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Abstract
To achieve a resource-efficient automotive traffic, modern driver assistance systems minimize the vehicle’s energy demand 
through speed optimization algorithms. Based on predictive route data, the required energy for upcoming operation points 
has to be determined. This paper presents a method to predict the energy demand of a hybrid electrical vehicle. Within this 
method, data-based approaches, such as neural networks, Gaussian processes, and look-up tables, are applied and assessed 
regarding their ability to predict the behavior of separate powertrain parts. The applied approaches are trained using measured 
data of a test vehicle. As a result, for every separate powertrain part, the best-suited data-based approach is selected to obtain 
an optimal energy demand prediction method. On a validation data set, this method is able to predict the transmission ratio 
of the gearbox causing a rmse of 0.426. The combustion engine’s torque prediction results in an rmse of 19.01 Nm and the 
electric motor torque prediction to 19.11 Nm. The root mean square error of the motor voltage results to 1.211 V.

Keywords  Systems modeling · Energy demand prediction · Hybrid electrical vehicles

Introduction

Sustainability and resource efficiency are key challenges to 
reducing emissions and global warming. To achieve this, 
manufacturers aim to develop vehicles with the lowest pos-
sible energy consumption. The driver’s behavior plays a 
significant role in the vehicle’s energy demand [1]. Hence, 
increasing vehicle control automation, while maintaining the 
drivers preferences in driving dynamics, offers a high poten-
tial to reduce energy demand [2, 3]. Energy-efficient driving 
automation is part of current research [4]. A well-established 
procedure is to plan and optimize the vehicle’s speed trajec-
tory for the upcoming route section. A common approach is 
to use a dynamic programming (DP) algorithm for the opti-
mization process [5]. Within this process, an energy model 

of the vehicle is used to predict the energy demand based on 
predictive route data.

State of the Art and Related Work

The application of a DP-based optimization approach within 
a risk-sensitive nonlinear model predictive controller is 
shown in [6]. This increases energy efficiency by 21% for an 
electric vehicle. An approach to predict the energy demand 
of hybrid electric vehicles with a series drive configuration 
is presented by [7]. For more complex hybrid drive concepts, 
the literature mainly provides research works that are based 
on energy management strategies [8, 9]. These strategies 
are not suited to be applied within route data-based speed-
optimizing algorithms. They rely on adjusting the torque 
distribution between the combustion engine and electric 
motor based on measured internal states of both engines. 
The prediction of all internal engine states required for 
these strategies is very challenging and would result in high 
model complexities and enormous computing effort [10]. 
Addressing this problem, [11] presented a hybrid vehicle 
energy consumption model which is capable of determining 
the consumed amount of fuel. However, the required energy 
demand of the electric drive train part is not considered.
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Previous Work on Energy Demand Prediction

In [12], we presented a method to predict the energy demand 
of a hybrid electric vehicle, in which the electric and com-
bustion energy demand is predicted separately. It is based 
on modeling the behavior of the separate drive train compo-
nents and can be used within speed optimization algorithms 
for driver assistance systems. For this purpose, a solution 
space with discrete vehicle states is formed. A vehicle state 
k within this solution space is defined by the vehicle speed 
vk , the state of charge (SOC) sc,k , the geographical height hk 
and route position from which the distance Δdk between to 
states can be derived. To optimize the vehicle’s speed, every 
state transition is evaluated by a cost function in which the 
presented energy demand prediction method is applied. Fig-
ure 1 illustrates the structure of the existing energy demand 
prediction method which can be described as follows: the 
required torque for a state transition is determined by the 
height and speed differences as well as by the route distance 
to overcome, using a longitudinal vehicle model [13]. In 
parallel hybrid electric powertrains, the torque of the two 
engines cannot be derived directly from the required wheel 
torque. This torque and the drive shaft speed rely on the 
behavior of the gearbox as well as on the torque distribution 

mechanism. With the torque of the electric motor TEM,k and 
the torque of the combustion engine TCE,k the energy demand 
for the combustion engine and the required electric power of 
the electric motor can be determined considering the drive 
shaft speed. From the estimated SOC sc,k the energy demand 
of the electric powertrain can be derived. The sum of the 
combustion and electrical energy consumption results in 
the total energy demand. Using this method to predict the 
energy demand, a real-time capable optimization process is 
obtained, that can be applied online on a vehicle’s control 
unit, as shown in [14].

However, the computing resources of a vehicle’s control 
unit are limited. Therefore, the energy demand prediction 
method within the optimization algorithm mainly relies on 
identified lookup tables when estimating the behavior of the 
powertrain components.

Contribution in this Paper

In this paper, we aim to improve the energy demand predic-
tion model independently from the in-vehicle computational 
constraints, for a wider range of applications, e.g. for offline 
energy-related route assessments in navigation algorithms. 
Therefore, we present data-based approaches to predict the 
behavior of the separate drive train parts. To the best of the 
authors’ knowledge, these approaches have not been applied 
and combined for this purpose. In particular, we investi-
gate on the prediction of the gearbox and torque distribu-
tion behavior as well as the motor voltage, as these predic-
tions cause the largest errors within the existing method. 
We compare feed-forward neural networks and Gaussian 
processes with a lookup table-based prediction, presented 
in [12]. Using measured CAN data, all different prediction 
approaches are validated for a Volkswagen Golf VII GTE.

The paper is organized as follows: the next section gives 
a short summary on the existing energy demand predic-
tion method, presented in [12], followed by the data-based 
approaches to be investigated for the prediction of separate 
drive train components. In the penultimate section, the pre-
diction results of the different approaches are evaluated, 
regarding the prediction accuracy and computational com-
plexity. Finally, the results are concluded.

Data‑Based Prediction Approaches

In [12], the prediction of the transmission behavior, the 
torque distribution and the motor voltage show the highest 
error margin. In this chapter, we propose further data-based 
approaches to estimate the behavior of the corresponding 
powertrain parts, aiming to increase the accuracy of the 
energy demand prediction.

Torque requirements

Transmission

Torque distribution

CEEM

Battery

Energy demand

Tw,k
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TCM,kTEM,k
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Fig. 1   Structure of the prediction approach [12]
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Transmission Estimation

The dual-clutch transmission is a main element in the pre-
diction process, as the operation points of the combustion 
engine and the electric motor directly depend on its behavior. 
To model the gear selection process, the transmission factor 
i∗
t,k

 is estimated depending on the vehicle speed v∗
k
 and the 

wheel torque Tw,k for every operation point, using weighted 
basis functions Φi and Φj , as described in [15]:

A basis functions Φq is defined to be a linear function that 
equals 1 at a grid point cq while it is 0 at all other grid points, 
as declared by

The real transmission factor can be calculated according to 
the measured vehicle speed v∗

k
 and drive shaft speed n∗

d,k
 by

which is used to determine the optimal set of weights, by

To further improve the model, we examined additional 
inputs. One key aspect of the switching strategy of the trans-
mission is the accelerator pedal. The pedal’s position signal 
is used in the transmission control unit to adapt the shift 
strategy. However, as the position of the accelerator pedal 
cannot be used in the energy demand prediction model, we 
use the vehicles acceleration ak as an addition input value. 
This leads to the expansion of equation (1) by the accel-
eration basis function Φl , changing the transmission factor 
estimation to

We defined the grid c to consist of Mt = 23 grid points of �i 
for the drive wheel torque Tw , Nt = 21 grid points �j for the 
vehicle speed v∗

k
 and Ot = 7 grid points of �j . Finally the new 

set of weights wt,opt is calculated according to equation (4).

(1)it,k(Tw,k, vk) =

Mt∑
i=1

Nt∑
j=1

wt,i,jΦi(Tw,k, �i)Φj(vk, �j).

(2)Φq(u, c) =

⎧
⎪⎨⎪⎩

u−ci−1

ci−ci−1
, if ci−1 ≤ u ≤ ci

u−ci+1

ci−ci+1
, if ci < u ≤ ci+1

0, otherwise.

(3)i∗
t,k

=
n∗
d,k

nw,k
=

2 ⋅ � ⋅ rd ⋅ n
∗
d,k

60 ⋅ v∗
k

,

(4)wt,opt = argmin
w

1

L

L∑
k=1

(it,k − i∗
t,k
)2.

(5)

it,k(Tw,k, vk, ak)

=

Mt∑
i=1

Nt∑
j=1

Ot∑
l=1

wt,i,jΦi(Tw,k, �i)Φj(vk, �j)Φl(ak, �l).

Torque Distribution

The torque distribution determines the composition of the 
required total drive torque. A complex control algorithm 
assigns the torque to the corresponding drive or to the brak-
ing system depending on the driving situation. While decel-
eration the required torque is applied by a combination of the 
braking system and the recuperative electric motor. During 
driving stage the required drive shaft torque is provided by 
the electric motor and the combustion engine.

In [12], this behavior is modeled, by separately consider-
ing driving state and deceleration state. The deceleration 
state is defined by a negative total drive shaft torque Tt,k , in 
which the electric motor torque TEM,k can be estimated with 
regard to the state of charge sc,k , using

To model the torque distribution during the driving state, a 
distribution ratio rk between the torque of the combustion 
engine TCE,k and electric motor torque TEM,k is introduced. 
The distribution ratio rk is used to predict the torque applied 
by both power units with regard to the previous SOC sc,k , the 
total drive shaft torque Tt,k and the vehicle speed vk.

This approach indicates a reasonable fit on the overall 
distribution behavior. However, the estimated electric motor 
torque deviates from the measurements during the driving 
state when the combustion engine is running. In these phases 
the electric motor applies a negative torque on the driveshaft 
while the combustion engine provides the requested torque 
and an additional torque corresponding to the electric motor 
torque. This is called load point adjustment, because the load 
point of the engine is shifted through the additional elec-
tric motor torque. While the measurements show a negative 
electric motor torque, the torque distribution model often 
predicts no torque or a positive one for the electric motor. To 
include this behavior in the prediction model, we introduce 
a new approach for the driving state. The distribution factor 
rk is defined as

and predicted depending on the total drive shaft torque Tt,k , 
the vehicle velocity v∗

k
 and the state of charge sc,k , as shown 

in [12].
Instead of estimating the distribution factor based upon 

weighted basis function, a feed-forward neural network as 
introduced by [15] is used. The feed-forward neural network 
uses a fully connected, 2 layered structure with 95 neurons 
for the first hidden layer and 40 neurons for the second 

(6)

TEM,k(Tt,k, sc,k)

=

MEM∑
i=1

NEM∑
j=1

wEM,i,jΦi(Tt,k, �i)Φj(sc,k, �j).

(7)rk =
TCE,k

Tt,k
,



	 SN Computer Science           (2024) 5:192   192   Page 4 of 7

SN Computer Science

hidden layer. For the activation function of the neurons, a 
sigmoid function is chosen.

Neural networks are structured in different category’s, 
each having their own field of application. They can be 
separated into feed forward neural networks or multi-layer 
perceptron networks [15], convolution neural networks and 
recurrent neural networks. Due to the optimization process 
we can only use data from a single time step. Since convolu-
tion neural networks use time series data to compute the con-
volution and recurrent neural networks save previous hidden 
layer states [16], these neural networks are not feasible for 
the application in the optimization process.

Assuming that the load point adjustments torque depends 
on the already applied engine torque, a load point ratio rlpa,k 
is defined as

To integrate the load point adjustment into the engine torque 
prediction, a separate feed-forward neural network is trained 
upon rlpa , using a fully connected, 2 layered structure with 50 
neurons in the first layer and 40 neurons in the second layer. 
The neural network uses a sigmoid as activation function. 
Since a torque distribution factor above 1 would also act as 
load point adjustment, rk has to be limited at 1. Therefore, 
the combustion engine torque is predicted as follows:

According to the assumption that the total drive shaft torque 
is always fully distributed between the combustion engine 
and the electric motor, the electric motor torque can be esti-
mated as

Motor Voltage

The motor voltage is a key variable to predict the state of 
charge. The previous approach, based on a polynomial equa-
tion, led to a significant deviation. In [12], the polynomial 
equation to predict the motor voltage is proposed as follows:

Using a least square algorithm, the error minimizing param-
eter set pUEM

 was found, based on measured motor voltage 
values of the identification data.

(8)rlpa,k =
TEM,k

TCE,k
.

(9)TCE,k =

{
rk(Tt,k, vk, sc,k)Tt,k, if rk < 1

(1 − rlpa)(Tt,k, vk, sc,k)Tt,k, if rk ≥ 1.

(10)TEM,k = Tt,k − TCE,k.

(11)

UEM,k(sc,k−1, TEM,k) = pUEM,1

+ pUEM,2
⋅ s2

c,k−1
+ pUEM,3

⋅ sc,k−1

+ pUEM,4
⋅ T2

EM,k
+ pUEM,5

⋅ TEM,k.

In this work, we introduce a Gaussian process regression 
model (GPR) [17], which is used to predict the motor volt-
age UEM based on the electric motor’s torque TEM,k , rotational 
speed nEM,k and on the current SOC sc,k of the battery. For 
training the GPR the identification data set shown in [12] was 
used. A GPR model predicts the value of the response variable 
ynew , given the new input vector xnew , and the training data. A 
linear regression model is of the form:

where � ∼ N(0, �2) . The error variance �2 and the coef-
ficients � are estimated form the identification data. The 
response is explained by latent variables, f (xi), i = 1, 2, ..., n , 
and explicit basis functions h. The latent variables are not 
directly observed but are inferred through a Gaussian pro-
cess (GP). The basis function projects the inputs x into a 
p-dimensional feature space.

A GP is defined by its covariance function k(x, x�) and its 
mean function m(x). If {f (x), x ∈ ℝ

d} is a GP, E(f (x)) = m(x) 
and

Now assume the model of the form:

where f (X) ∼ GP(0,K(x, x�)) . f(x) are from a zero mean GP 
with covariance function k(x, x�) . h(x) are a set of basis func-
tions that transform the original feature vector x in ℝd into 
a new vector x in ℝp . � is a p − by − 1 vector of basis func-
tion coefficients. An example of response y can be modeled 
as P(yi ∣ f (xi), xi) ∼ N(yi ∣ h(xi)

T� + f (xi), �
2) . Thus, a GPR 

model is a probabilistic model. A latent function f (xi) is 
introduced for each observation xi , which makes the GPR 
model non-parametric. In vector form, the model is equiva-
lent to

where

The joint distribution of latent functions f (x1), f (x2), ..., f (xn) 
in the GRP model is as follows:

(12)y = xT� + �,

(13)
Cov[f (x), f (x�)] = E[{f (x) − m(x)}{f (x�) − m(x�)}]

= k(x, x�).

(14)h(x)T = �,

(15)P(y ∣ f ,X) ∼ N(y ∣ H� + f , �2I),

(16)X =

⎛⎜⎜⎜⎝

xT
1

xT
2

⋮

xT
n

⎞⎟⎟⎟⎠
, y =

⎛⎜⎜⎜⎝

y1
y2
⋮

yn

⎞⎟⎟⎟⎠
, H =

⎛⎜⎜⎜⎝

h(xT
1
)

h(xT
2
)

⋮

h(xT
n
)

⎞⎟⎟⎟⎠
, f =

⎛⎜⎜⎜⎝

f (x1)

f (x2)

⋮

f (xn)

⎞⎟⎟⎟⎠
.

(17)P(f ∣ X) ∼ N(f ∣ 0,K(X,X)).
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For the covariance function k(x, x�) an ARD squared expo-
nential [17] with separate length scales for each predictor 
[18] is used.

The GPR Model was trained by the same identification 
data set as the polynomial model proposed in [12] which 
contained 83% of the driving sequences in the data set. 
Inputs of the GPR are the electric motor’s torque TEM,k the 
vehicle’s speed vk and the battery’s SOC sc,k.

Results

To assess the presented approaches, the same data set is 
used as presented in [12]. The computational performance 
of the prediction is tested on an Intel Core i5-7600 CPU with 
3.5GHz . To validate the subsystems, a 6-fold cross valida-
tion is performed by splitting the data set into 6 separate 
parts. 5 of these parts are used to train the systems, while 
the remaining part is preserved for the validation. In Fig. 2, 
the speed profile of one validation drive sequence is shown.

Transmission Factor

In Fig. 3, the transmission factor prediction is shown. Here, 
isvt is the predicted value using the approach presented in 
[12], while iasvt is predicted using proposed approach of 
including additional acceleration input values, as defined 
in (5). The predictions are compared to the actual transmis-
sion factor i∗ which can be calculated based on measured 
rotational drive shaft speed data, using equation (3). The 

average root mean square error of the transmission model 
that additionally uses acceleration inputs results to 0.4263. 
Compared to the previous rmse of 0.407, a slight decrease 
in accuracy can be observed.

An additional effect of the added dimension is the 
increase in prediction time from 8 to 23 μ s. Hence, the 
additional consideration of the acceleration is not benefi-
cial for the transmission factor prediction and is not further 
considered.

Torque Distribution

To evaluate the torque distribution model, the predicted 
torque of the combustion engine and the electric motor is 
compared with the measured CAN data. The averaged root 
mean square error results in 19.01Nm for the combustion 
engine torque in a range of 0Nm to 250Nm . For the electric 
motor torque in 19.11Nm in a range of −330Nm to 330Nm . 
The previous rmse is 17.33Nm for the combustion engine 
torque and 23.11Nm for the electric motor torque. Com-
pared with another, the combustion engine’s rmse increased, 
while the electric motor’s rmse decreased. Figure 4 shows 
the total driveshaft torque Tt of the validation sequence.

Figure 6 shows the prediction of the combustion engine 
torque using the neural network approach TCE,NN and the 
prediction using weighted basis function TCE,WBF . Figure 5 
shows the prediction of the electric motor torque using the 
neural network approach TEM,NN and the prediction using 
the weighted basis function approach TEM,WBF . Each figure 
compares the prediction with their measured equivalent T∗

CE,k
 

and T∗
EM,k

 . The predictions show a reasonable, overall fit. The 

Fig. 2   Vehicle speed profile

Fig. 3   Transmission factor prediction and measurement

Fig. 4   Total driveshaft torque measurement

Fig. 5   Electric motor torque prediction and measurement
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combustion engines torque deviates just slightly, while the 
engine is running and the predicted electric motor torque 
shows a better fit during the load point adjustment, as shown 
in Fig. 5.

The extra torque required by the electric motor at the 
starting phases of the combustion engine can still not be 
met, as indicated by the positions 230 m, 1300 m and 4450 
m. Furthermore, both torque distribution model indicate 
inaccuracies when predicting the combustion engine torque 
between 3900 m and 4150 m.

Even if the rmse of the combustion engine torque is 
higher than before, the increasing accurate of the electric 
motor torque prediction is beneficial, as the SOC is predicted 
based on this value [12]. The predicted SOC values are used 
in the transmission model as well as in the torque distribu-
tion model, which recursively affect the predictions in the 
following steps. Therefore, a more accurate prediction of 
the electric motor torque has a greater effect on the overall 
accuracy of the energy demand model.

Motor Voltage

The predicted motor voltage UEM is evaluated based on the 
measured electric motor torque T∗

EM,k
 , the vehicle’s speed 

v
∗

k
 and the battery’s SOC s∗

c,k
 . Figure 7 illustrates the meas-

ured motor voltage U∗
EM

 , the voltage predicted by the GPR 
UEM,GPR and the voltage predicted by the polynomial model 
UEM, Poly . It is noticeable that the curve of UEM,GPR follows 
the curve of the measured voltage better. The voltage rmse 

results to 1.211 V compared to the former 1.738 V in a value 
range of 320–400 V. The GPR model returns a clearly better 
result for the motor voltage but indicated by a 30% decrease 
of the prediction error. However, it leads to a significant 
increase of prediction time. While the polynomial model 
needed 0.266 ns to compute a single prediction, the GPR 
model needed 5.464 ms . To further use the GRP model in the 
application it needs to be reviewed if the increased predic-
tion time is acceptable to increase the accuracy of the energy 
demand prediction or if the time loss is too significant.

Conclusion

In this paper, several data-based approaches have been 
introduced to further improve an energy demand prediction 
model for a hybrid electrical vehicle, based on route data and 
speed values, proposed in [12]. In particular, the improve-
ment of the prediction of the transmission factor, the torque 
distribution and the motor voltage was addressed. A data set 
of 525 driven kilometers was used to identify and validate 
the advanced prediction approaches on a Volkswagen VII 
GTE. The data set contains drive sequences of distances 
between 5 and 7 km.

The model to predict the transmission factor was 
expended to 3 inputs to investigate the effect of an additional 
consideration of the acceleration. This expansion resulted in 
an increase of the prediction error by 4.7%.

To consider the load point adjustment of the hybrid elec-
trical drive train, the torque distribution ratio is estimated 
by a feed-forward neural network, based on the total drive 
torque, the vehicle speed and the previous state of charge. 
Here, the prediction error for the combustion engine torque 
increased by 9.7% while the prediction error of the electric 
motor torque decreased 17.3%.

For the electric part of the powertrain, the motor voltage 
was estimated by an polynomial equation in [12], based on 
the electric motor torque and the battery’s state of charge. 
In this work, a Gaussian process regression model that led 
to a minor root mean square error of 1.211 V was addi-
tionally presented. While the prediction accuracy of new 
model increased by 50% , the computation time increased by 
roughly twenty thousand times. Hence, a practical use of the 
new model is not guaranteed.

The prediction inaccuracies of the single powertrain com-
ponents have been improved. In addition, future work will 
investigate approaches to enhance the prediction of other 
powertrain components. In addition, it is investigated how 
proposed improvement affect the corresponding state of 
charge prediction.
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Fig. 7   Motor voltage prediction and measurement
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