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A B S T R A C T

Safety is critical for autonomous driving, and one aspect of improving safety is to accurately capture the
uncertainties of the perception system, especially knowing the unknown. Different from only providing
deterministic or probabilistic results, e.g., probabilistic object detection, that only provide partial information
for the perception scenario, we propose a complete probabilistic model named GevBEV. It interprets the 2D
driving space as a probabilistic Bird’s Eye View (BEV) map with point-based spatial Gaussian distributions, from
which one can draw evidence as the parameters for the categorical Dirichlet distribution of any new sample
point in the continuous driving space. The experimental results show that GevBEV not only provides more
reliable uncertainty quantification but also outperforms the previous works on the benchmarks OPV2V and
V2V4Real of BEV map interpretation for cooperative perception in simulated and real-world driving scenarios,
respectively. A critical factor in cooperative perception is the data transmission size through the communication
channels. GevBEV helps reduce communication overhead by selecting only the most important information to
share from the learned uncertainty, reducing the average information communicated by 87% with only a slight

performance drop. Our code is published at https://github.com/YuanYunshuang/GevBEV.
1. Introduction

In recent decades, a plethora of algorithms, e.g., Lin et al. (2021),
Feng et al. (2022), Zhang et al. (2023), Fang et al. (2022) and Zang
et al. (2017), have been developed for the perception systems of
autonomous vehicles (AV) and many photogrammetry and remote
sensing tasks. Thanks to the open-sourced datasets, e.g., Geiger et al.
(2012), Caesar et al. (2020), Sun et al. (2020), and the corresponding
benchmarks for different standardized perception tasks for interpreting
the collected data, e.g., object detection and semantic segmentation, we
are able to evaluate the performance of these algorithms by comparing
their predicted results with human-annotated ground truth. However,
is an algorithm’s better performance on these benchmarks the only goal
we should chase? Obviously not; this goal is not enough for the system
to be deployed reliably in the real world.

An AV system must accurately evaluate the trustworthiness of its
interpretation of the driving environment, not just focus on accuracy
compared to ground truth. This is because real-world driving is com-
plex, with inevitable noise, limitations of sensors and algorithms, and
occlusions that make it impossible for an AV system to be perfect. For
example, from an AV’s perception range, occlusions are inevitable. In
this case, predicting an occluded area as a drivable road surface is
likely to improve the overall accuracy because the road surface is more
frequently seen in the data collected in the past, whereas it does not
necessarily reflect the real-world situation. The unaccountable guess
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over an unobserved target based on the prior distribution drawn from
historical data ignores observation uncertainties and may even lead to
serious accidents. Consequently, the perception algorithms may evolve
to reach higher scores on these benchmarks at the sacrifice of be-
ing overconfident and predicting dangerous false positives. Therefore,
safer and more trustworthy interpretations of the driving scenarios are
merited.

Achieving safe driving while considering uncertainties in the per-
ception system is a challenging task. In the real world, uncertainties
come from different sources (Gawlikowski et al., 2021), such as sensor
noise, imperfections, and perception model failures. When measure-
ments are insufficient due to limited field-of-view (FoV), occlusions,
or low sensor accuracy and resolution, high uncertainty is common.
One common circumstance is that an ego AV with limited FoV cannot
reliably perceive the driving area, leading to a critical situation. In such
a case, the ego AV should slow down and wait for the clearance of
this uncertain area. An alternative is to exploit cooperative perception,
i.e., the information seen by other road users with a different part of
the view.

This paper proposes a cooperative perception method with the
consideration of uncertainty to address the limited FoV and safety
problem. The concept of cooperative perception (co-perception) is to
share and fuse the information from the so-called Collective Perception
Messages (CPMs) among AVs to enable seeing the areas beyond the ego
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vehicles’ own views via Vehicle-to-Vehicle (V2V) communication. The
AVs with communication abilities are called Connected Autonomous
Vehicles (CAVs) (see an example in Fig. 5). One bottleneck of the
co-perception technique to be realized in the real world is the commu-
nication overhead and time delay for real-time communication. Hence,
sharing a large amount of data, e.g., raw sensory data, among the CAVs
s not an optimal solution. Although recent works (Yuan et al., 2022; Xu
t al., 2022a; Cui et al., 2022; Xu et al., 2022d) based on sharing deep
eatures learned by neural networks have proven that co-perception
an significantly improve the performance of the perception system,
he CAVs should only share the most important information needed by
he ego CAV to reduce the communication workload. The reason is that
he congested network drops messages and then leads to a significant
erformance drop in the co-perception system.

This paper proposes to interpret the driving space for co-perception
cenarios by BEV maps with uncertainty quantification. Each 2D point
n the driving surface in a BEV map is classified into one of the prede-
ined categories. Compared to object detection and semantic segmen-
ation, this BEV interpretation gives a more comprehensive and denser
verview of the driving surroundings to assist the AVs in safer driving
lans. In this paper, we use Evidential Deep Learning (EDL) (Sensoy
t al., 2018) to quantify the uncertainty of the classification. Essentially,
ur proposed BEV map also provides quantified uncertainty values for
he point-wise classification results.

More specifically, we interpret the driving scenarios with learnable
oint-based spatial Gaussian distributions in a continuous driving space
nstead of discrete grids so that any new sampled points in the ob-
erved area can draw densities from these Gaussian distributions. Each
aussian describes the likelihood of the neighboring points belonging

o the same class as the distribution center point. The classification
istribution of these newly sampled points is assumed to be a Dirichlet
istribution to describe the probability and the uncertainty that the
oint belongs to one specific class. The sampled densities from the
aussian distributions are then regarded as evidence of the Dirichlet
istribution. Hence, the parameters of these Gaussian distributions
an be jointly learned by controlling the Dirichlet distributions of
he new samples. Our method provides a reliable uncertainty that is
ack-traceable and explainable for each of its prediction results. For
implicity, we name our Gaussian Evidential BEV approach GevBEV.

Furthermore, the learned evidential BEV maps provide a holistic
nterpretation of the driving environment. Namely, apart from the
onfident detection of the drivable surface and other vehicles from the
oint-wise classification results, the self-driving system knows what it
s not sure about (detections with high uncertainty) or does not know
t all (unobserved areas with no measurement). In the co-perception
etwork, the evidential BEV maps serve as a critical criterion to identify
he exact areas where extra information is needed from other CAVs
ia more efficient communication for the co-perception. Based on this
riterion, the most important information shared among the CAVs is
istilled by intersecting the evidential maps associated with each CAV’s
etection in the local frame of the ego CAV. In this way, the redundant
ata in CPMs is avoided to prevent the communication network from
aturation and package dropping.

In summary, the key contributions of our proposed evidential GevBEV
re:

• We propose a Gaussian-based framework to learn holistic BEV
maps in a continuous space of any resolution, which is in contrast
to previous works that are limited to the map resolution provided
by the training data.

• The evidential deep learning with Dirichlet evidence is utilized
to quantify the classification uncertainty and generates better-
calibrated uncertainties than conventional deterministic models.

• Our model GevBEV achieves a new state-of-the-art performance
on the co-perception benchmarks OPV2V (Xu et al., 2022d)
with simulated driving scenes as well as V2V4Real (Xu et al.,
2023a) in real-world driving, outperforming the runner up model
28

CoBEVT (Xu et al., 2022b) with a big margin.
• To our best knowledge, we are the first to apply evidential BEV
maps for a co-perception task. Classification uncertainties serve
as a critical criterion to effectively select and share CPM among
CAVs and significantly reduce communication overhead.

2. Related work

In this section, we discuss the related work in three aspects: inter-
pretation of driving spaces, the state-of-the-art of co-perception, and
uncertainty estimation of BEV maps.

2.1. Interpretation of driving spaces

Object detection (Jiao et al., 2019; Li et al., 2022b) is a typical
way to interpret the driving space of an AV. A detected object is com-
monly characterized by a 2D/3D bounding box from camera/LiDAR
data. However, this interpretation of the driving scenario may not be
complete because the space with no detection or occlusion is not inter-
preted. This space can be some drivable areas, non-drivable areas, or
be occupied by objects that are not detected or observed. Consequently,
the AV may not be able to make reliable driving decisions depending
on the output of object detection.

Semantic segmentation is another common method for the inter-
pretation of the driving space. It classifies each measurement point –
pixels in images or points of LiDAR reflections – into a specific semantic
class. To further differentiate the points from the same semantic class
but belonging to different object instances, it is extended to panoptic
segmentation (Kirillov et al., 2018); besides the semantic label, the
measurement point is also assigned with an instance identity. Although
semantic and panoptic segmentations are holistic and dense in the ego
AV’s perspective – range view, they are partial and sparse in the BEV,
from which the AV usually makes driving plans (Qiu et al., 2022).

Typically, the interpretation of the driving space is further extended
to BEV map segmentation to mitigate the aforementioned limitations.
The driving environment is represented as a BEV 2D image (Zhou
and Krähenbühl, 2022; Xu et al., 2022b) and each pixel in the BEV
map is marked with a semantic label, which gives a holistic overview
of the driving surface for vehicle mapping and planning (Loukkal
et al., 2021). In previous image-based works, BEV interpretations are
also carried out as occupancy grid mapping (Lu et al., 2019), cross-
view semantic segmentation (Pan et al., 2020a), or map-view semantic
segmentation (Zhou and Krähenbühl, 2022). They transform image
features from the image coordinates to an orthographic coordinate of
the BEV map via either explicit geometric or implicit learned transfor-
mations (Zhou and Krähenbühl, 2022; Xu et al., 2022b; Li et al., 2022a).
Compared to images, point cloud data with 3D information are more
straightforward to generate such BEV maps by compressing information
in the orthogonal direction in approaches such as PIXOR (Yang et al.,
2018), Pointpillars (Lang et al., 2019), and Voxelnet (Zhou and Tuzel,
2018). We also resort to BEV maps for a holistic view of the 2D driving
space. Nevertheless, because of the sparsity of distant measurements
and occlusions, generating dense BEV maps from images or point
clouds is unreliable without considering observability. For example,
the occupied area of some occluded vehicles might be classified as a
drivable area just because the categorical distribution learned from the
historical data implies that the invisible points in the BEV map are more
likely to be a drivable area than a vehicle. Therefore, in order to avoid
unaccountable predictions on unobserved areas, we propose to only
draw results from observed areas based on the geometric location of

the measured points.
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2.2. State-of-the-art of co-perception

With the development of Vehicle-to-Vehicle communication and the
availability of simulation tools to generate high-fidelity collaborative
detection data (Dosovitskiy et al., 2017; Xu et al., 2021, 2022d), co-
perception extends the perception system from a single ego vehicle’s
perspective to including the perceptions from neighboring vehicles.
Modern deep learning architectures, such as graph neural networks
and Transformer (Vaswani et al., 2017), are utilized to fuse the per-
ception information, mainly deep features of the backbone detection
networks, from the CAVs. For example, V2Vnet (Wang et al., 2020b)
and DiscoNet (Li et al., 2021) use graph models to aggregate the
detection information from nearby vehicles. AttFuse (Xu et al., 2022d),
V2XViT (Xu et al., 2022c), and CoBEVT (Xu et al., 2022b) propose
to use the Transformer network with the self-attention mechanism to
facilitate the collaboration and information fusion in a BEV setting
among CAVs. FCooper (Chen, 2019) keeps the sparsity of feature maps
learned from point clouds to reduce communication overhead of co-
perception, and uses Maxout to fuse these features. However, none
of these methods have explored uncertainty estimation to filter out
non-informative data shared among the CAVs and further increase the
communication efficiency of the co-perception system.

2.3. Uncertainty estimation of BEV maps

Uncertainties are not avoidable in DNNs, making it necessary to
estimate them, especially for safety-critical applications. The uncer-
tainty of a DNN’s output is called predictive uncertainty (Gawlikowski
et al., 2021). This uncertainty is mostly qualified either by model-
ing the epistemic uncertainty that captures the systematic uncertainty
in the model or the aleatoric uncertainty that captures the random
noise of observations (Kendall and Gal, 2017). There are also other
approaches, such as Prior Network (Malinin and Gales, 2018) that
quantifies the predictive uncertainty by modeling the distributional
uncertainty caused by the distribution mismatch between the training
data and the new inference data.

To estimate the epistemic uncertainty, Bayesian Neural Networks
(BNNs) (Mackay, 1991; Neal, 1995) provide a natural interpretation
of the uncertainty by directly inferring distributions over the net-
work parameters. Notwithstanding, they are hard to use for DNNs
because calculating the posterior over millions of parameters is in-
tractable. Therefore, approximation methods such as Monte-Carlo (MC)
Dropout (Gal, 2016) and Deep Ensemble (Lakshminarayanan et al.,
2017) have been developed. MC Dropout shows that training a dropout-
based neural network is equivalent to optimizing the posterior distri-
bution of the network output. However, several forward runs have to
be conducted with the dropout enabled to infer the uncertainty, which
is inefficient and time-consuming. Therefore, it is not considered in
this work. Deep Ensemble trains several models to approximate the
distribution of the network parameters. It also needs several forward
runs over each trained model and thus is also not adopted in this work
for the same reason.

To capture the aleatoric uncertainty, Direct Modeling is widely
used (Feng et al., 2019; Meyer et al., 2019; Miller et al., 2019; Pan
et al., 2020b; Feng et al., 2020). Compared to MC Dropout and Deep
Ensemble, Direct Modeling assumes a probability distribution over the
network outputs and directly predicts the parameters for the assumed
distribution. Therefore, uncertainty is obtained over a single forward
run and is more efficient. For classification problems, the conventional
deterministic DNNs apply the Softmax function over the output logits
to model the categorical distribution as multi-nominal distribution.
However, the Softmax outputs are often overconfident and poorly
calibrated (Sensoy et al., 2018; Vasudevan et al., 2019).

Instead, converting the output logits into positive numbers via,
e.g., ReLU activation to parameterize a Dirichlet distribution quantifies
29

class probabilities and uncertainties better. For example, the Prior
Network (Malinin and Gales, 2018) captures the predictive uncertainty
by explicitly modeling the distributional uncertainty and minimizing
the expected Kullback–Leibler (KL) divergence between the predictions
over certain (in-distribution) data and a sharp Dirichlet and between
the predictions over uncertain (out-of-distribution) data and a flat
Dirichlet. However, additional out-of-distribution samples are needed
to train such a network to differentiate in- and out-of-distribution
samples. In complex visual problems like object detection and se-
mantic segmentation, obtaining enough samples to cover the infinite
out-of-distribution space is prohibitive.

Differently, the Evidential Neural Network (Sensoy et al., 2018)
treats the network output as beliefs following the Evidence and
Dempster–Shafer theory (Dempster, 2008) and then derives the param-
eters for the Dirichlet distribution to model the epistemic uncertainty.
Compared to BNNs, this method quantifies the uncertainty of a classifi-
cation by the collection of evidence leading to the prediction result,
meaning that the epistemic uncertainty of the classification can be
easily quantified by the amount of evidence. Instead of minimizing
the discrepancy of the predictive distributions with pre-defined ground
truth distributions, Evidential Neural Network formulates the loss as
the expected value of the basic loss, e.g., cross-entropy, for the Dirichlet
istribution. Therefore, no additional data or ground truth distributions
re needed. Hence, we propose to apply this method for modeling the
ategorical distributions of the points in a 2D driving space.

Moreover, instead of modeling the uncertainty with Dirichlet dis-
ribution directly, we introduce a spatial Gaussian distribution for the
easurement points and draw Dirichlet distributions for a BEV map

ased on the predicted Gaussian parameters. This configuration mimics
he conditional random field algorithm (Lafferty et al., 2001), which
an be used to smooth the segmentation results by considering the
eighboring results. It should be noted that in this paper, we are
ore focused on epistemic uncertainty (a lack of knowledge in the
eural network-based model) to help us understand the output of the
erception system in CAVs, and to use this uncertainty quantification
n the co-perception step for distilling the most important information
hared among the CAVs.

. Method

.1. Problem formulation

We formulate the task of generating the Gaussian evidence BEV
GevBEV) map with object detection and semantic segmentation under
he setting of co-perception between the ego CAV and cooperative
AVs. We follow the OPV2V benchmark (Xu et al., 2022d) setting for
o-perception. Given the ego vehicle, there are 𝑁coop < 6 cooperative
AVs in the communication range of the ego vehicle and some other
ehicular participants. All CAVs can send CPMs to each other in a
equest-Respond manner – the ego CAV first sends a CPM request that
pecifies the information over the area it needs, then a cooperative CAV
hat receives this request will respond with the corresponding message
nly if the request information is available.

In this paper, we choose to use point cloud data to demonstrate
ur proposed interpretation of driving spaces. It should be noted that
his interpretation can be applied to any modality or multi-modalities
s far as the measurement points can be projected to the BEV map,
ot only for autonomous driving but also other mapping tasks with
ultiple sources of measurements. We leave this for our future work.
he input feature vector of each point in the point cloud is denoted as
in = [𝑥, 𝑦, 𝑧, 𝑑, cos 𝜃, sin 𝜃, i], where 𝑥, 𝑦, 𝑧 are the local coordinates in

he ego LiDAR frame, 𝑑 is the distance of the point to the LiDAR origin,
is the angle of the point relative to the 𝑥-axis of the LiDAR frame,

nd i is the intensity of the LiDAR reflection. This input feature vector
s leveraged to train a U-Net-based (Ronneberger et al., 2015) end-
o-end multi-task network. Namely, the main outputs of the proposed
evBEV are object detection results, the BEV maps for both the driving
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(

Fig. 1. Overview of the GevBEV map framework. It takes as input the point cloud data. The road head learns the distribution for the road surface (green), and the objects head
orange) detects the objects and learns the corresponding distribution of the bounding boxes. 𝑃𝑠: intermediate learned features of voxels downsampled with strides 𝑠 = 0, 2, 4. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. The U-Net-based backbone. The light green boxes indicate the network components, the orange boxes show the components’ output channels and voxel strides. The green
ellipses are the concatenation operation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
surface (i.e., roads) and dynamic road objects (i.e., vehicles), and the
uncertainty of the predicted BEV maps is quantified by a categorical
Dirichlet distribution.

In the following subsections, we first introduce the detailed frame-
work for generating GevBEV maps by sharing all the perception in-
formation among CAVs without any filtering strategy to distill the
most important information. Then, we present the method for an
uncertainty-based CPM selection by manipulating our generated evi-
dence BEV maps to improve the efficiency of the communication among
CAVs.

3.2. Framework

The overview of the GevBEV map framework is shown in Fig. 1. It
takes as input the point cloud data from ego and cooperative vehicles
and trains multiple heads for multi-task learning. Concretely, a U-
Net-based backbone network first learns and aggregates deep features
of different resolutions from the input point clouds. The aggregated
features for voxels of different sizes are notated as 𝑃𝑠, where 𝑠 is
the downsampling ratio relative to the predefined input voxel size.
𝑃0 are the learned features for each point in the point cloud. Those
features of different voxel sizes are separately input to a road head
and an objects head. The road head, specified as Distribution Head,
generates the GevBEV map layer for the static road surface; The objects
head, specified as Detection Head and Distribution Head, detects dynamic
objects and also generates the GevBEV map for the object layer. We
separate the GevBEV map into two layers because objects tend to have
smaller sizes compared to the road surface. Otherwise, small objects
could be smoothed out by the points of surfaces because they are
dominating in quantity. We explain each module of the framework,
i.e., U-Net-based backbone, Detection Head, and Distribution Head, in the
following in detail.
30
U-Net . Given its high performance on point-wise feature extraction
and representation, U-Net (Ronneberger et al., 2015) is utilized as the
backbone of our model. Fig. 2 depicts the general structure of the U-Net
with our customized encoding. First, the input features are voxelized
with a Multi-Layer Perceptron (mlp) as described by Eq. (1),

𝑓𝑣 =
∑

𝑖∈𝐯 𝑓
in
𝑖

|𝐯|
, 𝑓𝑣𝑖 = mlp([𝑓𝑣𝑖, (𝑓𝑣𝑖 − 𝑓𝑣)]), (1)

where 𝐯 is the set of points belonging to a voxel, 𝑓 in
𝑖 denotes the input

feature of point 𝑖, and [⋅, ⋅] represents the concatenation operation.
Then, the voxel features 𝑓𝐯 are calculated by averaging the encoded
point features 𝑓𝑣𝑖 that belong to the voxel, as denoted in Eq. (2).

𝑓𝐯 =
∑

𝑖∈𝐯 𝑓𝑣𝑖
|𝐯|

. (2)

Afterwards, the encoded voxels are fed to the four convolutional blocks.
Namely, conv1 contains only one layer to digest the input. conv2 to
conv4 consist of three convolutional layers, in which a previous layer
down-samples the sparse tensors. Each sparse convolutional layer is
followed by batch normalization and Leaky ReLU activation. In the
upsampling layers, the transposed convolutional layers have a similar
structure as the counterparts in the downsampling layers. The features
from the shortcuts of the convolutional layers are all concatenated
with the features from the transposed convolutional layers. In the end,
we concatenate the voxel features with the encoded point features 𝑓𝑣𝑖
to de-voxelize the stride-one voxels and obtain features 𝑃0 for each
point. It is worth mentioning that all the convolutional layers in this
network are implemented with Minkowski Engine (Choy et al., 2019)
over sparse voxels to decrease the computational load.

Detection head. We use this head to demonstrate the alignment of the

predicted bounding boxes of object detection with the GevBEV maps. As
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Fig. 3. Detection head.

Fig. 4. Distribution head.

hown in Fig. 3, in this head, we use voxels of stride-four 𝑃4 to generate
re-defined reference bounding boxes, the so-called anchors, and to do
urther regression based on them. First, we use strided convolutional
ayers over the vertical dimension to compress the height of the 3D
parse tensor in order to obtain a BEV feature map. Then, this map is
31
used for the bounding box classification and regression. We follow Yuan
et al. (2022) that uses a two-stage strategy for co-perception: Stage-one
(BoxReg S1) generates proposal boxes based on the local information
of the ego CAVs, and Stage-two (BoxReg S2) refines the boxes by fusing
the information from the neighboring CAVs.

We use the following Eqs. (3)–(5) to encode bounding boxes:

𝑙𝑜𝑐 = [
𝑥𝑔 − 𝑥𝑎
𝑑𝑥𝑦

,
𝑦𝑔 − 𝑦𝑎
𝑑𝑥𝑦

,
𝑧𝑔 − 𝑧𝑎

ℎ𝑎
], (3)

𝑑𝑖𝑚 = [log(
𝑙𝑔
𝑙𝑎
), log(

𝑤𝑔

𝑤𝑎
), log(

ℎ𝑔
ℎ𝑎

)], (4)

𝑑𝑖𝑟 = [cos 𝜃𝑔 − cos 𝜃𝑎, sin 𝜃𝑔 − sin 𝜃𝑎,

cos 𝜃𝑔 − cos (𝜃𝑎 + 𝜋), sin 𝜃𝑔 − sin (𝜃𝑎 + 𝜋)].
(5)

𝑙𝑜𝑐 and 𝑑𝑖𝑚 are the commonly used encodings for the location and
imension of the bounding boxes. The subscripts 𝑔 and 𝑎 represent

ground truth and anchor, respectively. 𝑥, 𝑦, 𝑧 are the coordinates of the
ounding box centers, and 𝑑𝑥𝑦 is the diagonal length of the bounding
ox in the 𝑋𝑌 -plane. 𝑙, 𝑤, ℎ indicate the bounding box length, width,
nd height. We use sin and cos encodings, denoted by Eq. (5), for the
ounding box direction 𝜃 to avoid the direction flipping problem. The
irst two elements of 𝑑𝑖𝑟 are the encodings of the original direction
ngle, while the last two elements are for the reversed direction. The
dditional encodings for the reversed direction reduce the distance
f sin-cos encodings between the regression source–anchors and the
arget–ground truth boxes whenever they have opposite directions,
herefore, facilitating the direction regression.

The overall loss for all the heads in BoxReg S1 is notated as
𝑏𝑜𝑥,𝑠1, as shown in Fig. 3. To be more specific, BoxReg S1 follows
IASSD (Zheng et al., 2021) to use four heads 𝑐𝑙𝑠,𝑖𝑜𝑢,𝑟𝑒𝑔 ,𝑑𝑖𝑟 for
enerating bounding boxes. 𝑐𝑙𝑠 uses binary cross-entropy, other heads
n this stage use smooth-L1 loss. 𝑖𝑜𝑢 regresses the Intersection over
nions (IoU) between the detected and ground truth bounding boxes.

t is used to rectify the classification score from 𝑐𝑙𝑠 so that better-
ounding boxes can be kept during Non-Maximum Suppression (NMS).
he direction head 𝑑𝑖𝑟 regresses the encoded angle offsets between the
round truth bounding boxes and the corresponding anchors. During
he box decoding phase, the predicted angle offsets from 𝑑𝑖𝑟 with
maller values are selected as the correct direction of the bounding
oxes.

In BoxReg S2, the proposal bounding boxes detected by different
AVs are first shared with the ego CAV and fused by NMS, and then
hey are used as reference anchors for further refinement. Concretely,
ollowing FPV-RCNN (Yuan et al., 2022), the CAVs only share the key-
oints belonging to the proposals and then use these keypoints to refine
he fused bounding boxes. Moreover, in this paper, we use Minkowski
ngine (Choy et al., 2019) to simplify the structure of Region-of-Interest
RoI) head 𝑟𝑜𝑖. Namely, the fused boxes are first transformed to a
anonical local box coordinate system, where the keypoints coordinates
re noted as kpt𝑖𝑛𝑖 . We then voxelize the keypoints to a 6 × 6 × 6 grid
ith a similar voxelization operation as used in the U-Net, where 𝑓 in

𝑖
ecomes the canonical coordinates kpt𝑖𝑛𝑖 of keypoints [𝑥, 𝑦, 𝑧]. The first
lement 𝑓𝑣𝑖 of the concatenation in Eq. (1) becomes the learned feature
f keypoints and the second element becomes the learned positional
ncoding of the keypoint coordinates. To make it straightforward for
nderstanding, Eq. (1) is reformulated into Eq. (6).

p̄t𝑣 =
∑

𝑖∈𝐯 kpt𝑖𝑛𝑖
|𝐯|

,

𝑓𝑣𝑖 = mlp([𝑓𝑣𝑖,mlp(kpt𝑣𝑖 − ̄kpt𝑣)]).
(6)

After summarizing the features for each voxel by Eq. (2), all voxels
in the grids are then aggregated by the weighted average of the voxel
features 𝑓𝐯. The weights are learned from 𝑓𝐯 by mlp. The aggregated
features of each box grid are then fed to one IoU head and one box
regression head to generate the refinement parameters for the fused
proposal boxes. The decoded bounding boxes are notated as Box S2, as
shown in Fig. 3. Smooth-L1 loss is used for both heads. The summation

of the losses in this stage is notated as 𝐿𝑏𝑜𝑥, 𝑠2.
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Distribution head. As illustrated in Fig. 1, we design a distribution
ead to generate point-based distributions for both road surface and
bjects. To balance the trade-off between computational load and the
oint resolution, we use voxels of stride-two 𝑃2 to generate distributions

for this purpose. The overall structure of the distribution head is
described in Fig. 4. The input 3D voxels are first compressed along
the vertical direction to obtain the 2D point-wise deep features. This
height compression is composed of two sparse convolution layers with
the same kernel size and stride size so that all voxels in the vertical
direction can merge into one. In this module, the weights are shared
for both the road and object distribution heads.

Furthermore, we dilate the voxel coordinates during the sparse
convolutions to close the gaps between discrete measurement points.
We call this as coordinate expansion. Even though we propose to only
predict the distributions on observable areas, all sensors measure the
continuous space in a discrete way, leading to unavoidable gaps at
a large measure distance. As described above, on the one hand, the
basic convolutional layers used in the U-Net maintain the sparsity of
the voxels to reduce the computational load. On the other hand, they
cannot infer information from the gaps between two neighboring laser
measurements caused by the range view of the LiDAR at distant observ-
able areas. However, as long as the measurement density is enough,
the model should also be able to infer the information between the
two discrete measurements in a controlled manner. Therefore, we use
several coordinate-expandable sparse convolutions to carefully close
the gaps by controlling the expansion range with predefined kernel
sizes. The detailed setting is given in Section 4.5.

To further accelerate the training process, we use the point sampling
module, as illustrated with the dashed line box in Fig. 4, to downsample
the total amount of points. We call all these selected points center
points for the simplicity of explanation. This module is optional, and
the later empirical results show that it does not have an obvious
negative influence on the training result.

We assume each center point 𝑐𝑖 has a Dirichlet distribution to model
the point classification distribution and a spatial isotropic Gaussian
distribution to model the neighborhood consistency of the point. The
parameters for these two distributions are then regressed by the head
cls and var, respectively. Both heads are composed of two fully
connected layers activated by ReLU to constrain the parameters for
both distributions to be positive. Their outputs are noted as

𝐨cls = [𝑜fg
cls, 𝑜

bg
cls], (7)

𝐨var = [𝑜fg
𝜎𝑥, 𝑜

fg
𝜎𝑦, 𝑜

bg
𝜎𝑥, 𝑜

bg
𝜎𝑦], (8)

where fg indicates foreground and bg background. 𝐨cls is regarded as
the evidence of the point to be foreground or background. 𝐨var is the
regressed variances of the point in 𝑥- and 𝑦-axis. To ensure that each
point is contributing, we add a small initial variance to the predictions.
Hence, the resulting variances 𝜎2𝑥,𝑦 = 𝐨var+𝜎20 . For any new given target
oint 𝐱𝑗 in the neighborhood of the center point 𝐜𝑖 in the BEV space, we

can then draw the probability density 𝜙(𝐱𝑗 )𝑖 of this new point belonging
to a specific class by Eq. (11),

𝛴𝑖 =
[

𝜎2𝑥 , 0
0, 𝜎2𝑦

]

, (9)

𝑚𝑗𝑖 = (𝐱𝑗 − 𝐜𝑖)𝑇𝛴−1
𝑖 (𝐱𝑗 − 𝐜𝑖), (10)

𝜙(𝐱𝑗 )𝑖 =
exp (−0.5 ⋅ 𝑚)
√

2𝜋𝑑
|𝛴𝑖|

, (11)

where 𝛴𝑖 is the covariance of the center point 𝐜𝑖 for foreground or
background distribution, 𝑚 is the squared Mahalanobis distance of
point 𝐱𝑗 to the center point 𝐜𝑖, and 𝑑 is the dimension of the distribution.
In our case, 𝑑 = 2.

To obtain the overall Dirichlet evidence 𝑒(𝐱𝑗 ) for point 𝐱𝑗 , we sum-
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marize the normalized and weighted probability mass drawn from all
the neighboring center points nbr(𝑗) that is in the maximum distribution
range 𝜈 as

𝑘(𝐱𝑗 ) =
∑

𝑖∈nbr(𝑗)

𝜙(𝐱𝑗 )𝑖
𝜙(𝐜𝑖)

⋅ 𝑜𝑘𝑐𝑙𝑠,

= −1
2

∑

𝑖∈nbr(𝑗)
𝑚𝑗𝑖 ⋅ 𝑜

𝑘
cls,

(12)

where 𝜙(𝐜𝑖) is the probability density at the center point, and 𝑘 ∈
{fg, bg}. Hereafter, Eq. (12) is derived as following

og(𝜙(𝐱𝑗 )𝑖) = −1
2
𝑚𝑗𝑖 −

1
2
log(2𝜋𝑑

|𝛴|),

= −1
2
(𝑑 log(2𝜋) − log |𝛴|) − 1

2
𝑚𝑗𝑖,

log(𝜙(𝐜𝑖)) = −1
2
𝑚𝑖 −

1
2
log(2𝜋𝑑

|𝛴|),

= −1
2
(𝑑 log(2𝜋) − log |𝛴|),

𝜙(𝐱𝑗 )𝑖
𝜙(𝐜𝑖)

= exp(log
𝜙(𝐱𝑗 )𝑖
𝜙(𝐜𝑖)

),

= exp(log𝜙(𝐱𝑗 )𝑖 − log𝜙(𝐜𝑖)),

= −1
2
𝑚𝑗𝑖,

(13)

where the squared Mahalanobis distance of the center point 𝐜𝑖 to itself
is 𝑚𝑖 = 0. Following Sensoy et al. (2018), the expected probability
𝑝𝑗,𝑘 – point 𝐱𝑗 belonging to class k – and the uncertainty 𝑢𝑗 of this
classification result are

𝑝̂𝑗,𝑘 =
𝛼𝑗,𝑘
𝑆𝑗

=
𝑒𝑘(𝐱𝑗 ) + 1

∑

𝑘∈{fg,bg}(𝑒𝑘(𝐱𝑗 ) + 1)
, (14)

𝑗 =
𝐾
𝑆𝑗

, (15)

where 𝛼𝑗,𝑘 is the concentration parameter of class 𝑘 for 𝑘 = 1,… , 𝐾, and
𝑆𝑗 the strength of the Dirichlet distribution of point 𝐱𝑗 . For the loss
𝑒𝑑𝑙 of the distribution head, we use the recommended loss function
in Sensoy et al. (2018), which is formulated as the expectation of
the sum of the squared loss and a Kullback–Leibler (KL) divergence
regularization that prevents the network from generating excessively
high evidences. The final expression of this loss is described by

𝑒𝑑𝑙 =
𝑁
∑

𝑗=1

∑

𝑘∈{fg,bg}
[(𝑦𝑗,𝑘 − 𝑝̂𝑗,𝑘)2 +

𝑝̂𝑗,𝑘(1 − 𝑝̂𝑗,𝑘)
𝑆𝑗 + 1

]

+ 𝜆𝑡
𝑁
∑

𝑗=1
KL[Dir(𝐩𝑗 |𝛼𝑗 ) ∥ Dir(𝐩𝑗 |𝟏)],

(16)

where

𝑗̃ = 𝛼𝑗 ⊙ (1 − 𝐲𝑗 ) + 𝐲𝑗 ,
𝜆𝑡 = min(1, 𝐴epoch∕𝐴max).

The first term in Eq. (16) is the expected sum of squared loss between
the target label 𝑦𝑗,𝑘 and the prediction 𝑝𝑗,𝑘. 𝑁 denotes the total number
of samples, and 𝑗 ∈ {1,… , 𝑁}. The second term is the KL-divergence
weighted by an annealing coefficient 𝜆𝑡 that changes with the ratio
between the epoch number 𝐴epoch and the maximum annealing step
𝐴max. 𝐲𝑗 = {𝑦𝑗,𝑘}𝑘∈{fg,bg} is the categorical ground truth label of point
𝑗 . 𝛼𝑗 is the filtered version of 𝛼𝑗 to ensure that the KL-divergence only

punishes the misleading predictions of 𝛼𝑗 .
We propose a Gaussian-based method to train the Distribution Head

in a continuous space for the evidential BEV map. To achieve this goal,
the target points for the supervised learning are not limited to the
original observation points of the point clouds or the center points of a
specific resolution with discrete points; They can be any points in the
continuous BEV plane. More specifically, the original observed target
points are treated as seeds based on which we generate continuous
target points by randomly shifting them from their original observation
in a controlled range, e.g., by a normally distributed distance  (0, 3)
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Fig. 5. An example of the information shared between CAVs. The ego CAV and its
request mask with high uncertainty areas indicated in red color, and the cooperative
CAV and its response mask with low uncertainty indicated in green color. In the
uncertainty maps, light color indicates low uncertainty and black color indicates no
measurements. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

m. In this way, a pre-defined number 𝑛tgt of target points are generated
from the center points to control the density, and only the generated
target points of the observed areas are leveraged to train the model. To
avoid memory overflow and long-computational time during training,
the randomly sampled target points are further down-sampled. Via
voxel down-sampling, the road head is supervised only with a limited
number of target points – 𝑁tgt for both foreground and background
samples. However, the importance and the amount of target points for
objects head are more biased between the foreground and background.
Only a small amount of background target points are included for
training as they are the majority but less important. In contrast, all
samples that are extended to a specific range of the ground truth
bounding boxes’ edges are adopted for training the foreground class
and better describing the details around the bounding boxes.

3.3. Co-perception

This section introduces the co-perception method for the
uncertainty-based CPM selection by manipulating our generated evi-
dence BEV maps. Instead of simply sharing all the information among
CAVs that may congest the communication network, the most impor-
tant information is distilled by the generated BEV maps that quantify
the perception uncertainty of the CAVs. As shown in Fig. 5, the red
ego CAV first generates a request binary mask by thresholding its
uncertainty map generated by Eq. (12) with the threshold 𝑢ego (bottom
Unc. mask) and only sends the request for the perception information
in the areas it has high uncertainty (left red Req. maks). Then, the
green cooperative CAV responds with its own masked evidence map
(green Resp. mask). To be more specific, the binary mask generated
by thresholding the uncertainty map of the cooperative CAV with the
threshold 𝑢coop is used to intersect with the received request mask from
the ego CAV, resulting in a response mask with the low-uncertainty ar-
eas from the cooperative CAV. Afterwards, this resulting response mask
is used to distill the CPM communicated from the cooperative CAV to
the ego CAV by only selecting the evidences over the response-masked
areas. We denote this sharing strategy as 𝐶𝑃𝑀 because it considers
33

all
all areas in the pre-defined FoV of the ego CAV for information sharing.
However, in the driving space, the CAVs pay more attention to the
situations on the road surface. To this end, the information to be
shared can be further constrained by the road surface geometry of the
current scenario. In real applications, this geometry can be retrieved
from some prior information, such as maps. We notice that the co-
perception benchmarks also provide an HD map acquired beforehand.
As a proof-of-concept study, we register the current scenario to the HD
map to further rule out non-surface areas in the masked areas. We
denote this sharing strategy as 𝐶𝑃𝑀road when the extra HD map is
already provided to the CAVs. For simplicity, in this paper, we fix the
uncertainty threshold 𝑢coop = 1.0 for the cooperative CAVs and only
vary the threshold 𝑢ego for the ego CAV in our experiments to evaluate
its effectiveness.

4. Experiments

In the following, we introduce the dataset, data augmentations,
evaluation metrics, and detailed experiments to evaluate our proposed
model.

4.1. Dataset

In this work, we conduct the experiments on two multi-agent co-
perception benchmarks, OPV2V (Xu et al., 2022d), a simulated dataset
generated by CARLA (Dosovitskiy et al., 2017) and OpenCDA (Xu et al.,
2021, 2023b), and V2V4Real (Xu et al., 2023a), a real dataset captured
with two vehicles driving in real-world scenarios.

The OPV2V dataset has 73 scenes, including six road types from
nine cities. It contained 12k frames of LiDAR point clouds and the
annotated 3D bounding boxes for each frame. The detection range of
this dataset is set to [−50, 50]m for 𝑥- and 𝑦-coordinate and [−3, 3]m for
𝑧 coordinate, same as the baseline work CoBEVT (Xu et al., 2022b). The
V2V4Real dataset covers a driving area of 410 km. It contains about 10k
annotated LiDAR frames. We set the detection range of this dataset to
[−102.4, 102.4]m for 𝑥-coordinate, [−38.4, 38.4]m for 𝑦-coordinate and
[−5, 3]m for 𝑧-coordinate as most annotated vehicles are in this range.
We follow the official partitioning of both datasets for the training and
test. Namely, 44 training scenarios and 16 test scenarios for OPV2V, 33
training scenarios and 9 test scenarios for V2V4Real.

4.2. Data augmentation

A point cloud is one of the most common ways to represent the
geometric information sensed by LiDAR sensors. It is a collection of
reflected points when the LiDAR rays hit the surface of objects. Con-
sidering that the points are very sparse if a ray hits distant objects in
a point cloud, we propose the following augmentations of the LiDAR
data to help the perception tasks.

Free space augmentation. In a point cloud, the free space –
traversed space by the ray that is not occupied by any obstacles –
is often neglected. However, this information is also a result of the
measurement and is critical for identifying the occupancy and visibility
of the driving space. Therefore, we augment the point cloud data by
sampling points from the LiDAR ray paths and call these points free
space points 𝑓𝑠𝑖, where 𝑖 ∈ N. As exemplified in Fig. 6, a LiDAR
(orange cylinder) casts a ray (red line) that hits the surface of the
ground at point 𝑓𝑠0 and only records this reflected point into the point
cloud. Over the ray path, we sample free space points 𝑓𝑠𝑖 in a limited
distance 𝑑𝑓𝑠 from the hit point 𝑓𝑠0 with a large step 𝑠𝑓𝑠. In order to
constrain the computational overhead, we only sample points in the
region of a limited height, i.e., 𝑧 ≤ ℎ𝑓𝑠, over the ground (blue area)
where it is critical for driving. Finally, these points are down-sampled
again by voxel down-sampling with a given voxel size of 𝑣𝑓𝑠 to obtain
evenly and sparsely distributed free space points. These augmented free
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Fig. 6. Sampling free space points. The red point is the origin of the LiDAR coordinate
system, 𝑧-axis indicates the vertical direction in the driving space, 𝑥-axis indicates the
horizontal direction. 𝑓𝑠0 is the intersection point of the LiDAR ray (red dashed line)
and the ground. 𝑓𝑠1 , 𝑓𝑠2, and 𝑓𝑠3 are the sampled free space points belonging to the ray
path. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

space points are then added to the original point cloud by setting their
intensity value i = −1 as the indicator.

Geometric augmentation. We augment the point cloud data by
randomly rotating, flipping along 𝑥- and 𝑦-axis and then scaling the
geometric size of the point clouds. Also, we add a small Gaussian
noise [𝛿𝑥, 𝛿𝑦, 𝛿𝑧] to all the points. This augmentation helps increase the
robustness of the model against domain shift during testing.

4.3. Evaluation metrics

We use Intersection over Union (IoU) as a metric to evaluate the
overall prediction performance and the calibration plot to analyze the
quality of the predictive uncertainty. Although our proposed model
GevBEV can generate BEV maps of any resolution, we only evaluate the
predicted BEV maps of resolution of 0.4 m so that it can be compared
with other methods only generating the BEV maps of this predefined
prediction resolution.

IoU . We report both the result overall perception areas in the prede-
fined prediction range (𝐼𝑜𝑈all) and the result over the observable areas
(𝐼𝑜𝑈obs), which is in line with the concept that the prediction is reliable
only when it is conducted over the observed areas. Since our model is
designed not to conduct predictions over non-observable areas, all the
points in non-observable areas are regarded as false when calculating
𝐼𝑜𝑈all. Mathematically, a point 𝐱𝑗 is observable if ∃𝑖 ∈ {𝑖| ∥ 𝐱𝑖 − 𝐱𝑗 ∥2<
𝜈}, meaning a point is observable if it is in the range 𝜈 = 2m of any
center points. The IoUs over these observable areas are calculated by
Eqs. (18)–(21).

𝐗 = {𝐱𝑗 |𝑢𝑗 < 𝑢thr}, (17)

𝐗fg = {𝐱𝑗 |𝑝̂
fg
𝑗 > 𝑝̂bg

𝑗 , 𝐱𝑗 ∈ 𝐗}, (18)

𝐘 = {𝐱𝑗 |lbl(𝐱𝑗 ) = fg}, (19)

𝐘fg = {𝐱𝑗 |𝐱𝑗 ∈ 𝐘, 𝐱𝑗 ∈ 𝐗}, (20)

𝐼𝑜𝑈 =
|𝐗fg ∩ 𝐘fg

|

|𝐗fg ∪ 𝐘fg
|

. (21)

We only evaluate the results of points 𝐗 that have uncertainties under
the uncertainty threshold 𝑢thr. 𝐗fg is the set of positive predictions –
points classified as foreground by its predictive classification probabil-
ities. lbl(𝐱𝑗 ) is the class label of point 𝐱𝑗 , hence 𝐘 is the set of true
positive points. 𝐘fg is the set of all positive points in the ground truth.
Then the IoU is calculated between the true positive and ground truth
positive points.
34
Calibration plot . We plot classification accuracy versus uncertainty
to show their desired correlation. Our model generates uncertainty for
the classification of each point, which enables an overall evaluation of
all classes. However, the unbalanced number of samples for different
classes will lead to a biased evaluation. For example, the classification
of a point has a high uncertainty due to the lack of evidence from
its neighbors, while it may end up with high classification accuracy
because its neighbors belong to a dominant class. To avoid this biased
evaluation, each sample is weighted by the ratio of the total number
of samples in that particular class. Then, we divide the uncertainty 𝑢 ∈
[0, 1] into ten bins, and each bin has an interval of 0.1. Subsequently,
we calculate the weighted average classification accuracy of all the
samples in that uncertainty interval. A perfect calibration plot is shown
by a diagonal line indicating the highest negative correlation between
classification accuracy and uncertainty, i.e., high accuracy is associated
with low uncertainty.

4.4. Baseline and comparative models

We evaluate the effectiveness of our proposed model GevBEV com-
pared to both state-of-the-art co-perception camera- and lidar-based
models on the co-perception benchmarks OPV2V and V2V4Real in both
simulated and real driving scenarios, namely FCooper (Chen, 2019),
AttFuse (Xu et al., 2022d), V2VNet (Wang et al., 2020b), DiscoNet (Li
et al., 2021), V2XViT (Xu et al., 2022c) and i.e., CoBEVT (Xu et al.,
2022b). Unlike our GevBEV, none of these models listed above pro-
vide uncertainty estimation for perception and distilling the essential
information communicated to the ego CAV. Hence, we only compare
GevBEV with those models on the perception performance. They are
not further compared with GevBEV in terms of CPM size for the V2V
communication in the co-perception application.

Moreover, we conducted a series of ablation studies to analyze the
efficacy of the proposed modules of GevBEV.

• BEV is the proposed model with the point-based spatial Gaussian
and the evidential loss 𝑒𝑑𝑙 removed, turning our model from
a probabilistic model into a deterministic model. It uses cross-
entropy to train the corresponding heads to classify points of the
BEV maps. We treat this model as our baseline model.

• EviBEV only has the point-based spatial Gaussian removed. It still
uses 𝑒𝑑𝑙 to train the distribution head.

• GevBEV– is our proposed model but trained without free space
augmentation.

4.5. Implementation details

In all our experiments, we set the input voxel size to 0.2m to
balance between computational overhead and performance. The free
space points are sampled with the configuration ℎ𝑓𝑠 = −1.5m, 𝑑𝑓𝑠 =
1.5 m, 𝑠𝑓𝑠 = 7.5m on OPV2V. However, we increase 𝑠𝑓𝑠 to 9 m for
V2V4Real dataset because it has a longer detection range in 𝑥-direction.
During the geometric augmentation, the point cloud coordinates are
scaled randomly in the range of [0.95, 1.05] and then added with nor-
mally distributed  (0, 0.2)m noise. For the detection head, we generate
two reference anchors at each observation point on the BEV map
of stride four. These two anchors have the same size, [𝑙, 𝑤, ℎ] =
[4.41, 1.98, 1.64]m for OPV2V and [𝑙, 𝑤, ℎ] = [3.90, 1.60, 1.56]m for
V2V4Real. However, they have different angles, 0◦ and 90◦, respec-
tively. The anchors that have an IoU with the ground truth bound-
ing boxes over 0.4 are regarded as positive, and those under 0.2 as
negative; other anchors are neglected for calculating the loss during
training. The negative samples are many more than the positive ones,
leading to difficulties in the training process. Hence, we only randomly
sample 512 negative samples for training.

We have trained the whole network from scratch for 50 epochs with
weight decay of 0.01 using the Adam optimizer (Kingma and Ba, 2014)
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Table 1
Comparison with the state-of-the-art models on OPV2V and V2V4real dataset. Best values are highlighted in boldface and the
second best values are underlined.
Model Modality OPV2V V2V4Real

Camera LiDAR Road Object Object

AttFuse (Xu et al., 2022d) ✓ 60.5 51.9 –
V2VNet (Wang et al., 2020b) ✓ 60.2 53.5 –
DiscoNet (Li et al., 2021) ✓ 60.7 52.9 –
CoBEVT (Xu et al., 2022b) ✓ 63.0 60.4 –
Fcooper (Chen, 2019) ✓ 70.3 52.1 25.9
AttFuse (Xu et al., 2022d) ✓ 75.3 52.0 25.5
V2XViT (Xu et al., 2022c) ✓ 75.0 50.4 29.9
CoBEVT (Xu et al., 2022b) ✓ 75.9 52.3 29.6
GevBEV (ours) ✓ 79.5 74.7 46.3
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parameterized with 𝛽 = [0.95, 0.999] and 𝛾 = 0.1. We use multi-step
earning-rate scheduler with a starting learning rate of 𝑙𝑟 = 10−3 and
wo milestones at epoch 20 and 45. The learning rate decreases at each
ilestone by a factor of 0.1.

For the sampling generators, we use 𝑛tgt = 10 for the road head and
tgt = 1 for the objects head. The resolution of voxel down-sampling of
he road head is set to 0.4m, and 𝑁tgt is set to 3000. For the objects
ead, all the generated target points with a minimum distance of less
han 4m to any ground truth boxes’ edges are kept. From the back-
round, we sample 𝑁tgt = 50 ⋅ 𝑛gt points as negative samples, where 𝑛gt
s the number of the ground truth bounding boxes. For these sampled
arget points, the evidences are drawn by Eq. (12) in a maximum
istribution range of 𝜈 = 2m. The parameters mentioned above are
ll set empirically, and the code and the trained model is released at
ttps://github.com/YuanYunshuang/GevBEV for reproduction.

.6. Results

.6.1. Quantitative analysis

ompared to state-of-the-art models. Our proposed GevBEV
odel is benchmarked with the state-of-the-art models for co-
erception on the simulated OPV2V dataset (Xu et al., 2022d) and
he real dataset V2V4Real (Xu et al., 2023a). Table 1 lists the results
or road and dynamic object segmentation. It can be seen that the
odels conducted on camera data is inferior to LiDAR data. This is

ecause LiDAR data provides more accurate 3D information, which
s essential for the projection to a BEV map for the perception task.
evBEV outperforms all the other models, including the models that are
onducted on the same LiDAR data as GevBEV for a fair comparison.
ompared to the runner up model CoBEVT on the OPV2V benchmark,
ur model with the distribution heads improves the IoU by 23.7% for
egmenting dynamic objects and 4.7% for segmenting road surfaces.
n the V2V4Real Benchmark, surprisingly, our model improves the IoU
y 54.8% compared to V2XViT. These improvements indicate that the
oint-based spatial Gaussian effectively provides smoother information
bout each surface point’s neighborhood, leading to more accurate
esults on both benchmarks. Besides, our proposed sampling method for
raining is more robust against the errors in ground truth. This leads to
remarkable improvement on the real dataset V2V4Real that contains

naccurate labels in real-world driving.
However, the real-world driving scenarios post more challenges for

he co-perception task by inevitably introducing localization errors,
s indicated by the large performance gap on object segmentation
etween OPV2V (74.7%) and V2V4Real (46.3%), Also, the V2V4Real
ataset only provides the communication between two connected ve-
icles, fewer than that of the simulated OPV2V dataset. Hence, the
erception performance on V2V4Real is much worse than that tested
n OPV2V.

ensitivity to localization noise. In the previous experiments of the
imulated data, we assumed perfect localization information. In order
o evaluate the simulation of the results to localization noise, we
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t

ntroduce localization errors generated by normal distributions with
standard deviation ranging from 0 to 0.5 m for position and from
to 1 degrees for orientation. Fig. 7 demonstrates that all models

xperience slight performance declines in road surface segmentation as
he location and rotation errors increase. Still, our proposed GevBEV
odel outperforms CoBEVT, maintaining the best performance with a
argin of approximately 4% across all error configurations. In contrast

o the segmentation performance, objects exhibit higher sensitivity to
ocalization errors due to their smaller size. In this setting, our model
till outperforms the runner up model CoBEVT on both the OPV2V
nd V2V4Real datasets, as depicted in Figs. 8 and 9. This indicates
hat our proposed approach is more robust than CoBEVT to cope with
ocalization noise.

blation study. Table 2 shows the performances of the ablative mod-
ls. In general, the baseline model BEV without the point-based spatial
aussian (G.s.) and the evidential loss 𝑒𝑑𝑙 is inferior to the other mod-
ls. This indicates that this conventional deterministic model trained by
ptimizing the cross-entropy is not as good as the probabilistic models.
n contrast, by modeling each point with a spatial continuous Gaussian
istribution, we are able to close the gaps caused by the sparsity of
oint clouds and generate smoother BEV maps. EviBEV with the point-
ased spatial Gaussian performs better than the baseline for the surface
easured by the IoUs for all and the observed areas. However, its
erformances for objects are slightly degraded.

Moreover, BEV and EviBEV perform worse than CoBEVT (Xu et al.,
022b) on 𝐼𝑜𝑈all of the road head, as shown in Table 1. This is because
ur frameworks are based on fully sparse convolution networks, which
o not operate on unobserved areas. In order to facilitate comparison
ith dense convolution models, certain road surfaces in our frame-
orks are considered inadequately observed and thus treated as false
redictions when calculating 𝐼𝑜𝑈𝑎𝑙𝑙. Unlike GevBEV, both our BEV and
viBEV models have additional areas designated as unobserved due to
he absence of Gaussian tails. Consequently, this leads to lower IoU
alues. However, it is worth mentioning that the object classification
f the ablative models significantly outperforms the runner up model,
oBEVT. This can be attributed to two factors. Firstly, we carefully
ontrol the network in our model to expand coordinates in a specific
ange and only make predictions over the observable areas. The coor-
inate expansion module can cover most of the object areas so that
hese areas will be given a prediction rather than being treated as
nobserved. Secondly, thanks to the benefits of dynamic sampling from
ontinuous driving space during training, our model shows a tendency
o be cautious when making positive predictions for vehicle points. This
autious approach allows us to capture edge details of the vehicles more
ffectively, enhancing the overall object classification performance.

From the comparison between GevBEV− and GevBEV, the improved
oUs, especially for roads, indicate that the free space augmentation
Ag.) provides an explicit cue to the unoccupied space along the ray
aths and improves the detection performance. Also, this module plays
n important role in mitigating the problem of sparsity for point clouds
nd largely improves the prediction performance. Overall, GevBEV out-
erforms the ablative models in all the measurements, which validates

he efficacy of each proposed module.

https://github.com/YuanYunshuang/GevBEV
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Fig. 7. OPV2V road segmentation result with localization noise.
Fig. 8. OPV2V object segmentation result with localization noise.
Fig. 9. V2V4Real object segmentation result with localization noise.
Table 2
Ablation study of the proposed modules. All IoU results are measured in percentage. Best values are highlighted in boldface. G.s.: point-based
spatial Gaussian, 𝑒𝑑𝑙 : evidential loss, Ag.: free space augmentation; Rd: road, Obj: object.
Model Modules OPV2V (all) V2V4Real (all) OPV2V (obs) V2V4Real (obs)

G.s. 𝑒𝑑𝑙 Ag. Rd Obj Obj Rd Obj Obj

BEV ✓ 72.5 74.1 45.1 76.1 75.8 46.1
EviBEV ✓ ✓ 75.0 75.3 44.5 78.3 76.3 45.3
GevBEV− ✓ ✓ 59.7 73.1 46.0 62.5 73.2 46.7
GevBEV ✓ ✓ ✓ 79.5 74.7 46.3 83.1 76.1 46.9
4.6.2. Visual analysis

Holistic BEV maps for autonomous driving. With our proposed
probabilistic model, we generate the GevBEV maps and visualize the
results in a complex driving scenario in Fig. 10. From left to right,
the three sub-figures in the first row show the results of uncertainty,
classification confidence, and the ground truth of the road surface.
In the uncertainty map, a lighter color indicates lower uncertainty,
whereas black areas are regarded as non-observable. Correspondingly,
the confidence map gives the confidence score for both foreground
(road surface) and background. The bottom sub-figure is the detailed
detection results of both road surface and objects overlaid in one figure.
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Only the points that are classified as roads with uncertainty under
the threshold of 0.7 are highlighted in the light color in the bottom
layer to show the situation of the drivable area. The predicted and
corresponding ground truth bounding boxes are plotted in red and
green colors, respectively. Moreover, the bounding boxes are filled with
the point confidences drawn from the objects head, where magenta
points are associated with high confidence, while cyan the opposite.

As shown in Fig. 10, the GevBEV maps are regarded as holistic
BEV maps providing a reliable information source to support AVs for
decision-making. First, this information can be sourced back to the
original measurement points. For example, due to occlusions and long
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Fig. 10. Results of the GevBEV maps. In the Uncertainty map, lower uncertainty is presented in a lighter color. In the Confidence map, road confidence is indicated in green and
background confidence in blue with different intensities. The bottom sub-figure shows the more detailed detection results in a larger extent. Specifically, the original input point
cloud is denoted by blue points, road points are highlighted by a light color if their uncertainties are under the threshold of 0.7, and the objects are shown in bounding boxes
with red color indicating the detection, and with green color the corresponding ground truth, respectively. The thick bar in the front of the bounding boxes denotes the driving
direction. Moreover, those bounding boxes are filled with the point confidences drawn from the objects head, where magenta points are associated with high confidence, while
cyan indicates the opposite. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
detection range, the area marked with a dashed line red rectangle is
an area where the ego CAV is not certain about. If the ego CAV needs
to drive into this uncertain area, it should either request the missing
information from other CAVs or slow down waiting for the clearance
of the uncertain area. Second, the object’s head generates evidence of
the areas that might be occupied by vehicles. Therefore, they are a
reliable and explainable clue to validate the bounding box detection.
For example, as shown in the bottom sub-figure, most predicted boxes
are well aligned with the ground truth except those two marked with
red ellipses. The vehicle in ellipse 1 is only partially observed; there
is not enough evidence to support this detection. Similarly, there is
nearly no evidence for false positive detection in ellipse 2. Therefore,
this detection can be simply removed.

Comparison to baseline. Figs. 11 and 12 illustrate the classification
confidences, with the color scale transitioning from dark to light,
representing confidence values from 0 to 1. In the right column of
Fig. 11 and the bottom row of Fig. 12, the red color indicates that our
model retains information about unobserved areas. In the absence of
observations, the model remains unbiased towards predicting either the
foreground or the background class. Additionally, our model exhibits
a tendency to produce more refined details for both road and vehicle
edges. Notably in Fig. 12, CoBEVT tends to generate more false positive
predictions, and in some cases, vehicles even appear merged together.
In contrast, our model accurately separates all vehicles, thanks to its
precise edge description.

Evidence of object point distribution. Furthermore, we use the av-
erage evidence score to better show the relations between the quality
of detection and the corresponding object point distributions. Inspired
by the work from Wang et al. (2020a), in addition to the normal IoU
over the detection areas, we also leverage the generated uncertainty
to calculate the JIoU. JIoU is a probability version of IoU that better
evaluates the probabilistic features of object detection. Slightly differ-
ent to Wang et al. (2020a) that defines JIoU as the IoU between the
probability mass covered by the detection and the ground truth bound-
ing boxes, we define it as the IoU between the sum of the evidences
in the detected bounding boxes and the sum of all the evidence masses
describing this object. Then, we calibrate the average evidence score
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Fig. 11. The comparison of classification confidences between GevBEV and CoBEVT
on the OPV2V dataset. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

for a single detected bounding box, which is the mean of the drawn
confidences of points inside the bounding boxes. This JIoU ensures
low evidence score when the predicted box is fully filled with strong
evidences but does not cover all evidences that describe this object.

The results in Fig. 13 demonstrate that the average evidence score
is very well related to the quality of the detection. As shown in the last
row, worse detection tends to have less evidence inside the predicted
bounding boxes. Moreover, JIoU reveals the alignment of the prediction
and ground truth bounding boxes over the evidence masses. Objects
without enough clues from the measurements are hard to define a
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Fig. 12. The comparison of classification confidences between GevBEV and CoBEVT on the V2VReal dataset. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 13. Object point distribution. The dished line bounding boxes denote the detec-
tion, and the solid line bounding boxes denote the corresponding ground truth. The
thick bar of each bounding box denotes the driving direction. The statistics under each
sub-figure denote the average evidence and [JIoU, IoU].

perfect deterministic ground truth, even by manual labeling, so does
fairly judge the model’s prediction based on this. In such cases, both
detection and ground truth bounding boxes have low evidence coverage
over the GevBEV map. This leads to a smaller probabilistic union
between these two boxes, hence a higher JIoU is derived. Compared
to IoU, this is more reasonable as JIoU decouples the imperfectness of
the model and the measurement. For example, the detected bounding
box in the lower-left subfigure has low IoU but relatively high JIoU
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Table 3
Average offset of calibration plot to the perfect calibration line. Best values are
highlighted in boldface and the second best values are underlined.

Model OPV2V V2V4real Average

Road Object Object

BEV 0.095 0.072 0.076 0.081
EviBEV 0.031 0.010 0.030 0.023
CoBEVT 0.044 0.075 0.056 0.058
GevBEV 0.044 0.066 0.040 0.050

because there are too few evidences caused by the lankness of the
observation points – measurement imperfectness. In contrast, compared
to the ground truth, the detection in the lower-right subfigure has
enough evidences but has both low JIoU and IoU, indicating that the
inferior detection is not due to the measurement but the model’s limited
performance.

Desired confidence level with calibration plot. We use the cali-
bration plot (Fig. 14) and the average offsets (Table 3) between this
plot and the perfect uncertainty-accuracy line (dashed black line) as
a summary to analyze the quality of uncertainty generated by the
baseline model CoBEVT and BEV, the EviBEV model with 𝑒𝑑𝑙 loss, and
our complete probabilistic model GevBEV. Since the baseline model
only generates Softmax scores for each class, we convert the scores
into entropy to quantify the uncertainty and compare it to the other
two models with the evidential uncertainty based on a Dirichlet dis-
tribution. As revealed in Fig. 14, GevBEV and EviBEV demonstrate
better confidence plots to the perfect calibration line (indicated by
the diagonal dashed line) than the baseline model BEV and CoBEVT
for both road and object classification. The two baseline models seem
to overestimate the uncertainty than the other two models, which
affirms our concerns that the deterministic model, without particularly
accounting for uncertainties, may end up generating less trustworthy
scores for making driving decisions. The results, on the other hand,
show that assuming a Dirichlet distribution of the point class of the
BEV map can provide more reliable probabilistic features for the map
and, therefore, is safer to use in AV perception systems.

Interestingly, the uncertainty quality of GevBEV is worse than that
of EviBEV, especially for object classification. This might be caused by
the saturation of the summation of the evidences contributed by the
neighboring center points. Moreover, the highly uncertain points from
the objects head of GevBEV tend to be underconfident. We conjecture
that some vehicles are only observed partially because of occlusion.
Our limited coordinate expansion (1.2 m) is only able to cover parts of
these vehicles. Therefore, only the distribution tiles of these expanded
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Fig. 14. Calibration plots by different models. The perfect calibration line is indicated by the diagonal dashed line.
Fig. 15. Comparison of different CPM sharing strategies for co-perception. The first row shows the results of the road head (greenish) and the second the objects head (orangish).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
center points can cover the rest of the vehicle body. This then may lead
to a high uncertainty but a high positive rate. Despite the uncertainty
of GevBEV being slightly more conservative than that of EviBEV, still,
as shown by the higher IoUs in Table 2, the learned spatial Gaussian
distribution generates smoother BEV maps and draws classification
distribution of any points in the continuous BEV 2D space.

4.7. The application of GevBEV for co-perception

The generated evidential GevBEV maps with different uncertainty
thresholds are used to select the information communicated among
CAVs. The CPM sizes before and after the uncertainty-based infor-
mation selection with different uncertainty thresholds, as well as the
corresponding IoUs of the classification results over all areas in the
perception range (𝐼𝑜𝑈all) and over the observable areas (𝐼𝑜𝑈obs), are
plotted in Fig. 15. The first row shows the results of the road head, and
the second the objects head. As discussed in Section 3.3, we conducted
experiments with two CPM sharing strategies, one for sharing the
masked evidence maps of all perception areas (light green and orange)
and one only for the road areas constrained by an existing HD map
(dark green and orange). The dashed lines are the baselines of sharing
CPMs without information selection, which are shown as horizontal
lines over different uncertainty thresholds.

The plots in the first column show that the CPM sizes have been
reduced evidently after the information selection at all uncertainty
thresholds compared to the corresponding baselines. For example,
when all perception areas (light green) are considered for sharing, the
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CPM size for the road head dropped by ca. 87% from 388 kB to 52 kB
at the uncertainty threshold of 0.5. Correspondingly, the 𝐼𝑜𝑈all and
𝐼𝑜𝑈obs only dropped by ca. 2%. In the same configuration, the CPM
sizes for the object detection dropped ca. 93%, from 395 kB to 27 kB,
while the IoUs dropped ca. 4%. By only considering the road areas for
sharing, CPM sizes can be further reduced to about 16 kB for the road
head and 6 kB for the objects head at the uncertainty threshold of 0.5,
as the dark green and orange solid lines shown with only an IoU drop
within 0.5%. According to the V2V communication protocol (Arena and
Pau, 2019), without considering other communication overhead, the
data throughput rate can achieve 27 Mbps. Therefore, the time delay
for sending the CPMs of both heads has dropped from ca. 28 ms to
0.8 ms by the data selection based on our GevBEV maps from road
areas. These significantly reduced time delays are critical for real-time
V2V communication.

5. Conclusion

In this paper, we proposed a novel method to interpret driving
environments with observable Gaussian evidential BEV maps. These
maps interpret the LiDAR sensory data in a back-traceable manner that
each prediction is supported by evidences provided by the original
observation points. Moreover, we designed a probabilistic classification
model based on U-Net to generate statistics for this interpretation.
This model assumes a spatial Gaussian distribution for each voxel of
a predefined resolution so that any point in the continuous driving
space can draw itself a Dirichlet distribution of the classification based
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on the evidences drawn from the spatial Gaussian distributions of the
neighboring voxels.

We test our proposed GevBEV on benchmarks OPV2V and V2V4Real
of BEV map interpretation for cooperative perception in simulated and
real-world driving scenarios, respectively. The experiments show that
GevBEV outperforms the baseline of the image-based BEV map by a
large margin. By analyzing the predictive uncertainty, we also proved
that evidential classification can score the classification result in a
less overconfident and better-calibrated manner than the deterministic
counterpart of the same model. Furthermore, the spatial Gaussian
distribution assigned to each observable point is also proven beneficial
in closing the gaps of sparse point clouds with a controllable range
and smoothing the BEV maps. By virtue of this spatial distribution,
one can draw the Dirichlet classification result for any points in the
continuous driving space. This probabilistic result can be used to make
safer decisions for autonomous driving by its ability to quantify the
uncertainty using the measurement evidences.

Although our model is only applied to the point cloud data of the
co-perception scenario in this paper, it is straightforward to be used
on other modalities of data sources or scenarios, such as images for
co-perception, or satellite images and airborne point clouds in the field
of remote sensing. We leave these applications for future work.
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