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1 Introduction

This work concerns consistent interactions of Curtright fields [1]. Curtright fields are

Lorentz tensors 7%, with Lorentz indices j, v, o having the permutation symmetries!

pvo
o= T8 Ty =0. (1.1)

The additional index a is no Lorentz index but only enumerates the Curtright fields, i.e.
we examine also models with more than one Curtright field. The Lagrangian that we use
for free (non-interacting) Curtright fields is

1 v v
£0 — _Eéab (F8, oo P17 — 3, FO) (1.2)
wherein
F o = OuT50e + 0,15 + 0,10, Fiy=Ff,° (1.3)

and Lorentz indices are lowered and raised with a flat metric 7,, and its inverse n**. Cur-
tright fields are particularly interesting in D = 5 dimensions because there a Curtright field
is the elementary field (counterpart of the metric field) in a dual formulation of linearized
general relativity [2, 3].

We apply the BRST-BV-cohomological approach [4, 5] to construct consistent inter-
actions. In that approach one seeks a master action S = S© 4+ ¢S 4 4253 4 .
which solves the master equation (S, S) = 0 [6], wherein S(9) is the master action of the
original (undeformed) theory and g¢ is a deformation parameter. S is thus a deforma-
tion of S, The master equation (S,S) = 0 imposes (S, S1)) = 0 at first order in g,
(81, §M) +2(8 §(2)) = 0 at second order etc. The first order condition (S, M) =0
requires in D dimensions

swo,p + dwi,p—1 =0 (1.4)

wherein s is the BRST differential s - = (S(®), . ) of the original theory, d = dz"9, is
the exterior derivative, wp p is the integrand (exterior D-form with ghost number 0) of

! Antisymmetrization of indices is defined as X (uv] =
as X(u) = (X + Xop) ete.

2 (Xpuw — Xuu) etc., symmetrization correspondingly



S = J wo,p, and wy p_1 is an exterior (D — 1)-form with ghost number 1 (generally wy
denotes an exterior p-form with ghost number g).

(1.4) implies descent equations swy p—1 + dwa p—2 = 0, swp p_2 + dw3 p—3 = 0 etc.
with increasing ghost number and decreasing form-degree that can be compactly written
as (see section 9 of [7] and section 3 of [8] for reviews)

D
(S—i-d) Qp=0, Qp= ZwD—p{p (1.5)
p=m

wherein Qp is a “total form” with “total degree”? D, and m is some form-degree at which
the descent equations terminate (the value of m varies from case to case).

2 BRST differential
In our case the master action corresponding to the Lagrangian (1.2) can be taken as
SO = / (L0 —2(0,88, + 0, AL, — 9, A% )T — (653 + 2431)0,C8ldPx  (2.1)

wherein Sjj, and Ay, denote ghost fields, C}; denote ghost-for-ghost fields, and THe,

Syt AG' denote the antifields for T, i gy and Af, respectively (the antifields for C}}

are denoted C;"). The ghost fields and antifields have the index symmetries

a _ Qa a _ _ Aa *UVQ __ _ rkUUQ

Siw =Sy A = —AY,, T =T
*[uvol *UV __ QRULL XUV AKXV
Tl — g e A = g,

The fields, antifields, spacetime coordinates z* and differentials dz* have the following
ghost numbers (gh), antifield numbers (af), GraBmann parities (| |) and BRST transfor-
mations (s):

Z gh(Z) | af(Z2) | |Z| sZ
Tﬁyg 0 0 0 Q(G[MSS]Q + a[HAg]Q - 8QAZV)
Se, 1 0 1 60, Cy)
Aa, 1 0 1 20;,C4,
ca 2 0 0 0
Tl 1L 1| g0a @ (FPe — 3FVrye) = Gap(Be — BYil)
S| 2 2 | 0 —20,T)
Ag;w _9 92 0 BaQT;MVQ — _68QT;Q[NV}
ct -3 3 1 0,(6557 + 245"
ah 0 0 0 0
dzt 0 0 1 0

(2.2)

2The total degree G of a total form Qg = Zp W@ —p,p is the sum of the form-degree and the ghost number
of its exterior forms wa—pp. A total form with total degree G is called a total G-form.



a a 3 M a .
wherein Ej,, and Ej are traces of a gauge invariant tensor Ej,

E%, = (a Flpr — 0-F% ), B, =—E2,,°, Et=E.". (2.3)

QrooT nvoT nvoo uvo — ouvo

These tensors fulfill the identities

jweotr = 0: e = 0 (24)
O Ejgor = =30, E . OTEL 00 = 0oL} ,e — 0By, (2.5)
1
OME},, = —ia@Eg, 0°Ey,, = —0ukEy . (2.6)
For later purpose we also introduce the totally tracefree part Wy, ., of Ej,,,, in dimen-
sions D > 3:

We oT — ga ot 4 6 _ - FRo [057'] 6 5057 (2 7)

pveo pro D—3 v T (D-3)(D-2) ki :

a
We remark that Flueos Eflypors Wiveors Eve

Levi-Civita-Christoffel connection, Riemann-Christoffel tensor, Weyl tensor, Ricci tensor

and E} are the counterparts of the linearized

und curvature scalar of general relativity, respectively. Ej,, and Ejj vanish on-shell in the
free theory, and EY, ,,, equals Wj, .. on-shell in the free theory:
ba
B = —5 SsT,j“d “ ~ 0, (2.8)
Eeve — <TI;WVQ _ D2 STJ[Hnu]Q> 5ba ~ 0’ (2'9)

. 2
Eomnve _ — yyamve DL—3$ <T*[H o 5@% HT;[M5Z5$]> 8 e, (2.10)

wherein
T =T, (2.11)

and ~ denotes equality on-shell in the free theory (s75""? is the Euler-Lagrange derivative

of £ with respect to T 1o 1-€. the BRST-transformations s7; 7€ are the “left hand sides”

of the equations of motion of the free theory).

3 Constituent total forms

To construct solutions of equations (1.4) and (1.5) we define total 1-forms Q"¢ and 2-
forms Q5"

QCIWVQ — gawe _ Fauuggd'xa, QS#VQ — _Ea,uugm_dxadwT (31)
wherein

HE,, = 60y, A%, (3.2)



The forms defined in equations (3.1) fulfill
(s+d) Qe =Q3"e  (s+d) Q"% =0. (3.3)

Furthermore in dimensions D > 4 we define total (D — 3)-forms Q7' .

D

ap ap

Qp_s = Z “D-3-pp>
p=D-3

ap __ sab vk 3D
wlyp = 0 Crd
ap o ab *V [ *V L D—1

wlyp.g=—0 (65, +2A,7")(d" " x),,

ap 36

g g 2 (o8 -

D -2

12
w(Ol,HD—IS = _AD 2 WaVQUMTxT(dD—Sx)VQU (3'4)

and total (D — 2)-forms Q7"%:

apve _  apvg auvo
Qp 5 =w_ip_1 TWp-a>

wi’f[@)il = 3% <8[“Tb*ydg — na[“(?TT;VQ]T -

wghve, = BUerT (g0 %) . (3.5)

wherein
B 1
et = (D — p)lp!

The forms defined in equations (3.4) and (3.5) fulfill

(dP~Pg) €y ppdxtPtt o dahP (3.6)

(s+4d) Q“D“_S =0, (s+4d) QaD"fg =0. (3.7)
Comments.

(i) The total (D — 3)-forms Q7 , defined in equations (3.4) derive from the following
simpler total (D — 3)-forms A7) ,:

ap  __ ap ap ap ap ap
Ap s=wizptwip 1 +A p ot Aop 3t A pys

)\C’_‘:“i D-2 — _125‘1bT;U1V2lL(dD—2$)V1V2 )
)‘gfb—?) = 6(F(w1y2y3'u - 377#V1FQV2VBQQ)(dD_Bx)V1V2V3 )
A'p_y = 24 HO2 (dP ), (3.8)

with w™; , and w®, ;| as in equations (3.4).
Using table (2.2) it can be readily checked that the total forms A7} 5 are (s+ d)-
cocycles:

(s + d)A% , =0. (3.9)



Furthermore it can readily be shown that A7) ; is no (s 4 d)-coboundary. Indeed,
AD o= (s+d)np", would imply w‘i’g’D = 5“be*“dDw = sngiD + dn‘i’é’Di1 for some
local exterior forms na_’i’ p and na_’g p_1 which can be easily shown not to exist. Hence,
A7 5 is nontrivial in the cohomology of (s + d).

Aolp_s in AP 5 is a conserved exterior (D — 3)-form of the free theory be-
cause (3.9) contains

ap _ ap ~
d/\()ﬁ_3 = _S)‘—l,D—2 =~ 0.

Now, )\8’3)73 is not gauge invariant in the free theory because (3.9) also contains the

equation
ap o ap
5>‘0,D—3 = —d)\17D_4 # 0.

However, for D > 4 we can “improve” A% 5 by subtracting an (s + d)-coboundary
from it which removes the exterior (D — 4)-form from it and makes the resulting
exterior (D — 3)-form gauge invariant. Indeed, we have

D>4: )\‘llfb_4 = dn‘fﬁ)_5 + 5773,%—4 (3.10)
wherein
120
77?”;)75 — m $V5Ha1/4l/31/27]1/1M(dD75x)V1MV5 ’ (3‘11)
24
178’”D74 = 51 (Fwvavsvai g _ 4Fa[u41/31/2@x@]77111u)(dD74x)V1mV4 ' (3.12)

(3.10) implies that the total (D —3)-form A}’ 53— (s+d)(n)"p_5+m5'p_4) contains only
exterior p-forms with form-degrees p > D — 3.3 Moreover its exterior (D — 3)-form is

12 ) _
/\gfLD_?’ o dngrﬂD—Z’L - _D —4 KaV5V2V1N(dD 3‘II})V1V21/3 )
Kggz/gzqu = Egguzul,ugxg + 3x[V3E32V1]M + 377#[VSEZC/L2:CV1} - 377/1[V3E32V1]Q$g'
(3.13)

Notice that this exterior (D — 3)-form indeed is gauge invariant and that it does

not contain any z-independent terms. In fact, the x-independent terms of dngfjji 4

cancel exactly A\g';_3 and only the z-dependent terms of dry,, , survive. (3.13) is

already a gauge invariant improvement of )\gf‘D73 but we proceed one step further

and remove also terms from the exterior (D — 3)-form (3.13) which vanish on-shell

in the free theory. Using equations (2.8)—(2.10) one finds that such terms are the

BRST-transformation of the following exterior (D — 3)-form 7™ |, :

ap _ 365ab< MV3RV2VL 1.0 ugT*l/zl/l,u L Nz 1/2T*l/1> dD—?)

-1,p-3 = p_3 /A S S e A 4 T Ty ( T) vy vavs -

(3.14)

3This total (D — 3)-form very likely coincides with the total (D — 3) form #,, of [11] that occurs there
in the case (p, q) = (2, 1), see section 3.3 of the arXiv-version of [11].



(i)

We arrive at the improved total form (3.4):
AP 3= (s+a) 'y s +mo'p g T p3) = Q0 5. (3.15)

(s +d)Qp 4 = 0 is thus a direct consequence of (3.9). As A7)’ ; is nontrivial in the
cohomology of (s + d), Q7 5 is also nontrivial in that cohomology.

Notice also that the exterior (D — 2)-form wa_’“{ g in Q7 . does not contain any
z-independent terms either. This parallels what happened for the exterior (D — 3)-
form: the z-independent terms of dna_”i p_s cancel exactly )\i"l, p_o and only the
z-dependent terms of dnc_”i p_3 survive in wa_q p_o- In fact one can proceed further
and remove also the s-trivial terms in wa_‘i D—29 (i.e. the terms with 0,7, »7 and 80Tb*")
by subtracting a total form (s + d)na’_’; p_o from A7) ., and afterwards also the s-
trivial terms in the resultant redefined exterior (D — 1)-form and exterior D-form
which however appears to be merely of academic interest and therefore is not done
here (the exterior p-forms with p > D — 2 in Q%' _5 anyway do not contribute to the
deformations constructed below).

We remark that it is impossible to improve A" 5 to an (s + d)-cocycle with
a gauge invariant and z-independent exterior (D — 3)-form. Indeed, such an im-
provement would require the existence of z-independent exterior forms ngfb_ 4 and
17(1155_5 that fulfill (3.10) but it can easily be shown that such forms do not exist. The
improvement of A%“ _ 5 thus necessarily depends explicitly on the coordinates x. Fur-
thermore the improvement is crucial for the construction of consistent deformations
involving Q7' ., as will become clear below.

The total (D — 2)-forms Q3" defined in equations (3.5) are actually (s + d)-exact,
i.e. one has QP"8 = (s + d)n%‘ "3 for some total (D — 3)-form 77}"s. This follows

already from the fact that Q7™ has no exterior D form. In particular the exterior

apvo apvoe apvo apvoe
(D —2)-form wy'p 7, of QD 5 18 thus trivial, i.e. wo ne, = = dny'p_3+sn_y p_o for some

exterior (D — 3)-form ny'}5¢, and some exterior (D —2)-form naqyj% o- In other words,

wg;gg2 is d-exact on—shell in the free theory. However, it is not d-exact on-shell in

the space of gauge invariant and x-independent exterior forms, i.e. there is no gauge

invariant exterior (D — 3)-form ny'5?, which does not dependent explicitly on the
coordinates x such that wy'n?, ~ dng'p?; (e.g. in D = 5 one has wy’y™ = dngly”® with
778’51“2“3 o et Fa L odat da?).

Q3¢ in (3.1) and Q3" in (3.5) can also be modified by removing terms that vanish

on-shell in the free theory. In particular, using equation (2.10) one can write terms

of Q3¢ that vanish on-shell in the free theory as sn®)’y with an exterior 2-form

a,uyg Qa,uz/g Qa,uug _ naqzég and Qauug Qauug . (S + d)naqzég _

1 and redefine
—W“‘“’ 25rda®dz” — dn)y. Furthermore one can write terms of wy/p?, that vanish

on-shell in the free theory as sn™"}_, with an exterior (D —2)-form 77‘”{"]% o and rede-

fine QF"5 — QP37 —(s+d)n™"}_, whose exterior (D—2)-form is W““"Q‘”(dl)_%)w.

Qa;wg Qa;wg

The first order consistent deformations constructed below from and

Q7S can be constructed likewise (and equivalently) with the redefined total forms.



4 Consistent first order deformations

Using the total forms (3.1), (3.4) and (3.5) we now construct solutions of equation (1.5)

in dimensions D = 5 and D = 7 which are cubic in the fields and antifields and which we

call “Yang-Mills type”, “Chapline-Manton type”, “Freedman-Townsend type” and “Chern-

Simons type” solutions (this wording will be justified in section 6), and which we denote
Q}SM, Q%M, QI;)T and QIC)S, respectively.
The Yang-Mills type solutions are:

D=5: QM =, Q5 Qe fo., (4.1)

D=7 Q;(M ngmusQl{uwsvﬂiuamyfabc (4.2)

= €uy..p7

wherein fu;. are constant coefficients that are totally symmetric in D = 5 and totally
antisymmetric in D = 7 (and otherwise arbitrary, at least at first order):

D=5: fabc:f(abc)a D=T1: fabc:f[abc]- (43)

In (4.1) and (4.2) Q§ and Q¢ are the total (D — 2)-forms of (3.5) for D =5 and D =7,
and Q8 and Qf" are the total 1-forms of (3.1).
The Chapline-Manton type solutions are:

D=5: QgM:
D=7: QM

av ybu1 paps (ycraps
el.tl.../.L5QQ QQ Ql l/eab07 (44)

_ ap1 ybprapspa yCps e 7
= €y Sy Y Q] €abe (4.5)

wherein egp. are constant coefficients that are symmetric in D = 5 and antisymmetric
symmetric in D = 7 in the last two indices (and otherwise arbitrary):

D=5: egpe=¢Cachs, D=T: €pe = —€uch- (4.6)

In (4.4) and (4.5) Q2 and Qf are the total (D — 3)-forms of (3.4) for D =5 and D =7,
and Q5™ and Q4 are the total 1-forms and 2-forms of (3.1).

Cubic Freedman-Townsend and Chern-Simons type solutions exist only in D = 5
dimensions:
D=5: QFT — Qe QbH2 ) CHakals ] 4.7
: 5 €py..p53 b2 2 1 abe » ( : )
300
OFF = 1, QPRI (1)

wherein d,. are constant coefficients that are antisymmetric in the first two indices and ¢y
are totally antisymmetric constant coefficients (otherwise these coefficients are arbitrary):

dabe = —dbac,  Cabe = Clab] - (49)

In (4.7) Q% and Q% are the total (D — 3)-forms of (3.4) for D = 5 and Q™ are the total
I-forms of (3.1), and in (4.8) Q¢ are the total 1-forms of (3.1), and Q% and Q5™ are the
2-forms of (3.1).



Comments.

(i)

The total 5-forms QM QFT and QS given in equations (4.4), (4.7) and (4.8) solve
equation (1.5) because (s + d)QSM, (s +d)QET and (s + d)Q§S contain only exterior
forms with form-degrees p > 5 and thus vanish in D = 5, as can be readily checked.*
Similarly the total 7-form Q$™ given in equation (4.5) solves equation (1.5) because
(s + d)QSM contains only exterior forms with form-degrees p > 7 and thus vanishes
in D = 7. The symmetries (4.6) and (4.9) of the coefficients egp. and c,p. avoid that
the total forms QM QM and QS are obviously (s + d)-exact (the symmetry of the
e’s avoids that QEM has the structure (s + d)(Q2p_30211), the symmetry of the c’s
avoids that Q8 has the structure (s + d)(2221Q1)). The antisymmetry (4.9) of the
coefficients dgp. simply reflects the even Graimann parity of the total forms Q5" and
the antisymmetry of €, ;.

(s+ d)QfM = 0 for D = 5 and D = 7 can be shown as follows. For an object

Z 10303 = Z jin D = 2k + 1 dimensions we define

010203

D =2k 4 1: ZMeHeo1VieViet o el VLeVe 1010203 70— ZWwW) (4.10)

where (p) and (v) denote the multi-indices [ ... pr—1] and [vy ... vg_1], respectively
(in D=5 (u) and (v) are not multi-indices but just ordinary indices). Notice that

ZW) = (k=1 Z00w), (4.11)

With this multi-index notation the total forms QM in equations (4.1) and (4.2) can
be written as

Dy o ng(c%l/)ﬁlf(g)(u)ﬁi(g)(u)fabc (4.12)
and one obtains, using (s + d)fl‘lz(“)(y) = Qg(”)(y) (which holds owing to (3.3)):

(s + DO, o QUL D fy

2k+1,. 1ha v)oT b rrc
— 21, pam)(v) E(g)(u)aTH (Q)(V)fabc (4.13)

() gy

where we used that Q;k—l = —2kt+ly pa)(v)or pb is an exterior vol-
o)(wot

ume form which is implied b}(fg)((e/guations (3.1) and (3.5). (4.13) vanishes because
of (4.11) if fape = flabey for k = 2m and fope = flapg for & = 2m + 1. We remark
that (4.12) actually vanishes for & > 4 because in dimensions D = 2k + 1 > 9 there
is no way to contract the nine free Lorentz indices of Qggi‘iw‘"’Ql{”““wGQiM“S“g in a
Lorentz invariant way. For the same reason there is no Q%M in even dimensions D.

In D = 9 one obtains

—_9. OYM _ ap p2p3 (ybpaps pe (YCUT 148 19 _
D=9: Qg = €M1~~~M9Q7 Ql Ql fabca fabc = f(zzbc)

4For this result it is crucial that the exterior (D — 3)-form wo'p_3 of the total (D — 3)-form QF" 5 given

in (3.4) is gauge invariant because otherwise Q7" , would contain an exterior (D —4)-form and the reasoning
for Q™ and QFT would fail. This likewise applies to QM.



which turns out to be a trivial solution of (1.5), i.e. QM = (s + d)ns for a total
8-form ng. Whether or not (4.1) and/or (4.2) are nontrivial solutions of (1.5) is not
completely clear to the author yet.

(iii) Using the same multi-index notation as above, one can construct further Chern-
Simons type solutions of (1.5) in odd dimensions:

M3) T ng(uk)(Mk+1)Q(11k+1(Mk+1)(ul)cal...akJrl

(4.14)

D=2%4+1: ngSJrl _ Q<211(M1)(M2)Q<212(M2)(

wherein ¢o,. 0y = Clay..apyy) £k =2m and cqy. 0,11 = Clay...apyy) Ik =2m+1. We
remark that the Chern-Simons type solution (4.8) can be written in this form.

5 Consistent deformations in first order formulation

To explore whether or not the consistent first order deformations derived in the previous
section exist to all orders we employ the first order formulation [9] of the free theory. The
classical fields of that formulation are denoted ¢y, , and B)j,,,, whose Lorentz indices have
the permutation symmetries

SOZVQ = _spz(:ugv BZUQO’ = BZ[ygcr] . (51)

We take as Lagrangian of the first order formulation

A 1 1 1 . 1 .
[,(0) = Ou <4BZVQUBbuqu _ EB(WVBII»)W _ éBa'uVQJFlljgau + QBQMVF3V> (5'2)
wherein
BZV - BaQQlJV ’ Fﬁugo‘ = 38[;1()0?19}0- ) F;}l/ - FSI/Q‘Q' (53)

The B-fields are auxiliary fields which can be eliminated using the algebraic solution of
their equations of motion. Elimination of the B-fields reproduces the Lagrangian (1.2) (up
to a total divergence BMR“) with the definitions®

SOZVQ = T;jug =+ U;jyg ’ Ugug = Spt[luyg] : (54)
The ghost fields of the first order formulation of the free theory are denoted Dy, and ﬁﬁy 0=
H [‘L vl the ghost-for-ghost fields again C};, and the antifields again with a * and indices
corresponding to the indices of the respective field. These fields and antifields have the
following ghost numbers, antifield numbers, GrafSimann parities and BRST transformations

5The fields U disappear from the Lagrangian upon elimination of the B-fields because they contribute
only to the total divergence 0, R*.



(corresponding to the master action SO = [[£0) — 37 (s®)®*]dPx):

Z gh(Z) | af(Z2) | |Z] sZ
Plwe 0 0 0 200,07, — Hip
B e 0 0 0 —0,H},,
Dg, 1 0 1 60,CY
HE o 1 0 1 0
cy 2 0 0 0
prhve _1 1 1 %%b@U(Bbgo;w _ 3Bb[<w771/]9) - 5ab(Eb‘“’9 _ Eb[unv}g)
B;WVQO' 1 1 1 %5@{) (Bb[ugcr],u, _ Bb[ygna]u _ %Fbl/gau + Fb[zl,gna]p,)
Dzt -2 2 0 —20,p22"
[:I;HVQ _9 9 0 - SOC*LUWQ] + 9, Brorve
Cat -3 3 1 60, D;""
(5.5)
wherein
EZO”TMV = 8[1133]907' ’ Egug = _Eguuga7 EZ = EZVV : (56)
We also note that Dy, = S, + 345, i.e. S, = D¢, and Al = %Dﬁw].
We now introduce the following total 1-forms and 2-forms analogously to (3.1):
QoI  feme  go meq,e. Qe - [, 1y dat (5.7

and the following total (D — 3)-forms analogously to (3.4):

D
Aap ~ QL
QD73 - § : wD73fp,p ’
p=D-3

~ap __ cabovkp gD
w_37D—(5 C)rd%x,

~ G _ ab y*vp o 3D—1
w72,D71*_65 Dy (d" )y,

36 2
a)a_/iD_2 _ 90 sab (x[uag(nga]u . an“[V USOZQU}T _ nu[uxggg(PZU]TT> (dD_Qx),,g,

D-3 D -2
~ QL 12 fravoou .1 (3D—3
Wo,p—3 = _D ) w T (d x)l/ga (5.8)
wherein ngo‘;ﬂ' is defined analogously to W, in (2.7), with E in place of E. The total
forms (5.7) and (5.8) fulfill
(s + QP2 = Q3 (s + )2 =0, (s+d)Q 5 =0. (5.9)

Therefore solutions QSM, QM OFT and QS of equation (1.5) arise from the solutions
QM QM QFT and QS given in equations (4.4), (4.5), (4.7) and (4.8) by the replacements

~10 -



Qe — Q'f“”g, Qe — lewg and QF' . — QaD’ZB. We shall show now that the solutions
QM QM OFT and QFS are in fact equivalent in the cohomology H (s+d) of (s+d) to their
respective counterparts Q§™M, QM OFT and QS| i.e. one has QM = QgM + (s + d)ny for
some local total 4-form 74 etc. This follows from the fact that in the first order formulation
of the free theory with Lagrangian (5.2) one has

Bliveo = Fooop + 0uUygs (5.10)
which implies
Eoriv = Egorrr s Wogryw © Wiori (5.11)
and
Q?WQ + (s +d) U™ = H*C — (B2, — 9,U)dz? ~ Q" (5.12)

with H%"? and Q7""? asin (3.1). Hence, in the first order formulation of the free theory the
total 1-form Q)¢ = Q" 4 (s + d)U**¢ equals on-shell the total 1-form Q"¢ of (3.1),
the 2-form Q5% equals on-shell the 2-form Q§*? of (3.1) and the exterior (D — 3)-form
Wo!p_5 of the total (D —3)-form Q%' ; equals on-shell the exterior (D—3)-form wo'p_g of the
total (D — 3)-form Q)" ; of (3.4). Therefore the antifield independent parts of the exterior
D-forms present in Q5CM, Q?M, QET and Qgs coincide on-shell with the respective antifield
independent parts of the exterior D-forms present in the total D-forms QgCM, Q%CM, QgFT
and Qgcs which arise from QgM, Q?M, QFT and Qgs by the replacements Q7% — Qlla“ e,
Qe 5 Q3 and Qnt . — Q%“_g. As a consequence the solutions of equation (1.4) (i.e.,
the exterior D-forms) present in QgM, Q?M, QFT and ngs are equivalent in the cohomology
H(s|d) of s modulo d to the respective solutions present in QLM LOM QLT and (LCS
which in turn implies that the (s + d)-cocycles Q5CM, Q?M, QFT and Qgs are equivalent in
the cohomology H (s+d) to the respective (s+d)-cocycles QLM QLEM QLFT and QLCS (i.e.
one has QM = QLCM 4 (s + d)n), for some local total 4-form 7} etc.).5 Furthermore QLM
QQCM, QgFT and Qgcs are equivalent in H(s+d) to Q5CM, Q?M, QET and Q5| respectively,
because QLM QLM QLFT and QLCS are all linear in Q)**?, and because Q3" and Q%“ ‘g

are (s 4 d)-cocycles: e.g., one has
U = €y g Q7 (T2, 4 (5 4+ d)U2,) eane
= QOEM + (5 4 d) ey us TP, ).
This implies indeed that Q§M, QM QFT and QS5 are equivalent in H(s + d) to QgM,

Q?M, QET and Q°5, respectively, and that the defomations of the free theory which arise
from these (s + d)-cocycles are equivalent as well, respectively.

5This follows by standard arguments from the general feature of the local BRST-cohomology that the
cohomology HP (5|d) of the Koszul-Tate differential § (= part of s with antifield number 1) modulo d
vanishes in the space of local exterior D-forms which have both positive antifield number k£ and positive
pureghost number, i.e. in the space of exterior D-forms which depend at least linearly both on antifields
and on fields with positive ghost number, see section 6.3 of [7].
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Now, the first order deformations S which arise from the solutions QS™, QSM OFT
and QS of (1.5) fulfill (SM, SM)) = 0 simply because the exterior D-forms present in these
solutions do not depend on the fields ¢, and the only antifields on which these exterior
D-forms depend are the antifields ¢* of ¢ (of course, Qgs and Qgs do not depend on
antifields at all and therefore it is actually not necessary to substitute Qgs for Q5CS in
order to get (S, (M) = 0 for this deformation by itself; however this changes when one
considers linear combinations of QS™M, QFT and Q). Hence, these first order deformations
S provide in fact already a complete deformation S =280 4 gS’ (1) of the master action
SO of the first order formulation of the free theory. This implies that the first order
deformations arising from the solutions (4.4), (4.5), (4.7) and (4.8) of (1.5) indeed exist
to all orders and the complete deformations in the second order formulation of the free
theory with Lagrangian (1.2) can be obtained from S by eliminating the auxiliary fields
B (e.g., perturbatively). It should also be noticed that this reasoning does not only apply
to the Chapline-Manton, Freedman-Townsend and Chern-Simons type solutions in D =5
individually but also to any linear combination thereof.

The author has not found an analogous line of reasoning for the Yang-Mills type
deformations yet. The reason is that it does not appear straightforward to find B-dependent
total forms 2 analogous to (5.7) and (5.8) for the Yang-Mills type deformations which allow
a reasoning similar to comment (ii) in section 4.

6 Conclusion

The first order deformations £(1) of the Lagrangian (1.2) that arise from the solutions
of (1.5) given in section 4 in dimensions D =5 and D = 7 are obtained from the antifield
independent parts £LMdPz of the exterior D-forms of these solutions. The first order

deformations ﬁ%z/[ obtained in this way from the solutions (4.1) and (4.2) read explicitly

1 o

D=5: LG =c g Fb TRV (6.1)
1 v

D=7: Eg(lz/[ = EmmmE51M2M3UTF34H5VUF56M " fabe - (6.2)

The first order deformations ESK/[ obtained from the solutions (4.4) and (4.5) are

—_5. 1 _ 145 Y[/ Q opb Vive ¢ v4V3

D=5: Lgy=—12¢ W vioTE o F s €abe s (6.3)
7. 1 _ SN L A ¢ 941 o b ViV ¢ V3

D=T7: Loy =—4e Wovovsm o Epopapa  Fspepr - Cabe s (6.4)

and the first order deformations E(Fl% and L’g% obtained from the solutions (4.7) and (4.8)

are
_ K. 1) _ _ K1 s (V1 V5 T/ @ Qﬂrb (o nle T
D=5: ‘CFT = —12¢ € V1V2V3u19x 1/41437’M2tfaj Fu3#4u5 d“bc’ (6'5)
(1) 1.5 V1...U5 G b coo
Leg=c € Fyipasin Beopavavs B psvavs Cabe - (6.6)

"Here we assumed that the flat metric has signature (—,+,+,+,+). Other conventions can result in a
minus sign in (6.6) and a plus sign in E&l) in (6.7). We remark that all results presented in this work are

actually valid also for non-Minkowskian metrics, with possible reversed signs in (6.6) and in l:l(\Tl ) in (6.7).
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Notice that the first order deformations (6.1) and (6.3) exist for any number of Curtright
fields (and in particular for only one Curtright field), whereas the first order deforma-
tions (6.4) and (6.5) require at least two Curtright fields, and the first order deforma-
tions (6.2) and (6.6) require at least three Curtright fields because of equations (4.3), (4.6)
and (4.9). Furthermore notice that all the above first order deformations are Lorentz in-
variant, in spite of the explicit z-dependence of the deformations (6.3), (6.4) and (6.5).%
This explicit z-dependence results from the fact that a gauge invariant improvement of
the conserved exterior (D — 3) form )\gf},_g in (3.8) necessarily depends explicitly on the
coordinates z, cf. remark (i) in section 3. The deformations (6.3), (6.4) and (6.5) are thus
Lorentz invariant but appear to be variant under standard spacetime translations. The
deformations (6.1), (6.2) and (6.6) are Poincaré invariant.

Notice also that all the above first order deformations are cubic in the Curtright fields
and that the deformations (6.1) and (6.2) contain four derivatives of the Curtright fields
(terms O2TOTOT) whereas the deformations (6.3)-(6.6) contain five derivatives of the Cur-
tright fields (terms 0?TH*TOT), respectively.

Furthermore, all deformations (6.1)—(6.5) are accompanied by deformations of the
gauge transformations of the free theory. The first order deformations of these gauge
transformations are obtained from the corresponding solutions of (1.5) given in section 4,
more precisely from the terms with antifield number 1 in the exterior D-forms of these
solutions. We leave it to the interested reader to write out these deformations of the gauge
transformations explicitly. The commutator algebra of the first order deformed gauge
transformations remains Abelian in all cases, however. This corresponds to the fact that
the exterior D-forms of the solutions of (1.5) given in section 4 do not contain terms with
antifield number exceeding 1.

The deformations derived here are thus compatible with the results of [10, 11] where
it was shown that Poincaré invariant first order consistent deformations of the free theory
that modify nontrivially the gauge transformations leave the commutator algebra of the
deformed gauge transformations Abelian on-shell, and that there are actually no nontrivial
consistent deformations of this type containing at most three derivatives of the Curtright
fields. In fact it can easily be shown that xz-independent and Lorentz invariant nontrivial
consistent deformations that are strictly invariant under the gauge transformations of the
free theory and contain at most four derivatives do not exist either. Indeed, according
to the results of [10, 11] such deformations can be taken to be quadratic in the tensors
EeoT hut all such quadratic terms actually vanish on-shell up to a total divergence
because of (2.5)—(2.9) and are thus trivial deformations of the Lagrangian (1.2). Therefore
it seems that the above deformations might actually provide the simplest possible Lorentz
invariant nontrivial deformations of the free theory in dimensions D =5 and D = 7 at first
order.

As shown in section 5 the above first order deformations (6.3)—(6.6) can in fact be
extended to all orders, most readily using the first order formulation of the theory. Fur-

8This holds because the would-be infinitesimal Lorentz transformation of z* as a contravariant Lorentz
vector vanishes: £"0,x" — x”0,&"* = 0 for £€* = 2"k, " with constant k,*.
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thermore in D = 5 any linear combination of the deformations (6.3), (6.5) and (6.6) can
be extended to all orders. Whether or not the first order deformations (6.1) and (6.2) can
be extended to higher orders is left open here.

We also remark that in all above first order deformations the tensors E*#€°7 can be re-
placed by the traceless tensors W97 (2.7) and vice versa because of EoT ~ W eoT
see also remark (iii) in section 3 (such replacements provide equivalent deformations and
modify the deformed gauge transformations).

The author admits that he has no complete proof yet that the above deformations are
really nontrivial. Therefore some (or all) of these deformations may actually turn out to
be trivial. The proof of nontriviality is hampered by the possible explicit z-dependence
of the terms (forms) that may make the deformations trivial. The author plans to in-
vestigate this issue, and whether or not the first order deformations (6.1) and (6.2) can
be extended to higher orders in a future work (unless someone else does the job).? How-
ever, the similarity of (6.1)—(6.6) to Yang-Mills [12], Chapline-Manton [13], Freedman-
Townsend [14] and Chern-Simons [15] interactions, respectively, in combination with some
BRST-cohomological considerations, suggests the nontriviality of the deformations.

Let me therefore briefly comment on similarities (and differences) of the defor-
mations (6.1)—(6.6) to Yang-Mills, Chapline-Manton, Freedman-Townsend and Chern-
Simons interactions. To that end standard p-form gauge potentials are denoted A7 =
;%!A%...updinm ...dz*?, the corresponding field strength (p + 1)-forms Fj | = dA} and the
Hodge duals F l%fpfl of the field strength forms.

Yang-Mills interactions in D dimensions are F%_, A} AS fop.. This is analogous to (4.1)
and (4.2) with Q%" corresponding to F'§ ,, and Q4 and Q§" corresponding to A% and

¢, respectively. I stress that the terminology “Yang-Mills type interactions” used in the
present work only relates to this structure of the interactions and not to the commutator
algebra of the deformed gauge transformations (i.e. it is not related to the question whether
or not this algebra is Abelian).

Cubic Chapline-Manton interactions in D dimensions with two 1-form gauge fields are
F8 FYASeqp.. This is analogous to (4.4) and (4.5) with Q% _, corresponding to F% .,
Q4 corresponding to FY, and Q™ corresponding to AS.

Cubic Freedman-Townsend interactions in 5 dimensions are F fFlegdabc. This is anal-
ogous to (4.7) with Q4 and QY corresponding to F{ and FP, and Q" corresponding to AS.
The correspondence here does not match the form-degrees and total degrees but concerns
the structure FFA.

Cubic Chern-Simons interactions in 5 dimensions are A$FYF§cyp.. This is analogous

o (4.8) with Q¢ corresponding to A%, and Q4 and Q™ corresponding to Y and FY.

The difference of the deformations (6.1)—(6.6) as compared to standard Yang-Mills,

Chapline-Manton, Freedman-Townsend and Chern-Simons interactions results on the one

In particular there seems to be no obvious counterpart of the Yang-Mills type self-interactions (6.1)
and (6.2) in previous works, such as [19] which aimed to classify cubic consistent interactions of “mixed
symmetry” and higher spin fields rather completely. Therefore it seems to be worthwhile to check whether
or not especially the self-interactions (6.1) and (6.2) are trivial, and if they turn out to be nontrivial, to
clarify their relation to results of previous works.
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hand from the additional Lorentz indices of the €2’s as compared to standard p-form gauge
potentials A, and, on the other hand, from the fact that the action [ LOdP g does not cor-
respond to the standard Maxwell type action for free p-form gauge potentials A, containing
terms pr—&-lFDfpr

As far as the author knows the self-interactions of Curtright fields obtained in this paper
have not been disclosed anywhere else in the literature so far. Nevertheless, self-interactions
of “mixed symmetry gauge fields” similar to the Chapline-Manton type interactions (6.3)
and (6.4) have been found in [11]. They are disclosed under item (iv) in section 8.1 of
the arXiv-version of [11]. The self-interactions disclosed there also depend explicitly on
the coordinates x and have a structure analogous to the Chapline-Manton type interac-
tions (6.3) and (6.4). In the particular case (p,q) = (2,1) (corresponding to a Curtright
field) and s = 1 (using the notation of [11]) the interactions given there will very likely
in D = 5 provide a self-interaction of a Curtright field equivalent to the Chapline-Manton
type interaction (6.3) (for one Curtright field) when the Lorentz structure of the fields is
taken into account.!®

Let me finally remark that it is quite straightforward to construct interactions of Cur-
tright fields with other fields in appropriate dimensions similar to the above self-interactions
using the approach of the present paper. For instance, similarly to equation (4.7) one easily
constructs solutions QY of equation (1.5) in D = 5 which provide first order deformations
£1(\%) of the Lagrangian from the total (D — 3)-forms (3.4) for D = 5 and the total 1-form
O = C + A,dx* which is the sum of a standard Abelian 1-form gauge potential A, dx*
and the corresponding ghost field C":

D=5: QY = Q0% Qiga, U = C + Audat, L{) = —A,5",

S UV1V20102 1ra b [ a _ av3v4vs 0
j =€ WV11/20'W9192 gCLb7 Wy1y20- - 61/1...1/51/1/ ng (67)

wherein g,, = gp, are constant symmetric coeflicients and El(\}) is a Noether coupling of
the gauge field A, and an (“improved”) Noether current j* of the free theory (d,j" ~ 0).
Analogously one constructs in D = 5 Chern-Simons type interactions of Curtright fields
and a standard Abelian 1-form gauge potential from the solution Q5" VQQgWgﬂl kap of (1.5)
wherein k., = kp, are constant symmetric coefficients and Q4 and Q5" are the 2-forms
of (3.1). Cubic interactions OTITH*h of a Curtright field T with a symmetric 2-tensor
field hy,, = h,,, representing the metric field of linearized general relativity were obtained in
section 5 of [16] (see equation (5.14) there). These interactions are reminiscent of the Yang-
Mills type self-interactions (6.1) and (6.2) and may be constructible analogously to (4.1)
and (4.2) using a total curvature (D — 2)-form for the h-field in place of Q3"5*#%. This
indicates that the approach used here may also be useful for the construction of consistent
interactions of other “mixed symmetry” or higher spin fields. Cubic interactions of various
fields of that type in various dimensions, both in flat space and in anti-de Sitter space,

98ection 8.1 of [11] actually concerns the cases k > 1 in the notation used there, i.e. deformations which
may lead to deformed gauge transformations with a non-Abelian commutator algebra. An interaction with
(p,q) = (2,1) and s = 1 however actually represents the case k = 1, i.e. it corresponds to a deformation
which leaves the commutator algebra of the deformed gauge transformations Abelian at first order. This is
compatible with the results of the present paper.
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were constructed by different methods in [17-21], amongst others (see also references cited

therein).
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