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ABSTRACT. The paradigm of discounting future costs is a common feature of
economic applications of optimal control. In this paper, we provide several
results for such discounted optimal control aimed at replicating the now well-
known results in the standard, undiscounted, setting whereby (strict) dissipa-
tivity, turnpike properties, and near-optimality of closed-loop systems using
model predictive control are essentially equivalent. To that end, we introduce
a notion of discounted strict dissipativity and show that this implies various
properties including the existence of available storage functions, required sup-
ply functions, and robustness of optimal equilibria. Additionally, for discount
factors sufficiently close to one we demonstrate that strict dissipativity implies
discounted strict dissipativity and that optimally controlled systems, derived
from a discounted cost function, yield practically asymptotically stable equi-
libria. Several examples are provided throughout.

1. Introduction. Since its introduction in [43], dissipativity has become one of the
most widely used concepts in mathematical systems theory, with deep connections to
optimality, stability, and robustness. Recent research has established close connec-
tions between a particular form of dissipativity—mamely strict dissipativity—and
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both the stability and near-optimality of closed-loop solutions of model predictive
control schemes, see [2, 23, 21].

An important class of problems not covered by these recent results involve opti-
mal control problems with discounted stage cost, wherein the performance objective
incorporates, at each time k € Ny, a multiplicative term 8*, where 0 < 8 < 1 is
called the discount factor. Such problems arise in economics, where discounting is
pervasive. In the Ramsey-Cass-Koopmans (RCK) model of neoclassical economic
growth, for example, policies are chosen so as to maximize a social welfare function
consisting of a discounted sum of aggregate economic utility [36, 10, 27, 7, 38, 1]. In
this framework, the discount factor reflects the weighting attached to the economic
utility enjoyed by different generations [1].

One specific application of the RCK framework prominent in the economics of cli-
mate change is the DICE (Dynamic Integrated model of Climate and the Economy)
integrated assessment model (IAM) of [32, 33] (see also [26]). In DICE, trajecto-
ries of anthropogenic carbon dioxide (CO2) emissions reflect an optimal tradeoff
between reduced economic consumption today and economically harmful climate
change in the future. In this context, the choice of discount factor plays a central
role in determining the conclusions of the IAM-based optimal abatement analyses,
e.g. [33] and [39]. The policy-relevance of DICE (see, e.g., [25]) therefore provides
strong motivation for an optimal control framework which incorporates discounting.
Moreover, model predictive control appears to be ideally suited for analyzing the
behavior of this model under uncertainty, see [26, 42], which motivates extending
the study of near-optimality of model predictive control schemes to the discounted
setting. We expect that the discounted version of strict dissipativity presented in
this paper will provide an important building block for this study.

In addition to the above conceptual motivation for discounting in economics,
discounted stage costs have been used in other contexts for essentially mathematical
reasons, namely to ensure the integrability of a wide range of cost functions over
an infinite horizon [3]. To the best of our knowledge, the connections between
dissipativity and optimal control with discounted stage costs have not yet been
considered in the literature, either in the discrete time setting treated in this paper
or in continuous time.

In this paper, after providing the necessary background in Section 2, we intro-
duce two notions of discounted strict dissipativity that appropriately incorporate
the discount factor into the well-known dissipation inequality (Section 3). We also
show that an important class of problems, namely those that employ a convex cost
for an affine linear system with an equilibrium satisfying the necessary optimal-
ity conditions, are discounted strictly dissipative (Section 4). We then show that
discounted strict dissipativity implies several desirable properties for discounted op-
timal control problems including the existence of (discounted) available storage and
required supply functions, robustness of optimal equilibria (Sections 5 and 6), and
that optimal solutions starting near an equilibrium stay near that equilibrium for a
certain number of time steps (Section 7).

While the above-mentioned results all apply for any discount factor satisfying
0 < B < 1, one might reasonably expect that moving from an undiscounted prob-
lem, considered as a discount factor of 8 = 1, to a discount factor very close to one,
would not destroy dissipativity. Indeed, in Section 8, we provide conditions under
which strict dissipativity implies the existence of a discount factor (sufficiently close



STRICT DISSIPATIVITY FOR DISCOUNTED OPTIMAL CONTROL 773

to one) such that the system is discounted strictly dissipative. Naturally, it is crit-
ically important that the optimal equilibria are in fact (practically) asymptotically
stable for optimal controls arising from discounted optimal control problems. In-
deed, Example 7.2 shows this need not be the case. Hence, in Section 9 we show
that, again for discount factors sufficiently close to one, optimally controlled dis-
counted strictly dissipative systems result in a (practically) asymptotically stable
equilibrium. Finally, in Section 10 we provide some concluding remarks.

Preliminary versions of some of the results in this work were presented in [18]
and [31]. Here, we combine and unify these results and extend them to the stronger
property of strict (z, u)-dissipativity. Sections 6 and 9 contain entirely novel results.
In particular, Theorem 6.2 extends the required supply concept for constructing
storage functions to the discounted setting, and Theorem 9.3 shows the stabiliz-
ing property of discounted optimal control under assumptions on the undiscounted
problem.

2. Setting and preliminaries.

2.1. System class and notation. We consider discrete time nonlinear systems of
the form
w(k+1) = f(z(k),u(k), =(0) =0 (1)

foramap f: X xU — X, where X and U are normed spaces. We also write
(1) briefly as 2t = f(z,u). We impose the constraints (z,u) € Y C X x U on
the state z and the input w and define X := {z € X|3u € U : (z,u) € Y}
and U := {u € U|3z € X : (z,u) € Y}. A control sequence u € UV is called
admissible for 2o € X if (x(k),u(k)) € Yfor k =0,...,N—1and z(N) € X. In
this case, the corresponding trajectory xz(k) is also called admissible. The set of
admissible control sequences is denoted by U (z¢). Likewise, we define U (z() as
the set of all control sequences v € U with (z(k),u(k)) € Y for all k € Ny. In
order to keep the presentation technically simple, we assume that X is controlled
invariant, i.e., that U®(zo) # 0 for all zy € X. We expect that our results remain
true if one restricts the initial values under consideration to the viability kernel
Xoo := {z0 € X|U>*(z¢) # 0}. However, the technical details of this extension are
beyond the scope of this paper. The trajectories of (1) are denoted by z,(k, zq) or
simply by z(k) if there is no ambiguity about zy and w.

We will make use of the function classes K and K. Recall that o : R>g = R>¢
satisfies a € K if it is continuous, zero at zero, and strictly increasing. Additionally,
if « € K is unbounded, then a € K.

2.2. A brief summary of undiscounted strict dissipativity. Our goal in this
paper is to derive a notion of strict dissipativity with discounting and explore its
connections to optimal control problems with discounted stage costs. To this end,
we first recall the classical notion of strict dissipativity introduced by Willems in
[43] in continuous time and by Byrnes and Lin in [9] in the discrete time setting of
this paper. Recently, two different variants of this notion have become popular, a
weaker one which only requires strictness (meaning a positive definite lower bound
on a dissipation inequality) with respect to the state and a stronger one which
requires strictness with respect to the state and the input. Most of the results in
this paper will apply to both variants but for some we will need the stronger version.
For the following definition, we recall that (¢, u®) € Y is an equilibrium of (1) if
f(ze,u®) = a°.
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Definition 2.1. Let (2¢,u¢) be an equilibrium.

(a) The system (1) is called strictly x-dissipative at the equilibrium (z€,u¢) with
supply rate s : Y — R if there exists a storage function A : X — R bounded from
below and a function o € K, such that

s(z,u) + Ax) = A(f(z,u) = o[z — ) (2)

holds for all (x,u) € Y with f(z,u) € X.

(b) The system (1) is called strictly (x,u)-dissipative at the equilibrium (x°, u®)
with supply rate s : Y — R if there exists a storage function A : X — R bounded
from below and a function o € K, such that

s(z,u) + A@) = A(f(z,u)) = a(ll(z — 2% u —u)]) (3)
holds for all (x,u) € Y with f(x,u) € X.

Note that compared to Willems’ original definition we replace the requirement
A > 0 by boundedness of A from below. This does not make a decisive difference
in Definition 2.1 because one can always add a constant to A without affecting the
storage function property. However, for discounted problems, a different way of
scaling the storage function than requiring A > 0 turns out to be advantageous, cf.
Remark 3.3, below.

One of the most useful theorems in dissipativity theory states that strict dissi-
pativity holds for a given supply rate s if and only if

K-1
Nao)i=  swp S —(s(a(k) u(k) ~ (k) u(k)) <oo  (4)
KeNg,ueUK (zg) =0
holds for each zp € X, see [43] in continuous time and [9] in discrete time', with
v(z,u) = a||lz—z°]||) for strict z-dissipativity and vy(z,u) = a(||(z—z°, u—u®)||) for
strict (x,u)-dissipativity. The function A defined in (4) is then a storage function,
called the available storage. One of the goals of our discounted generalization of
strict dissipativity will be to allow for a similar notion of available storage.

The notion of dissipativity has a long history in systems and control theory,
dating back to the work of Willems [43]. Dissipativity theory now underpins a
wide range of application domains, including distributed model predictive control,
plant-wide control of chemical processes, control of cyberphysical systems, power
electronics and mechanical systems, and for establishing input—output stability of
adaptive control systems, switched systems, and nonlinear H, control systems; see
for example [41, 8, 29] and the references therein.

By comparison, applications of strict dissipativity have appeared less frequently
in the literature. Recent research, however, has established connections between
strict dissipativity and the behavior of optimal trajectories via the so-called turnpike
property. It is this connection that provides the motivation for this paper. Consider
the optimal control problem

N-1
gm(l )JN(xO,u) with Jy(zo,u) = L(a(k), u(k)) (5)
u€UN (zq =0

with stage cost £ : Y — R and subject to (1). It is known that if the system is
strictly dissipative with supply rate s(z, u) = £(z,u)—¥¢(z¢, u®) and bounded storage

n both references this result is formulated and proved for a non-strict notion of dissipativity.
The modifications for the strict dissipativity notion discussed here are, however, straightforward.



STRICT DISSIPATIVITY FOR DISCOUNTED OPTIMAL CONTROL 775

function, and if an appropriate reachability condition on x€ is satisfied, then most
of the time the optimal trajectories stay in a neighborhood of the equilibrium x¢ .
This property, known as the turnpike property, is due to the fact that the optimal
trajectories of (5) exhibit a similar qualitative behaviour if ¢ is replaced by

Uz,u) = L(x,u) — 0(x u®) + Mx) — M f(z,u)). (6)

Strict dissipativity then implies that lisa positive definite stage cost? with respect
to ¢ at (z¢,u®), which means that it penalizes the deviation of  from z¢ and thus
forces the optimal trajectory to stay near x¢ most of the time. For details we refer
to [17, Theorem 5.6]; further results on the relation between strict dissipativity
and turnpike properties can be found in [14, 20, 40]. The turnpike property, in
turn, allows for making rigorous statements about the near optimality of closed
loop solutions of model predictive control schemes [23].

The aforementioned connection between the turnpike property and behavior of
closed-loop solutions of model predictive control schemes has recently been extended
to discounted optimal control problems, i.e., to problems of the type

Jmin oo (@0, u) with Joo (20, u) = B (k), ulk)), (7)
ue= o k=0

see [24]. Herein, the number 5 € (0,1) is called the discount factor. With

Voo(zo) := min  Joo (20, u)
u€U> (zg)
we denote the optimal value function of (7). We remark that in the discounted
case it is often possible to directly consider the infinite horizon problem because
discounting ensures the convergence of the infinite sum in (7) under much milder
conditions than for the undiscounted problem (5). Working directly with the infinite
horizon problem simplifies some of the considerations in this paper and using the
results from [19] we can easily switch between these two formulations.

Since discounted optimal control problems play an important role particularly in
economic applications, it is of great interest to adapt the results outlined above to
the discounted case. From the results in [15] (see also [16, 35] for related results),
it follows that asymptotic stability (for the infinite horizon problem (7)) or the
turnpike property (for the finite horizon counterpart of (7)), respectively, can under
reasonable conditions be expected, provided the stage cost is positive definite (see
also the results discussed in Section 9). Therefore, our “guideline” for deriving a
discounted version of strict dissipativity will be that it should allow for a definition
of a modified stage cost l analogous to (6), which is equivalent in the sense that
the infinite horizon discounted optimal trajectories corresponding to ¢ and to { are
identical.

3. Discounted strict dissipativity. Following the motivation just discussed, we
propose the following definition of discounted strict dissipativity. The subsequent
proposition shows that for the particular supply rate s(z,u) = £(z,u) — €(x°, u®) it
indeed yields an equivalent positive definite stage cost.

2Positive definiteness of £ with respect to ¢ at (x¢,u¢) is defined as £(x®, u®) = 0 and £(x, u) >
a(||z — z¢||) for some a € K and all (z,u) € Y.
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Definition 3.1. Let (z° u®) be an equilibrium and 8 € (0,1) a discount factor.

(a) We say that the system (1) is discounted strictly x-dissipative at the equilib-
rium (2, u®) with supply rate s : Y — R if there exists a storage function A : X — R
bounded from below with A(z¢) = 0 and a class K-function « such that the in-
equality

(2, w) + A(z) — BA(f (2, ) > a(llz — 27| (8)

holds for all (x,u) € Y with f(x,u) € X.

(b) We say that the system (1) is discounted strictly (z,u)-dissipative at the
equilibrium (z¢, u®) with supply rate s : Y — R if the same holds with the inequality

s(z,u) + Ax) = BAf (2, u)) = a([[(z — 2 u —uf)|). (9)

We note that it is immediate that strict (x,u)-dissipativity implies strict z-
dissipativity, both in the discounted and in the non-discounted setting.

Proposition 3.2. Consider the discounted optimal control problem (7) with dis-
count factor B € (0,1) and assume the system (1) is discounted strictly x-dissipative
or discounted strictly (x,u)-dissipative with supply rate s(x,u) = £(x,u) — €(x®,u®)
and bounded storage function \. Then the optimal trajectories of (7) coincide with
those of the problem

ueul}g(lwo)(]oo(xo,u) with Jao (20, 1) ;:;)ﬂké(z(k),u(k)) (10)

with stage cost

U, u) = £z, u) — £(z°,u®) + A(z) — BA(f(2,u))
which is positive definite w.r.t. x¢ at (xz¢,u®) in case of strict x-dissipativity and
positive definite w.r.t. (x°,u®) at (x°,u®) in case of strict (x,u)-dissipativity.

Proof. A straightforward calculation shows that
0(x®, u®)
1-p
Since A is bounded and 3 € (0, 1), the last limit exists and is equal to 0. Hence, the
objectives differ only by expressions which are independent of u, from which the
identity of the optimal trajectories immediately follows. The positive definiteness of
¢ follows from (8) or (9), respectively, and the fact that A(x®) = 0 implies £(z°, u®) =
0. O

Joo (0, 1) = Joo (20, 1) — + Axo) — klggo BEN(zu(K)). (11)

Remark 3.3. The requirement that £(z¢, u®) = 0 is the reason for imposing A(z¢) =
0 as a condition in Definition 3.1. Note that in the undiscounted case A(x¢) = 0 can
be assumed without loss of generality, since if A is a storage function then A+ c is a
storage function for all ¢ € R. In the discounted case, this invariance with respect
to addition of constants no longer holds.

Remark 3.4. Boundedness of A is typically a rather mild condition if the state
constraint set X is bounded, but it may be restrictive if X is unbounded; for instance
if A\ is an affinely linear function as in the setting discussed in Theorem 4.2, below.
In this case, other conditions ensuring limy_, S¥A(z4(k)) = 0 could be imposed
in Proposition 3.2. For instance, if A is bounded on bounded sets, then one could
assume boundedness of near optimal trajectories for both (7) and (10). Indeed,
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in the proof of Proposition 3.2 boundedness of A is used in order to conclude that
limy, o BFA(z4(k)) equals 0. However, if 2, (k) is bounded and A is bounded on
bounded sets, then the same conclusion can be made. Boundedness of near optimal
trajectories, in turn, can be achieved by penalizing large states in the cost functional,
rendering unbounded trajectories very expensive.

4. The affine linear and convex case. In the non-discounted setting it is known
that strict dissipativity holds for finite-dimensional affine dynamics f(z,u) = Az +
Bu + ¢ with x € R", u € R™; i.e., A € R"™*" B € R™*" and ¢ € R", and strictly
convex stage cost £; see [12] or [11, Proposition 4.3]. The proof of this fact relies on
the necessary optimality conditions for an optimal equilibrium, where optimality of
an equilibrium (z¢, u¢) is defined as follows.

Definition 4.1. Consider the optimal control problem (7) with 0 < 8 < 1. Then
an equilibrium (x¢,u®) € Y is called optimal if Voo (2¢) = £(z¢,u®)/(1 — B).

The term “optimal equilibrium” is chosen because the definition implies that
when starting at the equilibrium z€ it is optimal to stay at z¢ for all future times,
using the constant control v = u®. This is true since, as easily verified, this constant
trajectory yields the objective value £(z¢,u®)/(1 — 8). The necessary optimality
conditions for such an optimal equilibrium in the discounted case read

o= St u) (12)

Pl u) B ) (13)
8 € € € 8 € €

0 = 7%6(1' U )+Bp %f(x U )7 (14)

cf. [4] or [6], where the n-dimensional row vector p® denotes the co-state (or Lagrange
multiplier) at the optimal equilibrium. We note that these conditions differ from
the necessary optimality conditions for an optimal equilibrium for non-discounted
problems, which can be found, e.g., in [11] or [12]. As the case of a constant cost
function ¢ = const immediately shows, the existence of an optimal equilibrium in
which (12)—(14) hold does not exclude the possibility that there exist non-stationary
trajectories with the same value, unless further conditions on ¢ are imposed.

The following theorem shows that for affine dynamics and strictly convex cost
the necessary optimality conditions imply strict dissipativity also in the discounted
case.

Theorem 4.2. Consider the optimal control problem (7) with 8 € (0,1), X C R"”
bounded, U C R™, affine dynamics f, and strictly convex stage cost £. Assume there
is an equilibrium (z¢,u®) € Y and (p®)T € R™ satisfying (12)—(14). Then the system
is discounted strictly (x,w)-dissipative with supply rate s(x,u) = €(x,u) — (2, u®)
and storage function \(z) = p®(z — z°).

Proof. By definition and boundedness of X, A satisfies A(z¢) = 0 and is bounded
from below. Strict convexity of ¢ and affine linearity of f together with the linearity
of A\ imply that

Lz, u) = l(x,u) — (xfu®) + Nx) — BA(f(z,u))
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is strictly convex. Moreover, from

3 5 e e _ a e e e ea € €
5l u) = () £ pt = B o f(af u)
3 ~ e e _ a e ey ea € €
%ﬁ(x ,ut) = 781/(% ,u’) — Bp 76uf(x ,uf)

and (13), (14) it follows that the Jacobian D{(z® u¢) equals 0, which by strict
convexity of l implies that (z¢,u¢) is the unique strict minimum of this function.
This implies that £(z, u) > f(z¢,u¢) = 0 for all (z,u) # (2¢,u®), which by exploiting
strict convexity of ¢ and boundedness of X implies the existence of a € Ko, with
(9). O

The following example illustrates that this theorem indeed provides a construc-
tive way to check discounted strict dissipativity.

Example 4.3. We consider a basic growth model in discrete time which goes back
to [7]. The cost function and dynamics are given by

lz,u) = —In(Az® —u) and z(n+1)=u(n).

Herein, Az is a production function with constants A > 0, 0 < a < 1, capital stock
x and control variable u. The difference between output (given by the production
function) and the capital stock at the next period (given by u) is consumption. The
exact solution to this problem is known (see [37]) and is given by Voo (z) = B+Clnz
with

a In((1 — aB)A) + 125 In(aBA)
1= ap and B = -5

From this it is straightforward to check that the unique optimal equilibrium for this
example is given by z¢ = 1/ “/BaA.

Since f is linear and ¢ is strictly convex, Theorem 4.2 can be applied. In order to
verify discounted strict (x,u)-dissipativity and to compute the storage function A
(and in order to show how to verify optimality of 2¢ without using the knowledge of
the exact solution), we solve equations (12)—(14). Here, the corresponding equations
read

C:

¢ = uf (15)
O[A(:L’e)ail

€ — 1

P A" —ur (16)
1

0 = ———+v—F— €. 17
A e + Bp (17)
Inserting p© = ﬁ(A(mel)u_ue) from (17) and u® = z° from (15) into (16) yields again

x® =1/ “+/BaA. From this we obtain
*/BaA
-p

as a storage function which is bounded on every bounded interval X C Ry con-
taining x°.

Mz) =p°(x — 2%) with p°=

Q=
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5. Available storage and robust optimality. Incorporating the discount fac-
tor in the available storage formula (4) is reasonably straightforward and using
a dynamic programming argument it is relatively easy to see that the resulting
function—if it assumes finite values—satisfies the discounted strict dissipativity in-
equalities (8) or (9); the details are provided in the proof of Theorem 5.4, below.
However, in order to adapt the concept of the available storage to the discounted
setting, we have to make sure that the appropriate modification of (4) leads to a
storage function satisfying A(z¢) = 0. In order to accomplish this, it is beneficial to
replace the supy in the non-discounted available storage formula (4) by an infinite
sum. That is, we consider the discounted available storage defined by
o0
Nalwo) = sup DT —p(s(@lk),ulk) —(z(k)u(k))  (18)
u€lU>(zo) 1.
where v(z,u) = ||z — z¢||) for discounted strict z-dissipativity and (z,u) =
a(]|(z — z°,u — u®)||) for discounted strict (x, u)-dissipativity.

As we will see in the statement and proof of Theorem 5.4, the equality A(z¢) = 0 is
closely linked to the optimality of the equilibrium (z¢,u¢). To clarify this relation
we need to strengthen Definition 4.1 of an optimal equilibrium to the following
notions of robust optimality.

Definition 5.1. Consider the optimal control problem (7) with 0 < 8 < 1.

(i) An equilibrium (z¢,u®) € Y is called robustly optimal w.r.t. perturbations
of ¢ in z, if there is 0 € K such that (z°,u®) is optimal for the optimal control
problem (7) with stage cost £(z, u) := £(x,u) — o(||z — z¢|).

(ii) An equilibrium (z¢,u®) € Y is called robustly optimal w.r.t. perturbations of
£ in x and u, if there is 0 € K4 such that (z¢, u®) is optimal for the optimal control
problem (7) with stage cost {(z, u) := {(x,u) — o(||(x — ¢, u — u®)])).

It is immediate that robust optimality of an equilibrium implies optimality of
this equilibrium. Moreover, it is easy to see that an equilibrium is optimal if and
only if the corresponding (constant) trajectory is an optimal trajectory. Note that,
in contrast to the undiscounted case, an optimal equilibrium need not be the one
which has the lowest cost £(z¢,u®) of all feasible equilibria. In particular, it may be
cheaper to transfer to an equilibrium with a higher cost and then stay there (see,
e.g., the example in Section 8.4). The next two lemmas clarify certain relations of
these optimality concepts to positive definiteness of ¢ and to strict dissipativity.

Lemma 5.2. If the stage cost of the optimal control problem (7) is positive definite’
w.r.t. an equilibrium x¢ at (x€,u®), then this equilibrium is optimal.

Proof. Positive definiteness of £ implies Vi, (2¢) > 0 and the constant control u = u®
yields Voo (2¢) < Joo(x®,u) = 0. This yields Voo (z¢) = 0 = £(x¢,u®)/(1 — ). O
Lemma 5.3. Discounted strict x-dissipativity (respectively, discounted strict (z,u)-
dissipativity) of (1) with s(x,u) = £(z,u) — £(z¢,u®) and bounded storage function
A implies that the equilibrium (x€,u®) is robustly optimal w.r.t. perturbations of ¢

in x (respectively, w.r.t. perturbations in x and u).

Proof. We show the proof for strict z-dissipativity, the proof for strict (x, u)-dissipa-
tivity is similar. Let a be the Ky function from discounted strict z-dissipativity

3in the sense of Footnote 2 with ¢ in place of 7
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(8) and define 0 € Ko by ¢ := a/2. Then the cost function (x,u) := f(x,u) —
o(||lx — z¢]|) satisfies

U, u) = 0(x%,u) + A(z) = BA(f ()
= Uz,u) —o(|lz —2°l]) — £(2%, u)
+ M) = BA(f (z, u))

> —o(llx = a°) + allr = 2°[)) = o([la — ).

Hence, the optimal control problem with stage cost ? is discounted strictly -
dissipative (with Ko function o) and thus the equivalent problem (10) has a stage
cost which is positive definite w.r.t. z¢ at (2°,u®). Hence, by Lemma 5.2 (z¢,u®)
is an optimal equilibrium. Since the optimal trajectories of (10) coincide with that
of the original problem (i.e., of that with stage cost ) (z¢,u®) is also an optimal
equilibrium for stage cost ¢ and thus a robustly optimal equilibrium for the stage
cost £ w.r.t. perturbations of £ in x. O

The following main theorem of this section now shows that—under appropri-
ate boundedness assumptions—the discounted available storage (18) is a storage
function in the sense of Definition 3.1 if and only if z°¢ is robustly optimal.

Theorem 5.4. Let X be bounded and £ be bounded on Y. Let (z¢,u®) € Y be
an equilibrium of (1) and consider the discounted optimal control problem (7)
with 8 € (0,1). Then discounted strict x-dissipativity (respectively, strict (x,u)-
dissipativity) with s(x,u) = l(x,u) — €(x°,u®) and bounded storage function holds
if and only if (x°,u®) is robustly optimal w.r.t. perturbations of £ in x (respectively,
w.r.t. perturbations in x and u). In this case, the available storage A, from (18) is
a bounded storage function.

Proof. “=” This follows directly from Lemma 5.3.

“«<" Again, we only prove the case of strict z-dissipativity; the proof for strict
(x, u)-dissipativity is identical. Assume robust optimality w.r.t. perturbations of ¢
in z and let & = o from Definition 5.1(i). From boundedness of X and ¢ it follows
that A = A\, from (18), i.e.,

oo

Mwo) = sup S°—p*(€w(k), u(k) — e, u) — a(la(k) — 2¢))  (19)

uelU> (ZL’O) k=0

is a bounded function in zg. We claim that A is a discounted storage function for
the system. From robust optimality of (z¢,u®) it follows that u(k) = u® is optimal
for 2(0) = «¢, implying A(«®) = 0. In order to prove the dissipation inequality (8),
let (x,u) € Y with z* = f(z,u) € X. Given € > 0, consider u. € U>(x™) such that
for kg = 2% the supremum in (19) is attained up to ¢, i.e., such that

A@*) < 30 =B (. (b2, e (k) — £, u) = alllz, (k2 ™) = a€l))) +e.
k=0
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Then for the control sequence @ = (u, u.(0),u:(1),...) we obtain x4 (k, ) = x,_ (k—
1,z%) for all kK > 1 and
Me) 2 384 (Healh.2), 6(k) — £ u) — a(lalk.z) - 2°]))
k=0
= U(wal0,2),(0)) + £(aF, u) + a(za(0, ) — 2°])

+ 30 =0 (taalk,2). (k) — o, ) = allaa(k.z) — a°]) )
k=1
= —L(z,u) +0(z%u®) + a(||zr — z°||)

B B (U, (ko) ue (k) — £, ) = (o, (k,2*) = )
k=
>l ) + £, ) + allz = 2) + BN (@, w) - Be.

+
[}

This shows the desired strict dissipation inequality (8) for supply rate s(x,u) =
£(z,u) — £(x¢, u®) since € > 0 was arbitrary. O

6. Required supply. In the case where every x € X is reachable from the equilib-
rium x¢, another way to construct undiscounted storage functions is via the required
supply, cf., e.g., [43, Theorem 2] in continuous time and [28, Theorem 3.2] in dis-
crete time. In this section we show how to adapt this construction to the discounted
setting. We start with the following definition.

Definition 6.1. (a) For each z € X and N € N we define the set of controls
UN(2°) := {u € UN (2°) | 2o (N, 2°) = x}.
(b) For all z € X with |y UY (2¢) # 0 we define the required supply

N—1
M(x) = if 30N (s(xu(k,me),u(k)) — (walk, a:e),u(k))). (20)
€N
weUd (z¢) k=0
Here, as in (18), we use v(x, u) = a(||z —x¢]|) for discounted strict a-dissipativity
and y(z,u) = a]|(z — z°,u — u®)||) for discounted strict (x, u)-dissipativity.
The following theorem shows that strict dissipativity holds if and only if A\, from
(20) satisfies appropriate bounds, in which case it is a storage function.

Theorem 6.2. Let (z¢,u®) € Y be an equilibrium of (1) and consider the discounted
optimal control problem (7) with B € (0,1). Assume that |Jyey UY (2%) # 0 for
all x € X, i.e., that every x € X is reachable from z¢. Then discounted strict x-
dissipativity (respectively, strict (x,w)-dissipativity) with s(x,u) = €(x,u) —(x, u®)
holds if and only if the required supply X\, from (20) with the respective v is bounded
from below and satisfies A (x¢) = 0. In this case, the required supply A, is a storage
function.

Proof. As for the previous results, we give the proof for strict z-dissipativity noting
that the proof for strict (z,w)-dissipativity proceeds completely analogously. Hence,
in what follows we use y(z,u) = a(||lx — z¢||) in (20).

“=” Assume discounted strict z-dissipativity and let A be the corresponding
storage function. Then from the dissipativity inequality (8) we obtain

s(xy(k, 2%),u(k)) — a(||zu(k, ) — 2°|]) > BA @, (k+ 1,2°)) — AM(zu(k,2°)). (21)
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This implies

N—-1
M) =ik T AN (B (k- 1,29)) — Ma (k. 29)))
uwelUl (z¢) k=0

N-1
= it > (BTG + 1) - BV (R))
wellY (z€¢) k=0

= inf M@l (NV,29) — BV (2,(0,2°))
NEN N—— N——

ueUN (ze
N (@) - e

= /\(l‘), (22)

because A\(x¢) = 0. Since X is bounded from below, it follows that A, is bounded
from below and \.(z¢) > 0. As, moreover, u = u¢ lies in U, (z¢) for arbitrary
N € N and yields x,(k,2¢) = x¢, we obtain
N—
Ae(a®) < 30 BN (s(at,u) — a(fla — a])) =o.
k=0
Together this implies A, (z¢) = 0.

“«<=" We show the assertion by proving that A, is a storage function. To this end,
the inequality (8) needs to be shown. In order prove (8), consider x+ = f(x,u) with
r € X and (x,u) € Y. Then, for N > 2 and any control sequence 4 € UY~1(2¢) the
control sequence 4" defined by

[

u, k=N-1

lies in UY, (z¢) and satisfies x4+ (N — 1,2¢) = . Thus we obtain

A (zT)
N—-1
= inf Y0 AN (s(@alk.a), uk) - allea(ka) - 2°])

“€U11Y+ (z€) k=0

N-1
inf Z Bk_N(s(xu(k,xe),u(k)) —a(||lzy(k,z¢) — x6||))

<
N>2
uewg+ (z¢) k=0
N-—-1
< it 3B (e (ke a), @t (R)) - allleas (k7€) - o)

acud 1 (ze)y k=0
N-2

= b 3B (s(as (ke at), 5 () - allleas (k7€) — o))

N>2
acvlY ~1(ze) k=0

+87 (se,w) - a(llz —a*)
N-1

= b > BN (s (k2), @ () - allear (k,a¢) - 2°))

NEN
aeUl (z€) k=0

+67 (s(z.u) - a(lle - 2°])))
= 57N (@) + 7 (s(@,w) — a(lz = 27])),
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where in the third and fourth step we used the definition of 47 and in the second
last step we have made the substitution N := N — 1. Multiplying this equation by
B we obtain the desired inequality (8). O

Remark 6.3. From (22) one immediately sees that A, is greater than or equal
to any other storage function A. Similarly, inserting the inequality (21) into the
definition of the available storage (18) and using the boundedness from below of
A, one obtains that A, is less than or equal than any other storage function .
Moreover, one easily checks that any convex combination pA; + (1 — p)Ae, p € [0,1]
of two storage functions A; and Ao is again a storage function. Hence, as in the
undiscounted case (cf. [43, Theorem 3]), any convex combination ud, + (1 — p)A,
of the available storage and the required supply is a storage function.

7. Continuity of optimal trajectories near the equilibrium. It was shown in
[17, Lemma 6.3] that in the non-discounted setting, strict dissipativity (along with
other assumptions) implies that optimal trajectories starting near z¢ stay near x°©
for a certain number of time steps. In this section we show that the same is true
for our proposed discounted notion of strict dissipativity.

Theorem 7.1. Consider the discounted optimal control problem (7) with 8 € (0,1)
and assume system (1) is discounted strictly x-dissipative with s(xz,u) = l(x,u) —
£(z¢,u®) and bounded storage function \. Assume, moreover, that Vo, and X are
continuous at the equilibrium x¢. Then for each K € N there exists ng € Koo such
that the optimal trajectories x* satisfy
[ (k) — 2°|| < nx([[wo — 2°[]) (23)
forall k =0,...,K, where zg = £*(0). In case strict (z,u)-dissipativity holds, in
addition the corresponding optimal control sequences u* satisfy
[l (k) — || < mk (|0 — 2°]) (24)
forallk=0,...,K.
Proof. We start by showing (23). Tt is sufficient to show the property for the
equivalent optimal control problem (10). Since V., and A are continuous at z¢, it
follows from (11) that V is also continuous at x°. Since positive definiteness of ¢
implies Voo (2¢) = 0, by continuity there is p € Ko, with
Voo () < p([la — z°])). (25)
Given K € N, we claim that the assertion holds for ng(r) := a=1(p(r)/B%) with
a € Ko from (8).
Indeed, assume there is k € {0, ..., K} with ||z*(k) —z°| > nk (||zo —2¢]|). Then
from discounted strict z-dissipativity we obtain
Uz (k) u* (k) > aln ([lzo — 2°[1)) = p(llzo —°]))/ B85
Thus, since ¢ > 0 we obtain
Vio (o) = B¥ U (k), u* (k) > plllwo — 2°])),

contradicting (25).
In order to prove (24), assume similarly that there is k € {0, ..., K} with ||u*(k)—
u®|| > nr (|lzo — 2°||). Then from discounted strict (x, u)-dissipativity we obtain

U (k) u” (k) > (g (lwo — 2°))) = plllzo — 2°[1)/ 8"
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Proceeding as above, this leads to a contradiction of inequality (25). O

The following example shows that the statement of Theorem 7.1 may not hold for
K = 00, i.e., that discounted strict dissipativity does not necessarily imply stability
of the optimal equilibrium z€.

Example 7.2. Example 1 in [34] shows that the discounted linear quadratic opti-
mal control problem with
flzou) =2z +u, L(r,u)=2>+u?

z,u € R does not yield an optimal stabilizing feedback controller for discount factors
B < 1/3. Indeed, the discounted optimal control can be obtained by solving the
discrete time algebraic Riccati equation with v/BA and /BB in place of A and B
and, for 8 = 0.3, the resulting closed-loop system is z+ ~ 1.0799zx.

Since ¢ is bounded from below by a(||(x — 2¢,u — u®)||) with a(r) = 7? and
¢ = u® = 0, it is straightforward to see that the system is (discounted) strictly
(x,u)-dissipative at (z¢,u®) = (0,0) for all 5 € (0,1] with supply rate s(z,u) =
£(z,u) — £(z°, u®) and bounded storage function A = 0. Consequently, Theorem 7.1
states that for every K € N we can find an appropriate nx € Ko to satisfy (23).
However, since the origin is clearly unstable for 8 = 0.3, we see that Theorem 7.1
cannot hold for K = co.

We note that the instability of the closed loop is consistent with the result in
[15], which only ensures asymptotic stability for 8 sufficiently close to 1. We address
(practical) asymptotic stability of optimally controlled strictly dissipative systems
in Section 9 below.

€

Remark 7.3. In the linear quadratic and unconstrained setting of Example 7.2, the
assertion of Theorem 7.1 could also be concluded from the Lipschitz continuity of the
right-hand side of the optimally controlled closed loop system. However, in general
— and in particular in the presence of nonlinearities and constraints — optimal
controls and the resulting optimal trajectories do not need to depend continuously
on the initial value, which makes the assertion of Theorem 7.1 nontrivial.

8. Dissipativity and discounted dissipativity. In this section, we show under
what conditions strict dissipativity implies discounted strict dissipativity for dis-
count factors g sufficiently close to one. Contrary to the results in the previous
sections, the results in this section require strict dissipativity with respect to x and
u, i.e., strict (z,u)-dissipativity. Since 8 € (0,1] is a varying number in this and
in the following section, rather than a fixed parameter as before, from now on we
explicitly reflect the dependence of all quantities on 8 in our notation, with 5 =1
denoting the undiscounted case. For instance, we write 2¢(8) instead of z¢, A(z, 8)
instead of A\(x), and g(x, u, 8) instead of g(x, u), In order to simplify the notation,
for § =1 we write x° instead of x¢(1).

8.1. Nonlinear programming. We first briefly recall some results from nonlinear
programming. Namely, consider a constrained optimization problem of the form
min(y) s.t. h(y) =0 and g(y) <0,
y
where y € R™ and the functions ¢ : R"» — R, h : R™ — R™ and g : R" — R"s

are twice continuously differentiable. Denote the set of active inequality constraints
at a feasible point y by

A(y) :=={1<j<ng:g;(y) =0}.
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A feasible point y is regular if, for 1 < i < nj and j € A(y), V4h;(y) and V,g;(y)
are linearly independent. If a point y* is regular and a local minimizer of the
above optimization problem, then there exist (unique) Lagrange multiplier vectors
v € R™ and p € RYY such that

V(™) + vV h(y") + n" Vyg(y*) = 0
with p; = 0 for all j ¢ A(y*), see, e.g., [5, Proposition 3.3.1]. Furthermore, in the

following we will make use of the second order sufficiency conditions [5, Proposi-
tion 3.3.2], i.e.,

(i) w'Vi(e(y*) + v h(y*) + T g(y*))w > 0
for all w # 0 with V,h(y*)w = 0 and V,g;(y*)w = 0 for all j € A(y*), and*
(ii) p; > 0 for all j € A(y*).
8.2. Optimal control related supply rates. In this section we consider the
optimal control problem (7) and a supply rate induced by the running cost ¢ via

s(z,u) = l(x,u) — £(x°(B),u(S)). We assume that the state and input constraint
set Y is defined in terms of inequality constraints, i.e.,

Y = {(z,u) € R" x R™ : g(x,u) < 0} (26)
for some g : R® x R™ — RP. Consider the constrained optimization problem
minf(z,u) s.t. z = f(z,u) and g(z,u) <0. (27)
z,u

Clearly, if system (1) is strictly (x, u)-dissipative with supply rate s(z,u) = £(z,u)—
£(z¢, u®) for some equilibrium (z¢, u¢), then this equilibrium is the unique minimizer
of problem (27). Now consider the undiscounted modified cost function

Ux,u, 1) o= 0z, u) — 0(z€,u®) + Mz) — A(f(z,u)). (28)

If the system is strictly (z,w)-dissipative with respect to the supply rate s(z,u) =

Lz, u) — £(x¢,u), from (3) it follows that £(z,u,1) > a(||(x — 2¢,u — u®)]||) for all
(z,u) € Y. This means that

0={(z%,u®) = min Ll(z,u,1 29

(€, u) J(hin_ (2,u,1), (29)

i.e., (¢ u®) is the unique minimizer of ? on the set Y. We now impose the following

assumption.

Assumption 8.1. The following hold:
(i) The functions f, ¢, and g, are twice continuously differentiable and Y is
bounded.
(ii) The point (z°, u°) is a regular point of problem (27) and satisfies the second
order sufficiency conditions.
(iii) The undiscounted problem is strictly (z,u)-dissipative with respect to the
supply rate s(z,u) = £(x,u) — £(x°,u®). Furthermore, the storage function
A is twice continuously differentiable and (x¢,u¢) satisfies the second order
sufficiency conditions for problem (29).

We are now in a position to prove the following result. In its proof, we construct
storage functions A(+, 8) for the discounted problems from the undiscounted storage
function A from Assumption 8.1, using necessary optimality conditions of a suitable
optimization problem and the implicit function theorem.

4Condition (ii) is typically called the strict complementarity condition.
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Theorem 8.2. Let Assumption 8.1 be satisfied. Then there exists B < 1 such that
for all B € (B, 1), there exists an equilibrium (x¢(8),uc(B)) such that the system is
discounted strictly (x, u)-dissipative with respect to the supply rate s(z,u) = £(x,u)—
L(xc(B),us(B)), i.e., there exist a storage function A(z, B) with A(xz¢(8),8) =0 and
0 € Koo such that the function

U, u, B) 1= U, u) = (@ (8), u(B)) + A(w, B) = BA(f (z,w), B), (30)
satisfies 0(z,u, B) > o(||(z — 2°(8),u — u¢(B))||) for all (z,u) € Y.

Proof. The proof of Theorem 8.2 exploits the fact that for the specific supply rate
considered here, (discounted) strict (x, u)-dissipativity can be reformulated as the
equilibrium (x¢, u¢) being the unique minimizer to some optimization problem (com-
pare the discussion around (29)). In particular, we first determine a suitable equilib-
rium (z¢(8),u°(B)) and a storage function candidate A(x, 3) (see (34) below), and
then show that for 8 sufficiently close to one, (z¢(5),u¢(5)) is indeed the unique
minimizer to a suitably defined optimization problem (see (35) below), resulting in
discounted strict (z, u)-dissipativity.
Let h(x,u,B) ;== x — Bf(x,u) and consider the set of equations

v(m,u)g(x7u) + VTV(az,u)h(xvuvﬁ) =+ MTv(a:,u)g(xvu) = 07

T — f(z:,u) = 07

gi(z,u)+22=0, i=1,...,p (31)
2ui2; =0, 1=1,...)p

where v € R", € RP, and z € RP. For each fixed 3, (31) is a set of 2n +m + 2p
equations for 2n + m + 2p unknowns xz,u,v, u,z. Since (z¢, u®) is regular and
a minimizer of problem (27), for § = 1 it follows that x = z¢, u = u®, and
zi = \/—gi(z¢,u®) =: z¢, together with some (unique) v = v and p = p¢ > 0
are a solution to (31), since for these values the set of equations (31) corresponds
to the Karush-Kuhn-Tucker (KKT) conditions of problem (27) (see, e.g., [5, Propo-
sition 3.3.1]). The corresponding Jacobian J of (31) with respect to (z,u,v, u, z)

evaluated at the equilibrium is given by

H T cT 0
b0 0 0
T=1¢ 0 0 2 diag(z) | * (32)

0 0 2diag(z®) 2 diag(p®)

where

n p
H =V, 0@ u) + Y veVE, pha(a us, 1) + Y pfVE, ogi(a®,u 1), (33)
=1 =1
b= Viguh(z®,u 1), and ¢ := V(;yg(2,u®). Since by property (ii) of As-
sumption 8.1, the second order sufficiency conditions for problem (27) are satis-
fied, it follows that J is nonsingular (compare [5, Section 3.3.3]). Hence we can
use the implicit function theorem to conclude that for 8 sufficiently close to one,
there exists a solution x¢(8), u®(8), z(8), v(8), u(B) to (31) such that the functions
x2¢(-),u(+), 2(+), v(+), u(-) are continuously differentiable and z¢(1) = x¢, u¢(1) = u¢,
z2(1) = 2¢, v(1) = v°, and p(1) = p¢. Furthermore, from continuity of u(-) and z(-),
the fourth equation of (31), and the fact that u¢ > 0 for all i € A(x° u®) by As-
sumption 8.1 (iii), it follows that for g sufficiently close to one, u(8) > 0 if € > 0,
w(B) =01if p =0, and A(z°(8),u®(8)) = A(z®, u®).
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Next, since by Assumption 8.1 (ii) and (iii), (z¢, u¢) is a regular point of prob-
lem (27) (and hence also of problem (29)) and (¢, u) is a strict minimizer of £ on
the set Y, it follows that the KKT conditions V(z’u)g(aﬁe, u®) + it g(z¢,u) = 0 are
satisfied for some fi € RY [5, Proposition 3.3.1]. Since

V(auy (A@) = A(f (2, uf)))
= [V A (%) VoA (@9)] = [V A(f(2u?)) VuA(f (2 uf))]
= VA (z°) [Inxn Onxm] - VyA(y) [fo(xe’ue) Vuf(xe»ue)]

y=4f(z,uc)=a°
= vm)\(xe) [ nxn — Va f(CL' u ) - vuf(xevue)}
= Vo A(2%) V(guh(z®,u 1),
from (31) with 8 = 1 and uniqueness of the Lagrange multiplier vectors v¢ and u®
it follows that V,A\(z¢) = (v°)T and fi = pe.
Now define
Az, B) :=A(x) — A(z®(B))
+@(B)" = VaA(2®(8)))(x — 2°(8)). (34)
First, note that A(z°(8), ) = 0. We now want to show that for 3 sufficiently close

to one, (x¢(8),u¢(8)) is a (local) minimizer of ¢ as defined in (30), i.e., for the
optimization problem

minl(z,u, B) s.t. g(z,u) <O0. (35)

z,u

To this end, we show that the KKT conditions and the second order sufficiency
conditions for this problem are satisfied. Since V A(z¢(3),8) = v(8)T, we obtain

Vel (5), u(8), B)
= Vi@ (8),u"(9))
+ Vi (Ma(8), 8) = BAF(2(8), w(8)), B)
= Vi@ (8),u"(9))
VoM@ (B), )V (a iy b2 (B), u(5), B)
= Vi l(8),u%(8)) + V(B)TV (2 h(z* (), w (B). B).

Combining this with the above established fact that © = z¢(8),u = u®(8),v =
v(B), u = p(B) satisfy the first equation of (31) results in

Vauyl(z(8), u*(B), B) + u(B) "V () 9(2° (8), u(8)) =

0.
Together with the fact that p(8) > 0 and u;(8) = 0 for all ¢ ¢ A(x°(8),u(5)),
this means that the KKT conditions for problem (35) are satisfied at (z¢(53), u®(5)).
Next, since 2°(-), u®(-), and v(-) are continuous and V,\(z¢) = (v°)" as discussed

above, it follows that V($ u)é( €(+),uc(+),-) is continuous and satisfies the identity
V2, ol (1), uc(1),1) = V2, 0z, uc).

(z,u)
The second order sufficiency conditions for problem (29) are satisfied by Assump-
tion 8.1 (iii), i.e.,
(i) yTV?Lu) (0(z¢,u®) + (1) Tg(x€, u¢))y > 0 for all y # 0 such that
V(2w 9i(2¢,u)y = 0 for all i € A(x¢,u°) and
(i) w§ >0 for all i € A(z®,u®).
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Therefore, by continuity and the fact that A(xz°(8),u®(8)) = A(z°,u°) it follows
that also the second order sufficiency conditions for problem (35) are satisfied, i.e.,

(i) yTV%I,u) (U(z¢(B),uc(B)) + (BT g(z¢(B),uc(B)))y > 0 for all y # 0 such that
V(2w 9i(2°(B), u(B))y = 0 for all i € A(z*(B),u°(B3)) and
(ii) pi(B) > 0 for all i € A(x°(B),uc(B)).

Hence for § sufficiently close to one, (z¢(8),u¢(8)) is a strict local minimizer of £
(see, e.g. [5, Proposition 3.3.2]). But then, since (z°,u®) was a global minimizer
of 7 on the compact set Y, by continuity 8 can be chosen close enough to one
such that also (2¢(8),u¢(f)) is a global minimizer of ¢ on Y, i.e., there exists
0 € Koo such that f(z,u,8) > o(||(x — z¢(8),u — u¢(B))|]) for all (z,u) € Y.
Together with the fact that A(x¢(8), 8) = 0 as established above, this implies that
the system is discounted strictly (x,u)-dissipative with respect to the supply rate
s(z,u) = £(xz,u) — £(x¢(B),u(B)), which concludes the proof of Theorem 8.2. [

Remark 8.3. In [30, Theorem 5], robustness of (undiscounted) dissipativity with
respect to parameter variations in the constraint set Y was studied. Both the above
proof of Theorem 8.2 and the proof of [30, Theorem 5] use ideas from the context
of nonlinear programming. However, in [30, Theorem 5] one could directly apply
sensitivity results, i.e., results on the parametric dependence of the solution of the
KKT conditions for optimization problems. In the above proof, this was not the
case, since for 8 # 1, the set of equations (31) do not correspond to the KKT
conditions of some associated optimization problem, but only for 5 = 1. Still,
the proof idea is similar in the sense that both approaches eventually rely on the
application of a form of the implicit function theorem.

Remark 8.4. It remains an open question whether or not Theorem 8.2 holds under
the assumption of strict z-dissipativity. However, showing this is likely to require a
different proof technique since it is strict (z, u)-dissipativity that is used to guarantee
that J of (32), and in particular H of (33), is nonsingular.

8.3. Extension to general supply rates. We now briefly discuss how the pre-
ceding results can be extended to general supply rates. Namely, given an equi-
librium (x¢,u®), suppose that system (1) is strictly (z,wu)-dissipative with respect
to some supply rate s : Y — R. We can now distinguish two cases. First, if the
minimum of the problem

1;1151 s(z,u) + M) = A(f(z,u)) st glz,u) <0 (36)

is (strictly) positive and f, s, and X are continuous, then also ming, .)<o s(=,u) +
Ax) — BA(f(z,u)) > 0 for § close enough to one (due to compactness of Y). Hence
system (1) is also discounted strictly (z,u)-dissipative in this case. Second, if the
minimum of the problem (36) is zero, by strict (x,u)-dissipativity it follows that
the minimizer of problem (36) is the point (¢, u¢), which is also the minimizer to
the problem

I?igls(x,u) st. = f(z,u) and g(xz,u) <0 (37)

In this case, discounted strict (x, u)-dissipativity can be established analogously to
the proof of Theorem 8.2, using the following modified assumption.

Assumption 8.5. The following hold:
1. The functions f, s, g, and A are twice continuously differentiable.
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jes)
[\)

"9 ~1

FIGURE 1. Hlustration of the steady-states (blue solid line), level
sets of £ (black ellipses), and the additional constraint geq (red
dashed) of the example in Section 8.4. The optimal steady-state
(z¢,u®) = (0,0) for the undiscounted case is marked with a circle.

2. The point (x¢,u¢) is a regular point and satisfies the second order sufficiency
conditions of both problem (36) and problem (37).

We then arrive at the following corollary.

Corollary 8.6. Suppose that system (1) is strictly (z,u)-dissipative with respect to
the supply rate s and that either (i) the minimum of the problem (36) is positive
and f, s, and A are continuous, or (ii) Assumption 8.5 holds. Then there exists
B <1 such that for all B € (B, 1), the system is discounted strictly (x,w)-dissipative
with respect to the supply rate s.

8.4. Example. We illustrate the preceding results with a simple example. Consider
the system

z(k+1) = u(k), (38)

with stage cost £(x,u) = (v + 1)? + (u — 1)? and state and input constraint set Y
given by (26) where

—2—-z
r—2
g(x,u): I,
u—2

The optimal equilibrium is (¢, u®) = (0,0) with associated stage cost £(z¢,u®) = 2.
One can show that the system (38) is strictly (x,u)-dissipative with respect to the
supply rate s(x,u) = €(x,u) —f(x¢, u¢) and storage function A(x) = —2z. The point
(z¢,u®) = (0,0) is a regular point of problem (27) and satisfies the second order suf-
ficiency conditions for problems (27) and (29) (note that both £ and ¢ are quadratic
and none of the constraints specified by g are active at (z°, u®) = (0,0)). Hence As-
sumption 8.1 is satisfied and we can apply Theorem 8.2 to conclude that there exists
an equilibrium (2¢(8),u¢(8)) such that the system (38) is also discounted strictly
(x, u)-dissipative with respect to the supply rate s(x,u) = €(xz,u) — £(x°(8),u(5))
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for discount factors [ close enough to one. Indeed, as shown in the proof of Theo-
rem 8.2, the optimal equilibrium (2°(8), u®(8)) varies continuously in 5 and is given
by

1-8 1-—
@@ 0) = (15 155) (39)
The corresponding storage function A is given by
B 4 1-5
A(m,ﬁ)——1+5(x—l+ﬁ), (40)

which is in accordance with (34). Both the optimal equilibria and the storage
function can be computed with the approach presented in Section 4 since the system
is linear with strictly convex stage cost £. Additionally, appealing to Theorem 4.2,
the system is discounted strictly (z,u)-dissipative for all 5 € (0,1).

In order to illustrate the comment following Definition 5.1, we compute Jo (g, u)
from (7) for f = 1/2 and two initial conditions. In this case, the optimal equilibrium
(39) is (1/3,1/3). First, consider the costs associated with starting and remaining
at either the equilibrium (0,0) or (1/3,1/3); i.e.,

oo
k=0

4
T (1/3,1/3) = 30 ~ 4A.

In other words, starting at zop = 0 and staying there is cheaper than starting at
xo = 1/3 and staying there. However, consider starting at zop = 0 and immediately
moving to x°(1/2) = 1/3; i.e., take u(k) = 1/3 for all k € Ny. Then

T (0,1/3) = % ~ 3.6

and, hence, from xy = 0, it is cheaper to move to 2°(1/2) and remain there than it is

to stay at the equilibrium 2 = 0 even though the running cost satisfies £(0,0) = 2 <
20

5 = £(1/3,1/3). Finally, consider starting at 29 = 1/3 and moving immediately to

x =0, in which case J(1/3,0) = £ ~ 4.7.
Returning to the general example (i.e., without fixing ), consider the additional
constraint geq(z,u) = z + u < 0, i.e., the state and input constraint set Y of (26)

is determined by

—2—=x
r—2
g(z,u) = [-2—u
u—2
T +u

Since (z¢,u®) = (0,0) is still a feasible point (however, now on the boundary of
the set Y), clearly the system (38) is still strictly (x,u)-dissipative with respect
to the supply rate s(z,u) = £(z,u) — £(z°,u®) and storage function A\(z) = —2z
as above. On the other hand, for any 8 € (0,1), the equilibrium (z¢(53),u®(8))
given by (39) is not feasible. Indeed, for any 8 € (0,1), the system is not dis-
counted strictly (z,u)-dissipative. According to Theorem 5.4, this can be proven
by showing that none of the feasible equilibria is optimal, i.e., for all feasible equi-
libria (2¢,u°®) we have Voo (z¢) < €(2%,u®)/(1 + ). Namely, given any feasible
equilibrium —2 < x¢ < 0 with u® = z°, consider the input and corresponding state
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sequences v’ = (8,—0,0,...) and ' = (2,9, —6,9,...) for some & > 0. Straight-
forward (but cumbersome) computations show that Joo(x¢,u') < £(z¢,u¢)/(1 4+ B)
if 6 < 2(1 - B)%/(1 + B)?. Hence for each 0 < < 1, there exists some § > 0
such that Vo (2°) < Joo(z®,u') < €(x¢,u®)/(1 4 5). This contradicts optimality of
each equilibrium (z¢,u¢) for each 8 € (0,1) and thus implies that the system is not
discounted strictly (x,u)-dissipative, since strict (z,w)-disipativity would require
the existence of an optimal equilibrium. The reason why Theorem 8.2 fails is that
the second order sufficiency conditions for problems (27) and (29) are not satisfied
(while the rest of Assumption 8.1 holds). Namely, the strict complementarity con-
dition is not satisfied since the constraint x + u < 0 is active at (z¢,u®) = (0,0),
but the corresponding Lagrange multiplier is zero because the equilibrium remains
optimal when removing this constraint.

9. Practical asymptotic stability of discounted optimal trajectories. Un-
der suitable conditions, discounted optimal trajectories are asymptotically stable at
an optimal equilibrium, see [15, 16, 35]. More precisely, if we write the optimally
controlled system in feedback form

z(k+1) = f(z, u(z)) (41)
with optimal feedback law® u : X — U, then the closed loop system (41) has an
optimal equilibrium with certain stability properties.

Theorem 9.2, below, provides conditions for such a result. For its formulation and
the subsequent considerations we need the following practical asymptotic stability
definition. Here KL denotes the set of all continuous functions y : [0, 00)% — [0, c0)
such that r — p(t,r) is in K for all ¢ > 0 and t — p(t, r) is strictly decreasing to 0
for all > 0.

Definition 9.1. For two numbers A > ¢ > 0, an equilibrium (z¢, u°) is called
(6, A)-practically asymptotically stable, if there exists a function n € KL such that
all closed-loop trajectories z(k) with ||x(0) — z¢|| < A satisfy the inequality

(k) — ¢ < max{n(||«(0) — =], k), 5} (42)
for all k € Ny.

The following is [15, Corollary 4.3], which will be used in the proof of Theorem 9.3
below.

Theorem 9.2. For 8 € (0,1), consider a strictly x-dissipative discounted optimal
control problem at an equilibrium (x¢,u¢) € Y. Assume that the optimal value

function V of the modified problem (10) satisfies V(z) < aa(||z — 2¢||) and
V(z)<C inf lg(x,u) (43)

for all z € X with ¥ < ||z — x| < O for 0 < ¥ < O, a function az € Koo, and a
constant C' > 1 satisfying

C<1/(1-p). (44)
Then, whenever a(©) > a(¥)/B holds for o from (8), the optimal closed-loop
system is (8, A)-practically asymptotically stable with § = a1 (az(9)/B) and A =
ay ' (a(©)). If (43) holds for all x € X, then the equilibrium is asymptotically stable
for the optimally controlled system.

5In discrete time, the existence of an optimal feedback follows from the existence of open loop
optimal control sequences u* by dynamic programming techniques, cf. [5].
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Next we formulate the main result of this section, which states that undis-
counted strict dissipativity implies semiglobal practical asymptotic stability for the
discounted optimal closed loop system with 5 close to 1, provided the optimal equi-
librium does not lie at the boundary of the constraint set. While at first glance
the next theorem appears similar to Theorem 4.4 in [15], there is a decisive differ-
ence: whereas in [15] assumptions on the discounted optimal control problem are
made, here we make assumptions on the undiscounted problem, but still derive sta-
bility properties for the discounted optimal solutions. In the theorem and its proof,
[ is again a varying parameter, hence we explicitly denote 3 as a function argument.
As in the last section, to simplify notation, we write 2° and u© instead of 2¢(1) and
u®(1), respectively.

Theorem 9.3. Consider an optimal control problem satisfying Assumption 8.1
with optimal equilibrium (z°,u®) € int Y. Assume that there exists & € Koo with
V(z,1) < a(||x—a°|) for allz € X. Then for all A > § > 0 there is 3 < 1 such that
for each B € (3,1) the optimal equilibrium x¢(B) is (3, A)-practically asymptotically
stable for the discounted optimal closed-loop system.

Proof. Under the assumptions of this theorem, it follows that x€ is a globally asymp-
totically stable equilibrium of the undiscounted optimal closed-loop system. This
follows, e.g., by applying [22, Theorem 4.8] to the problem with modified stage
cost £ from (28), observing that V(z,1) > a(||lz — 2¢)) holds for a from the strict
dissipativity assumption. This theorem implies that there exists u € KL such that
the undiscounted optimal trajectory x* satisfies

2" (k) = 2°]| < u(llz*(0) — 2°||, k) < p(a™" (z(0)), k).
Moreover, the strict (z,u)-dissipativity and non-negativity of l imply that
(2" (k) — 2w (k) = u) || < @ (E(a" (k),u* (k),1) < ™ (V(2*(0),1))

for all k € N. Hence, for any © > 0 all undiscounted optimal trajectories with
V(2%(0),1) < © are uniformly bounded. By fixing an arbitrary © > 0 and con-
sidering only those initial conditions satisfying V (z*(0),1) < ©, for the following
considerations, we may thus without loss of generality assume that Y is bounded.

Theorem 8.2 now implies the existence of B < 1 such that the discounted problem
is strictly (z,u)-dissipative for all 5 € (B, 1). We claim that from this it follows
(for all g sufficiently close to 1) that the assumptions of Theorem 9.2 hold with
oy = (C1 + 1)a for C; > 0 specified below. Since Y x [3,1] is bounded and / is
continuous, for any © > 0 we obtain a bound Mg with £(z*(k), u*(k), ) < Me for
all k e N.

For the subsequent estimates we use the fact that the definitions of the rotated
cost functions imply the existence of constants C; > 0, Cy > 0 and f; < 1 such
that the inequality

g(x,u,ﬂ) S Clg(xaua 1) + 02(1 - ﬂ)2 (45)

holds for all 8 € [81,1] and all z,u € Y.

In order to see that (45) holds, we use the following facts from the proof of
Theorem 8.2, taking into account that the multipliers p; vanish because (z€,u¢) €
intY: given & > 0, there exists 8; < 1 such that on the set [31, 1]

e the map 5 +— (2¢(8),u®(B)) is Lipschitz continuous, implying that we can

choose
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81 < 1 with ||(z¢(8) — z¢,u (ﬁ)fue)H <e/2for all g € [B,1].
o Viul(z(B),u(8), B) =

. V (o) U(z°(B),uc(B), B) is p051t1ve definite, uniformly in 3.

o (x,u,fB) — V(I ) E(w,u, B) is continuous, hence bounded on

N ={(@,u, ) € Y xR ||(z,u) = (z°(8),u“(B))Il <&, B € [Br, 1]}

Due to continuity, the second derivatives of £, f, and A are also bounded on N.
Hence, by choosing € > 0 small enough, Taylor’s theorem implies the existence of
C > 0 with l(z,u,B) < C||(z,u) — (x(8),u¢(B))||? for all (z,u,3) € N. Using
the Lipschitz dependence of (z¢(3),u®(5)) on § and denoting the corresponding
Lipschitz constant by L, this implies

Uz, u, B) < Cll(z — 2°(8), u — u(A))||* < CL(L - B)*.

Hence, (45) holds on A/ with Cy = CL and C; > 0 arbitrary. On (Y x [81,1])\N, the
inequalities £(z, u, 8) > o (| (z—2°(8), u—u*(8))|]) and [|(z—2°(8), u—u*(8))| > /2
imply that there exists m > 0 with ¢(x,u,1) > m for all (z,u) € Y. Moreover, the
boundedness of Y implies the existence of M > 0 with (z,u,3) < M for all
(z,u) € Y and 8 € [81,1]. This implies (45) with C1 = M/m and Cs > 0 arbitrary
on (Y x [81,1]) \V and thus (45) on the whole set Y x [, 1].

Using (45), the boundedness of ? and the fact that by nonnegativity of { we have
BE0 < 7 for all k > 0 we can now estimate for z = 2.*(0)

V(z,f) < J(x,u",B) ZB’“ u*(k), B)
< Zﬂ’“(cl o’ (k). 1) + Co(1 = B)°)
= clzm (k) 1) + Ca(1 = B)

< 01V<.’17, 1) + 02(1 — 6) S Cld(H.’E — er) + 02(1 — 5)
Now let ©® > ¢ > 0 be arbitrary and consider the set
S5(8) :==A{r e X[a(llz —2°(B)[) < © and Cra(||z — 2°(|) + C2(1 = B) = J}.
This set is compact, contains all z € X with ¢ < ‘7(1’, B) < O and for every By < 1
with Co(1 — f2) < ¢ it does not contain a ball around x° for all 8 € [z, 1].

Thus, there exists £ > 0 independent of § € [B2,1] such that mingeg(s) a(||z —
z¢||) > k > 0. Hence, choosing 3 € [82, 1) such that Co(1 — f3) < /2 and

(Cr+ Dla(f|lz = 2°) = a(lle = z°(B)|)] < K/2
for all x € S(B) and all 8 € [83, 1] we obtain

V(x,8) < C1a(|lx = 2°|]) + C2(1~ B)
< (Cr+ 1/2)a([lz — 2°l]) < (C1 + Da(llz — 2°(B)])

for all z € X with @ < V(z,8) < © and all 8 € [83,1]. This shows the first
inequality needed in the Assumptions of Theorem 9.2.

From strict dissipativity we know that £(z, u, 8) > a(||Jz — 2¢(38)|)). This implies
that £ (x,u, 8) > k for all z € S(B). Moreover, by continuity of all involved functions



794 L. G:R[”JNE7 M. A. MULLER7 C. M. KELLETT AND S. R. WELLER

there is a bound B > 0 such that the inequality (C1 + 1)a(||z — z¢(B)|)/a(llz —
2¢(B)|) < B holds for all z € S() and all 3 € [f3, 1]. Hence, by choosing 3 € [33,1)
such that 1 — 8 < 1/B holds, for all § € [8, 1] we obtain

(L-B)V(z,8) < 1 =B)(C +Da(llz —2*B)l) < (1 = B)Ba(llz — 2°(H)])
< afllz —z°B)) < lz,u,p),

which implies the second inequality from the Assumptions of Theorem 9.2 with
C =B < 1/(1 - f). Hence, Theorem 9.2 applies and yields the claim. O

10. Conclusions. Prior work in the literature demonstrated a close connection
between strict dissipativity, available storage, the turnpike property, and the near
optimality of closed-loop solutions of model predictive control schemes. These clas-
sical notions of dissipativity and available storage are related to an optimal control
problem with an undiscounted stage cost. In this paper, we modified these classical
notions for application to optimal control problems with a discounted stage cost and
showed that an important class of problems, namely affine linear systems with a
strictly convex stage cost, satisfy these modified notions.

We subsequently demonstrated that discounted strict dissipativity is equivalent
to a form of robust optimality (Theorem 5.4) and that discounted strict dissipativ-
ity implies a certain continuity of trajectories near an optimal equilibrium (Theo-
rem 7.1). These results are a prerequisite to demonstrating an equivalence between
discounted strict dissipativity, turnpike properties, and near optimality of closed
loop solutions of model predictive control schemes based on optimal control prob-
lems with discounted stage costs.

Under certain regularity conditions commonly used in the context of nonlinear
programming, we demonstrated that strict dissipativity implies discounted strict
dissipativity for discount factors close enough to one. Hence, statements in eco-
nomic model predictive control about steady-state optimality, turnpike properties,
and closed-loop performance and convergence, are preserved under sufficiently mild
discounting. We additionally showed that, under standard assumptions solely on
the undiscounted problem, optimal controls computed from a discounted stage cost
yield a (practically) asymptotically stable equilibrium in closed-loop, again for suf-
ficiently mild discounting. Importantly, our motivating applications in economics
usually have a discount factor of 0.95 or higher [13, 26, 33, 42].
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