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ABSTRACT:

National Mapping Agencies (NMAs) acquire nation-wide point cloud data from Airborne Laser Scanning (ALS) sensors as well
as using Dense Image Matching (DIM) on aerial images. As these datasets are often captured years apart, they contain implicit
information about changes in the real world. While detecting changes within point clouds is not a new topic per se, detecting changes
in point clouds from different sensors, which consequently have different point densities, point distributions and characteristics, is
still an on-going problem. As such, we approach this task using a residual neural network, which detects building changes using
height and class information on a raster level. In the experiments, we show that this approach is capable of detecting building
changes automatically and reliably independent of the given point clouds and for various building sizes achieving mean F1-Scores
of 80.5% and 79.8% for ALS-ALS and ALS-DIM point clouds on an object-level and F1-Scores of 91.1% and 86.3% on a raster-
level, respectively.

1. INTRODUCTION

Every few years NMAs have to acquire point cloud data to fulfil
their tasks and responsibilities in keeping public databases such
as Digital Terrain Models or cadastre data up-to-date. Previ-
ously, those point clouds were exclusively acquired from ALS
sensors. In recent years, deriving point clouds from aerial im-
ages as a secondary product using Dense Image Matching be-
came more common. As those point clouds are often years
apart, they indirectly contain all changes on the surface, which
happened in between the recordings. However, due to a lack
of automation in this context, the NMAs often extract build-
ing changes manually either by on-site surveying teams or by
manually searching for changes in aerial images.

While ALS and DIM point clouds contain the 3D information
about the earth’s surface, they have unique characteristics as
pointed out by Mandlburger et al. (2017). Besides different
point accuracies and point densities, which in case of DIM point
clouds rely on the resolution of the aerial images as well as on
the texture of the objects themselves, their behaviour towards
vegetation may be the most challenging difference in context
of change detection. While a laser beam penetrates the foliage
and consequently returns point information from the ground be-
low and places on a tree itself, a DIM point cloud only con-
tains points, which are visible in multiple aerial images. As
such, they often only represent the tree top. Similar to vegeta-
tion, a laser beam is also able to penetrate transparent roofs and
return points from the inside of a building, while DIM point
clouds capture the geometry of the roof itself. Consequently,
the geometry between those two point cloud types appears like a
change, when in reality nothing changed. Height-based change
detection methods may detect these as false positives. An ex-
ample of this issue is visible in fig. 1, where a garden house
with a transparent roof in the north-east of that area was de-
tected by our method in the test case involving ALS and DIM
∗ Corresponding author

Figure 1. Change detection results using the HC + Cbuilding

input at τ = 0.5. Top row: Orthophotos from 2010 (left) and
2016 (right) with the reference classes new in green and

demolished in red. Bottom row: binary change detection results
for ALS-ALS (left) and ALS-DIM point clouds (right).

point clouds, but not in the one where only ALS point clouds
are used.

Change detection between two or more point clouds has been
researched for more than two decades. Murakami et al. (1999)
detected binary height changes between two normalised Digital
Terrain Models using a manually set threshold. Later, these
detected regions were classified into building and non-ground
classes, from which the latter one got filtered out of the detec-
tion results (see also Teo and Shih (2013)). Instead of working
on 2D rasters, the Iterative Closest Point algorithm is used by
Matikainen et al. (2010) or Scott et al. (2018) to detect 3D trans-
lations between two point clouds. Detecting changes directly
between two point clouds by comparing the point distances be-
came a popular research topic in the last decade, e.g. by Richter
et al. (2013) or Williams et al. (2021).
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More complex methods like the multi-scale model to model
cloud comparison algorithm (M3C2) focus on point pairs along
a cylinder in normal vector direction to improve the point
matching and to provide a statistical significance test to the de-
tection (Lague et al., 2013). Recently, Winiwarter et al. (2021)
enhanced M3C2 with error propagation considering the meas-
urement and registration uncertainty on terrestrial laser scans.
Instead of detecting changes separately from the classification
task, Tran et al. (2018) proposed a joint approach using manu-
ally calculated features as well as a Random Forest classifier to
classify the points directly into complex change classes such as
new building. Concerning change detection using DIM point
clouds, Zhou et al. (2020) included ALS point cloud data in the
construction process of DIM generation to verify unchanged
buildings, but also to detect small changes in the buildings.
Zhang et al. (2019) proposed a convolutional neural network to
detect building changes using the Digital Surface Model from
ALS and DIM point clouds in raster format with an additional
RGB image provided by the DIM point cloud as input. The
network outputs a single binary result for each image patch.
Patches are later aggregated to the final detection result if cer-
tain thresholds are met in the detection process. While their
work is the closest research to this study in respect to the point
clouds used, there are some major differences in our approach.

To support the workflow of the NMAs, we propose a change
detection algorithm, which is able to detect building changes
independent of its area sizes and which results in a reliable and
comparable detection accuracy for ALS and DIM point clouds.
For maximal practical usability, the goal of our change detec-
tion is to achieve a high recall rate while keeping false positive
numbers as low as possible. Consequently, the correct bound-
ary of a change is not the focus of this work. To be as general
as possible, we use a 2D raster to become independent of the
underlying point densities, but also to be able to process large
areas more efficiently. Each raster cell has the ability to de-
tect a change without requiring additional assumptions about
the building area size like Zhang et al. (2019) did. As such,
it is able to detect point clouds as small as a single raster cell.
However, compared to prior work of us in Politz et al. (2021),
where each cell was independently analysed, this study uses a
residual neural network to introduce non-linear feature extrac-
tion as well as neighbour information to the change detection
task. Height and class information are pre-processed from the
point clouds on the raster-level and serve as input to the net-
work, which outputs change probabilities. The contributions of
this paper can be summarised as follows:

• A modified calculation of the Jensen-Shannon distance
(JSD) provides a smaller binning on a technical level and
consequently reduces the amount of false positive detec-
tions on building borders. This is an enhancement of the
JSD algorithm proposed by Politz et al. (2021), which
already demonstrated superior detection results and flex-
ibility when compared to a normal height threshold.

• A simple residual neural network is trained on ALS-ALS
point clouds and is able to detect building changes in ALS-
ALS and ALS-DIM scenarios while retaining a compar-
able quality independent of the point cloud types used.

• Different height and class input combinations are explored
and analysed to understand their influence on the change
detection results in regards to the overall accuracy, to the
point cloud types used, to different building area sizes and
to various change class types.

Figure 2. Schematic visualisation of the proposed height change
calculation using JSD. The bins of the original histogram of p
and q are coloured with orange and red, respectively, where a

darker hue indicate higher values. Padded bins are visualised in
grey. Bins with a slash are not considered in the JSD calculation.

2. METHODOLOGY

2.1 Input

In order to work on any point cloud type and also on different
point densities, a regular 2D raster is created and used as input
for the change detection network, which outputs a change de-
tection probability for each cell. For each point cloud at time
t1 and t2 a 2D raster with a cell size of 1m² is created, which is
cut into 100x100m² disjoint raster images. For each cell, height
and class values are determined, which serve as input for the
network.

2.1.1 Height information The height change probability
(HC) is calculated using the log2 on the Jensen-Shannon Dis-
tance (JSD). JSD is the square root of the Jensen-Shannon
divergence, which is the symmetric version of the Kullback-
Leibler divergence D(·). It is using the mean distribution m
and can be calculated using eq. 1 and 2:

HC = log2 JSD(p || q) (1)

JSD(p || q) =

√
D(p || m) +D(q || m)

2
, (2)

where p = normalised height distribution of t1
q = normalised height distribution of t2
m = mean height distribution with m = (p+ q)/2.

log2 is used to transform JSD(p || q) in the interval between 0
and 1, where values close to 1 signal a change in the underlying
distributions p and q, while values close to 0 indicate similar
distributions and consequently no change (Lin, 1991). The nor-
malised height distributions p and q are calculated for each ras-
ter cell as histograms, which count the amount of points within
a bin of size ϕ. The valid range for those histograms is defined
by the extreme values of both point clouds within a 1km² tile.
As Politz et al. (2021) already pointed out, having a fixed width
in vertical direction can cause false positives whenever point
clusters fall into two adjacent bins at one point in time, but not
the other time resulting in two different distributions and con-
sequently higher JSD values.
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Fig. 2 demonstrates this issue on the middle rows of p and q,
where high values are completely within a bin of size ϕ in p,
but are contained in two bins in q. While setting ϕ to a smaller
value may solve this problem, Politz et al. (2021) showed that
larger ϕ perform better overall. As such, this work only sets ϕ
smaller on a technical level. While the overall JSD is still cal-
culated on a bin size of ϕ, p and q are constructed using ϕ/2
and aggregated to ϕ bins for JSD calculation. The histograms
are padded by 0’s on both ends and are shifted by ±1 bin on
both distributions p and q allowing maximal flexibility. Within
the valid input range, all values are normalised to the sum 1.
Then, the JSD is calculated for all possible combinations of p
and q variants, where the lowest JSD value is used as final value.
Similar to Politz et al. (2021), we set ϕ to 0.5m.

2.1.2 Class information Besides the height, class informa-
tion is also given to the network as input. The approach assumes
that each point has a class label cn given a class distribution
CN = {c1, ..., cn} with a set amount of classes n ∈ N . Let
Cti be the class distribution of all points within a raster cell at
time ti with i ∈ {1, 2}. Furthermore, let Cti,max be the major-
ity class of Cti and Cti,n be the relative frequency for the n-th
class in that cell.

In this work, several ways to include class information as net-
work input have been investigated. As neural networks have
the ability to extract high level features on their own, we define
Ct1/2 as the concatenated class information of Ct1 and Ct2 .
We further define Ct1/2,building as the concatenated version of
Ct1,n and Ct2,n, where n equals the building class. Lastly, we
define CCt1/2 similar to Politz et al. (2021), where either time
t1 or t2 have to be exclusively building as majority class as
shown in eq. 3 and 4:

CCt1/2 =

{
1, if f(Ct1,max)∨̇f(Ct2,max)
0, else

(3)

f(x) =

{
1, if x = Cti,building

0, else
. (4)

For the remainder of this paper, we exclude the t1/2 index for
an easier understanding resulting in C, Cbuilding and CC as
investigated options.

2.2 Residual Network

The proposed residual network used in this paper is shown in
fig. 3. The network uses the residual blocks developed by He et
al. (2016) as building blocks, which explicitly construct:

y = F (x, {Wi}) +Wsx. (5)

The function F (x, {Wi}) represents the residual mapping,
which consists of two 2D convolution layers (conv) with a fil-
ter size of 3 × 3 × c, where c is the amount of channels. Each
convolution is followed by batch normalisation (bn) and a rec-
tified linear unit (relu). The result of F is concatenated with
the original output x followed by another relu operation. If the
input and output dimensions are different, an additional iden-
tity mapping Ws is applied like it was suggested by He et al.
(2016). Here, Ws is implemented as a 1× 1× c convolution.

Taking into account that training data sets for point cloud
change detection are usually not that large, we constructed a

Figure 3. Proposed residual network.

small network with only around 750,000 trainable parameters
(see fig. 3). The chosen height and class raster files at t1 and
t2 represent the input of the network. The network consists of
an encoder part and a small sigmoid classifier. The encoder
has two levels, where the amount of channels c is doubled in
each level. A level contains two basic residual blocks. The
sigmoid classifier is implemented as a 3 × 3 × 1 convolution
followed by a sigmoid activation projecting the results in the
range between {0, 1}. During our experiments, we tested dif-
ferent amounts of levels and blocks per level. In addition, other
network structures with varying complexity such as a Siamese
Neural Network with two shared encoders, which were concat-
enated before the classification, have been tested. However, our
experiments yielded lower quality detections using these more
complex networks indicating overfitting issues.

As changes in buildings are rare, the ratio between detected and
background pixels is quite unbalanced. Consequently, we used
the Tversky loss during training. The Tversky loss proposed
by Salehi et al. (2017) supports unbalanced datasets as it con-
centrates on detected and reference pixels and ignores the vast
amount of background pixels. The Tversky loss is defined as

TverskyLoss = 1− TP + ε

TP + αFP + βFN + ε
. (6)

TP , FP and FN are the amount of true positives, false posit-
ives and false negatives in the prediction result, respectively. ε
is used for mathematical stability and is set to ε = 10−6. α and
β are weighting factors for FP and FN . Different values for
α and β were tested. In the end, α = 0.3 and β = 0.7 were
chosen as they yielded high recall rates, which matches the ob-
servations from Salehi et al. (2017) using the same parameter
values.

The Adam optimizer is used with an initial learning rate of
10−4, which gets halved in value, whenever a plateau is reached
(Kingma and Ba, 2014). During training, the input is randomly
flipped horizontally and vertically to enhance the training set.
The training is stopped early, once no significant improvement
on the validation loss is detected. The batch size is set to 16.
The network is trained five times in order to reduce the amount
of randomness caused by initialisation. After training, the final
detection value for a cell is determined by the maximal value of
that cell over the predictions from the network ensemble. The
maximal value is chosen to further support high recall rates.

2.3 Evaluation

The evaluation takes place on an object- and raster-level. As
first step for the object-level evaluation, the prediction values
are binarized in order to isolate detections from background.
Outputs at or above a threshold τ are set to 1 and remain a de-
tection, while every cell with a value below that threshold is set
to 0.
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In a second step, separate objects are extracted using a connec-
ted component algorithm with an 8-way neighbourhood. On
the one hand, if a prediction overlaps two or more reference ob-
jects, the prediction is split and the predicted pixels are matched
to the closest reference object. On the other hand, if multiple
predicted regions overlap a reference object, those are treated
as one object during the evaluation step. Finally, for each pre-
dicted and referenced object pair, the F1-Score is calculated as:

F1 − Score =
TP

TP + 1
2
(FP + FN)

. (7)

On object-level, we evaluate the results using the mean F1-
Score of all matched object pairs regarding to the threshold τ .
For the raster-level evaluation, the F1-Score is calculated for
the complete dataset independent of single objects.

3. EXPERIMENTS

To evaluate the influence of the network in respect to the de-
tection quality, the input values defined in section 2 serve as
a baseline detection method. For the remainder of this paper,
the baseline versions have an additional index raw and will be
called HCraw, CCraw and HCraw + CCraw, where the latter
one is the product of HCraw and CCraw. Detections from the
network will not have any additional index. We define ALS-
ALS as the change detection between two ALS point clouds
and ALS-DIM as a change detection between an ALS and DIM
point cloud. Experiments involve results for the ALS-ALS and
ALS-DIM test set in regards to the used input types, threshold
τ , overall accuracy, ground area size and change type.

3.1 Dataset

Three point cloud datasets from 2012 and 2016 are used to
evaluate the proposed change detection method. The point
clouds are provided by the NMA of Mecklenburg-Vorpommern
(AFGVK) and cover a 15km² area south-east of Rostock, Ger-
many. Captured during national aerial flight missions, the data-
set contains two ALS point clouds from 2012 and 2016 with an
approximate point density of 5 and 12 points/m² as well as a
DIM point cloud, which aerial images were captured in 2016
and processed with the SURE software, resulting in a point
density of about 96 points/m² (Rothermel et al., 2012). The
absolute point accuracy for the ALS point clouds is 30cm in
horizontal and 15cm in vertical direction, while it is 20cm in ho-
rizontal and 30cm in vertical direction for the DIM point cloud.
All point clouds are manually classified into the classes ground,
building, water, non-ground and bridge. Non-ground contains
vegetation, power supply lines and cars.

The region is characterised by high and low density, urban
buildings and demonstrates several different building change
types during this four year period. Reference data about detec-
ted changes were manually collected as vector data in four dif-
ferent classes: new, demolished, construction and exchanged.
A single building can consist of multiple change objects and
types. The complete distribution of the reference classes for the
test set in respect to area size and change type can be found
in fig. 6 in the top row. While new and demolished expect to
have building points at time t1 or t2, cells with construction or
exchanged contain building points at t1 and t2. construction
is defined by a height change caused by constructions, which
may added another floor to an existing building. exchanged is

Figure 4. Mean F1-Scores on object-level for all input types
depending on threshold τ for ALS-ALS and ALS-DIM changes.

characterised by constructions, which yielded a similar height
between new and old buildings like replacing a roof.

For training purposes, we split the data in a training, valida-
tion and test set. Once the point cloud data is rasterised into
non-overlapping images with a 100x100m² size as explained in
section 2, all images without any changes are removed from the
dataset resulting in 385 images overall. As the images are cut
according to their position, building objects may appear on dif-
ferent raster images. 20% of the images are randomly sampled
and are reserved as test set. Within the remaining 80%, another
20% are split as a validation set. During any split, all change
types are ensured to be represented in each set. In the end, the
training, validation and test set contain 244, 63 and 78 raster
images, respectively. 10,080 raster cells (1.3%) of the test set
are labelled as changes. As the proposed height change input
should mostly be independent of the point cloud type, the net-
work is only trained on the ALS-ALS training set as it is more
commonly available by NMAs. The same network is then used
to detect changes for the ALS-ALS and ALS-DIM test sets.

3.2 Threshold τ

Threshold τ is used to transform the detection probabilities
between 0 and 1 into two distinct change and non-change
classes. Fig. 4 visualises the relationship between the input
type and the threshold τ and its resulting mean F1-Score based
on the matched object pairs, which remain as changes after
thresholding. In addition, the mean F1-Scores for τ = 0.5 are
listed in table 1. While input types, which contain HCraw, are
sensitive towards τ , the mean F1-Score of the remaining input
combinations are quite indifferent towards τ and only fluctuate
around a few %. When comparing the raw input variants with
those from the network, the raw versions achieve higher mean
F1-Scores for the majority of τ values in both test setups.
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Input combination ALS-ALS ALS-DIM
HCraw 60.0 33.1
HC 36.6 36.6
CCraw 77.7 81.5
CC 68.4 73.1
C 75.2 75.0
Cbuilding 74.5 72.1
HCraw + CCraw 76.5 78.8
HC + CC 71.0 73.2
HC + C 80.1 78.1
HC + Cbuilding 80.5 79.8

Table 1. Mean F1-Scores [%] calculated on object-level at
τ = 0.5 for both test sets. Best results are marked bold.

Especially for HC and HCraw, the mean F1-Scores in the
ALS-ALS test set are about 35% apart at τ = 0.7. When com-
pared to other variants, HC and HCraw perform quite poorly,
which is mostly caused by a large amount of FPs (see table 2 or
3 or fig. 5 for examples). Within the class information only vari-
ants, CCraw yields the best results for both test sets. The mean
F1-Scores for C and Cbuilding are increasing proportional with
τ , but remain about 2-3% in ALS-ALS and up to 10% for cer-
tain thresholds in ALS-DIM lower than for CCraw . In contrast
to the height or class exclusive inputs, the combined versions
using C or Cbuilding with HC result in higher mean F1-Scores
than the comparable raw version. Similar to the class only vari-
ants, C and Cbuilding’s mean F1-Scores increase proportional
to τ indicating that the cells with real changes have high detec-
tion probabilities. Finally, when comparing the mean F1-Scores
between ALS-ALS and ALS-DIM for the same input variant in
table 1, the values are mostly within a range of 2%, which im-
plies, that the network can detect changes independent of the
given point clouds quite sufficiently.

The mean F1-Scores discussed so far only exhibit the qual-
ity for the matched object pairs between detection and refer-
ence. However, it is quite difficult to gain an unbiased result
as the mean F1-Scores on object-level are simultaneously over-
optimistic as well as over-pessimistic. On the one hand, those
results are over-optimistic when compared to the overall raster-
level as they do not consider false positive detections, which
do not have a matching reference at all. On the other hand,
they are over-pessimistic as they weight every building equally
independent of the building size. However, a single false pos-
itive cell for a small building with only a couple of cells has a
much higher impact on its F1-Score than it would have for a
large building with hundreds of cells. Finally, detection results
may vary between different kinds of changes. Consequently,
the following sections will analyse these factors to get a deeper
understanding about the detection results. As most input vari-
ants are indifferent to τ as shown in fig. 4, the remainder of
this study shows the results for τ = 0.5, which is a compromise
between HCraw and HCraw + CCraw.

3.3 Overall detection accuracy

Table 2 and 3 show the TP, FN, FP and F1-Scores on the raster-
level for τ = 0.5. Overall, the reference data contains 10,080
raster cells with known changes within the test set. The dif-
ference between raster-level and object-level F1-Scores are the
amount of FPs, which are not connected to any reference ob-
ject and which are considered in the former, but not the latter.
Table 2 and 3 illustrate a similar trend for both test sets. When
comparing the raster-level results with those on the object-level,
the F1-Scores for the raw input variants appear especially over-
optimistic on the object-level, while some other input variants

Input combination TP FN FP F1

HCraw 9,243 837 129,675 12.4
HC 8,121 1,959 11,214 55.2
CCraw 7,399 2,681 3,040 72.1
CC 7,792 2,288 1,146 81.9
C 8,152 1,928 1,557 82.4
Cbuilding 8,006 2,074 2,235 78.8
HCraw + CCraw 7,313 2,767 2,564 73.3
HC + CC 7,920 2,160 1,290 82.1
HC + C 9,544 536 1,399 90.8
HC + Cbuilding 9,564 516 1,364 91.1

Table 2. Amount of TP, FN and FP pixels as well as F1-scores
[%] calculated on raster-level for different inputs at τ = 0.5 for

the ALS-ALS test set. Best results are marked bold.

Input combination TP FN FP F1

HCraw 9,020 1,060 230,129 7.4
HC 8,171 1,909 97,997 14.1
CCraw 7,401 2,679 2,164 75.3
CC 7,782 2,298 1,139 81.9
C 8,057 2,023 1,672 81.3
Cbuilding 7,992 2,088 5,492 67.8
HCraw + CCraw 7,112 2,968 1,935 74.4
HC + CC 7,873 2,207 1,770 79.8
HC + C 9,501 579 2,233 87.1
HC + Cbuilding 9,561 519 2,518 86.3

Table 3. Amount of TP, FN and FP pixels as well as F1-scores
[%] calculated on raster-level for different inputs at τ = 0.5 for

the ALS-DIM test set. Best results are marked bold.

are over-pessimistic; e.g. the HC + Cbuilding input has F1-
scores on the raster-level of 91.1% and 86.3% for ALS-ALS
and ALS-DIM, respectively, compared to the 80.5% and 79.8%
mean F1-Scores on object-level. This is a 13% or 8% gain on
the raster-level.

In average, the FP counts are lower for the ALS-ALS test set
than for the ALS-DIM set. The largest difference between
the two test sets can be found in the height only input vari-
ants, which also exhibit a high amount of FPs overall. Due to
the special characteristics in regards to vegetation for ALS and
DIM point clouds, as already discussed in section 1, the JSD
algorithm detects a change and causes FPs to appear. But even
in case of ALS-ALS this problem can occur, as random points
on a tree at t1 can be at completely different heights than for
the other ALS point cloud at t2. Due to using the network, HC
is able to eliminate most of those FPs for both test sets when
compared to their raw counterpart (see fig. 5). However, HC’s
FPs still remain higher than the amount of true reference cells.
In both test sets, the CC input yields the lowest FP amount
overall. Besides the amount of FPs, also the position is import-
ant. FPs surrounding a correct detection like a buffer may not
be as harmful as separate and additional objects, which require
manual control to validate as change. Examples of both FP be-
haviours are shown in fig. 5, where the raw input variants illus-
trate the random, speckle-like FPs, while most network variants
demonstrate the buffer-like FPs for the majority of cells. Never-
thenless, examples of those speckle-like FPs can also be found
in the network-based inputs as demonstrated in fig. 1 in the
north-east.

Similarly, the relation between FPs and FNs is also important.
In order to reliably detect changes, a low FN count is required as
it indicates a high recall rate. While the CC input variant may
have the lowest FP count, they still contain 2,288 or 2,298 FNs
in ALS-ALS and ALS-DIM, respectively, which are roughly
22% of all reference cells (see. table 2 and 3).
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(a) (b)

Figure 5. Predicted change detection results for two test images. While the top five rows show the detections for ALS-ALS and
ALS-DIM for two examined input variants each, the bottom row displays the reference coloured by their respective change class: new

in green, demolished in red and construction in blue.

Meanwhile, as a consequence of over-detection, the amount of
FNs in HCraw and HC is quite low. While the class only vari-
ants as well as most of the combined variants show a nearly
balanced amounts of FP and FN, HC+C and HC+Cbuilding

achieve the lowest amounts of FNs with about 5% of the refer-
ence cells.

3.4 Influence of the area and the change type

Fig. 6 plots the mean F1-Scores on object-level depending on
their change classes and area sizes for the inputHC+Cbuilding

at τ = 0.5. The area size is the ground area size of a reference
object. As each raster cell covers 1m², the amount is equal to
the raster cells of an object. The top row of fig. 6 illustrates the
overall distribution of reference objects for each area size and
change class in the test sets. The change class types are equal
to those mentioned in section 3.1. The majority of changed
objects have an area size between 1m² and 15m², from which
the majority was newly built between 2012 and 2016. While
there are examples of new and demolished in every size cat-
egory, there are eleven construction objects mostly spread over
all area sizes, but only two objects for exchanged in total.

The second and third row show the mean F1-Scores for ALS-
ALS and ALS-DIM, respectively. Unsurprisingly, the mean
F1-Scores increase proportional with the area size. As the in-
fluence of wrongly detected cells decrease with larger building
sizes, this demonstrates the over-pessimism of fig. 4 concern-
ing all area sizes. Regarding the area size and the change class,
ALS-ALS and ALS-DIM display similar behaviours. The total
mean F1-Score for both test sets have values around and above
80% with the area range 1-5m² being the exception, where total

mean F1-Scores are closer to 65%. While ALS-ALS and ALS-
DIM exhibit comparable results for the change classes new and
demolished on all area sizes, the change class exchanged with
its two objects was not successfully detected in any input type.
Similarly, only ALS-DIM was able to detect the change class
construction in every possible area category, while ALS-ALS
was not able to do so in the 1-5m² and 16-20m² size category
and also did quite poorly for the 6-10m² one.

4. DISCUSSIONS

As shown in section 3, the proposed method is able to detect
different kinds of building changes for various area sizes if an
appropriate input for the residual network is used. The results
also demonstrate, that finding a common metric to determine
and distinguish a good from a bad change detection result is
quite difficult. While the raw input variants show superior mean
F1-Scores in fig. 4 and table 1 compared to their network coun-
terparts, further analyses in fig. 5 and 6 as well as tables 2 and
3 reveal that using a neural network for the changed detection
task improves the overall results.

Although ALS and DIM point clouds have different character-
istics, their usage for change detection achieves comparable res-
ults in this study. The largest difference in quality for change
detection tasks is shown in the height only variants, where a lot
of FPs occur. Even the modified JSD still exhibits high false
positive rates leading to the majority of the raster cells to return
high values (see fig. 5). When compared to the raw baseline,
the network version HC is able to suppress FPs quite effect-
ively without any additional class information.
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Figure 6. Change detection results using the HC + Cbuilding

input at τ = 0.5. Top row illustrates the overall amount of
reference objects regarding their area size and change class.

Middle and bottom row show the mean F1-Scores for ALS-ALS
and ALS-DIM with with respect to their area size and change

class.

The class only variants achieve good results overall on the
object- and raster-level for both test sets as discussed in section
3. However, without any height information, they fail at detect-
ing construction changes, where both t1 and t2 contain building
points. Even by adding height information like in HC + CC,
there are still major problems in detecting construction changes.
Only the input combinations HC +C and HC +Cbuilding are
able to detect construction objects successfully and reliably (see
fig. 5).

The input combinationHC+Cbuilding achieves the overall best
detection results while demonstrating the most flexible solution.
Only looking at matching pairs between detection and refer-
ence data, this input variant achieves mean F1-Scores of 80.5%
and 79.8% for the ALS-ALS and ALS-DIM test set as shown
in table 1. Concerning all raster cells, it resulted in an over-
all F1-Score of 91.1% and 86.3%, respectively, where only a
small amount of buildings in the range of 5% of the test data-
set were not detected (see table 2 and 3). While there are still
a decent amount of FPs in the detection result, fig. 1 and 5(b)
show that those often act as buffer around the correctly detec-
ted buildings instead of being separate speckle-like detections.
As such, the remaining FPs should not be a problem in prac-
tical applications, where finding changed building objects is the
main goal. Similarly, the network usingHC+Cbuilding is able
to detect building changes with a mean F1-Score of about 65%
for buildings at sizes up to 5m² and with a score of over 80% for

any larger building sizes. It is also capable in detecting build-
ings belonging to different change types like new, demolished
and construction. Finally, while HC + C also exhibits equally
good results, HC + Cbuilding only requires the knowledge of
the frequency of building points, so a binary building and non-
building classification, while HC +C requires this fixed set of
specific point classes, which may change from dataset to dataset
and thus may force additional fine-tuning or even new training
using another C.

There are still some open issues with the proposed change de-
tection. First, even though the network variants do not demon-
strate any single FPs, they still contain some objects, which are
purely classified as FPs. An example of such an object is shown
in the south-east of fig. 1 or 5(b), where some kind of elevated
garage with a grass roof got falsely detected without a change
between t1 and t2. Second, while the change class exchanged
was expected to be a challenge due to not having any apparent
differences below the set bin size ϕ, which was chosen propor-
tional to the point clouds’ absolute point accuracy, most input
variants were not able to detect objects of that class entirely or
did so very poorly. Finally, the class information of buildings
was exactly projected from the reference onto the point clouds
creating a nearly perfect classification accuracy for the change
detection task in this study. Consequently, even CCraw was
able to achieve 77.7% and 81.5% mean F1-Scores for the ALS-
ALS and ALS-DIM test sets, respectively, using τ = 0.5 as
shown in table 1. Only due to some boundary issues and the
indirect block of construction objects in eq. 3, this method was
not able to correctly detect changes at a perfect score. However
having such a high classification accuracy for buildings in the
context of working with national mapping data covering large
areas is far from realistic. At least in Germany, the majority of
point clouds, which NMAs are using, are only classified into
ground and non-ground classes, which are used to generate Di-
gital Terrain Models. Even when the building class is provided,
checking and maybe even correcting such a classification on
large areas is not feasible without automation. Consequently,
further studies are necessary, which examine the quality of the
detection results regarding different classification accuracies.

There are some ideas for improvement. As DIM point clouds
are derived products of aerial images, they also contain colour
information, which was already successfully used in building
change detection by Zhang et al. (2019). Similarly, newer ALS
sensor systems are able to gather full waveform as well as re-
flectance information. All these point cloud type specific at-
tributes are currently not included in the proposed change de-
tection method. However, they provide some unique attributes
about the roofs, which may further increase the detection res-
ults. Similarly, the network was only trained using ALS-ALS
training data. Additional investigations regarding training with
ALS-DIM or even some joint training data might improve the
change detection results. Also, another enhancement on the
JSD calculation using some kind of weighting may improve the
results. Finally, instead of only detecting binary detection res-
ults, the network could be extended to detect multiple types of
changes directly. This could also include changes in the vegeta-
tion or in the ground surface similar to Tran et al. (2018). Even
though HC demonstrates a lot of FPs in their detections, often
those detected regions can be directly connected to trees or even
ground surface changes. So just adding more training examples
for exactly those new categories may allow for an automatic
change detection on surface changes to update Digital Terrain
Models.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-625-2022 | © Author(s) 2022. CC BY 4.0 License.

 
631



5. CONCLUSIONS

This study aimed at detecting building changes between two
point clouds independent of their original sensor system, their
point density, their point distribution or special characteristics.
A residual neural network has been trained using height and
class information as input. Extensive experiments provided an
insight into the change detection quality, which concluded that
the overall change detection accuracy is comparable independ-
ent of the used point cloud types, the observed building area
sizes and the type of building changes. Using a residual neural
network as feature extractor and non-linear classifier boosts the
change detection results greatly. The results also demonstrate,
that the proposed Jensen-Shannon distance as height detector
supports the class information in detecting building changes;
especially for building changes, which may only be visible in
vertical direction. The input combination using the proposed
height detector as well as the relative amount of building points
within a raster cell at both points in time as a class detector,
namely the combination HC+Cbuilding , yields the best detec-
tion results in this study achieving overall F1-Scores of 91.1%
and 86.3% on the ALS-ALS and ALS-DIM test sets, respect-
ively. Future work may improve on the discussed problems and
possible additions.
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Matikainen, L., Hyyppä, J., Ahokas, E., Markelin, L.,
Kaartinen, H., 2010. Automatic detection of buildings and
changes in buildings for updating of maps. Remote Sensing,
2(5), 1217–1248.

Murakami, H., Nakagawa, K., Hasegawa, H., Shibata, T.,
Iwanami, E., 1999. Change detection of buildings using an air-
borne laser scanner. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 54(2-3), 148–152.

Politz, F., Sester, M., Brenner, C., 2021. Building Change De-
tection of Airborne Laser Scanning and Dense Image Matching
Point Clouds using Height and Class Information. AGILE: GIS-
cience Series, 2 (10), 1–14.

Richter, R., Kyprianidis, J., Döllner, J., 2013. Out-of-
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