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Self-bound crystals of antiparallel dipolar mixtures
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Recent experiments have created supersolids of dipolar quantum droplets. The resulting crystals lack, however,
a genuine cohesive energy and are maintained by the presence of an external confinement, bearing a resem-
blance to the case of ion Coulomb crystals. We show that a mixture of two antiparallel dipolar condensates
allows for the creation of potentially large, self-bound crystals, which, resembling ionic crystals in solid-state
physics, are maintained by the mutual dipolar attraction between the components, with no need of transversal
confinement. This opens intriguing possibilities, including three-dimensionally self-bound droplet-ring struc-
tures, stripe/labyrinthic patterns, and self-bound crystals of droplets surrounded by an interstitial superfluid,
resembling the case of superfluid Helium in porous media.
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I. INTRODUCTION

Solid-state crystals are held together by the interplay be-
tween different forms of attractive and repulsive interactions
between their constituents [1]. This interplay results in a finite
cohesive or binding energy, defined as the energy that must be
added to the crystal to separate its components infinitely apart.
In the presence of an external confinement, crystals may form
even in the absence of genuine cohesion. A prominent exam-
ple is provided by trapped ions, which form crystals due to the
combination of repulsive Coulomb interactions and external
confinement [2]. There is, however, no cohesive energy, and
ion Coulomb crystals unravel in the absence of the trap.

This feature is shared by recently created crystals of
quantum droplets in dipolar Bose-Einstein condensates [3,4].
Self-bound droplets, elongated along the dipole direction,
result from the quasicancellation of contact and dipolar in-
teractions, and the stabilizing effect of quantum fluctuations
[5–8]. In the presence of confinement along the dipole direc-
tion, energy is minimized by the creation of multiple droplets,
which, in the presence of an external confinement perpendicu-
lar to the dipole orientation (transversal trap), arrange forming
a crystal [9] that may present supersolid properties [10–17].
Similar to the case of ions in Coulomb crystals, droplets repel
each other. There is hence no genuine cohesive energy of
the droplet crystal (or of any other possible density pattern
[18–21]). The transversal trap is crucial to keep it bound.

Recent experiments have created a mixture of two dipo-
lar components [22–24]. These mixtures are expected to
present rich physics due to the competition between intra- and
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intercomponent contact and dipolar interactions, including
immiscible droplets [25–27], doping-induced droplet nucle-
ation [24,28], two-fluid supersolidity [28], and the formation
of alternating-domain supersolids [29–31]. Interestingly, the
dipoles of the two components may be antiparallel, and hence
the inter- and intracomponent interactions may have opposite
sign [30] [Fig. 1(a)].

In this paper, we investigate crystal formation in an antipar-
allel dipolar mixture (ADM). As for a parallel one [25,26],
in the absence of any confinement, an ADM may form an
immiscible three-dimensionally self-bound mixture, although
with a markedly different topology in which one of the
components may eventually form a ring around a droplet
of the other. The presence of confinement along the dipole
direction results in crystal formation. In stark contrast to
both single-component dipolar condensates and parallel bi-
nary mixtures, in an ADM the crystal has a genuine cohesive
energy, remaining self-bound in the absence of a transversal
trap due to the mutual attraction between the components.
This resembles the case of ionic crystals in solid-state physics,
where ions of opposite charge arrange in an intertwined crys-
talline structure bound by their mutual electrostatic interaction
[1]. However, the resulting self-bound ADM is not given
by two intertwined droplet arrays. Symmetric ADMs with
similar intracomponent interaction strengths form self-bound
stripe/labyrinthic density patterns. In contrast, in sufficiently
asymmetric ADMs, one of the components forms an incoher-
ent droplet crystal with an approximate triangular structure,
whereas the second one remains superfluid and fills the lattice
interstitials, resembling to some extent superfluid Helium in
porous media [32].

The structure of the paper is as follows. In Sec. II,
we introduce the antiparallel dipolar configuration, and the
corresponding equations. Section III is devoted to three-
dimensionally self-bound solutions. In Sec. IV, we discuss
the formation of self-bound droplet crystals, whereas the
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interstitial superfluid and the possibility of observing crystal
sublimation are discussed in Sec. V. Section VI discusses the
formation of self-bound stripe and labyrinthic phases. Finally,
we provide a summary and an outlook in Sec. VII.

II. ANTIPARALLEL DIPOLAR MIXTURES

We consider a bosonic ADM, with dipoles oriented,
respectively, along and antiparallel to the z axis. The compo-
nents may belong to the same species or to two different ones.
In order to illustrate the possible physics, we consider a dys-
prosium mixture, with magnetic dipoles μ1 = 10μB and μ2 =
−10μB, with μB the Bohr magneton. Short-range interactions
are characterized by the intra- and intercomponent scattering
lengths: a11, a22, and a12. The physics of the mixture is well
described by the extended Gross-Pitaevskii equation [25,26],

ih̄�̇σ (r, t ) =
[

−h̄2∇2

2m
+ Vtrap(r) +

∑
σ ′

gσσ ′ |�σ ′ (r, t )|2

+
∑
σ ′

∫
d3r′V σσ ′

dd (r − r′)|�σ ′ (r′, t )|2
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]
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where �σ (r, t ) is the condensate wavefunction of compo-
nent σ = 1, 2, nσ = |�σ |2, and gσσ ′ = 4π h̄2aσσ ′/m, with m
the mass of the bosons. The atoms are confined, if at all,
only along the z axis by a potential Vtrap(r) = 1
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axis and r. The effect of quantum fluctuations is provided
by the Lee-Huang-Yang (LHY) term μLHY,σ [n1,2(r, t )] =
δELHY/δnσ , where
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is the LHY energy correction, with
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σ=1,2

ησσ nσ ±
√

(η11n1 − η22n2)2 + 4η2
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and ησσ ′ = gσσ ′ + gd
σσ ′ (3 cos2 θk − 1) being gd

σσ ′ =
μ0μσμσ ′/3 and θk the angle sustained by k with the z
axis. Since the dipole moments of the components are
antiparallel, the intercomponent dipolar potential is repulsive
(attractive) when the components are placed head-with-tail
(side-by-side) [see Fig. 1(a)]. As a result, the dipolar
interaction strongly favors immiscibility, and a very large and
negative a12 is needed to drive the system miscible. In the
following, we consider a12 = 150 a0, but the actual value is
irrelevant as long as the intercomponent overlapping remains
negligible.

III. THREE-DIMENSIONAL SELF-BINDING

We first consider the case of fully unconfined mixtures
(ωz = 0). As for parallel dipolar mixtures [25,26], an im-
miscible ADM may present a three-dimensionally self-bound

FIG. 1. (a) In an ADM, intracomponent interactions are attrac-
tive when the particles are head-to-tail, and repulsive when they are
side-by-side (see grey arrows), whereas the opposite is true for the

intercomponent ones. (b) Dipolar interaction V 1→2
dd (r) = 2μ0μ2

1
3π l2

z
U 1→2

dd

that component 1 exerts on component 2, as a function of z and
ρ = √

x2 + y2. For simplicity, we have assumed a Gaussian droplet
e−z2/l2

z e−ρ2/2l2
. The dashed line indicates the half-width at half-

maximum of the droplet. The intercomponent dipolar interaction
results in an energy minimum on the xy plane at a given radius ρ0

well outside the droplet.

solution, but of a markedly different nature. This is best
understood in the impurity limit (N1 � N2). Let us as-
sume that component 1 forms a self-bound droplet with
density n1(r). The droplet exerts a potential V 1→2

dd (r) =∫
d3r′V 12

dd (r − r′)n1(r′) on component 2, which, as seen in
Fig. 1(b), is characterized by a marked minimum at a given
radius ρ0, well outside the droplet. Particles in component 2
are trapped in this mexican-hat potential.

In a more balanced mixture, the argument remains valid,
but component 2 also induces a similar potential V 2→1

dd (r) on
component 1. Hence the two components confine each other
mutually on the xy plane, resulting in self-bound ADMs, as
illustrated in Fig. 2 for N1,2 = N/2, a11 = 50 a0, and different
values of a22 and N . For asymmetric intracomponent inter-
actions a11 < a22, component 1 remains a compact droplet,
whereas the second component accommodates on the ring
potential around the droplet. For low enough a22, the energy
is minimized by the formation of a single droplet in com-
ponent 2, which for growing N and a22 spreads around the
mexican-hat minimum until eventually forming a ring-like
configuration. For intermediate a22 values, there is a second
possible topology with two droplets of component 2 placed at
opposite sides of the annular potential.

IV. SELF-BOUND DROPLET CRYSTALS

When ωz = 0, increasing the particle number N results in
more elongated solutions along the z direction. As for single-
component (scalar) dipolar condensates [3], this elongation
is frustrated in the presence of a trap along z (ωz > 0). In
scalar condensates, this frustration results in the formation
of multiple droplets. Although the droplets repel each other,
the presence of a transversal trap on the xy plane allows for
the creation of 2D droplet crystals [16,17]. These crystals
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FIG. 2. Three-dimensionally self-bound ADMs. Ground-state
configuration as a function of the total atom number N and of a22, for
a11 = 50 a0 and N1,2 = N/2. Whereas component 1 always forms a
single elongated droplet, component 2 may acquire different topolo-
gies, which we characterize using the separation �rCM between the
center of masses of the two components (color code). The different
topologies are illustrated in the insets, where we depict the column
density (integrated over z) of the components, with red (blue) indi-
cating component 1 (2)

have, however, no intrinsic cohesion, and hence unravel in the
absence of the xy confinement.

Remarkably, this is not the case in an ADM, as illustrated
in Fig. 3 for a balanced mixture N1 = N2 and asymmetric
intracomponent interactions, a11 = 50 a0 and a22 = 70 a0. For
a low-enough ωz, the three-dimensional solution (with a single
droplet in component 1) remains valid [Fig. 3(b)]. For an
N-dependent critical ωz the droplet splits into two. Each one
of them exerts a mexican-hat potential on the second compo-
nent, which gets trapped in the combined energy minimum.
At the same time, crucially, the second component glues the
two droplets together, forming a self-bound ADM [Fig. 3(c)].
As shown in Fig. 3(a), and illustrated for particular cases in
Figs. 3(d)–3(g), further increasing ωz results in a growing
number of droplets of component 1 surrounded by a bath of
component 2. In a scalar condensate, each droplet requires a
minimal atom number to remain self-bound (otherwise kinetic
energy unbinds it), drastically limiting the total number of
droplets. In contrast, in an ADM, droplets remain confined by
the intercomponent interaction, allowing for droplets with a
much smaller number of atoms [29,30]. As a result, increasing
ωz results in 2D crystals with much more droplets compared
to scalar condensates with the same total number of atoms.

We should emphasize that our results, based on imaginary-
time evolution of Eq. (1) with random initial conditions, reveal
many possible solutions with very similar energy, which dif-
fer in the exact number and arrangement of the droplets,
see Appendix A. We hence expect a significant experimental
shot-to-shot variability, similar to that recently observed in
experiments on 2D supersolids [16].

V. INTERSTITIAL SUPERFLUID AND CRYSTAL
SUBLIMATION

Due to the lack of overlapping, the droplets are mutu-
ally incoherent. In contrast, the component filling the crystal

(a)

(b) (c) (d)

(e) (f) (g)

FIG. 3. Self-bound droplet crystals. (a) Phase diagram as a func-
tion of the atom number N and the trap frequency fz = ωz/2π , for
a11 = 50 a0 and a22 = 70 a0. Colors correspond to configurations
with a different number of droplets ND in component 1. Panels
(b)–(g) show the column magnetization (integrated along z) of the
lowest-energy solution for selected cases, indicated with the cor-
responding symbol in (a). Red (blue) regions are populated by
component 1 (2).

interstitials forms a superfluid [33] that resembles, to some
extent, the case of helium in a porous medium (although,
in contrast to that scenario, droplets of component 1 do not
form a rigid structure). The approximately triangular crys-
talline structure of the droplets is inherited as well by the
interstitial component 2, which builds hence a peculiar form
of supersolid. The coherence and spatial density modulation
of component 2 may be revealed in time-of-flight measure-
ments. Figure 4 shows the momentum distribution ñ2(kx, ky)
in the kz = 0 plane. The approximate triangular structure
[Fig. 4(a)] results in an hexagonal pattern in the ñ2 distribution
[Fig. 4(c)], although the above-mentioned variability of the
exact droplet arrangement may result in a significant shot-
dependent distortion [see Figs. 4(b) and 4(d)]. Note as well
that, due to the lack of any confinement on the xy plane, the
patterns spontaneously break the polar symmetry and hence
experience a random rotation from shot to shot. In any case,
as expected from the theory of roton immiscibility [27,30,34],
the interdroplet distance R is fixed by the oscillator length
az = √

h̄/mωz. For the case of Fig. 3, R � 3 az for all values of
N and ωz. This periodicity becomes evident from the average
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FIG. 4. [(a),(b)] Single-shot realizations of the column magnetization for a11 = 50 a0, a22 = 70 a0, N1,2 = 5 × 104, and ωz/2π = 1300 Hz.
Red (blue) regions are populated by component 1 (2). [(c),(d)] Corresponding momentum distribution for the second component, ñ2(kx, ky ) in
the kz = 0 plane, in the cases of (a) and (b), respectively. (e) Momentum distribution ñ2(kx, ky ) averaged over 10 different realizations.

of the momentum distribution over many realizations, which
shows a marked ring at 1/R, see Fig. 4(e).

For a fixed total number of particles, the cohesive energy
decreases when the droplet number grows, since lowering the
density reduces the intercomponent dipolar attraction. Even-
tually, at a critical frequency ωcr

z , the crystal unbinds, and
both components evaporate. The critical frequency (ωcr

z /2π �
1400 Hz for the case on Fig. 3) is approximately determined
as that for which the energy per particle reaches h̄ωz/2, cor-
responding to an infinitely spread solution on the xy plane.
Interestingly, when ωz approaches ωcr

z , mutual attraction may
still be enough to maintain a stable crystal, but insufficient
to bind the whole interstitial superfluid, which hence partially
evaporates, see Appendix B.

VI. SELF-BOUND STRIPE/LABYRINTHIC PATTERNS

Up to this point, we have considered a mixture with
markedly asymmetric intracomponent interactions. Interest-
ingly, when a11 � a22, the mixture arranges in a different
form of self-bound pattern (note that a11 = a22 if we con-
sider a mixture of two maximally stretched magnetic states
of the same atomic species). This is illustrated by the phase
diagram of Fig. 5(a), obtained for ωz/2π = 1200 Hz and
N1,2 = 5 × 104. For sufficiently large |a11 − a22|, we obtain
the above-mentioned droplet crystal [Fig. 5(b)], which, as
mentioned above, presents partial evaporation of the intersti-
tial component in the vicinity of the unbinding threshold. In
contrast, when a11 � a22 the mixture arranges in a labyrinthic
phase, with a large shot-to-shot variability, formed by stripes
with different orientations [Fig. 5(c)]. For lower trap frequen-
cies, the ground-state configuration is given by a well-defined
stripe crystal [Fig. 5(d)]. Note that in the labyrinthic/stripe
phase both components form mutually incoherent domains.

VII. SUMMARY AND OUTLOOK

Antiparallel dipolar mixtures allow for the formation
of crystals with a genuine cohesive energy that remain

self-bound in the absence of a transversal trap. The mutual
confinement stems from the attractive intercomponent inter-
actions, and results in incoherent stripe/labyrinthic crystals
in mixtures with symmetric intracomponent interactions, and
self-bound droplet crystals in asymmetric mixtures. The latter
are particularly interesting, since while one component forms
an approximately triangular array of incoherent droplets, the
other component builds a superfluid in the interstitials, form-
ing a peculiar form of supersolid that may be readily probed
using time-of-flight measurements. Although we have con-
sidered the particular example of a dysprosium mixture, our
results generally apply to other antiparallel magnetic or elec-
tric dipolar mixtures, including those of polar molecules.

FIG. 5. (a) Phase diagram for N1,2 = 5 × 104 and ωz/2π =
1200 Hz. Two different self-bound solutions are found: a droplet
crystal (D-CRYSTAL), illustrated in (b) for a11 = 50 a0 and a22 =
70 a0, and a stripe/labyrinthic (STR-LAB) phase, illustrated in
(c) for a11 = 55 a0 and a22 = 60 a0. The case of a well-defined stripe
phase is illustrated in (d), which has been evaluated for ωz/2π =
180 Hz, a11 = 80 a0, and a22 = 80 a0. In (b)–(d) we depict the col-
umn magnetization. Red (blue) regions are populated by component
1 (2).
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These kind of configurations are of current experimental
interest, given that antiparallel dipolar mixtures can be ex-
perimentally addressed in, for example, a dysprosium gas.
First, a dipolar condensate in the magnetic state |m = −8〉
should be created, and afterwards, part of the atoms should be
transferred to the |m = 8〉 state, using either optical pumping,
Raman or STIRAP techniques. After a brief equilibration
time, the trapping should be removed, in order to probe the
predicted self-bound nature.

The possibility of creating self-bound dipolar crystals
opens intriguing perspectives for future studies, including the
character of lattice excitations, which may remain self-bound
or result in phonon evaporation (resembling droplet evapora-
tion in nondipolar mixtures [5]), the probing (e.g., by vortex
formation) of the superfluidity of the interstitial component,

as well as in general the exploration of the dynamics of self-
bound crystals.
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FIG. 6. Shot-to-shot variability. Different droplet lattice configurations obtained for the same parameters a11 = 50 a0, a22 = 70 a0,
ωz/2π = 1200 Hz, N1,2 = 5 × 104. The plots show the column magnetization, with red (blue) indicating component 1 (2).
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APPENDIX A: SHOT-TO-SHOT VARIABILITY

There is a large shot-to-shot variability of the exact number
of droplets and their arrangement in the droplet crystal. We
illustrate this point with Fig. 6, where we show different con-
figurations for the same parameters a11 = 50 a0, a22 = 70 a0,
ωz/2π = 1200 Hz, and N1,2 = 5 × 104. The configurations,
which have an energy per particle E/N � 0.22 h̄ωz, differ in
energy by less than 1%, and have a number of droplets ranging
from 23 to 31.

Note that the droplet arrangement is only approximately
triangular, and the actual distribution, which is generally
nonuniform, may significantly depart from a triangular lattice.
This is reflected in the structure of the interstitial compo-
nent, which results in the distorted momentum distributions
depicted in Fig. 4 of the main text. A similar shot-to-shot
variability is observed in the stripe/labyrinthic phase.

APPENDIX B: EVAPORATION OF THE DROPLET
CRYSTAL

When ωz increases, the number of droplets grows and the
density decreases. As a result, the cohesive energy is reduced,
and the self-bound solution eventually unbinds. Figure 7
shows the energy per particle as a function of the trap fre-
quency for a11 = 50 a0, a22 = 70 a0, and N1,2 = 5 × 104. The
unbinding of the droplet crystal occurs approximately when
the energy per particle E/N reaches h̄ωz/2, which, for the case
of Fig. 7, occurs at ωcr

z /2π � 1400 Hz. Indeed, beyond that
value we do not find well defined self-bound solutions in our
simulations.

When ωz approaches ωcr
z , the crystal remains bound, but

the interstitial component may present partial evaporation.

FIG. 7. Energy per particle (blue circles) as a function of the
trap frequency for a11 = 50 a0, a22 = 70 a0, and N1,2 = 5 × 104. The
dashed line depicts the energy per particle (h̄ωz/2) corresponding to
an infinitely spread mixture on the xy plane. The red squares indicate
the proportion of atoms in component 2, which are evaporated (see
text).

In order to take this into account we considered absorbing
boundary conditions in our imaginary-time simulations. We
fixed a given radius ρc on the xy plane, such that the crystal
is well contained in a circle of radius ρ < ρc. Particles that
reach ρ > ρc during imaginary-time evolution are considered
as evaporated. We indicate in Fig. 7 the proportion of the
interstitial component that is evaporated, which as expected
grows when approaching ωcr

z . In the unbound regime, the
whole mixture eventually leaves (in imaginary time) the re-
gion ρ < ρc.
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