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Abstract

Since 1969 Lunar Laser Ranging (LLR) data have been collected by different observatories
and analysed by various analysis groups. LLR is providing the longest time series of
any space geodetic technique for studying the Earth-Moon dynamics. In recent years,
observations have been carried out with larger telescopes and at infra-red (IR) wavelength,
resulting in a better distribution of precise LLR data over the lunar orbit and the observed
retro-reflectors on the Moon. The increased number of high-accuracy observations allows
for more accurate determination of Earth Orientation Parameters (EOPs) from LLR data
compared to previous years. In this study we focus on �UT1 results from different
constellations and compare our LLR solution to the IERS EOP C04 series.
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1 Introduction

With the landing of Apollo 11 astronauts on the Moon in July
1969 the first LLR retro-reflector was deployed on the lunar
surface. Until 1973, four additional retro-reflectors had been
installed on the Moon: two reflectors by the astronauts of
the Apollo 14 and 15 missions, and two reflectors mounted
on the unmanned Soviet Lunokhod rovers. Measurements
from the Earth to the retro-reflectors have primarily been
carried out from six observatories that were or are capable
to range to the Moon: the McDonald Laser Ranging Station,
USA (MLRS), the Lure Observatory on Maui/Hawaii, USA
(LURE), the Côte d’Azur Observatory, France (OCA), the
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Apache Point Observatory Lunar Laser ranging Operation,
USA (APOLLO), the Matera Laser Ranging Observatory,
Italy (MLRO) and the Geodetic Observatory Wettzell, Ger-
many (WLRS). For more than 52 years now, there are LLR
measurements of the round-trip travel time of laser pulses
between observatories on the Earth and retro-reflectors on
the Moon. The measurement of round trip travel times with
short laser pulses is challenging. The average number of
returning photons is less than one per laser pulse (Chabé et al.
2020; Murphy 2013), mainly because of the beam divergence
of the laser pulses due to the atmospheric turbulence and
diffraction effects of the retro-reflectors (Murphy et al. 2010).
Further signal loss occurs in the paths of the transmitting
and detection optics, in the atmosphere and due to the
reflectivity of the retro-reflectors (Müller et al. 2019). A
series of single measurements over 5min to 15min is used
to calculate a so-called normal point (NP) (Michelsen 2010)
which is the observable in the LLR analysis. Analysing the
data, various research questions related to the Earth-Moon
system are investigated. Today, LLR is one of the major tools
to test General Relativity in the solar system, e.g. testing the
equivalence principle, temporal variation of the gravitational
constant G, Yukawa term, metric parameters, and geodetic
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precession (Biskupek et al. 2021; Zhang et al. 2020; Hof-
mann and Müller 2018; Viswanathan et al. 2018; Williams
et al. 2012). Furthermore, LLR can also be used to determine
parameters of the Earth-Moon system like its mass, the lunar
orbit and libration (Pavlov et al. 2016; Williams et al. 2013),
terrestrial and celestial reference frames and the coordinates
of observatories and retro-reflectors (Hofmann et al. 2018;
Müller et al. 2009). In Germany, beginning in the early
1980s, the software package LUNAR (LUNar laser rang-
ing Analysis softwaRe) was developed to study the Earth-
Moon system and to determine the various related model
parameters. In this study we focus on the determination
of the Earth rotation parameter �UT1. �UT0 is a special
case of Universal Time (UT) at a certain location. It can
only be measured by LLR as well as Very Long Baseline
Interferometry (VLBI).

2 Analysis and Observations

Currently, the analysis of LLR data includes 28,093 NPs for
the time span April 1970–April 2021. The temporal distribu-
tion of the measured NPs over the last 52 years is given in
Fig. 1. One can see in the legend that more than 60% of the
NPs were observed by OCA, 40% with green and 21% with
IR laser wavelength (measurements with laser wavelength
of � D 693:8 nm and � D 532 nm are listed in the figure
as OCA green). In the last years, only OCA and APOLLO
provided regular NPs, some NPs also came from MLRO and
WLRS. As of 2015, many NPs were measured with laser
pulses at IR wavelength, enabling distance measurements
near new and full Moon (Chabé et al. 2020) for OCA and
WLRS. This leads to a better coverage of the lunar orbit over
the synodic month, i.e. the time span in which the Sun, the
Earth, and the Moon return to a similar constellation again.
With a better coverage of the lunar orbit, it is possible to
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Fig. 1 Distribution of the 28,093 NPs over the time span April 1970–
April 2021. The legend gives the percentages of the contribution of the
respective observatories. The three observatories McDonald, MLRS1
and MLRS2 are linked in the analysis and listed here as MLRS. OCA
measurements with laser wavelength of � D 693:8 nm and � D 532 nm
are indicated as OCA gr
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Fig. 2 Annual weighted RMS (WRMS) of the one-way post-fit resid-
uals for 28,093 NPs for the time span April 1970–April 2021

perform a more uniform estimation of various parameters of
the Earth-Moon system. Nevertheless the distribution of the
NPs has a big impact on the determination of the parameters.
Furthermore, non-uniform data distribution is one reason for
correlations between solution parameters (Williams et al.
2009). The measured NPs serve as observations in the analy-
sis. They are treated as uncorrelated for the stochastic model
of the least-squares adjustment and are weighted according
to their accuracies.

In the LLR analysis, the parameters of the LLR model are
determined by fitting them to the LLR observations using the
least-squares adjustment. The ephemeris of the solar system
bodies are integrated simultaneously with the rotation of the
Moon. For the rotation of the Earth two series of EOPs
are used: until 01.01.1983, the Kalman Earth Orientation
Filter (KEOF) series COMB2019 (Ratcliff and Gross 2020)
and from 02.01.1983 the IERS EOP C04 series (Bizouard
et al. 2019). The difference between the two EOP series is
the input data, as only the COMB series includes LLR NPs.
Therefore, this series fits the LLR analysis better in the initial
phase of the observations. After 01.01.1983, the differences
between the two EOP series are small (only a few mas and
ms), so that the IERS series is used for timeliness reasons.
The coordinates and velocities of the LLR observatories are
determined in the International Terrestrial Reference System
(ITRS). The weighted RMS of the one-way post-fit residuals
of the LLR analysis is better than 1:5 cm for the last years,
see Fig. 2.

3 �UT1 from LLR

The terrestrial pole coordinates xp and yp , describe the
change of the rotation axis in relation to the Earth’s surface.
The rotational motion of the Earth is given by the Earth
rotation phase �UT1 and the Length-of-Day LOD. All these
parameters are summarised as Earth Rotation Parameters
(ERPs). Together with the celestial pole offsets ıX and ıY ,
as corrections to the conventional precession-nutation model,
they define the Earth Orientation Parameter (EOP).
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As shown by Dickey et al. (1985), Müller (1991) and
Pavlov (2019), it is possible to determine the ERPs from
the post-fit residuals of the least-squares adjustment of LLR
data. In this way the variation of longitude �UT0 can be
determined by

�UT0 D �UT1 C
.xp sin.�/ C yp cos.�// tan.�/

15 � 1:002737909
; (1)

as combination of �UT1 and the terrestrial pole coordinates
xp; yp , with the observatories longitude � and latitude �

(Chapront-Touzé et al. 2000). The variation of latitude VOL
is given by

VOL D xp cos� � yp sin� : (2)

The disadvantage of this approach is that the correlations be-
tween the ERPs and the other parameters of the Earth-Moon
system can not be investigated. Biskupek (2015) changed
the analysis strategy. In the rotation matrix between the
Earth-fixed ITRS and the space-fixed Geocentric Celestial
Reference System (GCRS) the ERPs are used in the LLR
analysis, thus they can be determined in the least-squares
adjustment along with other parameters of the Earth-Moon
system. The correlations with these parameters are also
obtained and can be investigated directly. Biskupek (2015)
gave the equations for the partial derivatives of ERPs and
discussed the results of the different possible methods to
obtain ERPs from LLR, such as selecting certain time spans
of data or specific nights for which a minimum number of
NPs is available. The main result of this research was that
the determination for specific nights with a minimum of 5
NPs is a better method than the ERP determination for longer
time spans. From the analysis of 20,047 NPs (1970–2013),
the uncertainty in �UT1 was about 400 µs. Hofmann et al.
(2018) discussed the results of estimating the Earth rotation
phase for a time span with 23,261 NPs (1970–2016). They
achieved an uncertainty of 89 µs when estimating �UT1
from all observatories and of 44 µs when estimating �UT1
from only OCA and APOLLO. The IR measurements from
OCA with better coverage of the lunar orbit and more NPs
that are available per night lead to an improved situation
for the LLR observables. This enables a better and more
stable estimation of ERPs from LLR, which achieve lower
uncertainties compared to previous results. A further study
concerning ERP determination from LLR data with more
details is published by Singh et al. (2022).

For ERP determination in the LLR analysis, the whole
data set of NPs is pre-analysed, where different configu-
rations can be taken into account. Thus, it is possible to
estimate ERPs from the data of all observatories or only for
a single observatory. It is also possible to vary the number
of NPs per night or to choose specific wavelengths. In the

current study we focused on the determination of the Earth
rotation phase �UT1. Several studies with different charac-
teristics were performed, like different numbers of NPs per
night from different observatories and different combination
of the wavelength of the measured NPs. Two studies with the
best results are with data from OCA and are discussed in the
following.

The main characteristics of the two studies were the
same. The �UT1 values were determined from the LLR
data for specific nights. The minimum number of NPs for
one night to be considered in the �UT1 determination was
set to 10, i.e. nights with fewer NPs were not considered in
the fit. Simultaneously, the coordinates of the observatories
were determined for one epoch, namely J2000 (01.01.2000,
0:00 UTC), of the whole LLR data set. Theoretically, it is
also possible to determine velocities of the observatories
from the whole LLR data set. Since there are correlations
between �UT1, coordinates and velocities on the one hand,
as well as large deviations of station coordinates to the
ITRF2014 on the other hand, the velocities were fixed to their
ITRF2014 values. However, as the APOLLO observatory is
not included in the ITRF2014 solution, we used the velocity
of the White Sands GNSS observatory instead. The a-priori
EOP values were used from COMB2019/IERS C04 series
and fixed for those nights that were not considered in the fit.
For a complete list of parameters determined together with
the �UT1 values (e.g. station coordinates and range biases),
except the station velocities, see Singh et al. (2021). The
difference in the two study cases was the wavelength of the
used laser and the resulting different number of nights for the
�UT1 determination. In study 1 there were 714 nights for
the time span April 1984–March 2021 in which NPs were
measured with green or IR laser wavelength. For study 2
there were 259 nights for the time span March 2015–March
2021 in which NPs were measured with IR laser wavelength
only.

Figure 3 shows the results for the two studies where the
deviations from the IERS C04 series and their uncertainties
are given. A previous study has shown that the uncertainties
of the estimated parameters from our LLR analysis were too
small (Hofmann et al. 2018), as some small random and
systematic errors remained in the LLR analysis. Systematic
errors include the uneven distribution of NPs during the
synodic month, and the constellation of Earth and Moon
when observing an LLR NP, because of the inaccuracy of
atmospheric delay models for low altitude observations. A
further error source is the imperfection of lunar ephemeris,
e.g. because of simplified modelling of the asteroids. These
errors are different for each observation. Random errors
result from the general measurement accuracy of LLR, are
different for each night, and depend on the observatory
measuring the NPs. Furthermore, the �UT1 determination
is constrained by the a priori EOP series for nights when
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Fig. 3 Results of studies 1 and 2 on the determination of �UT1 from
LLR data in different configurations. (a) �UT1 deviations from the
IERS C04 series as determined in study 1 from green and IR NPs. (b)
Uncertainty of the �UT1 values of study 1 for the individual nights

and the median of all nights. (c) �UT1 deviations from the IERS C04
series as determined in study 2 from IR NPs only. (d) Uncertainty of the
�UT1 values of study 2 for the individual nights and the median of all
nights

no values are estimated. Additionally, according to Eq. (1)
the pole coordinates also affect �UT1. In our case we fixed
the pole coordinates to the IERS C04 series and assumed
them to be error-free, which is not the case. The following
uncertainties are given as 3 times the formal errors from the
least-squares adjustment.

Figure 3a gives the fitted �UT1 deviations to the IERS
C04 series as determined in study 1, where NPs measured
with green or IR laser wavelength were used. The values vary
between ˙200 µs with a mean of 4:3 µs and some higher val-
ues before the year 2000 due to the poorer measurement ac-
curacy of this period. The RMS is 149:2 µs. The uncertainties
of the �UT1 deviations are in the range of 4:5 µs to 373:1 µs
with a median of 24:6 µs, shown in Fig. 3b. For study 2 using
only IR data the fitted �UT1 deviations to the IERS C04
series are given in Fig. 3c. The values vary between ˙100 µs
with a mean of 2:7 µs and some higher values. The RMS
is 56:4 µs. Figure 3d gives the corresponding uncertainties,
which range between 4:5 µs to 60:0 µs with a median of
14:89 µs. In previous studies (Hofmann et al. 2018), a higher
uncertainty of 32 µs was achieved, although in these studies
the minimum number of NPs per night was 14 and thus
higher than now. Since the time span of used NPs was only
until 2016, the very accurate and well distributed OCA NPs
measured in IR were not part of that analysis. The advantage
of the IR OCA data seems obvious here. They improve the
overall uncertainty of the least-squares adjustment and allow

fitting �UT1 values with lower uncertainty from less NPs
per night.

The influence of the number and accuracy of the NPs on
the determination of �UT1 is analysed in more detail in
Fig. 4 where scatter plots show the relationship between the
number or accuracy of the NPs and the uncertainty of �UT1.
Correlation coefficients were determined from each combi-
nation of data sets that are given in the plots. The accuracies
of the input NPs were averaged for each night considered
and plotted on the horizontal axis of Fig. 4b and d. In study
1 with NPs measured with green or IR laser wavelength,
the number of NPs does not have a very large effect on the
uncertainty of �UT1 (see Fig. 4a), the correlation coefficient
is only �0:27. The accuracy of NPs is more important in this
study (see Fig. 4b), as reflected by a correlation coefficient
of 0:91 with the uncertainty of �UT1. In study 2, using
only IR NPs with a more homogeneous accuracy between
each NP, the correlation coefficient between the accuracy of
NPs and the uncertainty of �UT1 with 0:41 is lower than in
study 1 (see Fig. 4d). Here, the number of NPs has a larger
effect compared with study 1 (see Fig. 4c) and the correlation
coefficient is �0:43. This means that for the determination
of �UT1 a high accuracy of the NPs is beneficial for data
sets with inhomogeneous input data accuracy, but also a high
number of NPs per night is important in the analysis. Both
criteria of the input data play a role in the determination of
�UT1.
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Fig. 4 Different scatter plot for studies 1 and 2 between the LLR NPs
and the determined uncertainty of �UT1. (a) Study 1 (green and IR
NPs): Scatter plot of the number of NPs and the estimated uncertainty
of �UT1. The correlation coefficient is �0.27. (b) Study 1 (green and
IR NPs): Scatter plot of the measured accuracy of NPs and the estimated

uncertainty of �UT1. The correlation coefficient is 0.91. (c) Study 2
(IR NPs only): Scatter plot of the number of NPs and the estimated
uncertainty of �UT1. The correlation coefficient is �0.43. (d) Study 2
(IR NPs only): Scatter plot of the measured accuracy of NPs and the
estimated uncertainty of �UT1. The correlation coefficient is 0.41

In both studies, no significant correlations of �UT1
values and other parameters of the Earth-Moon system were
found in the least-squares adjustment. Comparable results for
�UT1 with an uncertainty of 15 µs are obtained from VLBI
data (Gambis and Luzum 2011).

4 Conclusions

As described above ERPs can be determined from LLR data
analysis. The best LLR result is obtained from the high-
accurate IR OCA data with 10 NPs per night with a median
uncertainty of 14:89 µs. The high-accurate IR data fromOCA
are very beneficial for the �UT1 determination, because of
their distribution over the reflectors and synodic month as
well as the higher number of NPs for one night. The data
reduce the overall uncertainty of the least-squares adjustment
and allow fitting �UT1 values with lower uncertainty from
fewer NPs per night compared to previous studies.

Deviations from the IERS C04 series are in the range
of ˙100 µs at best, with a mean of 2:7 µs and an RMS of
56:4 µs. The mean uncertainty is 14:89 µs. These LLR results
are in a range of uncertainty which is comparable to daily
�UT1 values determined from VLBI with 15 µs (Gambis
and Luzum 2011). Nevertheless the LLR uncertainties seem
to be too optimistic. Therefore as next step, �UT1 and also
values for pole coordinates from all LLR stations will be
determined together and analysed to find the best strategy

for ERP determination from LLR data. It will also be further
investigated, which parameters of the Earth-Moon system
should be determined together with the ERPs. This will lead
to a more realistic estimation of their uncertainties.

With more IR data from the observatories OCA and
WLRS, it is expected that the parameters of the least-squares
adjustment can be further decorrelated and then station
velocities might be determined along with ERPs and station
coordinates. Additionally an optimised strategy regarding the
number and accuracy of NPs per night is investigated (Singh
et al. 2022).
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