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ABSTRACT For manufacturing companies, reliable production planning and scheduling not only is the
basis for efficient order processing but at the same time is an essential prerequisite for the integration and
coordination of all participants along the entire supply chain. At the same time, the increasing delegation of
planning activities to dynamic software solutions leads to increasing intransparency regarding the planning
behavior. It thus becomes increasingly difficult to identify and address inefficiencies or problems caused
by the planning processes within industrial supply chains. This paper presents an easy-to-use method for
describing, visualizing and analyzing scheduling behavior in manufacturing companies requiring only very
few data. In addition, an overview of key planning quality indicators (KPQIs) to be considered in the
evaluation of the planning quality is given and structured along the assessment dimensions of plan stability
and planning accuracy. The specific application at a maintenance, repair and overhaul (MRO) service
provider for complex capital goods demonstrates the benefits and insights to be gained from the model’s
application, especially in highly dynamic market environments. Using machine learning, characteristic
planning patterns can also be statistically determined with the developed description logic and KPQI system.

INDEX TERMS Production management, production planning, schedules, stability, data integration.

I. INTRODUCTION

Production planning and control (PPC) is one of the main
beneficiaries of the rapidly increasing availability of data
and information resulting from the digital transformation in
manufacturing companies. This allows an increasingly more
extensive and faster consideration of current system states
in planning and control decisions [1]-[3]. Plans that, due to
disruptions or other events, can no longer be adhered to can
thus be immediately adjusted or “healed’” through short-term
planning iterations [4]. This generates further planning itera-
tions in addition to the planning cycles that are often carried
out periodically (e.g. during the night) [5].

Despite the actuality and accuracy of (production) plans
gained through planning iterations, negative effects can
also be caused by the dynamics induced in this way (e.g.
in demand and production schedules) as well [6]. These
include confusion on the shop floor, organizational costs
for additional effort in the planning process and fluctuating
capacity utilization [7]. Especially at interfaces between areas
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of the company’s internal supply chain such as production and
warehousing areas as well as with other companies, serious
coordination and synchronization problems or deficiencies in
acceptance for the planning system may result [6], [8], [9].
Understanding the company’s own planning behavior as well
as plan stability and planning accuracy thus forms the essen-
tial basis for communicating reliable and robust delivery
dates to customers or related business units. It also is a pre-
requisite to identify inefficiencies caused by the company’s
planning behavior.

Despite many years of international attention to dynamics
in PPC, no suitable, easy-to-use model exists to date that
allows a clear description of dynamic planning processes
in manufacturing companies and thus provides transparency
about their planning behavior. This is why this paper focuses
on the research question of how the impact of planning
processes on production logistics system behavior can be
made transparent and how planning processes can be assessed
quantitatively regarding their impact.

First, relevant dynamic-induced challenges in production
planning (section II) as well as fundamentals of assessing
planning quality including relevant criteria and dimensions
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for the description and evaluation of planning behavior
(section III) are structured. On this basis, the plan history
diagram (PHD) as an easy-to-use model for the descrip-
tion of plan date histories is developed (section IV) and
demonstrated by means of a generic example (section V).
Section VI introduces a system of key planning quality indi-
cators (KPQIs) for the quantitative description and analysis
of the planning behavior. Finally, their application and poten-
tials for analyzing production systems are demonstrated using
the example of a maintenance, repair and overhaul (MRO)
service provider for complex capital goods (section VII).
Using machine learning, it is shown that planning patterns
can be uncovered even in this logistically very demanding
competitive environment and thus made accessible for further
analyses. Finally, a conclusion is given in section VIII.

Il. THEORETICAL BACKGROUND: DYNAMIC-INDUCED
CHALLENGES IN PRODUCTION PLANNING

Dynamics in PPC is not a phenomenon only created by
increasing digitalization. Instead, it is inherent in planning
as a tool for anticipating future developments of relevant
influencing factors [10]. In general, PPC acts as a regula-
tor within a dynamic control loop of production logistics
(see Figure 1) [11]. If deviations are detected in production
monitoring regulatory measures are initiated. Thus, typical
measures to react to deviations are the postponement of
individual orders or rescheduling of multiple orders.

Customer
orders

Logistics
Targets

< Regulatory measures
*‘ (e.g. planned date shifts) |

Production planning
and control

Production
program

Production monitoring

Production
program

Plan Actual
Operative .
production process Recording of the
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| I | l (Data acquisition)
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output *

FIGURE 1. Control loop of production logistics (based on [11]).

The level of dynamics also depends on the sensitivity
of PPC to deviations from the plan. These mostly result
from volatility and variability of environmental conditions
as well as from the complexity or the structuring of the
planning problem. With elongating or widening planning
horizons, this becomes increasingly important, since plan-
ning becomes more difficult the longer the events are planned
ahead of time [12]. Concurrently, the data required for plan-
ning increases, as does the influence of planning-relevant
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information that is not or only vaguely available [13]. In
addition to industrial production, this, in particular, applies to
sectors in highly dynamic market environments such as the
regeneration of complex capital goods in the MRO industry,
where reliable and at the same time ambitious delivery times
have to be communicated to customers at an early stage
despite sometimes still completely unknown order specifi-
cations [14]. Other examples are large-scale projects from
the construction industry or research and development [15].
Exemplary approaches of PPC in scientific literature try
to meet the challenge of handling dynamics by means of
machine-learning [16], [17], but so far often ignore human-
in-the-loop aspects [18]. Thus, these approaches do not
contribute to the understanding of planning processes.

Besides the organizational handling of dynamics, the avail-
ability of data for describing and analyzing a company’s
planning process in practice also remains a challenge. For
example, even modern data warehouses often do not archive
plan date histories, as these are neither needed for operational
order processing nor used for ex-post evaluations so far. The
authors’ experience from various projects involving industrial
companies shows that, in the long term, usually only the
initial and final planning statuses are saved. The extraction
of plan date histories often is only possible by restoring daily
backups, which requires considerable time and effort in data
provision and preparation.

For production logistics, the continuous overwriting of
planning data (e.g. planned delivery dates) as a result of plan-
ning iterations causes further disadvantages and problems.
For example, the planned dates lose their explanatory power
almost completely as a reference for the assessment of the
scheduling behavior, since all deviations from the plan that
have occurred over time are already taken into account in the
planning iterations or shifts. As a result, using these planned
dates for evaluations, e.g. in the context of production moni-
toring, is only feasible to a very limited extent and becomes
much more like a forecast than a target.

Assessing the lateness of completed orders (Figure 2)
based on continuously rescheduled plan dates (a) compared
to an assessment based on a fixed initial plan date (b) gives
a good example of how key performance indicators (KPIs)
can have completely different meaningfulness, depending on
what they are based on. It can be seen that the same analyzed
orders show a significantly increased average lateness with
a significantly higher deviation when referring to the initial,
fixed plan date. As a result, even with planning iterations
to a smaller extent, interpreting logistics analysis methods
requires extreme caution.

In order to master the increasingly complex interdepen-
dencies in PPC, companies are more and more outsourc-
ing planning tasks to dynamic (advanced) planning systems
(APS) [19] and employ (semi-)autonomous mechanisms in
PPC [16], [20], [21]. These are capable to continuously and
dynamically adapt planning and control operations to chang-
ing environmental conditions [22]. Although this supports
and allows raising further optimization potential in PPC,
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it also leads to an increasing lack of transparency of the plan-
ning process making it more difficult for users to follow the
systems’ processes. This not only makes understanding and
operating the systems more demanding but also makes it more
difficult to make and challenge fundamental configuration
decisions. As a result, these systems are increasingly con-
figured and used without in-depth knowledge of production
logistics cause-effect relationships [19].
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FIGURE 2. a: Schedule deviation using continuous rescheduling.
b: Schedule deviation using a fixed schedule.

Ill. DEFINITION OF PLANNING QUALITY, PLAN
STABILITY AND PLANNING ACCURACY

To assess the planning quality, a variety of performance,
stability and cost criteria can be used. A basic description of
the planning quality as a function of the planning frequency is
provided in [5]. COWLING AND JOHANSSON [1] also describe
the fundamental relationship between planning frequency and
plan stability. As a further evaluation criterion, the short-term
nature of the planning activities is also taken into account
by considering the timespan between a change of a plan and
its planned realization. Corresponding examples are provided
by JENSEN [23] and DIMITROV [24]. These criteria have so
far been used primarily in the extension and improvement of
planning and optimization algorithms by adding additional
constraints or components to the respective objective func-
tion. A comprehensive overview of this is, among others,
provided by [4], [8], [9], [24].

The variety of assessment parameters listed in the cited
work as well as the various terminology used therein shows
that an initial definition of the terminology used in this paper
is necessary in order to ensure a uniform understanding.
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Following, the precision or the degree of congruence of a
planned event with its actual realization will be referred to
as planning accuracy. The term plan stability, on the other
hand, serves as metric for the consistency as well as the early
anticipation of potential changes and corresponding triggers
for a planning iteration. In other words, high plan stability
means that two successive planning iterations are separated
from each other as long as possible and that no or only
minor adjustments are made to the plan [9]. In combination,
both represent the planning quality. In addition, planning
quality can be differentiated in several dimensions. A dis-
tinction must be made between the content dimension and
the date dimension. The content dimension describes how
a plan differs as a result of a planning iteration with regard
to the type and quantity of the planned work to be carried
out [24]. However, due to the focus of this article, the content
dimension will not be discussed in depth in the following.
Instead, the focus lies on the date dimension, which focuses
primarily on the changes in the remaining throughput time of
an event. This represents the time remaining until an event is
planned to happen, measured at discrete measurement points
over time [6], [24], [25], as well as the number [5], extent and
direction of the planned date shifts [8], [26].

Regardless of the dimension, plan stability and planning
quality can be considered both over time along the order
processing process and at a single point in time. The point
in time perspective, e.g. when defined milestones along the
process are passed, allows the comparison of several planning
objects (e.g. production orders) at a defined point in time.
In contrast, the examination of the evolution of a plan date
over time addresses the temporal evolution of a plan along
the order processing of the respective object of observation
(e.g. an order or a project). However, these results can be
compared with those of other objects of observation and/or
be standardized accordingly. Altogether, four perspectives for
the evaluation and comparison of planning quality can be
distinguished (see Figure 3).
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process chain with the result
that actually is realized.
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FIGURE 3. Perspectives and dimensions for assessing planning quality.

To visualize the planning behavior described along these
assessment dimensions and thus make it transparent, the plan
history diagram (PHD) is presented and explained in the
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following. It serves both as a description model as well
as for the definition of important metrics for the definition
of a KPQI system for the assessment of planning quality
in section V1.

IV. DERIVATION OF THE PLAN HISTORY DIAGRAM
BASED ON THE MILESTONE TREND ANALYSIS

The structure of the plan history diagram is generally based
on the milestone trend analysis (MTA), which is widely used
in project management. There, it is used to track and visu-
alize the progress of projects and the status of milestones or
deadlines over time [15], [27]. A prominent use case is the
application of this method as a “Slip-Chart” in the context
of NASA’s (National Aeronautics and Space Administration)
unmanned moon mission “Ranger” [28].

The modeling approach chosen in this paper also leans on
the Order Progress Diagram presented by SOEPENBERG et al.,
which describes the lateness of one or more orders across
order fulfillment processes and allows conclusions regard-
ing PPC configurations, e.g. prioritization [29]. Therefore,
the measured discrete lateness values at the individual opera-
tions are plotted over the respective actual completion date of
the process. However, it is important to note that the Order
Progress Diagram does not consider planning iterations or
planning quality at all; instead, it is more about visualizing
throughput time deviations of individual processes compared
to average throughput times determined in production plan-
ning. Since this paper aims to develop a model for the descrip-
tion and analysis of planning quality, the focus in modeling
must be changed and adapted from the observation of individ-
ual discrete lateness in the process compared to rigid planning
parameters towards iteratively changing production plans in
the process and the resulting challenges. Thus, the derivation
of the PHD is shown based on the MTA which is thematically
closer to the intended model. In general, the MTA can be
used to describe changing plan dates or schedules. However,
the comparison of plan date history-curves and their interpre-
tation is difficult due to the way of representation. However,
with the help of two easy transformation steps (see Figure 4),
this can be remedied to derive the plan history diagram.

Figure 4a) shows the basic form of the MTA, which plots
the plan date history trend curves of a various number of
milestones along the corresponding measurement or report-
ing dates on the horizontal axis. The bisecting line thus
represents all points in time at which the planned date and the
measurement date match. The horizontal distance between
the respective plan date of a milestone and the bisecting line
thus represents the remaining time span until the plan date
becomes due. A permanently constant plan date consequently
leads to a completely horizontal trend between the starting
point and the bisector. If a plan date is shifted into the future
(positive date shift), this results in a rising trend. If the plan
date is moved forward in time (negative date shift), a falling
trend results analogously.

The trend curve, which results from connecting the mea-
suring points, suggests a steady change in the plan-schedule
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between two consecutive measuring points, which is only
recorded and plotted discretely at specific measuring points.
However, in practice, plan date shifts are usually done at
discrete points in time instead. This is best illustrated by the
representation of the planned schedule in the form of steps
(dashed lines in Figure 4b).
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FIGURE 4. Transforming the milestone trend analysis into the plan history
diagram.

This form of visualization allows easier identification and
evaluation of occurring schedule shifts. Even continuous
shifts, which in the original MTA’s representation would be
shown as a line parallel to the bisector, are recognizable as
discrete schedule shifts this way. This enables measuring the
time difference between any measuring point and the plan
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date valid at that point in time before and after a plan date
shift. Figure 4c) presents the resulting graphs and thus the
basic structure of the plan history diagram.

If there is no change in the planned date, the curve trends
downwards with a continuous gradient. Positive and negative
schedule shifts can be recognized and evaluated in the form
of abrupt variations in the curve.

Using this form of visualization, it is also easily possible
to standardize different plan data histories to a common point
in time (e.g. start or measurement date). This makes it easy
to compare plan date histories that are widely separated in
time. It also allows the simple recognition of recurring pat-
terns, such as characteristic scheduling routines or gates, from
the passing of which systematic changes can be recognized
across orders. An exemplary pattern could be a significant
reduction of plan date shifts after the successful completion of
all procurement activities, which could have led to disruptions
in the subsequent processes.

Based on this initial introduction, further indicators that
can also be shown in the diagram are presented and discussed
in the following section.

V. APPLICATION OF THE PLAN HISTORY DIAGRAM

FOR DESCRIBING PLAN HISTORIES

The goal of this section is to provide a more detailed,
practice-oriented description of the plan history diagram
based on a fictitious plan history (Figure 5) of a production
order. It also serves to introduce fundamental measures for
describing plan histories.

Within the plan history, the period of measurement (x-axis)
is being measured using the unit shop calendar days (SCD).
SCD describe the underlying shift system respectively the
working days of industrial companies. If a 7-day week
is employed, SCD are equivalent to calendar days (CD).
The plan history of the exemplary order starts at SCD 0,
at which initial scheduling has been carried out. The deter-
mined planned completion date at SCD 0 is SCD 40. After
5 SCD, the order reaches milestone 1, which also represents
the first rescheduling point, where a planned date shift (SPD1)
of —10 SCD is performed.

The planned date shift is shown as a shift of 10 SCD in the
negative y-direction. A new planned delivery date (SCD 30)
results, which can be determined by prolonging the point
“milestone 1”” with the planned stability line (dotted line with
gradient -1) and is symbolized by a striped triangle.

In the further course of order processing, the planned date
is shifted by 5 SCD at SCD 20. This shift occurs at a distance
of 10 SCD to the planned date (DPDS> in Figure 5). After
a subsequent greater planned date shift at SCD 25, the order
reaches milestone 2, at which no rescheduling takes place.
The planned completion date defined at SCD 25 (SCD 55)
thus remains valid. After a further shift at SCD 45, the remain-
ing lead time at SCD 50 falls below the limit of the predefined
customer communication window for the first time.

This triggers the communication of the promised deliv-
ery date (SCD 60) to the customer (PSp,m in Figure 5),
which is marked by the crown symbol. Communication to
the customer represents one exemplary action that can be

FIGURE 5. Exemplary plan history diagram (PHD).
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triggered by falling below predefined time windows (crossing
the distance of 10 SCD to the planned date). Other examples
are the initiation of material order processes or machine setup
activities. However, the illustration shows that very late in
the product creation process, in this case shortly before com-
pletion, it became clear that the previously communicated
deadline could not be met after all. This is evident from the
fact that the planned date has been postponed once again.
The order is finally completed at SCD 75 (Actual delivery
date PS,.q;) and handed over to the customer with a schedule
deviation (lateness to promised delivery date L,,;) compared
to the promised date of 15 SCD. The explanations show
that the process understanding can already be significantly
increased by considering a single plan history of an exem-
plary production order.

Extending the focus from a single production order to a
product group or production order class also allows the identi-
fication of recurring patterns and, if necessary, the derivation
of measures to improve logistics performance. Analyzing
multiple production orders that correspond to order classes
visually is only possible with great effort. This means that in
addition to the plan history diagram a key planning quality
indicator (KPQI) system is required for an evaluative com-
parison of plan histories as well as aggregated plan histories
of product groups.

VI. KPI SYSTEM FOR ASSESSING PLANNING QUALITY
To further analyze plan histories, the application of the PHD
can be supported by the calculation of key performance
indicators, which can be classified according to the evalu-
ation dimensions already presented in Section II, Figure 3.
Following this definition, the key figures for evaluating plan-
ning quality can be divided into the dimensions of plan
stability and planning accuracy. Figure 6 gives an overview
of the key figures to be calculated and assigns them to the
above-mentioned evaluation dimensions.

Planning quality

Plan stability

@ Planning accuracy

Mean value of the planning error
distribution
PE,

avgk

Rescheduling frequency
I, FIS, TIS

Standard deviation of the
planning error distribution
8 PE o

Rescheduling intensity
SPD,

Rescheduling distance Planning accuracy
DPDS,,, P4,

FIGURE 6. KPQI system for assessing the planning quality.

The following sections focus on the listed metrics
that describe and evaluate Plan Stability and Planning
Accuracy.
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A. PLAN STABILITY

Within this paper, plan stability in plan histories is described
by means of three superordinate target categories that are
accompanied by three guiding questions:

1) Rescheduling frequency: How often are planned dates

rescheduled?

2) Rescheduling intensity: What is the intensity of

planned date shifts?

3) Rescheduling distance: What is the distance between

rescheduling points and the corresponding plan dates?
Within these three target categories, five metrics (I, FIS, TIS,
SPDgyg and DPDS,,,,) can be defined for quantitative analysis
of plan histories. The focus here is on the plan history of a
single production or customer order.

First, metric /, the number of planned date shifts within the
considered plan history, is explained. Within the descriptive
model shown in Figure 5, I is directly recognizable and
measurable as the absolute number of peaks in the plan
history. In this paper, the individual rescheduling points, at
which the planned date shifts take place, are indexed by i.
A high number of planned date shifts suggests an unstable
plan history since a plan tends to have only a short valid-
ity period due to the frequent shifts [1]. In particular for
the comparison of different production and customer orders,
however, a consideration of the absolute number of planned
date shifts is not sufficient, but must be set in relation to the
investigation period of the plan history, i.e. the time between
the first scheduling of the order to the last planned date or the
completion date. This parameter is called /P and is defined
according to (1).

IP = PSeq — RPg (D

P Investigation Period [SCD]

PS;eq1  Actually realized planned date [SCD]

RPg Rescheduling Point 0 (initial scheduling point)
[SCD]

The IP is intended to take into account that with elongating
the investigation period and thus the lead time, the number
of planned date shifts, e.g. in the context of weekly plan-
ning meetings, can increase. The FIS and 71S indicators can
thus be used as normalized metrics for comparing different
planning processes. The mean shift frequency (FIS), see (2),
provides information on how many planned date shifts were
performed per SCD in the plan history.

I
FIS = — 2
IP @
FIS  Mean shift frequency [SCD™!]
1 Number of planned date shifts [-]

IP  Investigation period [SCD]

As a consequence, high values of FIS indicate frequent
changes of planned dates and thus unstable plans. By invert-
ing FIS, this rather abstract measure can be transformed
into the mean time between planned date shifts (71S), which
describes a time duration (see (3)).
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The evaluation of 71S and FIS contributes to the assessment
of the rescheduling frequency. Low T1S values indicate rather
low plan stability due to the short time intervals between
rescheduling cycles.

1P
TIS = — = — 3)
FIS 1

TIS Mean time between planned date shifts [SCD]
FIS  Mean shift frequency [SCD™!]

I Number of planned date shifts [-]

P Investigation period [SCD]

The evaluation of the plan stability of plan histories is fur-
ther supported by the evaluation of the rescheduling intensity.
For this purpose, the shift of the planned date carried out at a
rescheduling point must be known or calculated.

By calculating the mean absolute planned date shift
(SPDyyyg), it is possible to evaluate how extensive the average
shift per rescheduling cycle was over time. In the context of
an intensity analysis, the direction of the planned date shift is
not taken into account and absolute values are considered (4).
Thus, an expediting and a postponement of planned dates do
not balance out each other.

I
1
SPDayg = 7 - le |SPD;| “)
i=
SPD,y,, Mean absolute planned date shift [SCD]
SPD; Planned date shift at rescheduling point i [SCD]
1 Number of planned date shifts [-]

High values of SPD,,, indicate that planned dates are
shifted far into the future and/or the past when they are
rescheduled. Thus, the temporal extent of schedule shifts can
be analyzed by calculating SPD,,, in the sense of the second
guiding question.

Answering the third guiding question, on the other hand,
requires evaluating the rescheduling distance of the planned
date shifts that have been carried out. This parameter is
a supplementary indicator for evaluating the plan stability,
as changes at very short notice (a few days before the valid
planned date) can have a negative impact on downstream pro-
cesses and delivery performance towards the customer [24].
By calculating the “Mean distance to the planned date”
(DPDSgy,), the short-term nature of planned date shifts can
be quantified. The calculation rule for DPDS,, can be seen
in (5). Lower DPDS,,, values indicate that planned dates are
adjusted at shorter notice. Thus, low values of DPDS,,,, indi-
cate low plan stability. 1, FIS, TIS, SPD,; and DPDS,,, are
used to describe the target categories rescheduling frequency,
rescheduling intensity and rescheduling distance based on
key figures as dimensions for evaluating the plan stability of
a single plan history.

v 1
|| DPDS; | PS; —RP;
DPDSan — Zl—l 7 ! — Zl—l Il i

&)
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DPDS,,; Mean distance to the planned date [SCD]

DPDS; Distance to the planned date at rescheduling
point i [SCD]

1 Number of planned date shifts [-]

PS; Planned date at rescheduling point i [SCD]

RP; Rescheduling point i [SCD]

In industrial practice, especially when carrying out a key
figure-based comparison of different plan histories, however,
it must be taken into account that considerable differences
between lead times may occur among different production
or customer order classes. If, for example, two plan histories
are to be compared which are based on orders with strongly
diverging order lead times, the absolute values of I, SPDyy¢
and DPDS,,, must be normalized, if necessary, with the
specific order lead time or the investigation period (in analogy
to FIS and TIS). For example, a modification of FIS and TIS
is conceivable, within which the absolute number of planned
date shifts / is not related to the length of the investigation
period (IP), but to the order lead time. However, these and
other possibilities of normalization will not be focused on in
detail in this paper.

B. PLANNING ACCURACY

The planning accuracy represents the second evaluation
dimension of the planning quality. Company-specific mile-
stones k within plan histories j are to be defined for the
evaluation of the planning quality of planned dates. These are
used to calculate the planning error PEy ; for the planned date
PS;. j valid for the respective milestone k (6).

PEy;j = PSrealj = Pk ©
PEy j Planning error at milestone k in plan history j
[SCD]
PSyeqj  Actually realized planned date of plan history j
[SCD]
PSy Planned date of plan history j, valid at milestone
k [SCD]

Figure 7 illustrates the relationship between a defined mile-
stone MSy, the associated planned date PSy j, the actually
realized planned date PS,.q j, and the planning error PE} j,
which can be calculated as the difference between PSy ; and
PSyea1 ;- For illustrative purposes, a milestone is shown here to
mark the targeted completion of semi-finished procurements
20 SCD after the start of the order.

According to the definition, a positive planning error
(PEyj > 0) describes a late placement of planned dates PSy ;
compared to the actually realized planned dates PS,q; j, While
negative planning errors (PEy ; < 0) indicate an early place-
ment. To analyze the milestone-specific planning accuracy,
the described planning errors are calculated in the planned
schedule of a class of orders.

A class of orders can be formed, for example, based on
the product group the orders belong to. The calculation of
all planning errors PE}, ; at the milestones M}, of all planned
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Distance between planned date
and period of observation [SCD]

Time [SCD]

20 40 60 80

MS, =20 SCD PS,; PS

real

FIGURE 7. Example for the assessment of the planning error.

dates J of an order class to be analyzed forms the basis for the
calculation of two aggregated key figures for the evaluation
of the planning quality. First, the average planning error at
milestone k, PE,, i is defined in (7).

J
PE gk = } D PEk, (7)
j=1
PE 4« Mean planning error at milestone k [SCD]
PEy ; Planning error of milestone k in plan history j
[SCD]
J Number of analyzed plan histories [-]

As with the definition of the individual planning errors
PE} j, positive values of PEg,,  allow the conclusion that
planning dates are placed too late on average, while negative
values indicate that they are placed too early. The considera-
tion of the parameter PE,,, ; with respect to the occurring
planning errors can be extended by the calculation of the
standard deviation to describe the dispersion of a planning
error distribution. The calculation rule is defined in (8).

J

PEgk = | 5 Y (PE ~ PEag?®  (®)
j=1

PE 4oy Standard deviation of the planning error distri-
bution of milestone k [SCD]

PE 4« Mean planning error at milestone k [SCD]

PEy ; Planning error of milestone k in plan history j
[SCD]

J Number of analyzed plan histories [-]

The combined evaluation of PE,.gx and PEge,  allows
the assessment of the position as well as the repetitiveness
of the deviations between realized dates and the dates valid
for the milestones. A condensed evaluation of the planning
accuracy at the milestones, on the other hand, is possible
by calculating PAx (see (9)). This relative key figure reflects
the proportion of planning errors within a company-specific
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permissible planning error tolerance in the total number of
planned dates considered.

Mol k
PA, = o

- 100 )

Ntot

PA; Planning accuracy at milestone k [%]

Niwi,k  Number of planning errors in planning error
tolerance (PEy j € [Ty k, Tu ) [-]
Nor Number of measured planning errors [-]

Figure 8 shows a planning error distribution for a fictitious
plan history as well as the corresponding key figure values
for PEayg k» PEgev,k and PAy. The parameter PE,,g x shows
a value of 10.07 SCD. Planned dates that were valid at
milestone k under consideration are consequently positioned
too late by an average of 10.07 SCD. The standard deviation
PEgey ; of 14.33 SCD indicates a broad dispersion of the
planning error distribution.

18% 1

16%
14% PE,.,  [SCD] 10,07
Z 12% Pey,  [SCD] 14,33
g 0w PA, (%] 705
o ()
g [Ty Tyul [SCD] [-4,10]
& 8w Lo Tux
E 6%
4%
2%
0% I R
20 30 40 50
Planning Error [SCD]
Legend: PE Average Planning error [SCD]

PEgeyy Std. Deviaion of Planning error [SCD]
PA.: Planning accuracy [%]

Ty Lower error tolerance limit [SCD]
Ty Upper error tolerance limit [SCD]

FIGURE 8. Exemplary planning error distribution.

The repetitiveness of generated planning errors is therefore
to be rated as low. In the example, the planning quality is
calculated by setting a tolerance field with respect to per-
missible planning errors to [—4, 10] that corresponds to a
value of approx. 70.5%. The proportion of planning errors
that lie within the defined tolerance field are colored blue
in Figure 8.

VII. CASE STUDY AT AN MRO SERVICE PROVIDER

The methodology developed in the previous sections for
visualizing plan histories and evaluating planning quality by
means of key planning quality indicators (KPQIs) for plan
stability and planning accuracy has been deployed at an MRO
service provider. In the following, excerpts of the study are
presented in an alienated form.

Figure 9 shows a generic representation of the inter-
nal supply chain of MRO service providers that is passed
by complex capital goods for the overhaul or regeneration
process (following [30], [31]). The macro processes Dis-
assembly & Inspection, Repair, Reassembly and Quality
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assurance thereby represent the elementary process steps
in regeneration. Start and completion of each of these are
marked by a milestone. In the following, this reference supply
chain is used to discuss the use case.

Milestone (MS) I represents the induction of the capital
good into the MRO shop. After disassembly and inspection,
the required work scopes are determined and the components
can be forwarded to the repair shop (MS II). Once this is done
(MS III), reassembly can begin, resulting in a rebuilt capital
good (MS IV). Finally, the capital good has to undergo a
quality assurance test. If the test is positive or if the necessary
rework is completed, the capital good can be used again
for operation and leaves the supply chain of regeneration
(MS V).

’ Capital good in service ~

Disassembly . » Quality

. . Repair Reassembly
[” ) sy B) 2 B
I | | |

D

[ Legend: Milestone within Order Processing }

FIGURE 9. Milestones along the generic MRO supply chain (exemplary).

In addition to the special supply chain structure, the MRO
branch is also characterized by highly variable work scopes
and an often large number of different product groups that are
overhauled in one production plant [14].

Within an initial process and data analysis, the exem-
plary applicability of the models presented in this paper was
ensured. It was possible to extract the history of the planned
completion dates for each order precisely in the complete
period of time between milestones I and V from daily stan-
dard customer service reports by using a big data and business
intelligence (BI-)platform. Furthermore, it was possible to
extract the necessary actual dates of the individual milestones
from the company’s Enterprise Resource Planning (ERP)
system.

At the same time, during data preparation it was identified
that the planned completion dates are frequently postponed,
so that a classic analysis (cf. Figure 2) without into account
taking the plan history would only provide very limited infor-
mation on lateness, ongoing planning processes, rescheduling
intensity and possible causes. Hence, the applicability of the
presented methodology could be ensured.

A. ANALYSIS OF PLAN STABILITY

In an initial investigation, the plan history Diagram (PHD)
was used to identify potential characteristic rescheduling
points and peculiarities in the plan history. In order to perform
an aggregated analysis, the plan histories of all orders of a
product group were shifted to a virtual receiving date as the
start of observation (SCD 231) and overlaid on top of each
other, resulting in a set of curves and enabling an analysis of
the plan stability over time.
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Figures 10 and Figure 11 present the resulting PHDs with
the overlaid plan histories for four selected orders of the
product groups F20 and P10 over the period under consider-
ation provided in SCDs. Furthermore, the key figures of plan
stability for the entire product group are given. According to
the underlying shift model, 7 SCD in this example correspond
to one calendar week.

Product group F20

-
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200 228 256 284 312 340 368
Time [SCD]

Key performance indicators [average for entire group]|
Avg. number of planned date shifts: l,,=10,5

avg ~
Avg. investigation period: vz,,,=84SCD

Avg. mean time betw. planned date shifts: TIS,,, =8 SCD
Avg. mean absolute planned date shift:

SPD,,, = 13 SCD
Avg. mean dist. to planned date: DPDS,,, =37 SCD

avg

FIGURE 10. Plan history diagrams and key planning quality indicators for
product group F20.

For product group F20, the plan histories of orders A,
B and C are very similar. Especially in the second half of
these plan histories (starting approximately at SCD 270),
they are very stable except of a few planned date shifts.
However, this cannot be stated for the plan history of order D,
which is characterized by many small to medium planned date
shifts, especially from SCD 312 onward. A comparison of
the four analyzed plan history diagrams in the first half of
the plan histories shows similarly shaped shifting respectively
rescheduling patterns. This applies in particular to the time
period around milestone II (cf. orange zone in Figure 10).

In case of the visualized plan histories of product group
P10 (Figure 11), it is more difficult to identify comparably
clear patterns. Compared to the PHD’s of orders of product
group F20, it is noticeable that the assumed respectively
planned lead time at the initial planning was approximately
the same for all four orders, whereas there were significant
differences in product group P10, recognizable in the PHD’s.

It is also noticeable that the distance between planned
date and period of observation of article C of product group
P10 declines into negative values shortly before completion.
This allows the assumption that, despite the otherwise com-
paratively high frequency of rescheduling, planned dates that
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Product group P10

observation [SCD]
w s
(=] (=}

e e

Distance between planned date and period of

200 228 256 284 312 340 368
Time [SCD]
Key performance indicators [average for entire group]

Avg. number of planned date shifts: 1,,=105

avg
Avg. investigation period: UZ,,=121SCD

Avg. mean time betw. planned date shifts: TIS,,, =8 SCD

avg

Avg. mean absolute planned date shift: SPD,,, = 18 SCD

avg

Avg. mean dist. to planned date: DPDS,,, =31 SCD

avg

FIGURE 11. Plan history diagrams and key planning quality indicators for
product group P10.

have already passed are in some cases no longer adjusted sys-
temically. Taking a look at the orange area for product group
P10, analogous to product group F20, and reflecting the range
of the actual dates for milestone II, there are no significant
shifts of the planned dates at this point. The PHD’s of the four
orders overall appear more diffuse. Finally, regarding the key
figures for both product groups, it can be derived that the plan
stability for both is to be assessed almost equally. For both
product groups, a planned date shift takes place every 8 SCD
on average. The average mean absolute planned date shift
SPDye (F20: 13 SCD/P10: 18 SCD) and the average mean
distance to the planned date DPDS,,, (F20: 37 SCD/P10:
31 SCD) are not fundamentally different as well. However,
despite similar key figures for plan stability, the characteristic
curves of the plan dates are clearly differentiable from each
other.

B. MACHINE-LEARNING BASED CHARACTERIZATION OF
PLAN HISTORIES AT PRODUCT GROUP LEVEL
Since a comparison of the plan history diagrams in
Figure 10 and Figure 11 allows the assumption that plan
histories are somehow characteristic for a product group and
thus a positive correlation between plan history and product
group could exist, this hypothesis was verified in a further
investigation by means of machine learning. Due to the
present classification problem (Which product group does
the PHD / the plan history belong to?), a Gradient Boosted
Decision Tree Algorithm (GBDTA) was selected in the fol-
lowing implementation [32]. The implementation was done
by visual programming using the open-source KNIME Ana-
lytics Platform (Version 4.3.0). For the GBDTA the default
configuration of both nodes provided by KNIME “GBDT
Learner” and “GBDT Predictor” was applied.

A dataset consisting of 302 rows and the following
columns/features was used to conduct the assessment:

+ Randomized and anonymized order number

o Product group (e.g. F20 or P10)

« Planned date shift at milestones I, I, III, IV per order

« Planning errors (ex-post) at milestones I, II, III, IV per
order

Regarding the interpretation of the results, it should be noted
that the data set used was comparatively small.

For the exemplary investigation and for reasons of alien-
ation, the data of three product groups was used. The rela-
tive shares of the product groups in the dataset are shown
in Table 1. The columns/features to be considered were inten-
tionally restricted based on the dedicated milestones, so that
eight features were available for determining the product
group of an order. The GBDTA was trained with a data parti-
tion of 80% (242 orders), afterwards, the product group was
predicted for a test set of 20%, respectively 60 orders. The
results are shown in Figure 12 using the form of a confusion
matrix and statistical key figures. It can be seen that by means
of the GBDTA, even on the basis of a few milestone-related
features, such as the planned date shift and the planning
error in this case, the product group can be predicted with
80% accuracy. In particular, the product groups F20 and
130 seem to be confidently identifiable by the selected set of

TABLE 1. Planning accuracy indicators for three selected product groups and milestones A-D.

oy Qi |G gl
F20 131 3259 5130 | 2536
130 93 138.46 3.8 125.70
P10 78 66.39 18.52 51.61

Milestone 11T Milestone IV
PAg PEqvg.c PA. PEavg,p PA,
[%] [SCD] [%] [SCD] [%]
6348 | 1502 8348 | 845 93.04
6.56 62.11 3115 31.03 59.02
2037 15.35 79.63 7.20 88.89

The table shows the average mean plan error PEg, g of the valid plan on the following day of the reached milestone for all orders of a product group.
Furthermore, the planning accuracy is given, which was calculated on the basis of a tolerance interval of + 20 SCDs.

Example for interpretation: The valid plan at milestone II was on average 51.61 SCD off the finally realized date for product group P10. Of the 78 orders
considered, the currently planned completion date at the time of the milestone matched the finally realized actual completion date with a tolerance of +

20SCD in 20% of the cases.

115086

VOLUME 9, 2021



T. Lucht et al.: Model-Based Approach for Assessing Planning Quality in Production Logistics

IEEE Access

input values. Moreover, Cohen’s kappa () as an indicator of
determination, reaches a value of 0.693 and thus indicates a
“substantial strength of agreement” according to [33].

For the present example, it was possible to show that plan
histories are highly specific for specific product groups. The
results indicate that basic process steps differ between the
product groups and that the general uncertainty concern-
ing the actual workload resulting in planning errors differs
between the product groups. This allows for the hypothesis
that planning errors can be systematic for a product group;
e.g. due to a high constant backlog at work stations required
for the overhaul process.

Confusion
Matrix F20 (P) 130 (P) P10 (P)
21 2 2

F 20 (A) 84,00 %
130 (A) 1 16 2 84,21 %
P 10 (A) 4 1 11 68,75 %

(A) — Actual  (P) — Predicted

A Cohen‘s Correct /
ccurancy kappa (k) Incorrect

80,00 % 0,693 48 /12

Overall
Statistics

FIGURE 12. Confusion matrix and statistics of ML-based examination.

C. ANALYSIS OF PLANNING ACCURACY

As part of the analyses conducted in this exemplary study,
the planning accuracy was examined in more detail, as well.
Here, the focus lay on the following question: How does
the planning accuracy quantitatively develop while the order
processing progresses?

In order to provide an explanation, the available data
was transformed for an analysis of the planning accuracy
over time and aggregated by product group. The result is
shown in Table 1. It can be seen that the mean planning
error deviates significantly from O at all milestones, but
decreases with increasing order processing progress. This
phenomenon is to be expected from a production logistics
point of view, since the remaining work contents and thus also
the remaining lead times decrease with increasing production
progress, the amount of available information increases and
the unplannable uncertainty decreases accordingly.

Analogous to the mean planning error, the increase in
planning accuracy can be seen with increasing progress in
production. Comparing the three product groups examined
in the table, it is noticeable that the improvement of the mean
planning error as well as of the planning accuracy varies in
intensity between the milestones. Thus, it can be stated that
only for product group F20 a planning accuracy of more
than 50% is already given at milestone I, and the increase
of planning accuracy is comparatively linear. For product
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group P10, on the other hand, there does not appear to be any
significant increase in the information available for planning
between milestone I and milestone II, which could lead to
a correspondingly higher planning accuracy. The increase in
the planning accuracy between milestone II and milestone III,
on the other hand, is enormous (60%). It can be assumed
that between milestone II and milestone III a large part of
the existing information uncertainty might be eliminated. For
product group 130, the planning accuracy up to milestone IV
is very low at approx. 59%. Here, it is necessary to review
the detailed reasons for this in order to be able to initiate
appropriate countermeasures.

D. IMPLICATIONS FOR PRACTICAL APPLICATION

The use case points out that planning patterns can be identi-
fied as specific characteristics for product groups, for exam-
ple applying a GBDTA to the analyses presented in this
paper. It also demonstrates that an integrated implementa-
tion of data preparation and forecasting is easy to establish
using open source software such as KNIME Analytics Plat-
form. Hence, an application (e.g. in production monitoring)
does not require additional expensive software or hardware.
However, the required (planning) data is recorded to a very
limited extent in many companies. Even though most modern
IT systems already are able to track planning data histories,
they are mostly not saved for reasons of data efficiency. The
potential for deeper analysis and insights into the operational
and planning processes of companies should lead to a rethink-
ing of this data efficiency policy. It is highly recommended
to save planning histories at least for important milestones
within order processing to allow for respective analyses.

VIil. CONCLUSION

The PHD and the framework for assessing planning quality
in production logistics in form of the KPQIs presented in
this paper allow for a systematic description and investigation
of planning processes in industrial practice by facing the so
far hardly addressed problem of logistics performance eval-
uation in production environments with frequent planning
iterations. This closes a research gap in the description of
lateness and planned date shifts during order processing with
frequent planning iterations and extends the theory of logistic
models for describing and analyzing the behavior of produc-
tion logistics systems by a new perspective. While existing
approaches are largely based on rigid planning dates only
allow very limited insights performing date-oriented analyses
(see section II), the presented approach allows a deeper anal-
ysis and understanding of the behavior of the planning sys-
tem. This is of particular importance when analyzing online
planning systems like APS that are based on continuous
rescheduling.

The supplementary system of KPQI opens up the possi-
bility of a quantitative comparison of several plan histories
and at the same time creates the basis for the aggre-
gated examination of a large number of data records. Thus,
a long-term integration of the analytical methodology into
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production monitoring is possible and, in addition, a lasting
contribution is made to the elimination of the still strongly
evident “blind spot” of inefficiencies caused by planning
(iterations). Machine learning-based analyses as those carried
out in the exemplary case study can support the developed
models in order to enable further insights into measures that
need to be introduced to improve the underlying planning
processes.

For example, it is conceivable to cluster plan histo-
ries by categories and characteristics which, in addition to
product classification, have an influence on planning quality.
Identified planning process-related disturbance factors or
inefficiencies then can be countered appropriately. For
example, the cluster-specific consideration or adjustment
of safety times or communication windows is conceivable.
The selection of appropriate measures on the one hand
depends on the results of the investigation. On the other
hand, the potential measures must be checked for confor-
mity with the logistics objectives as well as for procedural
and contractual applicability, if necessary. Consequently,
future work needs to focus on assessing potential measures
to reduce planning errors and improving planning robust-
ness. In particular, the application of artificial intelligence
for the identification of critical features that account for
major planning shifts needs to be elaborated as a basis for
sustainable process improvement in PPC in depth. With
regard to the MRO branch, the use of flexibility measures,
such as spare parts pooling, to compensate for planning
and process uncertainties must be examined in greater
detail. It must be determined how much flexibility needs to
be provided according to the achievable planning quality.
Although the PHD is developed without focusing on a
specific industry and so far there is nothing indicating that
it cannot be applied to traditional manufacturing compa-
nies. However, it is necessary to investigate the practica-
bility and the benefits of the PHD in this environment,
too. In this context, it is of particular interest which use
cases can be identified beyond make-to-order production with
project characteristics and whether, for example, an appli-
cation of the PHD in highly automated flow production is
promising.
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