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Abstract
Energy minimizers to a MEMS model with an insulating layer are shown to converge in its
reinforced limit to the minimizer of the limiting model as the thickness of the layer tends to
zero. The proof relies on the identification of the �-limit of the energy in this limit.
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1 Introduction

A microelectromechanical system (MEMS), such as an electrostatic actuator, consists of
an elastic plate, which is coated with a thin dielectric layer, clamped on its boundary, and
suspended above a rigid ground plate. The latter is also coated with a dielectric layer but
with positive thickness δ > 0, see Figs. 1 and 2. Applying a voltage difference between the
two plates generates a Coulomb force across the device and induces a deformation of the
elastic plate, thereby changing the geometry of the device and converting electrostatic en-
ergy to mechanical energy through a balance between electrostatic and mechanical forces
[2, 3, 8, 22]. Assuming that the physical state of the MEMS device is fully described by the
vertical deflection u of the elastic plate and the electrostatic potential ψ inside the device,
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Fig. 1 Geometry of �δ(u) for a state u with empty coincidence set C(u)

Fig. 2 Geometry of �δ(u) for a state u with non-empty coincidence set C(u)

a mathematical model is derived in [15]. It characterizes equilibrium configurations of the
device as critical points of the total energy which is the sum of the mechanical and elec-
trostatic energies, with an additional constraint stemming from the property that the elastic
plate cannot penetrate the layer covering the ground plate. Specifically, ignoring variations
in the transverse horizontal direction, we consider a two-dimensional MEMS in which the
rigid ground plate and the undeflected elastic plate have the same one-dimensional shape
D := (−L,L) with L > 0. The ground plate is located at height z = −H − δ, where H > 0,
and is coated with a dielectric layer

Rδ := D × (−H − δ,−H)

of positive thickness δ. The vertical deflection u of the elastic plate from its rest position at
z = 0 is a function from D to [−H,∞) with u(±L) = 0, so that the elastic plate is described
by the graph {(x,u(x)) : x ∈ D} of the function u. Observe that the required lower bound
u ≥ −H on u is due to the assumption that the elastic plate cannot penetrate the dielectric
layer Rδ , while the boundary conditions u(±L) = 0 reflect the fact that the elastic plate is
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clamped on its boundary. We then define

�(u) := {(x, z) ∈ D ×R : −H < z < u(x)}
as the free space between the elastic plate and the top of the dielectric layer and denote the
interface separating the free space and the dielectric layer by

�(u) := {(x,−H) : x ∈ D, u(x) > −H } .

As for the electrostatic potential ψ , it is defined in the full device

�δ(u) := {(x, z) ∈ D ×R : −H − δ < z < u(x)} = Rδ ∪ �(u) ∪ �(u) .

It is worth mentioning at this point that the geometry of the full device �δ(u) has different
properties according to the minimal value of u. Indeed, the free space �(u) is connected
and �(u) = D × {−H } when minD u > −H , while it is disconnected when minD u = −H ,
which corresponds to a touchdown of the elastic plate on the dielectric layer Rδ on the
coincidence set

C(u) := {x ∈ D : u(x) = −H } , (1.1)

see Figs. 1 and 2. In the model derived in [15], equilibrium configurations of the above
described MEMS device are critical points of the total energy given by

Eδ(u) := Em(u) + Ee,δ(u) . (1.2)

In (1.2), Em(u) is the mechanical energy

Em(u) := β

2
‖∂2

xu‖2
L2(D) +

(τ

2
+ a

4
‖∂xu‖2

L2(D)

)
‖∂xu‖2

L2(D)

with β > 0, a ≥ 0, and τ ≥ 0, and includes bending and external stretching effects of the
elastic plate. The electrostatic energy is

Ee,δ(u) := −1

2

∫

�δ(u)

σδ|∇ψu,δ|2 d(x, z) ,

with σδ denoting the permittivity of the device (see (2.1a), (2.1b) below), and ψ = ψu,δ is
the electrostatic potential satisfying the transmission problem

div(σδ∇ψu,δ) = 0 in �δ(u) , (1.3a)

�ψu,δ� = �σδ∂zψu,δ� = 0 on �(u) , (1.3b)

ψu,δ = hu,δ on ∂�δ(u) . (1.3c)

Here, �·� denotes the jump of a function across the interface �(u). The boundary values of
the electrostatic potential are prescribed by a function hu,δ which satisfies the assumptions
listed below in (3.1a)–(3.1l). A specific example, when σ does not depend on the vertical
coordinate z, is

hu,δ(x, z) =

⎧⎪⎪⎨
⎪⎪⎩

1 + σ(x)(H + z)

1 + σ(x)(H + u(x))
, (x, z) ∈ D̄ × [−H,∞) ,

1

δ

z + H + δ

1 + σ(x)(H + u(x))
, (x, z) ∈ D̄ × [−H − δ,−H ] .

(1.4)
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Since the elastic plate is clamped at the boundary and cannot penetrate the dielectric layer
Rδ , the set of admissible deflections is

S̄0 := {
u ∈ H 2

D(D) : u ≥ −H in D
}

,

where

H 2
D(D) := {

u ∈ H 2(D) : u(±L) = ∂xu(±L) = 0
}
.

Equilibrium configurations of the MEMS device are then critical points u ∈ S̄0 of the total
energy Eδ . Their analysis involves the associated transmission problem (1.3a)–(1.3c) solved
by the electrostatic potential ψu,δ . A natural question is what happens when the thickness δ

of the dielectric layer tends to zero, in particular, whether the reduced model derived in this
limit retains the dielectric inhomogeneity of the device. When the dielectric permittivity σδ

of the device does not depend on δ, the influence of the dielectric layer is lost in the limit
δ → 0, and the reduced model is obtained simply by setting δ = 0 in (1.2) and (1.3a)–(1.3c),
discarding the jump condition (1.3b) which is then meaningless. Building upon the outcome
of [1, 5], it turns out that it is rather the reinforced limit, where the dielectric permittivity
scales as δ in the layer Rδ , which leads to a relevant reduced model. For a given deflection
u ∈ S̄0, the reinforced limit of the transmission problem (1.3a)–(1.3c) is identified in [18] by
a �-convergence approach. More precisely, it is shown in [18] that the reinforced limit as
δ → 0 of (1.3a)–(1.3c) is

div(σ∇ψu) = 0 in �(u) , (1.5a)

ψu = hu on ∂�(u) \ �(u) , (1.5b)

−∂zψu + σ(ψu − hu) = 0 on �(u) ; (1.5c)

that is, in the reinforced limit the electrostatic potential ψu solves Laplace’s equation in
�(u) with a Robin boundary condition along the interface �(u) and a Dirichlet condition
on the other boundary parts. Here, σ := σδ1�(u) is assumed to be independent of δ. The total
energy is then given by

E(u) := Em(u) + Ee,0(u) , (1.6)

where

Ee,0(u) := −1

2

∫

�(u)

σ |∇ψu|2 d(x, z)

− 1

2

∫

D

σ(x,−H)
∣∣ψu(x,−H) − hu(x)

∣∣2
dx

and hu is defined below in (3.1l).
The purpose of this research is to complete the outcome of [18] by identifying the rein-

forced limit of the full model and showing that, in this limit, if u∗
δ ∈ S̄0 is a minimizer of Eδ

in S̄0 for each δ ∈ (0,1), then the cluster points of (u∗
δ )δ∈(0,1) in L2(D) are minimizers of the

reduced total energy E in S̄0. The main tool we shall employ in the forthcoming analysis is
the theory of �-convergence. We shall actually show that, under suitable assumptions on the
dielectric permittivity σδ and the boundary values in (1.3a)–(1.3c), the �-limit in L2(D) of
(Eδ)δ∈(0,1) is the reduced total energy E defined in (1.6).
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Let us finally remark that, in this paper, we focus on the energy approach to take into
account the influence of the thickness of a dielectric layer as first developed in [14] for a
related model. We refer to [3, 19–21] for alternative approaches to model dielectric layers,
all designed within the so-called small aspect ratio approximation. Recall that, in the latter,
the electrostatic potential is given explicitly as a function of the deflection u and the model
then reduces to a single equation for u. Such models have been extensively studied in the
last decades in the mathematical literature since the pioneering works of [4, 9, 11, 21], see
the book [7], the survey [13] and the references therein.

2 Convergence of Minimizers

As already mentioned, the reinforcement limit requires that the permittivity σδ in the dielec-
tric layer Rδ scales with the layer’s thickness; that is, the (scaled) permittivity of the device
is given in the form

σδ(x, z) :=
{

δσ (x, z) , (x, z) ∈ Rδ ,

1 , (x, z) ∈ D × (−H,∞) ,
(2.1a)

for δ ∈ (0,1), where σ ∈ C2(D̄ × [−H − 1,−H ]) is a fixed function with

σ(x, z) > 0 , (x, z) ∈ D̄ × [−H − 1,−H ] . (2.1b)

With this specific form of σ , we can show that cluster points as δ → 0 of minimizers of
the total energy Eδ on S̄0 are minimizers of the reduced total energy E. More precisely:

Theorem 2.1 Suppose that the dielectric permittivity satisfies (2.1a), (2.1b) and that the
assumptions on the boundary values in (1.3c) are given by (3.1a)–(3.1l) below. For δ ∈ (0,1)

let u∗
δ ∈ S̄0 be any minimizer of Eδ on S̄0 with corresponding electrostatic potential ψu∗

δ ,δ

satisfying (1.3a)–(1.3c). Then

sup
δ∈(0,1)

‖u∗
δ‖H 2(D) < ∞ and sup

δ∈(0,1)

‖ψu∗
δ ,δ‖H 1(�(u∗

δ )) < ∞ ,

and there are a subsequence δj → 0 and a minimizer u∗ ∈ S̄0 of E on S̄0 such that

lim
j→∞

∥∥u∗
δj

− u∗∥∥
H 2(D)

= 0

and

lim
j→∞

Eδj (u
∗
δj

) = E(u∗) .

Moreover, for M > 0 such that −H ≤ u∗
δ ≤ M − H a.e., we have

ψu∗
δj

,δj − hu∗
δj

⇀ ψu∗ − hu∗ in H 1(D × (−H,M)) ,

where ψu∗ satisfies (1.5a)–(1.5c) (with u replaced by u∗).

As we shall see below, the main step in the proof of Theorem 2.1 is the �-convergence of
the sequence (Eδ)δ∈(0,1) in L2(D) to E which is established in Sect. 4. We then combine this
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property with estimates on the minimizers of Eδ on S̄0, which do not depend on δ ∈ (0,1)

and are derived in Sects. 4.3-4.4 to complete the proof.
Let us finally point out that the assumptions (2.1a), (2.1b) and (3.1a)–(3.1l) on the per-

mittivity σδ and the boundary conditions hu,δ guarantee that, for each δ ∈ (0,1), the total
energy Eδ defined in (1.2) has at least one minimizer u∗

δ ∈ S̄0; that is,

Eδ(u
∗
δ ) = min

S̄0

Eδ , (2.2)

see [16, Theorem 1.3]. Actually, the corresponding electrostatic potential ψu∗
δ ,δ ∈

H 1(�δ(uδ)) is a strong solution to the transmission problem (1.3a)–(1.3c) in the sense
that ψu∗

δ ,δ|Rδ
∈ H 2(Rδ) and ψu∗

δ ,δ|�(u∗
δ ) ∈ H 2(�(u∗

δ )), this regularity property being in fact
true for any u ∈ S̄0 [15, 16].

As for the reduced total energy E, the existence of minimizers of E on S̄0 has already
been established in [17, Theorem 2.3] by a direct approach, assuming additionally that

∂zh(x,−H,w) = σ(x)
[
h(x,−H,w) − h(x,w)

]
(2.3)

for (x,w) ∈ D × [−H,∞), besides (3.1a)–(3.1l) below. Theorem 2.1 then extends the ex-
istence of minimizers of E on S̄0 to the situation where (2.3) does not hold. However,
it does not provide the H 2-regularity of the associated electrostatic potential ψu∗ solving
(1.5a)–(1.5c), which is shown to be true in [17, Theorem 2.2] under the assumptions (2.3)
and (3.1a)–(3.1l).

3 Assumptions and Auxiliary Results

This section is devoted to a precise definition of the boundary conditions (1.3c) and (1.5c),
and includes as well useful properties of hu,δ on which we rely on in the sequel.

3.1 Boundary Data

We fix two C2-functions

hb : D̄ × [−H − 1,−H ] × [−H,∞) →R (3.1a)

and

h : D̄ × [−H,∞) × [−H,∞) →R (3.1b)

satisfying

hb(x,−H,w) = h(x,−H,w) , (x,w) ∈ D̄ × [−H,∞) , (3.1c)

σ(x,−H)∂zhb(x,−H,w) = ∂zh(x,−H,w) , (x,w) ∈ D̄ × [−H,∞) . (3.1d)

We then define for (x,w) ∈ D̄ × [−H,∞)

hδ(x, z,w) :=
⎧
⎨
⎩

hb

(
x,−H + z + H

δ
,w

)
, z ∈ [−H − δ,−H) ,

h(x, z,w) , z ∈ [−H,∞) ,

(3.1e)
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and observe that hδ ∈ C(D̄ × [−H − δ,∞) × [−H,∞)) by (3.1c).
In order to guarantee the coercivity of the energy functional Eδ we require that there is a

constant m > 0 such that

|∂xhb(x, z,w)| + |∂zhb(x, z,w)| ≤
√

m(1 + w2) ,

|∂whb(x, z,w)| ≤ √
m,

(3.1f)

for (x, z,w) ∈ D̄ × [−H − 1,−H ] × [−H,∞) and

|∂xh(x, z,w)| + |∂zh(x, z,w)| ≤
√

m(1 + w2)

H + w
,

|∂wh(x, z,w)| ≤
√

m

H + w
,

(3.1g)

for (x, z,w) ∈ D̄ × [−H,∞) × [−H,∞). Moreover, we assume that

∂whb(x,−H − 1,w) = 0 , (x,w) ∈ D̄ × [−H,∞) , (3.1h)

and that there is K > 0 such that, for (x,w) ∈ D̄ × [−H,∞),

|∂xh(x,w,w)| + |∂zh(x,w,w) + ∂wh(x,w,w)| ≤ K . (3.1i)

Given a function u : D̄ → [−H,∞) we shall also use the abbreviations

hu,δ(x, z) := hδ(x, z,u(x)) , (x, z) ∈ �δ(u) , (3.1j)

and

hu(x, z) := h(x, z,u(x)) , (x, z) ∈ �(u) . (3.1k)

Furthermore, we set

hu(x) := hu(x,−H) := hb(x,−H − 1, u(x)) , x ∈ D̄ . (3.1l)

Note that (3.1c)-(3.1d) imply that hu,δ satisfies the transmission conditions (1.3b):

�hu,δ� = �σδ∂zhu,δ� = 0 on �(u) .

Simple computations show that the example provided in (1.4) satisfies (3.1a)–(3.1l) with

hb(x, z,w) = z + H + 1

1 + σ(x)(H + w)

for (x, z,w) ∈ D̄ × [−H − 1,−H ] × [−H,∞) and

h(x, z,w) = 1 + σ(x)(H + z)

1 + σ(x)(H + w)

for (x, z,w) ∈ D̄ × [−H,∞) × [−H,∞).
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3.2 Auxiliary Results

We begin with some properties of the function hu,δ that we derive from assumptions (2.1a),
(2.1b), (3.1a)–(3.1l) imposed above. For further use, we set

σmax := 1 + max
D̄×[−H−1,−H ]

σ .

Lemma 3.1 Assume (2.1a), (2.1b) and (3.1a)–(3.1l).
(i) There is a constant c0 > 0 depending on m, L, and σmax such that, given u ∈ S̄0 and
δ ∈ (0,1),

∫

�δ(u)

σδ|∇hu,δ|2 d(x, z) ≤ c0

(
1 + ‖u‖2

L2(D) + ‖∂xu‖2
L2(D)

)
. (3.2)

(ii) Suppose that uδ → u in H 1(D) as δ → 0 and that −H ≤ uδ in D. Then

M := sup
δ∈(0,1)

‖uδ‖L∞(D) < ∞

and, as δ → 0,

huδ,δ → hu in H 1(D × (−H,M)) , (3.3a)

huδ
→ hu in L2(D) , (3.3b)

huδ
(.,−H) → hu(.,−H) in L2(D) . (3.3c)

Moreover,

lim
δ→0

∫

�(uδ)

|∇huδ,δ|2d(x, z) =
∫

�(u)

|∇hu|2d(x, z) . (3.3d)

Proof (i) Using (2.1a), (3.1e), (3.1j), and the definition of �δ(u) we have

∫

�δ(u)

σδ|∇hu,δ|2 d(x, z)

=
∫

�(u)

|∂xh(x, z,u(x)) + ∂xu(x)∂wh(x, z,u(x))|2 d(x, z)

+
∫

�(u)

|∂zh(x, z,u(x))|2 d(x, z)

+ δ

∫

Rδ

σ (x, z)

∣∣∣∣∂xhb

(
x,−H + z + H

δ
,u(x)

)

+∂xu(x)∂whb

(
x,−H + z + H

δ
,u(x)

)∣∣∣∣
2

d(x, z)

+ δ

∫

Rδ

σ (x, z)

∣∣∣∣
1

δ
∂zhb

(
x,−H + z + H

δ
,u(x)

)∣∣∣∣
2

d(x, z) .
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Invoking (3.1f)-(3.1g) and Young’s inequality, we derive
∫

�δ(u)

σδ|∇hu,δ|2 d(x, z)

≤ 2m

∫

�(u)

1 + u(x)2 + (∂xu(x))2

H + u(x)
d(x, z)

+ m

∫

�(u)

1 + u(x)2

H + u(x)
d(x, z)

+ 2mδσmax

∫

Rδ

(
1 + u(x)2 + (∂xu(x))2

)
d(x, z)

+ mσmax

δ

∫

Rδ

(
1 + u(x)2

)
d(x, z)

≤ m(1 + σmax)
[
3
(|D| + ‖u‖2

L2(D)

) + 2‖∂xu‖2
L2(D)

]
.

This proves (i).

(ii) First, M is well-defined and finite owing to the continuous embedding of H 1(D) in
C(D̄) and the strong convergence of (uδ)δ∈(0,1) in H 1(D). Next, the stated convergences
readily follow from the smoothness of h and hb , from the convergence of uδ → u in H 1(D),
and the continuous embedding of H 1(D) in C(D̄). �

4 Convergence of Minimizers

Three steps are needed to prove Theorem 2.1: we begin by establishing in Sect. 4.1 the
convergence of the electrostatic energy Ee,δ as δ → 0, building upon the analysis performed
in [18] for a reduced problem. This convergence, along with the weak lower semicontinuity
of the mechanical energy Em, leads us to the �-convergence of Eδ to E in L2(D), see
Sect. 4.2. Such a property provides information on the relationship between minimizers
for the cases δ > 0 and δ = 0, which we use in Sects. 4.3–4.4 to complete the proof of
Theorem 2.1.

4.1 Convergence of the Electrostatic Energy

Building upon the analysis performed in [18], we investigate the limit of the electrostatic
energy Ee,δ as δ → 0. Recalling that the main outcome of [18] is that

lim
δ→0

Ee,δ(u) = Ee,0(u)

for any u ∈ S̄0, we extend this result to a sequence (uδ)δ∈(0,1) in S̄0 and show that
(Ee,δ(uδ))δ∈(0,1) converges to Ee,0(u) as δ → 0, provided that (uδ)δ∈(0,1) converges to u in
H 1(D). More precisely, consider a sequence (uδ)δ∈(0,1) in S̄0 and u ∈ S̄0 such that

uδ → u in H 1(D) as δ → 0 , −H ≤ uδ(x) , x ∈ D . (4.1a)

Observe that the convergence (4.1a) and the continuous embedding of H 1(D) in C(D̄)

ensure that

0 ≤ H + uδ(x) ,H + u(x) ≤ M := sup
δ∈(0,1)

‖H + uδ‖L∞(D) , x ∈ D . (4.1b)
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Proposition 4.1 Suppose (4.1a), (4.1b) and set �(M) := D × (−H,M). Then

lim
δ→0

Ee,δ(uδ) = Ee,0(u)

and

ψuδ,δ − huδ,δ −→ ψu − hu in L2(�(M)) as δ → 0 .

Proof We use a �-convergence approach combining arguments from [17, Proposition 4.1]
and [18, Theorem 3.1]. Let OM := D × (−H − 1,M) and define, for δ ∈ (0,1),

Gδ[ϑ] := 1

2

∫

�δ(uδ)

σδ|∇(ϑ + huδ,δ)|2 d(x, z) for ϑ ∈ H 1
0 (�δ(uδ))

and Gδ[ϑ] := ∞ for ϑ ∈ L2(OM) \ H 1
0 (�δ(uδ)). Then

Ee,δ(uδ) = −Gδ[χuδ,δ] with χuδ,δ := ψuδ,δ − huδ,δ ∈ H 1
0 (�δ(uδ)) , (4.2)

and χuδ,δ is the unique minimizer of Gδ on H 1
0 (�δ(uδ)), see [15, Proposition 3.1].

We next introduce H 1
B(�(u)) as the closure in H 1(�(u)) of the set

C1
B(�(u)) :=

{
ϑ ∈ C1(�(u)) : ϑ(x,u(x)) = 0 , x ∈ D , and

ϑ(x, z) = 0 , (x, z) ∈ {±L} × (−H,0]
}

.

Noticing that ϑ(x,u(x)) = ϑ(x,−H) = 0 for x ∈ C(u) and ϑ ∈ C1
B(�(u)), we agree upon

setting ϑ(x,u(x)) = ϑ(x,−H) := 0 for all x ∈ C(u) and ϑ ∈ H 1
B(�(u)) in the sequel. Now,

given ϑ ∈ H 1
B(�(u)), we define

G[ϑ] := 1

2

∫

�(u)

∣∣∇(ϑ + hu)
∣∣2

d(x, z) + 1

2

∫

D

(
σ
∣∣ϑ + hu − hu

∣∣2)
(x,−H)dx , (4.3)

with hu defined in (3.1l), and

G[ϑ] := ∞ , ϑ ∈ L2(OM) \ H 1
B(�(u)) .

Then

Ee,0(u) = −G[χu] with χu := ψu − hu ∈ H 1
B(�(u)) , (4.4)

and χu is the unique minimizer of G on H 1
B(�(u)), see [18, Proposition 3.3]. We now claim

that

� − lim
δ→0

Gδ = G in L2(OM) . (4.5)

For (4.5) we have to prove the asymptotic weak lower semicontinuity and the existence of a
recovery sequence.

(i) Asymptotic weak lower semicontinuity. Consider ϑ0 ∈ L2(OM) and a sequence (ϑδ)δ∈(0,1)

in L2(OM) such that

ϑδ → ϑ0 in L2(OM) . (4.6)
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We shall then show that

G[ϑ0] ≤ lim inf
δ→0

Gδ[ϑδ] . (4.7)

Due to the definitions of Gδ and G, we only need to consider the case where ϑδ ∈
H 1

0 (�δ(uδ)) for δ ∈ (0,1) and

sup
δ∈(0,1)

Gδ[ϑδ] < ∞ . (4.8)

We may then extend ϑδ trivially to �(M) = D × (−H,M), so that ϑδ ∈ H 1
B(�(M)). We

next infer from (2.1a), (2.1b) and the definition of Gδ that

∫

�(M)

|∇ϑδ|2 d(x, z) =
∫

�(uδ)

σδ|∇ϑδ|2 d(x, z)

≤ 2
∫

�(uδ)

σδ|∇(ϑδ + huδ,δ)|2 d(x, z)

+ 2
∫

�(uδ)

σδ|∇huδ,δ|2 d(x, z)

≤ 2Gδ[ϑδ] + 2
∫

�(uδ)

σδ|∇huδ,δ|2 d(x, z) ,

and the right-hand side of the above inequality is bounded by (4.1a), (4.1b), (4.8), and
Lemma 3.1. Consequently, taking also into account (4.6) and the property ϑδ ∈ H 1

0 (�δ(uδ))

for δ ∈ (0,1), we conclude that (ϑδ)δ∈(0,1) is bounded in H 1
B(�(M)). Owing to (4.1a), (4.1b)

and Lemma 3.1, we may assume without loss of generality that

ϑδ + huδ,δ ⇀ ϑ0 + hu in H 1(�(M)) . (4.9)

Moreover, since �(M) is a Lipschitz domain, the embedding of H 1(�(M)) in H 3/4(�(M))

is compact, see [10, Theorem 1.4.3.2], while the trace operator is continuous from
H 3/4(�(M)) in L2(∂�(M)), see [10, Theorem 1.5.1.2]. We may thus assume without loss
of generality that

ϑδ → ϑ0 in L2(∂�(M)) . (4.10)

In particular,

ϑδ(·,−H) → ϑ0(·,−H) in L2

(
D

)
, (4.11)

and it follows from (4.1a), (4.1b), (4.11), and Lemma 3.1 that

lim
δ→0

∫

D

(
σ
∣∣ϑδ + huδ

− huδ

∣∣2)
(x,−H)dx

=
∫

D

(
σ
∣∣ϑ0 + hu − hu

∣∣2)
(x,−H)dx .

(4.12)
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Next, arguing as in [17, Proposition 4.1], we deduce from (4.9) and Lemma 3.1 that

lim inf
δ→0

∫

�(uδ)

|∇(ϑδ + huδ,δ)|2 d(x, z)

= lim inf
δ→0

∫

�(M)

|∇(ϑδ + huδ,δ)|2 d(x, z)

− lim
δ→0

∫

�(M)\�(uδ)

|∇huδ,δ|2 d(x, z)

≥
∫

�(M)

|∇(ϑ0 + hu)|2 d(x, z) −
∫

�(M)\�(u)

|∇hu|2 d(x, z)

=
∫

�(u)

|∇(ϑ0 + hu)|2 d(x, z) .

Hence, together with (4.12),

lim inf
δ→0

{
1

2

∫

�(uδ)

|∇(ϑδ + huδ,δ)|2 d(x, z)

+1

2

∫

D

(
σ
∣∣ϑδ + huδ

− huδ

∣∣2)
(x,−H)dx

}

≥ 1

2

∫

�(u)

|∇(ϑ0 + hu)|2 d(x, z)

+ 1

2

∫

D

(
σ
∣∣ϑ0 + hu − hu

∣∣2)
(x,−H)dx .

(4.13)

Moreover, (4.8) entails that

sup
δ∈(0,1)

∫

Rδ

σδ

∣∣∇(ϑδ + huδ,δ)|2 d(x, z) < ∞ .

The continuity of σ now warrants that

lim inf
δ→0

∫

Rδ

σδ(x, z)|∇(ϑδ + huδ,δ)|2 d(x, z)

= lim inf
δ→0

δ

∫

Rδ

σ (x,−H)|∇(ϑδ + huδ,δ)|2 d(x, z)

≥ lim inf
δ→0

δ

∫

Rδ

σ (x,−H)|∂z(ϑδ + huδ,δ)|2 d(x, z) .

Since ϑδ(·,−H − δ) = 0 a.e. in D, we infer from Hölder’s inequality that

∣∣(ϑδ + huδ,δ)(x,−H) − huδ,δ(x,−H − δ)
∣∣2

≤ δ

∫ −H

−H−δ

|∂z(ϑδ + huδ,δ)(x, z)|2 dz
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for a.e. x ∈ D. Combining the previous two estimates and using (see (3.1e) and (3.1j)-(3.1l))

huδ,δ(x,−H) = huδ
(x,−H) , huδ,δ(x,−H − δ) = huδ

(x) , x ∈ D ,

we deduce from (4.1a), (4.1b), (4.11), and Lemma 3.1 that

lim inf
δ→0

1

2

∫

Rδ

σδ(x, z)|∇(ϑδ + huδ,δ)|2 d(x, z)

≥ 1

2

∫

D

σ(x,−H)
∣∣ϑ0(x,−H) + hu(x,−H) − hu(x)

∣∣2
dx .

(4.14)

Noticing finally that

lim inf
δ→0

Gδ[ϑδ] = lim inf
δ→0

1

2

∫

�δ(uδ)

σδ|∇(ϑδ + huδ,δ)|2 d(x, z)

≥ lim inf
δ→0

1

2

∫

Rδ

σδ|∇(ϑδ + huδ,δ)|2 d(x, z)

+ lim inf
δ→0

{
1

2

∫

�(uδ)

|∇(ϑδ + huδ,δ)|2 d(x, z)

+ 1

2

∫

D

(
σ
∣∣ϑδ + huδ

− huδ

∣∣2)
(x,−H)dx

}

− lim
δ→0

1

2

∫

D

(
σ
∣∣ϑδ + huδ

− huδ

∣∣2)
(x,−H)dx ,

we readily obtain from (4.12), (4.13), and (4.14) that

lim inf
δ→0

Gδ[ϑδ] ≥ 1

2

∫

�(u)

|∇(ϑ0 + hu)|2 d(x, z)

+ 1

2

∫

D

(
σ
∣∣ϑ0 + hu − hu

∣∣2)
(x,−H)dx

= G[ϑ0] .
This is the asymptotic weak lower semicontinuity (4.7).

(ii) Recovery sequence. Let �̂(M) := D × (−2H − M,M). Given an arbitrary function
ϑ ∈ H 1

B(�(u)) we define ϑ̄ ∈ H 1
0 (�̂(M)) by extending ϑ trivially to D × (−H,M) and

then reflecting the outcome to �̂(M); that is,

ϑ̄(x, z) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 , x ∈ D , u(x) < z < M ,

ϑ(x, z) , x ∈ D , −H < z ≤ u(x) ,

ϑ(x,−2H − z) , x ∈ D , −2H − u(x) < z ≤ −H ,

0 , x ∈ D , −2H − M < z ≤ −2H − u(x) .

Then F := −�ϑ̄ ∈ H−1(�̂(M)). With

�̂(uδ) := �(uδ) ∪ (
D × (−2H − M,−H ]) ⊂ �̂(M) ,
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the restriction of the distribution F belongs to H−1(�̂(uδ)). Thus, there is a unique varia-
tional solution ϑ̂δ ∈ H 1

0 (�̂(uδ)) ⊂ H 1
0 (�̂(M)) to

−�ϑ̂δ = F in �̂(uδ) , ϑ̂δ = 0 on ∂�̂(uδ) .

If dH denotes the Hausdorff distance in �̂(M) (see [12, Sect. 2.2.3]), then, due to (4.1a) and
the continuous embedding of H 1

0 (D) in C(D̄), we have

dH

(
�̂(uδ), �̂(u)

)
≤ ‖uδ − u‖L∞(D) → 0 .

Since �̂(M) \ �̂(uδ) has a single connected component, it follows from [23, Theorem 4.1]
and [12, Theorem 3.2.5] that ϑ̂δ → ϑ̂ in H 1

0 (�̂(M)), where ϑ̂ ∈ H 1
0 (�̂(M)) is the unique

variational solution to

−�ϑ̂ = F = −�ϑ̄ in �̂(M) , ϑ̂ = 0 on ∂�̂(M) .

Clearly, since ϑ̄ and ϑ̂ both belong to H 1
0 (�̂(M)), we deduce from the above identity that

ϑ̂ = ϑ̄ . Hence,

ϑ̂δ → ϑ̄ in H 1
0 (�̂(M)) . (4.15)

Considering the corresponding restrictions to �(M) yields

ϑ̂δ → ϑ̄ in H 1(�(M)) . (4.16)

Set

τδ(x) :=

⎧⎪⎨
⎪⎩

1 , L − |x| > √
δ ,

L − |x|√
δ

, L − |x| ≤ √
δ ,

x ∈ D ,

and introduce

ϑδ(x, z) := z + H + δ

δ
ϑ̂δ(x, z)

+ z + H + δ

δ

[
huδ,δ(x,−H) − huδ,δ(x,−H − δ)

]
τδ(x)

− [
huδ,δ(x, z) − huδ,δ(x,−H − δ)

]
τδ(x)

for (x, z) ∈ Rδ and

ϑδ(x, z) := ϑ̂δ(x, z) , (x, z) ∈ �(uδ) .

The smoothness and definitions of ϑ̂δ , huδ,δ , and τδ imply that ϑδ ∈ H 1(Rδ) ∩ H 1(�(M))

and thus, since moreover �ϑδ� = 0 on �(uδ), we deduce that ϑδ ∈ H 1(�δ(uδ)). By con-
struction, ϑδ vanishes on ∂�δ(uδ), hence ϑδ ∈ H 1

0 (�δ(uδ)). We now claim that (ϑδ)δ∈(0,1) is
a recovery sequence for ϑ ; that is,

G[ϑ] = lim
δ→0

Gδ[ϑδ] . (4.17)
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First, using that ϑ̂δ = 0 in �(M) \ �(uδ) and ϑδ = ϑ̂δ in �(uδ) along with (4.1a), (4.1b),
Lemma 3.1, and (4.16), it is not difficult to see that

lim
δ→0

1

2

∫

�(uδ)

|∇(ϑδ + huδ,δ)|2 d(x, z) = 1

2

∫

�(u)

|∇(ϑ + hu)|2 d(x, z) . (4.18)

Next, for (x, z) ∈ Rδ , we have

∂z(ϑδ + huδ,δ)(x, z) = 1

δ
ϑ̂δ(x, z) + z + H + δ

δ
∂zϑ̂δ(x, z)

+ 1

δ

[
huδ,δ(x,−H) − huδ,δ(x,−H − δ)

]
τδ(x)

+ (
1 − τδ(x)

)
∂zhuδ,δ(x, z) ,

(4.19)

and we aim at identifying the limit of the right-hand side of (4.19) as δ → 0. Let us first note
that, for z ∈ (−H − δ,−H),

∫

D

∣∣∣ϑ̂δ(x, z) − ϑ̂δ(x,−H)

∣∣∣
2

dx ≤
∫

D

|H + z|
∫ −H

z

∣∣∣∂zϑ̂δ

∣∣∣
2

dz dx

≤ δ

∫

Rδ

∣∣∣∇ϑ̂δ

∣∣∣
2

d(x, z) ,

from which, thanks to the convergence (4.15), we deduce that

lim
δ→0

1

δ

∫

D

∣∣∣ϑ̂δ(x, z) − ϑ̂δ(x,−H)

∣∣∣
2

dx = 0 . (4.20)

Since (4.16) implies that ϑ̂δ(·,−H) → ϑ̄(·,−H) in L2(D), we infer from (4.20) and the
continuity of σ that

lim
δ→0

1

δ

∫ −H

−H−δ

∫

D

σ(x, z)|ϑ̂δ(x, z)|2 dx dz

=
∫

D

σ(x,−H)|ϑ̄(x,−H)|2 dx .

(4.21)

Now, the definitions of σδ = δσ in Rδ and τδ , the properties of huδ,δ (see Lemma 3.1), and
(4.21) yield

lim
δ→0

∫

Rδ

σδ(x, z)

∣∣∣∣
1

δ
ϑ̂δ(x, z)

+1

δ

[
huδ,δ(x,−H) − huδ,δ(x,−H − δ)

]
τδ(x)

∣∣∣∣
2

d(x, z)

= lim
δ→0

1

δ

∫ −H

−H−δ

∫

D

σ(x, z)

∣∣∣ϑ̂δ(x, z)

+ [
huδ,δ(x,−H) − huδ,δ(x,−H − δ)

]
τδ(x)

∣∣∣
2

dx dz

=
∫

D

σ(x,−H)|ϑ̄(x,−H) + hu(x,−H) − hu(x)|2 dx . (4.22)
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Moreover,

∫

Rδ

σδ(x, z)

∣∣∣∣
z + H + δ

δ
∂zϑ̂δ(x, z)

∣∣∣∣
2

d(x, z)

≤ δσmax

∫ −H

−H−δ

∫

D

∣∣∣∂zϑ̂δ(x, z)

∣∣∣
2

dxdz

≤ δσmax‖ϑ̂δ‖2
H 1(�̂(M))

,

so that, recalling that (ϑ̂δ)δ∈(0,1) is bounded in H 1(�̂(M)) due to (4.15),

lim
δ→0

∫

Rδ

σδ(x, z)

∣∣∣∣
z + H + δ

δ
∂zϑ̂δ(x, z)

∣∣∣∣
2

d(x, z) = 0 . (4.23)

Finally, observe from (3.1e) that

∂zhuδ,δ(x, z) = 1

δ
∂zhb

(
x,−H + z + H

δ
,uδ(x)

)
, (x, z) ∈ Rδ .

Hence,

∫

Rδ

σδ(x, z)
∣∣(1 − τδ(x)

)
∂zhuδ,δ(x, z)

∣∣2
d(x, z)

≤ σmax

∫ −H

−H−1

∫

D

∣∣(1 − τδ(x)
)
∂zhb (x, ξ, uδ(x))

∣∣2
dxdξ ,

so that, using (4.1a), (4.1b), the definition of τδ , the continuity of ∂zhb , and Lebesgue’s
dominated convergence theorem, we derive

lim
δ→0

∫

Rδ

σδ(x, z)
∣∣(1 − τδ(x)

)
∂zhuδ,δ(x, z)

∣∣2
d(x, z) = 0 . (4.24)

Consequently, we deduce from (4.19) and (4.22)-(4.24) that

lim
δ→0

∫

Rδ

σδ(x, z)|∂z(ϑδ + huδ,δ)|2 d(x, z)

=
∫

D

σ(x,−H)
∣∣ϑ̄(x,−H) + hu(x,−H) − hu(x)

∣∣2
dx .

(4.25)

Furthermore, we note that

∂xϑδ(x, z) = z + H + δ

δ
∂xϑ̂δ(x, z)

+ z + H + δ

δ

[
∂xhuδ,δ(x,−H) − ∂xhuδ,δ(x,−H − δ)

]
τδ(x)

+ z + H + δ

δ

[
huδ,δ(x,−H) − huδ,δ(x,−H − δ)

]
∂xτδ(x)
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− [
∂xhuδ,δ(x, z) − ∂xhuδ,δ(x,−H − δ)

]
τδ(x)

− [
huδ,δ(x, z) − huδ,δ(x,−H − δ)

]
∂xτδ(x)

and, recalling (3.1e),

∂xhuδ,δ(x, z) = ∂xhb

(
x,−H + z + H

δ
,uδ(x)

)

+ ∂xuδ(x)∂whb

(
x,−H + z + H

δ
,uδ(x)

)

for (x, z) ∈ Rδ . Thus, since

0 ≤ τδ(x) ≤ 1 , 0 ≤ z + H + δ

δ
≤ 1 , (x, z) ∈ Rδ ,

we easily obtain from σδ = δσ in Rδ that
∫

Rδ

σδ(x, z)
∣∣∂x(ϑδ + huδ,δ)

∣∣2
d(x, z)

≤ c δσmax

∫

Rδ

|∂xϑ̂δ(x, z)|2 d(x, z)

+ c δ2σmax‖hb‖2
C1

∫

D

(
1 + |∂xuδ(x)|2 + |∂xτδ(x)|2) dx

≤ c δσmax‖ϑ̂δ‖2
H 1(�̂(M))

+ c δ2σmax‖hb‖2
C1

(
|D| + ‖uδ‖2

H 1(D)
+ |D|

δ

)
,

where ‖hb‖C1 denotes the norm of hb in C1(D̄ × [−H − 1,−H ] × [−H,M]), and c is a
positive constant depending on D and H . Therefore, (4.1a), (4.1b) and (4.15) entail

lim
δ→0

∫

Rδ

σδ(x, z)
∣∣∂x(ϑδ + huδ,δ)

∣∣2
d(x, z) = 0 . (4.26)

Consequently, we derive from (4.18), (4.25), and (4.26) that

lim
δ→0

Gδ[ϑδ] = lim
δ→0

(
1

2

∫

�(uδ)

|∇(ϑδ + huδ,δ)|2 d(x, z)

+ 1

2

∫

Rδ

σδ

(|∂x(ϑδ + huδ,δ)|2 + |∂z(ϑδ + huδ,δ)|2
)

d(x, z)

)

= 1

2

∫

�(u)

∣∣∇(ϑ + hu)
∣∣2

d(x, z)

+ 1

2

∫

D

σ(x,−H)
∣∣ϑ̄(x,−H) + hu(x,−H) − hu(x)

∣∣2
dx

= G[ϑ] ,

where we used that ϑ̄(x,−H) = ϑ(x,−H) by construction of ϑ̄ . Hence, (ϑδ)δ∈(0,1) is in-
deed a recovery sequence for ϑ .
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(iii) Convergence. Since (i) and (ii) prove (4.5), we may invoke the Fundamental Theorem
of �-convergence [6, Corollary 7.20] to deduce from (4.2)-(4.5) that, as δ → 0,

Ee,δ(uδ) = −Gδ[χuδ,δ] −→ −G[χu] = Ee,0(u)

and

ψuδ,δ − huδ,δ −→ ψu − hu in L2(�(M)) .

This proves Proposition 4.1. �

4.2 �-Convergence of the Total Energy

We now turn to the �-convergence of the total energy and first establish that the H 2-norm of
u is controlled by the total energy Eδ(u) (defined in (1.2)) and the L2-norm of u, whatever
the value of δ ∈ (0,1).

Lemma 4.2 Given κ > 0 there is a constant c(κ) > 0 such that, if u ∈ S̄0 satisfies

‖u‖L2(D) ≤ κ and Eδ(u) ≤ κ , δ ∈ (0,1) , (4.27)

then

‖u‖H 2(D) +
∫

�δ(u)

σδ|∇ψu,δ|2 d(x, z) ≤ c(κ) , δ ∈ (0,1) . (4.28)

Proof We argue similarly to [16, Lemma 2.3]. The variational characterization of ψu,δ (see
[15, Lemma 3.2]) and (3.2) imply

∫

�δ(u)

σδ|∇ψu,δ|2 d(x, z) ≤
∫

�δ(u)

σδ|∇hu,δ|2 d(x, z)

≤ c0

(
1 + ‖u‖2

L2(D) + ‖∂xu‖2
L2(D)

)
,

(4.29)

where c0 is defined in Lemma 3.1. Furthermore, since u ∈ S̄0 ⊂ H 2
D(D) we have

‖∂xu‖2
L2(D) = −

∫

D

u∂2
xudx ≤ ‖u‖L2(D)‖∂2

xu‖L2(D) , (4.30)

so that we deduce from (4.27) and (4.29) that

−Ee,δ(u) = 1

2

∫

�δ(u)

σδ|∇ψu,δ|2 d(x, z) ≤ c(κ)
(
1 + ‖∂2

xu‖L2(D)

)
. (4.31)

Consequently, we obtain from (4.31), the definition of Eδ , and Young’s inequality that

Eδ(u) ≥ β

2
‖∂2

xu‖2
L2(D) − c(κ)

(
1 + ‖∂2

xu‖L2(D)

) ≥ β

4
‖∂2

xu‖2
L2(D) − c(κ) .

Combining the above estimate with (4.27) and (4.30) entails that ‖u‖H 2(D) ≤ c(κ), which
also implies the second assertion of (4.28) due to (4.31). �
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The total energies (defined in (1.2) and (1.6)), being a priori defined only on S̄0, are
extended to functionals on L2(D) by setting

Eδ(u) := ∞ , E(u) := ∞ , u ∈ L2(D) \ S̄0 .

Then we can prove:

Corollary 4.3

� − lim
δ→0

Eδ = E in L2(D) .

Proof (i) Recovery sequence. Concerning the construction of a recovery sequence it is suf-
ficient to consider u ∈ S̄0. Let us observe from [18, Corollary 3.4] that

lim
δ→0

Ee,δ(u) = Ee,0(u) .

Since Em(u) is independent of δ, we thus readily obtain

lim
δ→0

Eδ(u) = E(u) .

(ii) Asymptotic weak lower semicontinuity. Consider a sequence (uδ)δ∈(0,1) in L2(D) and
u ∈ L2(D) such that

lim
δ→0

‖uδ − u‖L2(D) = 0 . (4.32)

Since we shall show that then

E(u) ≤ lim inf
δ→0

Eδ(uδ) , (4.33)

a property which is obviously true if the right-hand side is infinite, we may assume that there
is a constant κ > 0 such that

Eδ(uδ) ≤ κ , δ ∈ (0,1) . (4.34)

Now, due to (4.32) and (4.34), we may invoke Lemma 4.2 to derive that (uδ)δ∈(0,1) is bounded
in H 2(D). Thus, up to a subsequence, we have uδ ⇀ u in H 2(D) and uδ → u in H 1(D).
The former implies

Em(u) ≤ lim inf
δ→0

Em(uδ) , (4.35)

while the latter, along with Proposition 4.1, entails

lim
δ→0

Ee,δ(uδ) = Ee,0(u) . (4.36)

Therefore, (4.33) holds true owing to (4.35) and (4.36). This implies the assertion. �
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4.3 Remaining Arguments for the Proof of Theorem 2.1: The Case a > 0

Let δ ∈ (0,1). We first use the positivity of a to show that the H 2-norm is controlled by Eδ .
Specifically, it follows from (4.29), the Poincaré inequality

‖v‖L2(D) ≤ 4L‖∂xv‖L2(D) , v ∈ H 1
0 (D) , (4.37)

and Young’s inequality ar4 + a ≥ 2ar2 that, for u ∈ S̄0,

Eδ(u) ≥ β

2
‖∂2

xu‖2
L2(D) + a

4
‖∂xu‖4

L2(D) − c0

(
1 + ‖u‖2

L2(D) + ‖∂xu‖2
L2(D)

)

≥ β

2
‖∂2

xu‖2
L2(D) + a

4
‖∂xu‖4

L2(D) − c0

[
1 + (1 + 16L2)‖∂xu‖2

L2(D)

]

≥ β

2
‖∂2

xu‖2
L2(D) + a

8
‖∂xu‖4

L2(D) − c0 − c2
0

a
(1 + 16L2)2

≥ β

2
‖∂2

xu‖2
L2(D) + a

4
‖∂xu‖2

L2(D) − c1 ,

with c0 defined in Lemma 3.1 and c1 := a/8 + c0 + c2
0(1 + 16L2)2/a. Hence,

β

2
‖∂2

xu‖2
L2(D) + a

4
‖∂xu‖2

L2(D) ≤ Eδ(u) + c1 , u ∈ S̄0 . (4.38)

Now, for each δ ∈ (0,1), let u∗
δ ∈ S̄0 be an arbitrary minimizer of Eδ in S̄0, see (2.2), with

corresponding electrostatic potential ψu∗
δ ,δ satisfying (1.3a)–(1.3c). Since Eδ(u

∗
δ ) ≤ Eδ(0) ≤

0, we readily infer from (4.37) and (4.38) that (u∗
δ )δ∈(0,1) is bounded in H 2(D). In particular,

there are a subsequence δj → 0 and u∗ ∈ S̄0 such that

u∗
δj

⇀ u∗ in H 2(D) , (4.39)

so that Corollary 4.3 and the Fundamental Theorem of �-convergence, see [6, Corol-
lary 7.20], imply that u∗ is a minimizer of E on S̄0 and

lim
j→∞

Eδj (u
∗
δj

) = E(u∗) . (4.40)

Moreover, since (u∗
δ )δ∈(0,1) is bounded in H 2(D) and (Eδ(u

∗
δ ))δ∈(0,1) is bounded, Lemma 4.2

and (2.1a), (2.1b) entail that (the trivial extensions of)
(
ψu∗

δ ,δ − hu∗
δ ,δ

)
δ∈(0,1)

is bounded in

H 1(D × (−H,M)), where

M := max

{
‖H + u∗‖L∞(D), sup

δ∈(0,1)

‖H + u∗
δ‖L∞(D)

}

is finite thanks to the boundedness of (u∗
δ )δ∈(0,1) in H 2(D) and the continuous embedding

of H 2(D) in L∞(D). Therefore, upon extracting a further subsequence if necessary, we
may assume that

(
ψu∗

δj
,δj − hu∗

δj
,δj

)
j≥1

weakly converges in H 1(D × (−H,M)), the limit

necessarily being ψu∗ − hu∗ owing to Proposition 4.1.
Let us finally improve the convergence (4.39) of (u∗

δj
)j≥1. Since H 2(D) embeds com-

pactly in H 1(D), it follows from (4.39) that

u∗
δj

→ u∗ in H 1(D) (4.41)
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and Proposition 4.1 then entails that Ee,δj (u
∗
δj

) → Ee,0(u
∗) as j → ∞. Recalling (4.40),

we deduce that Em(u∗
δj

) → Em(u∗) as j → ∞. Together with the convergences (4.39) and

(4.41), this property implies the strong convergence of (u∗
δj

)j≥1 to u∗ in H 2(D) and com-
pletes the proof of Theorem 2.1 when a > 0.

4.4 Remaining Arguments for the Proof of Theorem 2.1: The Case a = 0

To finish off the proof of Theorem 2.1, we are left with the case a = 0 for which the weak
compactness of minimizers in H 2(D) is harder to derive. Additional information on these
minimizers is actually required and follows from the analysis performed in [15, 16], using
that they are critical points of the total energy.

Lemma 4.4 There is a constant c2 > 0 which does not depend on δ ∈ (0,1) such that, if u is
a minimizer of Eδ on S̄0 for some δ ∈ (0,1), then

‖u‖L∞(D) ≤ c2 , δ ∈ (0,1) .

Taking Lemma 4.4 for granted, we are in a position to complete the proof of Theorem 2.1
when a = 0.

Proof of Theorem 2.1: a = 0. For each δ ∈ (0,1), let u∗
δ ∈ S̄0 be an arbitrary minimizer of

Eδ in S̄0, see (2.2), with corresponding electrostatic potential ψu∗
δ ,δ satisfying (1.3a)–(1.3c).

By Lemma 4.4, (u∗
δ )δ∈(0,1) is bounded in L∞(D) and thus also in L2(D). Therefore, since

Eδ(u
∗
δ ) ≤ Eδ(0) ≤ 0, it is also bounded in H 2(D) according to Lemma 4.2. We may then

proceed as in the previous case a > 0 in order to complete the proof of Theorem 2.1. �

We are left with proving Lemma 4.4, which relies on the same comparison argument as
[16, Proposition 2.6] and uses in an essential way the Euler-Lagrange equation satisfied by
minimizers of the total energy Eδ .

Proof of Lemma 4.4 Let δ ∈ (0,1) and consider a minimizer u ∈ S̄0 of Eδ on S̄0 (if any).
Owing to (3.1a)–(3.1l), it follows from [16, Theorem 1.3] (see also [15, Theorem 5.3]) that
u is a weak solution to the parabolic variational inequality

β∂4
xu − τ∂2

xu + ∂IS̄0
(u) � −gδ(u) in D ,

where ∂IS̄0
denotes the subdifferential in L2(D) of the indicator function IS̄0

of the closed
convex set S̄0 (that is, IS̄0

(v) = 0 for v ∈ S̄0 and IS̄0
(v) = ∞ for v ∈ L2(D) \ S̄0). Taking into

account assumptions (2.1a), (2.1b) and (3.1h), the electrostatic force gδ(u) ∈ L2(D) is given
by

gδ(u)(x) := gδ(u)(x) − 1

2

[(
(∂xh)u

)2 + (
(∂zh)u + (∂wh)u

)2
]
(x,u(x)) (4.42a)

for x ∈ D, where

gδ(u)(x) := 1

2

(
1 + (∂xu(x))2

) [
∂zψ

2
u,δ − (∂zh)u − (∂wh)u

]2
(x,u(x)) (4.42b)

for x ∈ D \ C(u) and

gδ(u)(x) := 1

2

[
σδ∂zψu,δ,1 − (∂zh)u − (∂wh)u

]2
(x,−H) (4.42c)
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for x ∈ C(u), the coincidence set C(u) being defined in (1.1). In the definition of gδ(u),
ψu,δ,1 := ψu,δ1Rδ

and ψu,δ,2 := ψu,δ1�(u), where we recall that [15, Theorem 1.1] guarantees
that ψu,δ,1 ∈ H 2(Rδ) and ψu,δ,2 ∈ H 2(�(u)), so that the traces involved in (4.42a)–(4.42c)
are well-defined.

Now, since gδ(u
∗
δ ) ≥ 0 in D, it easily follows from (3.1i) that gδ(u) ≥ −K2 in D and

we argue as in the proof of [16, Proposition 2.6] to conclude that there is a constant c > 0
depending only on L, β , τ , and K such that u ≤ c in D. Recalling that u ≥ −H completes
the proof. �
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