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1 Introduction

The rational Calogero model [1, 2] and its various generalizations (see [3] for a review) play
a special role in mathematical physics. Being an integrable and solvable multi-particle
one-dimensional system it appears in many different areas such as fluid mechanics, spin
chains, gauge theory and string theory. The standard N = 2 supersymmetric extension
of the m-particle Calogero models is based on n scalar bosonic N’ = 2 superfields with a
component content (1,2,1) i.e. one physical boson, 2 fermions and one auxiliary field for
each particle [4-6]. Being quite satisfactory for N/ = 2 supersymmetry, this construction
fails to reproduce N = 4 supersymmetric Calogero models beyond four particles [7].

Recent progress in the construction of supersymmetric extensions of Calogero models
was achieved by adding to the system more fermions as compared to the standard super-
symmetrization [4-6]. It was inspired by supersymmetric extensions of the matrix models
which, upon reduction or gauge fixing, give rise to the familiar bosonic systems. The su-
perfield approach developed in [8-10] for the rational spin-Calogero models with V' = 2,4
supersymmetry was recently extended to N' = 2,4 supersymmetric hyperbolic Calogero
models [11, 12]. However, it suffers from an unclear structure of the bosonic matrix model
one has to start from.

In the series of papers [13-15] we developed a different approach. Mainly working in
the Hamiltonian formulation, we worked out an ansatz for the supercharges which accom-
modates all Calogero models associated with the classical A,,, By, C,, and D,, Lie algebras
and their trigonometric/hyperbolic extensions [15]. Having at hands the Hamiltonian de-
scription of N-extended supersymmetric Calogero models, it is of interest to gain also its
superfield formulation, at least in the simplest case of N' = 2 supersymmetry.! The su-
perspace picture, alternative to the one constructed in [8-12], will help in understanding

1A superspace description of the A-extended supersymmetric Euler-Calogero-Moser system has been
provided in [16].



the general supersymmetry structure and clarify the role played by the additional matrix
fermions. This is the main goal of this work.

The plan of the paper is as follows. In section 2 we review the Hamiltonian descrip-
tion of the supersymmetric Calogero models. Their superfield treatment is performed in
section 3 (A; @ A,,—1 models) and in section 4 (B,,, Cy,, D,, models). The most remarkable
result here is a universal nonlinear fermionic chiral supermultiplet which collects all matrix
fermions occurring in all super-extended Calogero models. In section 5 we present more
general supercharges (and a superspace Lagrangian), which provide an N’ = 2 supersym-
metrization for a bosonic potential % doici f (z;—x;)? with an arbitrary function f. We
conclude with a short summary and some arguments in favor of the integrability of the
constructed supersymmetric systems.

2 Hamiltonian description of N' = 2 supersymmetric Calogero models

In the Hamiltonian approach the n-particle supersymmetric Calogero model with N' = 2
extended supersymmetry [13-15] features the following degrees of freedom:

e 1 bosonic coordinates x; and momenta p; with i =1,...,n,
e 2n fermions 1; and v; ,
e 2n(n—1) fermions &;; and fij with &; = &; = 0.
Their non-vanishing Poisson brackets are
{zi,pi} = 0ij, {05} = =165, {&j &m} = =1 (1=055) (1=0km) SimOjk-  (2.1)

A central role of our construction take the composite objects II;; and ﬁij defined as

ij = (=) &ij + (vi—15) &ij + Z (&inij + Einkrj) (2.2)
k=1
I = 20ipithi + (Wit ) &5 — (Pitdy) & + D (Enig — Einbes) - (2.3)
k=1

One may easily check that II;; and ﬁij together form an s(u(n) ® u(n)) algebra,?
{Mij, Wy } = 1(Gim s — Okjlim), {10, e} = 1 (Gim Iy — 0k 1Lim),
(T, My } = 1(Gim Iy — 03T ) -

Our NV = 2 supersymmetric Calogero models of A-type [14, 15] are defined by a generic

(2.4)

form of their supercharges,

n

Q=) pii—iy. [(9 + ;) f(=i5) + ff((j”)) Hij:| &jis

= # ? (2.5)
Q = Zpﬂ/;z‘ —1 Z [(9 + 1L5) f(zi5) + ! (Z'ii)ﬂij]gjia

i=1 i#j f(zy)

2We remind that > I =0.



with some function f, to be specified in a moment. Note that ﬁij does not appear here.
These supercharges form an A/ = 2 super-Poincaré algebra,

{Q.Q}=—-21H and {Q.Q}={Q.,Q}=0, (2.6)

together with the Hamiltonian

ooy LG iy G g
sz + ; [ g+ H]J za) f(Zij) Hzg] [(9 + 1) f( zj) + f(Zz‘j) IL;;
0]

Here, we abbreviated

Zij = Tj — Ty, (28)

and the constant parameter o and the function f are given as follows,

1 1
rational Calogero model a=0, f(zun)=—= ,
Zij LTi—Tj
. 1 1
hyperbolic Calogero-Moser model a=-1, f(zj)=— h(z)) == h )
S1n. zij Sin .%'i—ZL'j
1 1

trigonometric Calogero-Moser model a=1, f(z;)=— = — :
sin(z;;)  sin(z;—z;)

(2.9)
For the B, C' and D-type models, the supercharges take a more complicated generic form
(including I1;;),

Q= me - Z [(g +105) f(=zi5) + mﬂij]fji

i#]
* iz [(9 +105) f(yis) — f,((y ))Hw} &ji
i#] Yij
S 1) Fo) - L5
+ lzi: |: (g + sz) f(yu) f(y“) 11, :|1/)“
o (2.10)
Q= szwz —1 Z [(9 +1L5) f(zi5) + J;c((jj)) sz]f_ji
i#j K
iy gy Wi g
; |:<g + HJ]) f(ylj) f(yz]) z]:| 5]2
- [ (i) =

32 1) ) - e e

i
Here,
Yij = Zi + 25, (2.11)



and the function f is the same as in (2.9). The supercharges (2.10) form the same N = 2
super-Poincaré algebra (2.6) together with the Hamiltonian

f(z ) ][ o [ ]
sz + ; [ g+HJJ ZU) f( ) (9+Hll) f(zm)_" f(zij) sz
1 yz ) f'(yij) =
+ Z[ g + 1) f(ya) — S i) H g +T0i) f i) — f/(y“)ﬁ“] (2.12)
yu) f(ym)
Its bosonic sector reads
n 2 N /2 n

Hbos = ;ZP? +%Z(f (ZZ])+f2(yl] +7Zf2 (Yii)- (2.13)

Due to the presence of only two coupling constants, g and ¢’, we may describe B, C
and D-type models in the rational case and C' and D (but not B)-type models in the
hyperbolic/trigonometric case.

3 N = 2 superspace A; @ A,,_; Calogero models

To provide a superspace description of N/ = 2 supersymmetric Calogero models one has,
firstly, to assemble the physical components x;, 15, 1, &ij and Ez-j into N = 2 superfields.

It immediately follows from the structure of the supercharges Q and Q (2.5) that under
N = 2 supersymmetry the coordinates x; transform into the fermions 1; and );:

bz; = {m;,ieQ +ieQ} = ie; +iey; . (3.1)
Thus, one is let to n bosonic N = 2 superfields x; with the components?
. - — J
Ty = :I:i‘, wz = —IDCCZ'|7 T/JZ = —IDCCZ‘|, Al = 5 [D, D] CCZ| (32)

Concerning the fermionic components &;;, gij, we have no other possibility than to put
them into 2n(n—1) new fermionic superfields §;; and Eij with vanishing diagonal parts, i.e.

As N = 2 superfields the &;; and E’ij contain a lot of components. Hence, they have to be

4

constrained somehow.* The appropriate constraints derive from the explicit form of the

*We use the N' = 2 spinor covariant derivatives D and D obeying {D,D} = 2i8; and {D,D} =
{5,5} = 0. We denote by A| the § = = 0 limit of a superspace expression .A.

Tt was first mentioned in [17] that 2n(n—1) fermionic components can be placed into n(n—1) super-
multiplets of type (0,2, 2).



supercharges @ and Q (2.5), which leads to the following supersymmetry transformations
of the leading components &;; and g}j of these superfields,

0Q&ij ~ i€ [ - “;((j”)) (Vi—v5) &ij + &j (Z f(zik)ir — Z f(%‘k)fjk)
" k#i k#j
- Z ( Zlk ff((Zk])> fikfkj] ;
k+#i,j Zk?)
o) (3.4)
(5@513 ~ i€ [ ( ) (77/)1 ¢]) 52] =+ fz] (Zf Zik gzk - Zf Zjk Ejk)
k#i k#£j
B [ (zin) f'(%j)) F s
k;j < sz f(Zk]) glk)gk_]] .

To realize this transformation property we are forced to impose a nonlinear chirality con-
dition on the superfields §;; and Eij,

Dgz] =1 [ ff(( )) ('wz ’l,b]) E’L] +£Z] (Zf Zik gzk Zf Zjk Ejk)
ki k#j
L f1(=k)
_ Z ( f(zk;)> &kﬁkj] )
k#i,j
) (3.5)
Dﬁl]_ll_f( )(d)z ¢‘]) £ZJ+E’L] (Zlek Ezk Zfz]k £jk'>
f(zi5) oy oyt
- ARG >) i E
k;] ( f(ZkJ) gzk&kg] .
This condition leaves in the superfields §;; and £ij only the components
&ij = &ijl, Bij = bﬁz’j\, gij = éij’a Eij = DE@'\ . (3.6)

Finally, to obtain the correct brackets (2.1) for (¢;,1;) and (&;,&;) after passing to
the Hamiltonian formalism, the kinetic terms for these fermionic components must have
the form

E?}fm _i Z (%q/;z 1/111;2) and Eim = ;Zn: (fz]ggz - §z’jgji>~ (3.7)
i=1 [2¥}

In N = 2 superspace, this amounts to the free action (g = 0)
1 & — I, - —
_ 2 ) R E : 2 —
So = /dtd 0 [ 5 Z;Da:l Dz + 5 Zgwgﬂ] with d?0 = DD. (3.8)
1= .7

More interesting is the construction of the interaction terms. Again, some hints come
from the transformation properties of the fermions &;; and Eij under Q and @ supersym-
metry, respectively,

5§§U ~ i€gf(2’ij) +..., 5Q§1J ~ iég f(zij) —+.... (39)



To reproduce such terms in superspace, the unique possibility is to add to the action
So (3.8) a term

Sint = ig/dtde ;f(zij)gij+i‘g/dtd9 ;f(zij)g‘ij. (3.10)
17£) 17]

To be supersymmetrically invariant, the integrands in (3.10) must be chiral and antichiral,
respectively. It is not too hard to check that this is indeed so: the nonlinear chirality
constraint (3.5) implies that

D(Z f(zij) €zj> =0  and D(Z f(zij) Eij) =0. (3.11)
i#j 7]

Combining all these facts together, we conclude that the superfield action reads
S = /dtd29 - 1iD:]}Z Dx; —i—li&éz
2 &~ 2 L™V
+1/dtd9 Zf 2ij)€ij +is /dtd@Zf zij) €ij (3.12)

i#] i#]

where the superfields &;; and Eij are subject to the nonlinear chirality constraint (3.5).
It is important to note that, after passing to new fermionic superfields

Nij = f(zi) € and Ay = f(zi5) &, (3.13)

the nonlinear constraint (3.5) is slightly simplified to

DX = i AUZAM—AUZ)\]H— (1-4;) Z)\k}\k] ,

— i - (3.14)
DXj = i ZJZAzk—AZ]ZA]k+ (1-64) Z )\zk}\k]

L kA k#j k#i,j

In this form, the constraint has lost any f-dependence, which however will reappear in the
action,

n

Aij A
S:/dtd26 Dz; Dx; + = J ”
B> DI
+1/dtd0 Z)\U—i—l /dtd9 ZA,J (3.15)
i#j i#j

Also, the component Lagrangian, Hamiltonian and Poisson brackets will be more compli-
cated in terms of the composite superfields A;; and S\ij .



Despite the extremely simple form of the superfield action (3.12), its component version
looks quite complicated due to the constraint (3.5). Indeed, after integration over 6 in (3.12)
we get the off-shell Lagrangian

L =L+ Lpot » where (3.16)
1 n . .on o .
Lo = 3 XZ: (ﬂfzﬂfl + A;A; ) Z (%ﬂh T/JHZ%) + % Zz]: (Sijﬁji - &jfﬁ)
53 (0(D€:) - D(D&,): — DEDE: + ByB;1), (3.17)
ij
Lot = — g > f’(Zij)< (Wi = 5) & + (5 — ;) fz‘j) +i% > f(z)(Bij + Byj) -
i3 (2]

To eliminate the auxiliary fields A; and B;; one firstly has to evaluate the terms in the
second line of (3.17) by using the constraint (3.5). This is a straightforward but rather
tedious calculation. After employing the equations of motion for the auxiliary components
we finally obtain the desired result,

_ % ZZ:;%% + % g (@@ — WL) + % En: (fiji_jz - fz’jgjz‘)

1,

1< . g
5 ; [(9 +105) £ (=i5) + ien Hz’j] [(9 +10) f(2i5) + f(zij)Hji] (3.18)

n
o
) > 0,0,
ij

Thus, the superfield action (3.12) with the superfields &;; and &;; subject to the non-
linear chirality constraint (3.5) indeed describes all N' = 2 supersymmetric Ay & A,
Calogero models.

4 N = 2 superspace B, C, and D,, Calogero models

The supercharges of the N/ = 2 supersymmetric B, C' and D-type Calogero models (2.10)
have a more complicated structure than those in (2.5). Therefore, it is expected that the
nonlinear chirality constraint for the superfields &;; and Eij are more intricate as well.
Indeed, the explicit structure of the supercharges (2.10) uniquely fixes this constraint to be

f/(zlj) f/(yzj)
f(z ) (’lpz ¢j) sw ( ) (¢7, + ’lp]) 57,]
(

Ay~ o (s + o e

+&;; <Z f(ziw) + f yzk))&;k—Z(f(zjk)Jrf(yjk))ﬁjk)

Dﬁz‘j =

e py
f'(= zr))  ['yiw) | ki), o
k1, < f(z zr;)  f(Yi) * f(yrj) > El’fs’w] )



e —il = f/(zi]) s f/(yzj)
D£Z] - f(zi]) (’lpz "P;) 51] f(ij) (’(/)z + d}]) £
f'(yii) AN\ f'(y35) . N,
- {< (yii) +f(yu)>¢l - m f(y”)>¢]}§”

3

f
+& (Z (f(zik) = Fyin)) & — > (F (i) — f(.%'k))é;‘k)
ki

k#j
_ n ' (z) f’(zkj) B #(ya) f/(ykj) _—

The complicated form of this constraint disappears after passing to the composite
superfields

Xij = (flzi) + fyi)€&;  and Xy = (f(zi) — f(yij) & (4.2)

in which it acquires its familiar form (3.14),

DX = i [)WZ)% =i D Ak (1-6i5) D Aikxkj] :

ket k#j k#i,j

. n n n

DX = 1A ) Xiw— A D A+ (1-035) > Aikxkj] :
oy k#j k]

Finally, the superfield action reads

S:/dtd2«9 [ ZDZBZ Da; + Zewsﬂ—f (y”)]

+1/dtd6 Z Fzij) + flyi)) & + /dtd@ Z Flzi) + flyig)) & s

i#] i#]

(4.3)

where
W (yii) = f(yii)- (4.4)

Compared to the action of the A; @ A,_; Calogero models (3.15), only the term
2 [dtd*0 h(y;;) carrying the new coupling constant g’ appears in the action (4.3). All
other terms just mimic those in (3.15).

It is a matter of straightforward but tedious calculations to check that, after exclud-
ing the auxiliary fields by their equations of motion, the final Lagrangian acquires the
expected form

— % Z Tidi + % Z (Wﬁl - %@51) + %Z (&;fﬂ - &jfﬁ)
=1 =1 i,j
_ lzn: [(g +10j5) f (2i5) + f'(2i5) Hi‘] [(g 1) f(z) + J \Zij) H'i:|
2 vy 37 J f(z”) J J f(Zz'j) 7




1y Ny L W) N W)
B ; [(9 + Hjj)f(yzj) f(y” HZJ:| I:(g + Hu)f(@/w) f(y”) HJZ:|
f( )

)
IS et o — 29D 5 (o ) o — £ W) .
5 ; [(9 +10) f (i) o) Hu] [(g +10) f (i) o™ Hu]. (4.5)

Thus, the superfield action (4.3) with the superfields &;; and &;; subject to the nonlinear
chirality constraint (4.1) indeed describes the N’ = 2 supersymmetric B, C' and D-type
Calogero models.”

5 New N = 2 supersymmetric n-particle models

Our point of departure was the explicit form of the N/ = 2 supercharges for the Calogero
models (2.5) and (2.10) constructed in [14, 15]. In all cases we considered the function
f to be not arbitrary but to be chosen from the list (2.9). Indeed, for generic f the
supercharges (2.5) do not form the closed algebra (2.6). As a consequence, the nonlinear
chirality condition (3.5) is not self-consistent for an arbitrary function f (i.e. D acting on the
r.h.s. of (3.5) does not vanish). On the other hand, the universal chirality constraint (3.14)
is self-consistent. This implies a weaker chirality condition on &;; and fij:G

Dg;; =i _zy) (i — ;) &+ & Zfz”“ ik Zfz]k ik
f(zij) ki k#j

+ Z f z;f:( f(;k]) gzksk]] )
k#i,j
(5.1)

EEU =1i|- f (Z) (1/) 'lnb]) 5@] +€z] Zf Zik gzk Zf Zik é]k
f(zij) ot oy
f(zik) f(zr)) 2

One may check that this nonlinear chirality constraint is perfectly self-consistent for an
arbitrary function f.

Now, let us again start from the superspace action (3.8), but where the fermionic
superfields &;; and Eij must obey the constraint (5.1). Passing to the components and
eliminating the auxiliary components one arrives at

szwz —1i Z g + H]j Zzg) ;((ZZZ]J)) (¢ 1/’;) 51]
i#j k

—i—k;j f(zkj) gzkfk] 5]17

SExcept again for B-type models in the trigonometric/hyperbolic case.
SFor the sake of simplicity we consider here the A-type case, in which the (Xi;, Xi;) and (&;;,&;;) are
related as in (3.13).




Q = Y piti—iy |(g+1L) f(z) + J;c((jw; (i = ¥5) &
i=1 i#j Y

+k§j f(zk]) glkgk'j ggz' (5.2)

For the functions listed in (2.9) these supercharges coincide with the ones in (2.5). However,
the supercharges (5.2) generate the N' = 2 super-Poincaré algebra (2.6) for an arbitrary
function f. It is not too hard to find the bosonic part of the new Hamiltonian,

Hpos = 5210? + EZfQ(Zz'j)- (5.3)
( i#]
Thus, the supercharges (5.2) provide an N/ = 2 supersymmetrization of a wide class of
multi-particle systems with a bosonic Hamiltonian of the type (5.3). A detailed analysis of
such models will be given elsewhere.

6 Conclusions

In this paper we have provided a superspace description of the N/ = 2 supersymmetric
Calogero models, rational as well as trigonometric/hyperbolic, associated with the classical
A,, B,, C, and D,, Lie algebras. We presented a minimal superfield content accommo-
dating the 2n? fermions for the N = 2 supersymmetric n-particle model. As 2n fermions
accompany the n bosonic coordinates in general bosonic ' = 2 superfields, the remaining
2n(n—1) fermions must be put into additional fermionic N/ = 2 superfields, which have
to be constrained such as to describe those fermions alone. The nonlinear chirality con-
dition (3.14) written in terms of composite superfields solves this task. These composite
fermionic N' = 2 superfields make the constraint look simple and universal but complicate
the Lagrangian. In terms of the fundamental fermions it is the other way around. We fi-
nally presented more general supercharges (and the superspace Lagrangian) which provides
an N = 2 supersymmetrization of bosonic n-particle systems with an arbitrary repulsive
two-body interaction.

One might criticize that the approach presented here is unnecessarily complicated,
because all N' = 2 supersymmetric Calogero models can be more or less straightforwardly
formulated in the standard fashion employing the minimum of 2n fermions [4]. This,
however, is no longer the case with N'>2 supersymmetric Calogero models, where our
treatment with additional fermions becomes essential. Hence, we consider our results here
as a preparation for attacking Calogero systems with more supersymmetry in a superspace
setting. The main excuse for presenting of our A/ = 2 results is the universal form of
the nonlinear chirality constraint together with the almost trivial generalization of the
supercharges to A/ = 4 supersymmetry [15] which will further the superspace construction
of N> 4 Calogero models.

There is no doubt that the importance of Calogero-type models is related with their
integrability. In the standard case when N = 2 supersymmetrization of n-particle models

~10 -



involves 2n fermionic degrees of freedom the issue of integrability has been considered,
for example, in [5, 6]. In our case we deal with many more fermionic degrees of freedom,
namely 2n? instead of 2n. Nevertheless, the L—M pair, at least for rational Calogero

models (a = 0, f(z;) = —L— in (2.9)), has the quite simple form

T;—T;
: g+ 1L;; — I
. g+ Uy — 1Ly . g+ — 11
M;; = —id; Y —————=+i(1 —d;) —2L—+ (6.1)
’ ! k%:l (z; — xp)? 7 (@i — )

such that

d._— _

o Lij = {Lij, H} = zk: (Lot Myj — My L) = [L, M],. (6.2)

This construction is quite similar to those considered in [5, 6] and [12].
Clearly, the independent conserved currents read

Hy = Tr (Lk) k=1,2,...,n. (6.3)
Additional currents can be constructed if we note that
d
%Hij = {Ili;, H} = [II, M],; . (6.4)

Therefore, any operator that can be written as the trace of a polynomial function F
depending only on the matrices L and II is conserved,

d
=T ) = 0. .
o T F(L,ID) =0 (6.5)

Keeping in mind that our Hamiltonians (2.7) depend on fermionic degrees of freedom only
through the composites 1I;;, one expects that the above set of conserved currents contains
all currents in involution, as needed for integrability. This will be a strong indication in
favor of complete integrability of the constructed systems. However, a detailed discussion
of integrability is out of the scope of the present paper.
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A Self-consistency of the nonlinear chirality constraint

The nonlinear chirality constraint reads

1
= DXij = A D ik = A D oA+ (1-65) D0 Aadky, Ai=0, (Ad)

ki k#j k#i,3

1 _ _ _ _ _ _

DX =X ) X=X D X+ (1-0i5) Y Xadwg,  Xi=0.  (A2)
k#i k#j k#i,j

- 11 -



Let us prove that (A.1) is self-consistent. For this we act with D on it. The Lh.s. is iden-
tically zero (since D? = 0), while the r.h.s. should vanish by virtue of the constraint itself.

r.h.s. = D)\z’j Z ik — Aij Z DX — D)\Z'j Z )\jk + )‘ij Z D)\jk

k#i k#i k#j k#j
+ (1=05) D> (DAirArj — AieDAgj)
ki,
= (Aij ZAm — Aij Z Ajn + (1=6;5) Z AmNg) Z Aik — Z)\jk
n#i n#j n#i,j k#i k#j
= Aij ' (Aik ZAin — ik Z Xen + (1=6i) Z )\z’n}\nk> (A.3)
k#i n#i n#k n#i,k
+ Aij (Ajk Z Ajin — Ajk Z X+ (1=8j1) Z )\jnAnk>
k#j n#j n#k n#j.k
+(1=655) > (Aik D Xin = Xik D Akn + (1=6k) D Amxnk) Akj
k#i,j5 n#i n#k n#ik
— (1—6ij) Z <)‘kzj Z Aen, — )\kj Z)\jn + (1—51€j) Z Akn)\nj> A
k#i,5 n#k n#j n#j.k

Let us first collect all terms proportional to (1—d;;),

Z AinAnj Z Aik — Z AinAnj Z Ajk + Z Ak Z AinAk;j

- ki nij oy kAij  ni
SDSEYD DI WU S SR VRIS PV 3 VRN
k#i,j n#k k#i,j n#i,k k#i,j n#k
+ Z )\ka)\jnAik - Z Z AknAnj ik -
ki, j n#j k#i,j n#k,j

The fourth and sixth terms cancel each other out. Then, replacing the indices in the first
and second terms as k <> n makes them cancel with the third and seventh terms. Thus,
after replacing the indices in the first term as k <> n, we remain with

Z Z Alk}\k” nj Z Z Alkkkn nj - (A5)
n#i,j k#i,n k#i,5 n#£k,j

A sum over k in the first term can be split into two pieces, corresponding to k = j or k # j,

Z Z )\zkAkn nj — Z )\Z])\]n)\nj—i— Z Z Alk)‘kn nj - (Aﬁ)

n#i,j k#i,n n#i,j n#i,j k#i,j,n

Performing the analogous splitting for the index n in the second term of (A.5), n = i or

yielding

n # 1, one finds

k#i,j n#k,j k#i,j k#i,5 n#i,5,k
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After relabeling k <+ n, the second terms on the r.h.s. of (A.6) and (A.7) become identical.
Hence, their contribution to (A.5) cancels,

S (AAd = AsAAn ) =0, (A.8)
k#i,j nti gk
so we are left with the first terms on the r.h.s. of (A.6) and (A.7),
n#i,j

Let us secondly analyze all terms in (A.3) multiplying A;; and add to them (A.9),
which is of the same form,

Z)\mZAik—Z)\mz}\jk—Z)\jnz)\ik+z)\jnz>‘jk

n#i k#i n#i k#j n#j k#i n#£j k#j
DB UED DRV B TED D PR
ki nti k£ ntk ki ntik (A.10)
RO IETEDBETDIEED D DRIE
k#j n#j k#j n#k k#j n#j.k
3 XAk = D Ak
k#i,j k#i,j

It remains to show that these twelve terms combine to zero. The sum of the first five term
cancels with the eighth term. Rewriting the sixth term as a sum of two pieces, separating
n =1 and n # 1,

DAk Ak = D Airdki+ D Aik D Ak, (A.11)
k£ ntk ki k£ ntki
one may observe it to cancel with the seventh and the twelveth term. Analogously, the

ninth, tenth and eleventh term add to zero. Nothing remains. This completes the proof.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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