functions
on the unit circle which extend holomorphically to an open annulus of S'. We follow
the description and notation of [Tra20), section 3.6]. Let f : S' — C be smooth function
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with Fourier series

o0

FO) = D" ana™. (6.1)

n=—oo

Let n > 1. We denote by I, = {A € C : 0 < X\ < n} the closed disc of radius n and
A,={ eC: % < A < n} the open annulus. Define the following norm

£l =D lanln™. (6.2)

n=—oo

Let
W::{f:Sl—HC: | flly < oo} (6.3)

Functions in WV extend holomorphically to A,. One can show that W is a Banach
algebra.
We can further decompose W into the following sets

W<0:{f=Zan)\”€W i ap =0forn >0}
neZ

W>0:{f:Zan)\"€W :ap =0forn <0},
nez

(6.4)

Functions in W>? and W<? extend holomorphically to D, and CP!'\ D1, respectively.
n

It is useful to further define

WOZ{f:Zan)\"EW:an:Oforn;éO}, (6.5)

neL

i.e., functions constant in A\. Then any element f € W = W<?@ W @ W>0 admits the
unique decomposition of functions

F=F4 0+ 0 (6.6)

lying in the respective subsets. We will also write W20 = W>0 ¢ W0 and W=0 =
W<0 fasy WO.
The Banach space W admits an involution

x: W =W
FO) = 50 == fF(AD), Zan/\” > Zﬂ)\” (6.7)

nez neE”L

for A € S1. For our purpose, we make the Banach space YW smaller and consider the
subspace

We:={f e W[ f(N) = (AN} (6.8)

equipped with the same norm ([6.2]). Hence, functions lying in W are real in the sense
that f(A) = f(X). The respective subsets Wg" WS, Wi ¥ are defined analogously. In
particular, via the involution 1' we obtain an isomorphism between Wﬂgo and Wﬁ 0,
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6.2 Flowing from the 3-lobed Wente torus

Having defined suitable Banach function spaces, we can now consider deformations
of the holomorphic structure x at the initial 3-lobed Wente torus. We will apply the
implicit function theorem and show the short time existence of the generalized Whitham
flow. Firstly, let us recall some definitions and properties of the 3-lobed Wente torus.

We have seen in chapter [d] that the spectral curve of the Wente tori is a hyperelliptic
curve of genus 2 given by

Yiyt=AA—a)A—a H(A—a)(A—a ), (6.9)

where a € C, which admits the real structure
(y, A) = (A3, 271, (6.10)
The fact that the hyperelliptic curve 3 doubly covers two elliptic curves (cf. section

St = ()€ - re)(E —re )
Ny 5 =E(E—re?) (¢ —re”?)

helped us to characterize the Wente tori in terms of elliptic functions. The branch
points of ¥ and ¥; are related by

(6.11)

a+at—2=re? (6.12)

and the closing conditions determine ¢ and r via the equations (4.64) and (4.82)), re-
spectively. In the following, we will use the notation of lemma and denote the
3-lobed Wente torus by T(Q4 3) = C/T'(4,3), where the numbers (4, 3) are as in definition

m and uniquely determine the parameters r and §. The lattice of T(24 3) is rhombic

and denoted by I'43) = Z + 7Z, where 7 = 3+ 26511;1

of the abelian differentials 6; from equation (4.3). Numerically, the conformal type
approximately has the value

and d;; are the first coefficients

1
7= 5 +0.77579i. (6.13)

As we have seen in subsection [3.3.2] the associated family of flat connections is gauge
equivalent to the totally reducible connection (3.54)) and is parameterized by the maps

X0 : B\ A (00) = Jac(T?), ag: 2\ A71(0) = Jac(T?) (6.14)

where ap(€) = xo(€) for all £ € A7H(SY). We will at first gather some information on
the holomorphic structure xg.
6.2.1 o for the 3-lobed Wente torus

The general form of the holomorphic structure as the (0, 1)-part of the upper left
entry of the associated family of flat connections has already been derived in equation
l’ After rotating the coordinate w on T(24 3) the holomorphic structure is given by

1
2(r —17)

where 6; are given by (4.3) and  and v defined by the equations (4.118)).

dX

dxo = (01— Oa2(7 — 7)) = %(2 =20+ Ak +v) + 5 = vio, (619)
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Proposition 6.2.1. The spin structure of the T(24 3) Wente torus is the trivial one, i.e.,
c=01n .

Proof. We have In p11(1) = —4mi and In p2(1) = 0 with respect to the rectangular lattice
of the double covering T(24 3)" It follows from (4.117) that on the smaller torus T(24 3)

the monodromy of the associated family is the identity matrix along both generators
of T(24 3)" Hence, the spin structure is trivial. ]

From proposition , we see that the lattice A4 3) for the Jacobian Jac(T(24 3)) =
C/A(4,3) is given by
27

.
gy 2T (6.16)
T—T T—T

Az =

At the Sym-point A = 1, the extrinsic closing conditions imply that the holomorphic
structure x(1) should represent the trivial one Indeed, since In p; (1) = —4mi and
In p12(1) = 0, we obtain that

2mi
XO(].) = — € A(4’3) (617)

T—T

which is a lattice point.

The value of x¢ at the branch points can also easily be calculated. Recall that
the hyperelliptic curve ¥ has, by definition, two branch points within the unit circle
which are conjugated to each other. Let A\; and Ay = \; denote these points. Since

Xo0(A) = xo(A\) we get

T—T
. (6.18)
1 3
XO(/\Q) = B} — + 7
T—T

which are different half lattice points of A(43). The image of D; under a lift of xo to C
is depicted in figure

|‘\

il

)

3

Figure 6.1: The image of D; under a lift of xo to C. Every red line is the image of a line
I(t) = te® under yo with 0 < ¢+ < 1 and fixed angles # € (0,27] in steps of 0.1. The blue
lines are the negative of such images. Every rectangle is bounded by half lattice points of the

Jacobian of T(2473) as defined by 1)
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Remark: As we want the holomorphic structure in (6.15)) to coincide with the one
defined in 1' we shift xo in 1' by adding the half-lattice point == € %A(4,3)
to it. This corresponds to tensoring the associated family of the 3-lobed Wente torus
with a flat Zo-bundle. By unitarity, the anti-holomorphic structure attains a shift as
well. With abuse of notation, we will denote the shifted yo by the same symbol.

6.2.2 Deformations of the holomorphic structure

The holomorphic structure xg is odd with respect to the hyperelliptic involution on

Y. Fix the coordinate A on ¥. Since xo(A) = xo(A) and xo(0) # 0 after the shift we
applied, we view xo as an element in WEO. We will now consider deformations of the
holomorphic structure which are odd with respect to the hyperelliptic involution. By
[Mir95, Proposition 1.10], every odd holomorphic function on ¥ is of the form y f where
f is a rational function in A\. With abuse of notation, we will write for locally defined
functions f = fo A : U C ¥ — C with fixed coordinate A. Consider deformations of
the form

x=xo+yf: A T{NeC|N<14+7})=C (6.19)

wheren > 0 and f € WEO. Then x has the same translational periods as xg. Moreover,
it extends holomorphically to zero.
On the other hand, consider the real-analytic unitarizing section

(6.20)

we had already defined (for fixed p) in equation (5.59). Recall from lemma that
a(p, xo) satisfies

! 2mr
a®(psxo + ———=7) = a"(p,x0) + ——=7
T—T T—7F
. . (6.21)
u 2mi u 27
a“(p,xo0 + -) = a*(p,x0) + =
T—T T—T
for all x¢ ¢ %A(4’3) and p € (—3, 3). Therefore, we obtain that
a(p, xo) := a"(p,x0) — 0 : U — C, (6.22)

where «q is as defined in is a single-valued function in an open neighborhood U of
A7LH(SY) for xo ¢ %A(4,3 . We have to show that under deformations of the holomorphic
structure of the form the function a(p, x) is still well-defined. The following proof
is an adjustment of [HHS18, Lemma 4.1] to our setup.

Lemma 6.2.2. Let f : T(2473) — R3 be the 3-lobed Wente torus with xo defined by

. Let U C WH%O be an open neighborhood of the zero function. Let e,n > 0.
Then the function a(p,x), where x = xo + yf, extends to a well-defined bounded map
on A (A14y) for p € (—€,€) and f € U. Moreover, a(p,x) is odd with respect to the
hyperelliptic involution on ¥ and satisfies a(p,x)(&) = a(p, x)(€).

Proof. For the 3-lobed Wente torus we have xo(§) ¢ %A(4,3) for all ¢ € A71(St) by
lemma 4.4.3 Hence, the underlying parabolic structure is stable and the unitarizing
section (6.20]) is well-defined. Define neighborhoods I x V' C C x C? such that

{0} x {xo(&) €€ XTSI x V. (6.23)
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Since the map (6.20) depends real-analytically on (p,x), there exists a well-defined
bounded map

h:IxV —C

(pv XO(&)) = Otu(p7 XO(&)) (624)

for p € (—e,e) C I withe > 0. Let f el C WH%O where U is a neighborhood around
the zero function. Since f is sufficiently close to zero, there exists a ¢ > 0 such that

{o+yNE €A Ay} C V. (6.25)

and xo+yf ¢ %A(473) for all € € A71(A14y). Let ap(€) be defined by ag(€) = xo(&) for
¢ e A71(S1). Then

b, (xo +yf)(€)) — ao(§) =: alp, xo + yf)(£) (6.26)

is, for all f € U and p € (—€,¢€), a holomorphic map for £ € A™!1(A;4,). Moreover,
a(p, xo + yf) is odd with respect to the hyperelliptic involution on ¥ as yo is. Since

Yo0(€) = x0(€) and because of the uniqueness of a®(p,x) (cf.item (ii) in lemma (5.3.5),
we also have a(p, xo +yf)(§) = alp, xo + yf)(§)- -

As we also want to apply the implicit function theorem to the parameters (r,d) €
R>0 x (0, %), we will encode them as additional arguments and write a(p,x, x) where
x = (r,d) to highlight its dependence. The values of (r,d), where the initial closing
conditions of the 3-lobed Wente torus are satisfied, are denoted by xo = (rp,dp). Let
V C R? be a neighborhood of x¢ and U as above. By lemma there exists a

well-defined map

J(p.x, f) == alp, %, x0 + yf) : A" (A1) = C (6.27)

for all (p,x,f) € (—€,¢) x V x U. Since the Mehta-Seshadri section depends real-
analytically on y, we consider the derivative of J at (p, x, f) in the direction h € WH%O
a(p, %, xo +yf +tyh) — alp, x, xo + yf)

d(p,x,f)J(Oa 07 h) = %g% : . (628)

for all (p,x, f) € (—€,€) x V x U. In particular, at (p,x, f) = (0,%0,0) equation (6.28])
takes the simple form

d(0,x0,0)4(0,0,h) = yA"h(A™) (6.29)

by 1' and since h()\) = h()). Equation 1' already shows an obstacle that occurs
if we want to construct families of flat connections which are unitary along A € S* and

have a pole of order one at A = 0: the principle part must be controlled. Define the
linear map

M(yf) = f~ e Wg° (6.30)
where f~ denotes the principal part of f. We further define
D(p, %, f) := M 0 d(y.1)J(0,0) : Wg° — W (6.31)
At the point (p,x, f) = (0,%0,0) we simply write

DO = D(O,Xo,()). (632)
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Lemma 6.2.3. The operator Dy defined in is injective with cokernel dimension
2.

Proof. By equation (6.29)) we have

Do <i an)\”> = i ap A~ ), (6.33)
n=0 n=0

Hence, we can view Dg as the composition of two right shift operators sending
{ao,al,...} — {0,0,ao,al,...} (6.34)

with respect to the basis {\'};en. It is well-known that such an operator is injective
and the numbers of zeros in (6.34)) is the dimension of its cokernel. O

In particular, by lemma the operator Dy fails to be an isomorphism. However,
Wy admits the decomposition Wg* = Im(Dy) & coker(Dp) into its image and cokernel.
Then Dy is an isomorphism when we restrict it to its image.

Proposition 6.2.4. Let f: T(24 3) R3 be the 3-lobed Wente torus with xqo defined by
and let x = (r,8). Then there exist open neighborhoods V C R? and U C WH%O

around (0,%q) and the zero function, respectively, with a unique function
[V =Uu, (p.x)— f(p,x) (6.35)

such that the anti-holomorphic structure a(p,x, xo + yf(p, X)) extends holomorphically
to A =0 with a pole of order 3 there.

Proof. The operator Dy is an isomorphism when we restrict it to its image. Since
the cokernel of Dy is spanned by < A~1, A™2 >, we obtain from the implicit function
theorem a unique smooth function

f:v-=u, (p,x)— f(p,x) (6.36)

in some neighborhoods V C (—¢,¢) x R? of (0,%xg) and U C Wﬂ%o of the zero function
such that the map a(p,x, xo + yf(p,x)) extends holomorphically to zero with at most
a pole of order 3 at A = 0. 0

6.2.3 Adjusting the Whitham equations

In order to have a well-defined family of flat connection, we need to control the pole
of order three at A = 0 of the anti-holomorphic structure in proposition The
terms involved in the usual Whitham flow equations (cf. section have only simple
poles at A\ = 0. Therefore, we will adjust the holomorphic structure and the Whitham
flow equations in order to allow for higher order poles.

We redefine dyo and consider the following differential on ¥ with a pole of order 4
at A = o0

dxo = —d;’l 2923 + 20 — 24+ (1 = \) — k(1 + A)]d; (6.37)
such that (v,v,k) = (0,19, ko) at the initial data of the 3-lobed Wente. We assume
that v € R. Moreover, we similarly redefine

A

dA

b1 = —5(vdi,i(1 = A°) +dia(A =X + (1= )(N* = N)) = —5di ()
i{\A ydAA (6.38)
_ 5 4 2 3\ .
Oy = me (vd21 (14 X°) +da1(A+ A1) — (L 4+ k) (A2 + N?)) = WdQ(A).
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Imposing the integrability conditions as in section defines the following deformation
ODE

2a(\)d;(A\) — a(\)d;(\) = 2ixa(A)d,(A) — ixd' (V) ey (A) — Bia(A)e; (M) (6.39)

which differs only slightly from equation (3.67). The dot denotes the derivative with
respect to p and the dash the derivative with respect the spectral parameter \. The
polynomials
c1 = 61’1()\5 + 1) + 01,2()\4 + )\) + 0173()\3 + )\)
co = 62’1()\5 -1)+ 62,20\4 —A) + 62,30\3 - )

are defined analogously to equation (3.66]).
Definition 6.2.1. We call the adjusted Whitham flow equations.

The left and right hand sides of are polynomials of degree 9. Therefore, we
have 20 equations which determine the coefficients of the polynomials. The involution
A — A7l on ¥ reduces this to 10 equations. On the other hand, we have 13 real
parameters. The extrinsic closing conditions

(6.40)

1
AMxo(1) =0, xo(1) € §A(4,3) (6.41)
give two more real equation, i.e.,
dg(l) = 0, 61(1) =0. (6.42)

Hence, the remaining parameter can be used to control the pole of order three from
proposition It should be noted that there is a substantial difference concerning
the extrinsic closing conditions in the Whitham flow and the adjusted one. While we
have seen in Sectionthat both equations of cannot be simultaneously satisfied
throughout the flow, this is no longer true for the adjusted Whitham flow. In fact, if
both of these equations are satisfied, then the non-vanishing of ¢y 1 throughout the flow
is a necessary conditions to have non-trivial deformations. We want to elaborate more
on this matter.
Taking the derivative of yo with respect to p at p = 0 we obtain

d 1 1 F—T
el - — - [ 0;. 6.43
ap,ee 290 (ClT -7 CQ) (r—7)? / ' (643)

The first term of (6.43)) has a pole of order 3 at infinity given by

1 1
— — . 6.44
o <Cl’17' — 62,1> (6.44)

Moreover, the right hand side of (6.43) has a pole of order 3 at A = 0 given by

1 1
— . 4
% <C1,17_ — + 62,1> (6.45)

By construction, x is holomorphic on the unit disc. Therefore, equation (6.45) must
vanish. Hence, to control the pole of order 3 at A\ = 0 we require

c11#0 (6.46)

which is the final equation for our deformation ODE and the solution to the adjusted
Whitham flow is, if it exists, unique.
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Proposition 6.2.5. There exists an unique non-trivial solution to the adjusted Whitham
flow equations accompanied to by the three equations

dg(l) = O, 01(1> = 0, 6171 = h, (6.47)
where h is a non-vanishing function.

Proof. Together with the extrinsic closing conditions, the (usual) Whitham flow equa-
tions involve 10 equations with 10 parameters. We denote the vector of parameters
by

YW = (79, d1,1, d2,17 U, K, C1,1,C1,2,C2,1,C2,2)- (6.48)

As shown in [Kewl15, section 4.3], after unraveling the Whitham flow equations
can be brought into the form MWfYWf = VvW/ where MW7 is a 10 x 10-matrix and
VWF =(0,...,0,h), where h was a non-vanishing function as in . The first 8 rows
of MW7 come from the deformation ODE, i.e., the intrinsic closing condition, and the
last 2 rows ensure that the extrinsic closing conditions are satisfied as well. It is not

hard to see that we can similarly bring the adjusted Whitham flow equations into the
form MWy Wl = yeW/ where

aW .o ; . .
yoWs — (71,01,d1,1,d21,7, K, €11,€1,2,C2.1,€2,2,C1,3,C2.3,7) (6.49)

where MW/ is a 13 x 13-matrix and V*W/ = (0,...,0, ). The first 10 rows of MW/
come from the deformation ODEs while the last 3 rows ensure that da(1) =
0,c1(1) = 0 and ¢13 # 0. We want to show that det(MeW7F) £ 0. At the initial value
we have v = 0 and we can bring M/ into the form

MWl B
aWif __
M _< 0 C> (6.50)

where B is a 10 x 3 and C' a 3 x 3-matrix. In (6.50) the last 3 rows now represent
the two equations in (6.39) coming from the highest order terms in A and ¢; 3 # 0. A
straightforward calculation shows that

-3 0 —2di,
c=|0 -3 —2dy, (6.51)
1 0 0

with respect to (6.49). Hence, the determinant of M*W/ equals
det(M*W7F) = det(M"/)det(C) = —det(M"V/)6d, (6.52)

which is non-vanishing at the initial data. O

6.2.4 Opening two y-double points

We finally have to investigate the points A € Di4, where x(A) € Ayy3). From
theorem we know that x has to satisfy a particular asymptotic expansion at such
points. Since |xo| (at p = 0) is monotonically increasing from 0 to £1, there are two

different points )‘((127 )\((i? € R where XO(/\((;;) € A(y,3)- Without loss of generality we set

/\((jlg € R>Y and )\((1? € R<C. Opposed to xg, the anti-holomorphic structure aq is not a
half-lattice point of A at those two points. The reason for this is that xo and «ag being
lattice points in A implies that both eigenvalues of the monodromy of the associated
family take values in 1. But this is impossible by the proof of lemma [£.4:3]
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Definition 6.2.2. Let T(24 3) be the 3-lobed Wente torus and Jac(T(24 3)) its Jacobian
with lattice Ay g). We call a point A € C where xo(A\) € A3y and ag(N) & Aug) a

x-double point.

For p # 0 the asymptotics of the abelianization coordinates (, «) are governed by
theorem In particular, the constant order term of the anti-holomorphic structure
in the expansion of must be a lattice point whenever x is. We accomplish this by
opening the two y-double points on the spectral curve which allows us to control the
residue term. After a x-double point is being opened, the genus of the spectral curve
increases by 2. Moreover, we will open both y-double points in such a way that the
spectral curve still admits the involution A — A7, i.e., the coefficients of x are all real.

Denote by

(422 = xalZ(N) (6.53)

the genus two spectral curve of the 3-lobed Wente torus with coefficients determined
by the adjusted Whitham flow equations. Define

v =) = M((A = w)? + o) (v ; 1—2W>

u%%—v% (6.54)

1 — 2ug A '
A — 2 2 )\2 2 [Q}A
(=) +3) (3 + 22 ol

where we assume that u;,v; € R which implies that the spectral curve admits the
involution 7 : A — A™! for p # 0 as well. At p = 0 we have

v; = 0. (6.55)

and hence the right hand side of (6.54) has double roots at )\((12 and ()\ég)_l. Since
the holomorphic structure x should be well-defined on the genus 6 hyperelliptic curve
defined by equation ((6.54)), we redefine the holomorphic structure as

2

dxo = [T\ - 8 (A — B

i=1

dA
— (6.56)
Y

where X([)Z]()\) is the polynomial of degree 3 given in equation 1) At p =0 the new
parameters (; and §; satisfy

Bi=20, G=0) (6.57)

We investigate the space of solutions to the adjusted Whitham flow with double points.
Taking the derivative of (6.39) with respect to A at (p, A\) = (0, )‘((12) and solving for c;
we obtain ¢; = 0, i.e., the deformation vector field has a zero at the x-double points.
Moreover, we can solve for 3; and Q by considering the second order derivative of

with respect to A at (p, \) = (0, )\é?)). A straightforward calculation shows that

Bi =i, (=——3. (6.58)
We can show that the space of solutions is at least 3-dimensional.
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i. With

’1.1,1 = ]-a CL[2} = 07 Bl = 17 él = -

(A2 (6.59)
X[OQ]:O’ Cj:07 1:62:07 5‘2:<'2:O

we directly see that both sides of equation (6.39) are identically zero. However,
condition (/6.46]) cannot be satisfied.

ii. Similarly,

1

(A&h2 (6.60)
=0, ¢;j=0, =0 B=6=0

u2:17 a'[Q} :07 62:17 é2:_

gives another solution which does not satisfy condition ((6.46}).

iii. Setting

u] :0’ CL[2} :(Al, XO :XO’ /8_7 :g] :07

2 . . (6.61)
¢; = [T =28 = A9 He

=1
implies that
. 2 . . X
dj = [T =28 = M) Hd; (6.62)
=1

and hence equations ([6.39) are equivalent to

2 .
[T =220 = )% 20l ad; (1) — a(n)d; ()
i=1
—2ixa® ()& (N) — iMa?) (Ve (V) = 3iaP (Ve (V) = 0,

(6.63)

which is a solution of the adjusted Whitham flow equations without the x-double
point. Moreover, notice that we can guarantee that equations (6.42)) and (6.46)) are
satisfied as well.

The third solution from above looks promising but it does not open the double points
on its own. To adequately open both y-double points, we have to introduce poles to
the anti-holomorphic structure and coefficients which control the residues. For this, we
introduce two additional parameters R; € R and consider the following functions

2Ry

(A —ug)? + 07 (669

gl()\) = —

on the genus 6 spectral curve which has simple poles at u; 4+ iv;. Partial fraction
decomposition yields

2Ry 1y R; 1 1
_ = — . 6.65
()\—ul')Q—l-’UiQ Vi ()\— (ui+ivi) A — (uz —ivi)> ( )
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We now further investigate the asymptotic and ensure that it has the right asymptotics

behavior at A = u; + iv; =: zii. y has a single zero of order 1 at zz-i and we write

y~ya + O(()%). (6.66)
Notice that yzi vanishes to order ,/v; at p = 0. For the moment, we will only consider z;r
since z; = z,f . By theorem the residue terms of the anti-holomorphic structure
at zf should satisfy
+ .
w, Ry 1 4mi
. L (6.67)
vi 2 T—TX;

where 7 spans the rhombic lattice of the Wente torus and Xj denotes the order one
term in the expansion of y at A = z:r . The +-signs on the right hand side of equation
1) determine the stability of the underlying parabolic structure. We calculate X;r =
(xg )i + (yf)] explicitly. We have

(2]
(Xa—)z _ 2(’2@—’— - 61)(’2@—’— - Cl)(zi+_ /82)('2:_ - C2)X02 (Z+)Z+ (668)

which vanishes to order \/v; at p = 0. The term yf has a zero of order one at zz+ . As

(yf);] vanishes to order ,/v;p at p = 0, which is greater than 1, we will neglect it for

the moment. Rewriting (6.67)) implies (for the positive sign) the following equations
R.(2T + + + 2+ A

2iRi (2 — B1) (2 — Q)27 — B2) (2 — Q)xo (57) = - 77_pUi- (6.69)

The right hand side of is real while the left hand side has real and imaginary
terms. Taking the derivative of with respect to p at the initial condition R; =

v; = 0 and recalling that x%z} is real along the real axis, we can solve for R; and obtain

PR Ao A
- _F 2 1 1 1 1 2 2

T=T2Im(xy AG)A — DAL + DAL = A8 - 1) 610
4 NONC) '
Ry = dp “'dp

T—T 21m(x([32}(>\é?))()\((1? - 1)(A§fp) + 1)(A§l§ - Ag})@gpgﬁ ~1)

Finally, we need an additional equation involving v;. We require R; = w;v; for some
non-zero constants w; € R, which forces v; to have the same vanishing order as R;.
A suitable choice of w; allows us to control the constant order terms of the anti-
holomorphic structure in the limit where the y-double points come together. Evaluating
6.64) at A = )‘Eil;)) and letting p — 0 we obtain with u; =0

PO = INON AR 1 1 (i)y2 ,
9i(Agp) "= zly[]()\dp)()\(g)—/\(l)> (1—)\(1))\(2) ((Agp)” — Dwy (6.71)
dp dp dp “'dp

and we can control the value of « in the limit p — 0 at A = )\((12. Let 060()\512) denote

the value of the anti-holomorphic structure at )\é?) for p = 0. Since the constant order

term in the expansion of theorem [5.3.4|is Xo()\gg), we set

o ao(A) — xo(A5)

s i i)
2208 (- 517 ) (1- b ) @2 -

dp

(6.72)

96



CHAPTER 6. THE GENERALIZED WHITHAM FLOW

and obtain the original value of the anti-holomorphic structure in the limit p — 0.
Finally, we have to investigate the stability of the underlying parabolic structure
for the complex conjugated points z; . Assume that equation (6.67) is already satisfied.
Complex conjugation yields
-y, R 1 4mi 4i
1Y, lizi ™ %::I: T p (6.73)

7

Vi Z. T—TX

i T_TXi

where ;" is with zj replaced by z;”. Therefore, the asymptotic conditions are
satisfied for z; as well and we see from equation that zz"" is parabolically stable
(respectively unstable) if and only if z;” is unstable (respectively stable). Bringing these
results together we obtain the main lemma of the thesis.

Lemma 6.2.6. Let 22! be the genus two spectral curve of the 3-lobed Wente torus
T(2473) and (xo, o) defined by . After opening two x-double points as described in
subsection there exists a hyperelliptic curve X of genus 6 defined by , real
numbers n,e > 0, points z;“,z; € Diyy,i = 1,2, inside the disc of radius 1 +n and
unique maps

(x;a) : A" Dy, C T — (Jac(T(%L?))),W) (6.74)

satisfying the conditions of theoremfor every p € (—¢,€) such that
i. the parabolic structure is stable for all X € D14y \ {21 , 25 } and unstable at 21, z; .
ii. the parabolic structure is stable for all X € Dy, \ {27, 25 } and unstable at =", 25 .

iii. the parabolic structure is stable for all A\ € Dy1y \ {27, 25 } and unstable at 21 , z5 .

i. the parabolic structure is stable for all X € Dy, \ {27, 25 } and unstable at 27, 25 .

This implies the existence of the higher genus CMC surfaces from theorem[5.1.7. More-
over, for p =0, the tuple (3, x, «) is the spectral data of the 3-lobed Wente torus.

Proof. We will recall the steps to prove this theorem. It was shown in proposition [6.2.4
that we can deform the holomorphic structure in such a way that the anti-holomorphic
structure has at most a pole of order 3 at A = 0. Since the associated family of
flat connection needs to have at most a simple pole at A = 0, we further need to
control the order 3 pole. We do this by using the remaining parameters on the spectral
curve and adjusted the Whitham flow equation in subsection [6.2.3] By proposition
[6.2.5] a solution to such deformation exist and we can ensure that the anti-holomorphic
structure extends to A = 0 with a most a pole of order 1 there.

Finally, by theorem [5.3.4 we need to control the asymptotic of the anti-holomorphic
structure at the two points )\g?) € D14y \ St i =1,2 where x()) € A(4,3). After opening
both of them, the genus of the spectral curve increased from 2 to 6 (cf.subsection
. This procedure allows us to control the residue theorem of « in such a way that
(x, ) coincide with the spectral data for the 3-lobed Wente torus at p = 0. Hence, all
conditions of theorem [5.4.5| are satisfied and the corresponding surface has branch and
umbilic order as described in theorem [(.4.7 O

6.3 Conclusion

A similar approach, on which some of the results obtained in this thesis were based
on and motivated by, is the use of the generalized Whitham flow by L. Heller, S. Heller
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and N. Schmitt in [HHS18]. In this publication, the authors constructed symmetric
higher genus CMC surfaces in the 3-sphere where the initial CMC tori at p = 0 are the
homogenous and 2-lobed Delaunay tori. In this last section of this thesis, we would like
to point out the similarities and differences to the work presented here.

Starting with the similarities, in both cases the Ansatz to the construction of higher
genus CMC surfaces in S® and R3 is the same. Starting from a family of Fuchsian sys-
tems, where all eigenvalues of the connection one-forms are the same, we obtain the flow
parameter p. The resulting higher genus CMC surface is constructed by considering the
same g-fold cover N, — CP!, where the singular points of the pullback of the logarith-
mic connections can by gauged away. Deformations of the holomorphic structure xg
are of the same form y = xo+yf (cf. ) and implicit function theorem arguments
as in ensure (some of) the pole orders of the anti-holomorphic structure at A = 0,
yielding the existence of such higher surfaces in the respective space-forms S and R3.

As for the differences, the first to mention is that CMC surface in S? and R3 have
different extrinsic closing conditions. For CMC surfaces in S3, there must exist two
points \; € S',i = 1,2, where the monodromy of the associated family is trivial,
while in the R? case the translational invariance of the immersion must be ensured by
imposing the asymptotic expansion condition of the monodromy as shown at the end
of section

As the genus of the Wente tori’s spectral curve is 2, the study of the spectral data
is in general more complicated than for the homogenous and Delaunay tori in [HHS18],
which have spectral genus ¢ = 0 and g = 1, respectively. Fortunately, the symmetries
on the genus two spectral curve allowed us to express hyperelliptic integrals in terms
of elliptic ones, which simplified the study of closing conditions.

The surfaces constructed in [HHS18] are unbranched at all points over {0, 1, m, oo}
if p= 299;;2, while in the setup of this thesis we could only accomplish that the surfaces
branch at at most 2 points. Essentially, this is due to the fact that x € %A at A =10
in [HHSIS], where A is the lattice generating the Jacobian of the torus, corresponds to
the case u = m, which implies that the underlying parabolic structure is either stable
or unstable by theorem Therefore, the upper right entry of the pullback of the
strongly parabolic Higgs field, as shown in section 3.3 of [HHS18], vanishes to the same
order at the points over {0, 1, m,c0}. For the 3-lobed Wente torus, x € %A at A =0
corresponds to the case that uw = 1. Hence, as the underlying parabolic structure is
semi-stable and of the form , parabolic Higgs fields are of the form and the
branch and umbilic order come in pairs. It seems like this could be the case for any
T(Qm’n) Wente tori (cf. section for the notation) with m even, i.e., odd number of

lobs, as in this case x is the same half-lattice point of %A(mm) at A = 0 and at the
Sym-point A = 1. As the parabolic structure at the Sym-point should be semi-stable,
is must also be semi-stable at A = 0.

The most important differences lie in controlling the pole order of the anti-holomorphic
structure at A = 0 and the existence of x-double points. The real structure on a spectral
curve of genus g is given by the mapping (y, A) — (A=), XA=1). Hence, deformations
of the holomorphic structure of the form xo + xo + yf(A) (cf. (6.19)) map under the
real structure and complex conjugation to ag 4+ yA~ @+ f(A~1) (where we still assume
that f(\) = f(\)). Since the homogenous and Delaunay tori of [HHSI8| have spectral
genus 0 and 1, respectively, ensuring that o has at most a pole of order 1 at A = 0 is,
via an implicit function theorem argument in the sense of trivially satisfied. On
the other hand, for spectral genus g = 2 the term yA~3 has a pole of order 5 at A = 0
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and the same implicit theorem argument only ensures that « has at most a pole of 3
at A = 0. Therefore, for the 3-lobed Wente torus we needed to adjust the Whitham
flow equations as in subsection [6.2.3] i.e., introduce additional parameters, to give us
control of the pole of order 3.

As for the existence of double points, for the homogenous and 2-lobed Delaunay
tori in [HHS18], there neither exist double points in the sense of definition nor
x-double points [6.2.2] However, since the 2-lobed Delaunay tori have spectral genus 1,
there exists a branch point Ay, inside the unit circle and only at that point (and A = 0)
we have x(Apy) € A (cf. lemma 2.1 in [HHS18]). This yields two possible flow directions
in the generalized Whitham flow, where the sign of the residue in the asymptotic
expansion of the anti-holomorphic structure yields either a stable or unstable parabolic
structure [HHSI8|, Theorem 4.2]. An important fact to note is that since Ay, is a branch
point of the initial genus 1 spectral curve, we also have a(Ap;) € A and there is no need
to increase the genus of the spectral curve by opening double points. On the other
hand, as we have seen in subsection for the 3-lobed Wente torus there do exist
points inside the unit circle where x € Ay 3) but a ¢ A(43), which is called a x-double
point. This forces us to open such points in order to control the asymptotic expansion
of the anti-holomorphic structure and view such points as branch points coming from
a spectral curve whose genus is higher than the initial one.
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Chapter 7

Outlook

Using the generalized Whitham flow, the present work shows the existence of higher
genus ¢ > 1 compact CMC surfaces in R3 with Zg-symmetry and 4 branch points. The
initial surface to begin flow with is the 3-lobed Wente torus f : T(24’3) — R3 and via
hyperelliptic reduction, the spectral data could be characterized rather explicitly in
terms of data on elliptic curves. The key properties to proof the main theorem lie in
the study of y-double points and controlling the pole order at A = 0. Nevertheless,
open questions still remain.

It would be interesting to know how we can make the surface unbranched at every
point. If p = 299;;2, the surfaces branches at 2 instead of 4 points. In order to cure the
remaining two branch points, a possible Ansatz is to introduce an additional parabolic
weight, i.e., not all eigenvalues of the underlying Fuchsian system are the same, which
could control the branch order at the other two branch points.

Moreover, it is further interesting to study Wente tori f : T(2m’n) — R3 with lobe
count > 3. It seems that this would make the study ob x-double points noticeably
more complicated as, in general, higher lobe counts would mean that x meets more
half-lattice points of the lattice generating the Jacobian of T(van). One would need to
investigate if it is possible to open multiple x-double points similar to subsection

Finally, one could study CMC tori in R? with spectral genus g > 2. Classifying
the spectral data would be more complicated and by lemma we would need to
control pole orders higher than 3 at A = 0. It does not seem to be so obvious that
adjusting the Whitham flow equations gives solution that could control higher order
poles. However, if would be interesting to know if y-double points still occur or if this

is just a phenomena for the Wente tori.
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Chapter 8

Appendix

8.1 Estimating the parameters §; and r

In this section we want to estimate the parameters §p and g using formulas from the
arithmetic geometric mean. The arithmetic geometric mean is a procedure to calculate
diverse complete elliptic integrals very quickly. Hereby series are defined recursively and
approximates the elliptic integrals. Let ag = a and by = b. For the further definitions
and applications we direct the reader to [Coh93| [OLBC10]. Define

1
an = i(an—l + bn—1)7 b, = V ap—1bp—1. (81)
We have [Was08| p. 289]

Proposition 8.1.1. Leta > b > 0. Then
b1 <bp <ap < ap

1 (8.2)
0<a, —b, < i(an—l - bn—l)-
The series converges and its limit, denoted by agm(a,b), is
agm(a,b) = lim a, = lim by, (8.3)
n—oo n—oo

Notice that the arithmetic geometric mean is symmetric in its arguments agm(a, b) =
agm(b,a) since a, and b, have a common limit. The relationship between the arith-
metic geometric mean and its relevance to complete elliptic integrals is established in
the following equality

T /’5 dt
2agm(a, b) 0 Va2cos2t + b2 sin? t

The relationship of equation (8.4) to elliptic integrals of the first kind is well know
[OLBCI10L p.493]

(8.4)

0 0

m=————— K((m)= —+——. 8.5

) 2agm(1,vm') (m) 2agm(1, /m) (85)

Formulas for the second and third complete elliptic integral are given by [OLBCI0,
p.493]




8.1. ESTIMATING THE PARAMETERS 60 AND rg
respectively, where ag = 1,bp = vm/, ¢, = \/ﬂ, Qo = 1,p(2) =1-—a? and

p% + anby 6 — p% — apby,
2pn " PR+ anbs (8.7)

1
Qn—i—l = §Qn6n

Pn+1 =

8.1.1 Estimating ¢,
Recall from equation (4.64) that dy was determined by the equality

where mg is as in (4.50)). Using the series expansion of the complete elliptic integrals
from , equation (8.8]) is equivalent to

1 ZOO 1
? <a1 — 2n1C,,21> = 5 (89)
1

n=2

Omitting terms of order n > 2 in equation we get the estimate
o = 2arcsin(v2 — 1). (8.10)

Continuing with the series shows that the relative error for this § is about 0.7%. Note
that dg is, compared to rg, fixed for all symmetric Wente tori independently of the lobe
count.

8.1.2 Estimating r

Generically, we will only be interested in the value of r for closed doubly periodic
Wente tori. Hence assume that In (1) = —mim and [,q) 91 = 2min for m,n € N.
With these assumptions we have seen that the radial coordinate is implicitly given by
the extrinsic closing condition via equation .

Estimating r for the 3-lobed Wente torus

Here we want to use the previously established results to estimate the value of r
for the 3-lobed Wente torus which means that we set m = —4 and n = 3 in equation
(4.82)). First we bring ® defined in in a more convenient form such that it is
easier to express it in terms of incomplete elliptic integrals. For the following we will fix
§ = 6o. Let 71 denote the path from re'® to re™* as in figure and 7, the vertical
path from re~"% to re'. By the residue theorem we get

/<1>+/ ® = 27i. (8.11)
71 72

Since the first term of (8.11)) equals —mi”" we obtain

/ & = 2mi(1 + %). (8.12)
72

Additionally, denote by 73 the path from 7€’ to Re(re), by ~4 the path from
Re(re') to infinity and by 75 the path from infinity to re*®. Notice that ® is purely
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real along the path 4. Then it follows from equation (8.12)) and after using the residue

theorem again that
Im U @} = (-2 1) = —Im [/ @]. (8.13)
73 2n Vs

However, one quickly confirms by symmetric reasons that

/ iiJ :/ P. (8.14)
Vs retdo
—4 —o0 —4 m
Im[/ @] :Im[/ <I>—|—/ <I>] =—T—. (8.15)
retd retd —o0 2n

Notice that ® is purely imaginary along the path from minus infinity to —4. Collecting
all these equations we can conclude

/ <I>—27ri—/ ® =27 + 2¢Im / <I>]
71 Y2 L/ Y3
=2mi — 2tIm / (I)]
—4
=27t — 2¢tIm / / @]
retdo ]

= 2im(1 2 d.
im( +2n)+

Also,

(8.16)

Hence we can write

- [ orde
D=~ . 8.17
/_O" /—00 5\/(_4 — &)(€ — reido) (& — re—o) ( )

Let us denote s = 16 + 72 + 8r cos dp. Using equations 245.06 and 361.60 of [BF13], we
can express (8.17)) via complete elliptic integrals of the first and third kind

—4 . 2r 2 a?
/ (I):Z-451/4+53/4|:—2K(m1)+1_aﬂ<a2_1,m1>:| (818)

—00

where a and m; are given by

—4 —4 - 0
e VA reosdo s (8.19)
4+ /s 2y/s
By equations (8.16)) and (8.18) we have
o 2 (57 1;m1) i
- _9 o _ ] 92
U sl 53/ 1. K(my) ] 3K(m1) (8.20)

Using the arithmetic geometric mean , the left term in the brackets of the left
hand side of equation (8.20]) can be written as

2 H(a2 17m1)

-2
T oa T Ky

=2+ ﬁ@ —a? ; Qn) (8.21)
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First we show that rg must be greater than four. Using the estimate for §y from equation
(8.10) and substituting r = 4 into the formulas for s, « one sees that

2

2r « >
|—431/4 + s3/4 [1 -« ZlQn]

The right hand side of equation (8 can be further estimated using the arithmetic
geometric mean. Since K(mp) = where m; +mj =1 and § < K(my) <

<4-1073. (8.22)

7T _m_
Zagm(l mi) 2m/

we can calculate that for » =4

™ \f
S — EU 8.23
3K(m1) ~ 3 cos >+ (8:23)

On the other hand, using the right hand side of equation (8.21)) to order n = 0 with
r =4 and also (8.23)) we obtain the inequality

3+ 2cos & /
Toeos +0(1073) > V2 cos%o + 1. (8.24)
22 ) 3

cos % (1 +2cos %

Using the approximation one quickly sees that the inequality is wrong and hence
we must have r > 4 as | In p1(1)] is monotonically increasing in r by corollary Next we
find an upper bound for . Using r = % one obtains that the left hand side of equation
is less than 5 - 1073. A similar calculation as before but with % > m then

shows that ry < %. We summarize these results in the following proposition.

Proposition 8.1.2. Equation with m = —4,n = 3 and § = &y given by

is satisfied for an v € (4,3).
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