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Abstract
We give an overview of analytical results concernedwith
chemotaxis systems where the signal is absorbed. We
recall results on existence and properties of solutions
for the prototypical chemotaxis-consumptionmodel and
various variants and review more recent findings on its
ability to support the emergence of spatial structures.
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1 INTRODUCTION

Many microbes are motile, and often the direction of their motion may be influenced by an exter-
nal cue. If said stimulus is provided by the concentration of a chemical signal substance, for
example, serving as a nutrient, this phenomenon is known as chemotaxis.
Already in 1881, Engelmann used bacteria chemotactically attracted by oxygen to visualize pro-

duction of the latter1; more detailed investigations with focus on chemotaxis itself were reported
by Pfeffer,2,3 and Beyerinck in 1893 demonstrated macroscopically visible manifestations of this
effect.4 Experiments by Adler (in the 1960s5,6) to quantify and to better understand the mecha-
nism of chemotaxis in bacteria motivated Keller and Segel7 to “formulate a phenomenological
model from which the existence and properties of migrating bands can be deduced” (p. 236).
In an even simpler form, with prototypical choices for all parameter functions and all constants

set to 1, a PDE system for the evolution of the distribution of bacteria (with density 𝑢) and the
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1198 LANKEIT and WINKLER

signal (of concentration 𝑣) reads

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = Δ𝑢 − ∇ ⋅ (𝑢∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢𝑣 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑢

𝜕𝜈
=

𝜕𝑣

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω,

(CC1)

where Ω usually is a domain in ℝ2 or, especially when considering scenarios inside liquid
environments, in ℝ3, and where 𝜈 denotes the outer unit normal on its boundary.
In the mathematical literature long overshadowed by its famous cousin, “the” Keller–Segel

system, {
𝑢𝑡 = Δ𝑢 − ∇ ⋅ (𝑢∇𝑣),

𝑣𝑡 = Δ𝑣 − 𝑣 + 𝑢,
(1)

where the signal is produced by the cells under consideration and not “only” consumed, (CC1)
along with its variants received renewed interest, when in the wake of experimental observations
concernedwith bacteria in drops of water,8,9 starting fromRefs. 10, 11models coupling chemotaxis
effects with (Navier–)Stokes fluid motion of their surroundings became popular. While compared
to (1), (CC1) does not feature production and thus possible increase of the signal concentration,
the boundedness information afforded by the second equation (in (CC1), an 𝐿∞(Ω) bound for 𝑣
is immediately assured due to the sign of the nonlinearity) is still insufficient to render a study of
the first equation trivial.
In this survey, we aim to collect some of the results that have been achieved for (CC1) and close

relatives over the last years, and to recall some of the underlying ideas.

2 CLASSICAL CHEMOTAXIS-CONSUMPTION SYSTEMS

In the apparently most prototypical chemotaxis-consumption problem, as given by (CC1), the
somewhat antagonistic character of the interplay between the two crucial nonlinearities becomes
manifest in an energy identity of the form,

𝑑

𝑑𝑡
1(𝑡) = −1(𝑡), 𝑡 > 0, (2)

formally associated with (CC1). Here, unlike in a corresponding identity for classical Keller–Segel
production systems, not only the dissipation rate

1(𝑡) ∶= ∫
Ω

|∇𝑢|2
𝑢

+ ∫
Ω

𝑣|𝐷2 ln 𝑣|2 + 1

2 ∫
Ω

𝑢

𝑣
|∇𝑣|2 − 1

2 ∫
𝜕Ω

1

𝑣

𝜕|∇𝑣|2
𝜕𝜈

, 𝑡 > 0, (3)

but also the energy functional (Refs. 11–13)

1(𝑡) ∶= ∫
Ω

𝑢 ln 𝑢 +
1

2 ∫
Ω

|∇𝑣|2
𝑣

, 𝑡 > 0 (4)
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LANKEIT and WINKLER 1199

can immediately seen to be bounded from below at least when Ω is assumed to be convex, as
then any function 𝜑 ∈ 𝐶2(Ω) fulfilling 𝜕𝜑

𝜕𝜈
= 0 on 𝜕Ω satisfies 𝜕|∇𝜑|2

𝜕𝜈
≤ 0 throughout 𝜕Ω ([Ref. 14,

Lemme I.1] or [Ref. 15, Lemma 5.3]).
Thanks to the functional inequality,

∫
Ω

|∇𝜑|4
𝜑3

≤ (2 +
√
𝑛)2 ∫

Ω

𝜑|𝐷2 ln 𝜑|2, (5)

valid actually for arbitrary bounded domainsΩ ⊂ ℝ𝑛 with smooth boundary, and for any positive
𝜑 ∈ 𝐶2(Ω) such that 𝜕𝜑

𝜕𝜈
|𝜕Ω = 0 (Ref. 12), in the convex case an integration of (2) especially yields

estimates of the form

∫
𝑇

0
∫
Ω

|∇𝑢|2
𝑢

+ ∫
𝑇

0
∫
Ω

|∇𝑣|4
𝑣3

+ ∫
𝑇

0
∫
Ω

𝑢

𝑣
|∇𝑣|2 ≤ 𝐶 for all 𝑇 > 0, (6)

so that since

‖𝑣(⋅, 𝑡)‖𝐿∞(Ω) ≤ ‖𝑣0‖𝐿∞(Ω) for all 𝑡 > 0 (7)

by the maximum principle, a priori bounds for ∫ ∞

0
∫
Ω
|∇𝑣|4 are available. In the case when Ω

additionally is two-dimensional, this information on the regularity of the taxis gradient in (CC1)
can be used as a starting point for a bootstrap procedure finally leading not only to 𝐿∞ bounds
for 𝑢, but furthermore also to a statement on large-time stabilization.13 As observed in Ref. 16, by
using boundary trace embedding estimates to appropriately estimate the rightmost summand in
(3), an extension to actually arbitrary and not necessarily convex planar domains is possible:

Theorem 1 Ref. 16. Let 𝑛 = 2 and Ω ⊂ ℝ𝑛 be a bounded domain with smooth boundary, and
suppose that {

𝑢0 ∈ 𝑊1,∞(Ω) is nonnegative with 𝑢0 ≢ 0, and that

𝑣0 ∈ 𝑊1,∞(Ω) is positive inΩ.
(8)

Then there exist uniquely determined functions{
𝑢 ∈ 𝐶0(Ω × [0,∞)) ∩ 𝐶2,1(Ω × (0,∞)) and

𝑣 ∈
⋂

𝑞>𝑛
𝐶0([0,∞);𝑊1,𝑞(Ω)) ∩ 𝐶2,1(Ω × (0,∞))

(9)

such that 𝑢 ≥ 0 and 𝑣 > 0 inΩ× (0,∞), and that (CC1) is solved in the classical sense. Moreover, as
𝑡 → ∞ we have

𝑢(⋅, 𝑡) → 𝑢0 ∶=
1|Ω| ∫Ω

𝑢0 in 𝐿∞(Ω) and 𝑣(⋅, 𝑡) → 0 in 𝐿∞(Ω). (10)

In its higher-dimensional version, (CC1) after all admits some globally defined solutions within
weaker concepts of solvability. In formulating two corresponding results here, we concentrate on
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1200 LANKEIT and WINKLER

the case of convex domains, noting that extensions to nonconvex situations could be achieved at
the cost of some additional technical expense (Ref. 16).

Theorem 2Refs. 13, 17. Let 𝑛 ≥ 3 andΩ ⊂ ℝ𝑛 be a bounded convex domain with smooth boundary,
and suppose that 𝑢0 and 𝑣0 comply with (8).

(i) If 𝑛 = 3, then one can find nonnegative functions{
𝑢 ∈ 𝐿∞((0,∞); 𝐿1(Ω)) and
𝑣 ∈ 𝐿∞(Ω × (0,∞)) ∩ 𝐿2((0,∞);𝑊1,2(Ω))

(11)

such that

∇𝑢 ∈ 𝐿1
𝑙𝑜𝑐

(Ω × [0,∞);ℝ𝑛) and 𝑢∇𝑣 ∈ 𝐿1
𝑙𝑜𝑐

(Ω × [0,∞);ℝ𝑛), (12)

that 𝑢 ≥ 0 and 𝑣 > 0 in Ω× (0,∞), and that (CC1) is solved in the sense that for arbitrary 𝜑 ∈

𝐶∞
0
(Ω × [0,∞)) we have

−∫
∞

0
∫
Ω

𝑢𝜑𝑡 − ∫
Ω

𝑢0𝜑(⋅, 0) = −∫
∞

0
∫
Ω

∇𝑢 ⋅ ∇𝜑 + ∫
∞

0
∫
Ω

𝑢∇𝑣 ⋅ ∇𝜑 (13)

and

∫
∞

0
∫
Ω

𝑣𝜑𝑡 + ∫
Ω

𝑣0𝜑(⋅, 0) = ∫
∞

0
∫
Ω

∇𝑣 ⋅ ∇𝜑 + ∫
∞

0
∫
Ω

𝑢𝑣𝜑. (14)

(ii) If 𝑛 ≥ 3 is arbitrary, then there exist nonnegative functions 𝑢 and 𝑣 fulfilling (11), which are such
that

𝜉(𝑢) ∈ 𝐿2
𝑙𝑜𝑐

([0,∞);𝑊1,2(Ω)) for all 𝜉 ∈ 𝐶∞([0,∞)) with 𝜉′ ∈ 𝐶∞
0
([0,∞)),

and that for any such 𝜉 and arbitrary 𝜑 ∈ 𝐶∞
0
(Ω × [0,∞)), both (14) and the identity

−∫
∞

0
∫
Ω

−𝜉(𝑢)𝜑𝑡 − ∫
Ω

𝜉(𝑢0)𝜑(⋅, 0) = −∫
∞

0
∫
Ω

𝜉′′(𝑢)|∇𝑢|2𝜑 − ∫
∞

0
∫
Ω

𝜉′(𝑢)∇𝑢 ⋅ ∇𝜑

+∫
∞

0
∫
Ω

𝑢𝜉′′(𝑢)(∇𝑢 ⋅ ∇𝑣)𝜑 + ∫
∞

0
∫
Ω

𝑢𝜉′(𝑢)∇𝑣 ⋅ ∇𝜑

hold.

To date, yet unsolved seems the questionwhether for 𝑛 ≥ 3 and initial data of arbitrary size also
global classical solutions to the fully parabolic system (CC1) can be expected (cf. also Theorem 4,
Ref. 18 for a criterion on extensibility of local-in-time classical solutions, as well as Ref. 19
for a partial result addressing unconditional global classical solvability in a parabolic–elliptic
simplification of (CC1)). On the other hand, the totally inviscid system corresponding to
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LANKEIT and WINKLER 1201

(CC1), while locally well-posed, has solutions blowing up in finite time (with respect to their
𝐶2-norm).20
Ultimately, the decay features implicitly expressed by (6) imply, at least formally, smallness

of ∫
Ω

|∇𝑢|2
𝑢

and of ∫
Ω
|∇𝑣|4 along some unbounded sequence of times. Now at least in three-

dimensional cases, an appropriate exploitation of this can be used to infer that the respective
weak solutions constructed in Theorem 2 become smooth and bounded after some waiting time:

Theorem 3 Ref. 13. Let Ω ⊂ ℝ3 be a bounded convex domain with smooth boundary, and
assume (8). Then there exists 𝑇 > 0 such that the weak solution (𝑢, 𝑣) of (CC1) from Theorem 2
satisfies

(𝑢, 𝑣) ∈
(
𝐶2,1(Ω × [𝑇,∞))

)2

. (15)

Moreover, this solution stabilizes in the sense that (10) holds.

Especially since the energy structure in (2) naturally is rather fragile with respect to modifica-
tions in (CC1), an approach different from the above has turned out to be of significant importance
not only for the analysis of (CC1), but also of severalmore complex relatives. As observed in Ref. 21
(cf. also Ref. 22 for a precedent), namely, for suitably chosen 𝑝 > 1, 𝛿 > 0 and 𝜑 ∶ [0, 𝛿] → (0,∞),
the expressions

2(𝑡) ∶= ∫
Ω

𝑢𝑝𝜑(𝑣), 𝑡 > 0 (16)

can play the role of conditional quasi-Lyapunov functionals in the sense that with some 𝑎 ≥ 0, 𝑏 ≥
0, and ̂ = ̂(𝑡) ≥ 0,

 ′
2
(𝑡) + 𝑎2(𝑡) + 𝐷̂(𝑡) ≤ 𝑏 (17)

holds as long as 0 ≤ 𝑣(𝑥, 𝑡) ≤ 𝛿. In Ref. 21, the particular choices 𝑝 ∶= 𝑛 + 1, 𝛿 ∶=
1

6(𝑛+1)
and

𝜑(𝑠) ∶= 𝑒𝛽𝑠
2
, 𝑠 ≥ 0, with 𝛽 ∶=

𝑛

24(𝑛 + 1)𝛿2
(18)

led to the conclusion that whenever (8) holds with ‖𝑣0‖𝐿∞(Ω) ≤ 𝛿, then (17) is satisfied throughout
evolution if 𝐷̂ ≡ 0, 𝑎 = 1, and 𝑏 = 𝑏(𝑢0, 𝑣0) > 0 is suitably large. Accordingly, implied time-
independent estimates for 𝑢 with respect to the norm in 𝐿𝑛+1(Ω), however, can be seen to imply
higher regularity properties, and thus finally entail the global existence of smooth small-signal
solutions to (CC1). The following statement in this direction contains the yet slightly weaker
assumption (19), obtained by a refinement of the above idea in Ref. 23. (This constant allows for
further improvements. For example, one could replace 𝐿𝑛+1(Ω) by 𝐿

𝑛

2
+𝜂

(Ω) for some 𝜂 > 0, upon
observing that time-independent bounds in the latter space already entail the same higher regu-
larity properties as before; an argument of this flavor can be found detailed for an actually more
comprehensive problem in Ref. 24, for instance.)
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1202 LANKEIT and WINKLER

Theorem 4 Refs. 21, 23. Let 𝑛 ≥ 2 and Ω ⊂ ℝ𝑛 be a bounded domain with smooth boundary, and
suppose that 𝑢0 and 𝑣0 satisfy (8) as well as

‖𝑣0‖𝐿∞(Ω) ≤ 𝜋√
2(𝑛 + 1)

. (19)

Then (CC1) possesses a unique global classical solution fulfilling (9). Moreover, this solution is
bounded in the sense that there exists 𝐶 > 0 such that

‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) ≤ 𝐶 for all 𝑡 > 0. (20)

In fact, a further development of this on the basis of an approach from Ref. 13 reveals that at
least for small-signal trajectories even the choice 𝑏 = 0 can be achieved in (17) if 𝜑 is properly
chosen; in consequence, any such solution can be seen to approach the semitrivial steady state
appearing in (10):

Proposition 1. Assume that 𝑛 ≥ 2, and thatΩ ⊂ ℝ𝑛 is a bounded domain with smooth boundary.
Then there exists 𝛿 ∈ (0,

𝜋√
2(𝑛+1)

] with the property that if (8) holds with

‖𝑣0‖𝐿∞(Ω) < 𝛿, (21)

then the global solution of (CC1) from Theorem 4 satisfies (10).

Proof. We let 𝛿 ∈ (0,
𝜋√

2(𝑛+1)
] be such that

𝛿 ≤ 1

8
and 32𝛿 + 24𝛿2 <

4

3
, (22)

and assuming that (8) and (21), we then take (𝑢, 𝑣) as provided by Theorem 4 and integrate by
parts using (CC1) to see that since 0 ≤ 𝑣 < 𝛿 in Ω× [0,∞) by (7),

𝑑

𝑑𝑡 ∫Ω

(𝑢 − 1)4

𝛿 − 𝑣
= −12∫

Ω

(𝑢 + 1)2

𝛿 − 𝑣
|∇𝑢|2 − ∫

Ω

(𝑢 + 1)3

(𝛿 − 𝑣)2
⋅

{
8 −

12(𝛿 − 𝑣)𝑢

𝑢 + 1

}
∇𝑢 ⋅ ∇𝑣

−∫
Ω

(𝑢 + 1)4

(𝛿 − 𝑣)3
⋅

{
2 −

4(𝛿 − 𝑣)𝑢

𝑢 + 1

}|∇𝑣|2 − ∫
Ω

𝑢5𝑣

(𝛿 − 𝑣)2
for all 𝑡 > 0. (23)

As

2 −
4(𝛿 − 𝑣)𝑢

𝑢 + 1
≥ 2 − 4𝛿 ≥ 3

2
in Ω× (0,∞)

by (22), we may employ Young’s inequality to estimate

−∫
Ω

(𝑢 + 1)3

(𝛿 − 𝑣)2
⋅

{
8 −

12(𝛿 − 𝑣)𝑢

𝑢 + 1

}
∇𝑢 ⋅ ∇𝑣 − ∫

Ω

(𝑢 + 1)4

(𝛿 − 𝑣)3
⋅

{
2 −

4(𝛿 − 𝑣)𝑢

𝑢 + 1

}|∇𝑣|2
≤ ∫

Ω

(𝑢 + 1)3

(𝛿 − 𝑣)2
⋅ {8 + 12𝛿}|∇𝑢| |∇𝑣| − 3

2 ∫
Ω

(𝑢 + 1)4

(𝛿 − 𝑣)3
|∇𝑣|2
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LANKEIT and WINKLER 1203

≤ 1

6 ∫
Ω

(𝑢 + 1)2

𝛿 − 𝑣
⋅
{
64 + 192𝛿 + 144𝛿2

}|∇𝑢|2
= 12∫

Ω

(𝑢 + 1)2

𝛿 − 𝑣
|∇𝑢|2 − ∫

Ω

(𝑢 + 1)2

𝛿 − 𝑣
⋅

{
4

3
− 32𝛿 − 24𝛿2

}|∇𝑢|2 for all 𝑡 > 0.

Since here the number 𝑐1 ∶=
4

3
− 32𝛿 − 24𝛿2 is positive by (22), from (23) we infer according to

the nonpositivity of the rightmost summand therein that

𝑑

𝑑𝑡 ∫Ω

(𝑢 − 1)4

𝛿 − 𝑣
+ 𝑐1 ∫

Ω

(𝑢 + 1)2

𝛿 − 𝑣
|∇𝑢|2 ≤ 0 for all 𝑡 > 0

and that thus, since trivially (𝑢+1)2

𝛿−𝑣
≥ 𝛿,

∫
∞

0
∫
Ω

|∇𝑢|2 < ∞.

According to mass conservation in (CC1) and a Poincaré inequality, this implies that

∫
∞

0
∫
Ω

|𝑢 − 𝑢0|2 < ∞,

so that since straightforward application of parabolic theory turns the boundedness property in
(20) into uniform continuity of 𝑢 in Ω× [0,∞), it readily follows that

𝑢(⋅, 𝑡) → 𝑢0 in 𝐿∞(Ω) as 𝑡 → ∞. (24)

As an integration in (CC1) independently shows that

∫
∞

0
∫
Ω

𝑢𝑣 = ∫
Ω

𝑣0 < ∞,

using (24) here we obtain that

∫
∞

0
∫
Ω

𝑣 < ∞,

which completes the proof of (10), as also 𝑣 is uniformly continuous by parabolicHölder regularity
theory. □

We remark here that following the argument in Ref. 24 one can see that actually for any choice
of 𝑇 ≥ 0 and each classical solution (𝑢, 𝑣) of the boundary-value problem in (CC1) onΩ× (𝑇,∞),
the assumption that sup𝑡>𝑇 ‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) be finite ensures that (10) holds, because in this case
testing the equations of (CC1) by 𝑢 and 𝑣, respectively, and Young’s inequality lead to

∫
Ω

𝑢2(⋅, 𝑡) + ∫
𝑡

𝑇
∫
Ω

|∇𝑢|2 ≤ ∫
Ω

𝑢2(⋅, 𝑇) + sup
𝑡>𝑇

‖𝑢(⋅, 𝑡)‖2
𝐿∞(Ω) ∫

𝑡

𝑇
∫
Ω

|∇𝑣|2
≤ ∫

Ω

𝑢2(⋅, 𝑇) +
1

2
sup
𝑡>𝑇

‖𝑢(⋅, 𝑡)‖2
𝐿∞(Ω) ∫

Ω

𝑣2(⋅, 𝑇) for every 𝑡 ∈ (𝑇,∞).

 14679590, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12625 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1204 LANKEIT and WINKLER

Situations inwhich such properties of eventual regularity are known for (possibly weak) solutions
of the full initial-boundary-value problem in (CC1), however, to date seem to essentially reduce to
the constellations addressed in Theorems 3 and 4.
The rates of convergence in (10) have first been studied in Ref. 25 for a two-dimensional

problem containing (CC1) as a subsystem (cf. also Ref. 26). The approach developed there, how-
ever, can readily be generalized so as to cover actually all the cases from Theorems 1 and 3 and
Proposition 1. A simple but crucial observation in this regard uses the first part of the qualita-
tive statement in (10) to make sure that given 𝜂 > 0 one find 𝑡1(𝜂) > 0 such that 𝑢 > 𝑢0 − 𝜂 and
hence

𝑣𝑡 ≤ Δ𝑣 − (𝑢0 − 𝜂)𝑣 in Ω× (𝑡1(𝜂),∞).

By a comparison argument, this already implies an exponentially decaying upper bound for‖𝑣(⋅, 𝑡)‖𝐿∞(Ω), and suitably combining this with known smoothing properties of the Neumann
heat semigroup and the mere boundedness of 𝑢 for large 𝑡 leads to an estimate of the form

‖∇𝑣(⋅, 𝑡)‖𝐿∞(Ω) ≤ 𝐶(𝜂)e−(𝜆−𝜂)𝑡 for all 𝑡 > 𝑡2(𝜂),

valid for each 𝜂 > 0 and some 𝐶(𝜂) > 0, with 𝜆 ∶= min{𝑢0 , 𝜆1} and 𝜆1 > 0 denoting the smallest
nonzero eigenvalue of the Neumann Laplacian on Ω. This control of the taxis gradient facili-
tates a similar argument with respect to the first solution component, in summary leading to the
following.

Theorem 5 Refs. 25, 27. Let 𝑛 ≥ 1 andΩ ⊂ ℝ𝑛 be a bounded domain with smooth boundary, and
suppose that for some𝑇 > 0, the pair (𝑢, 𝑣) ∈ (𝐶2,1(Ω × [𝑇,∞)))2 solves the boundary-value problem
in (CC1) classically and is such that (10) holds. Then given any 𝜂 > 0 one can find 𝐶(𝜂) > 0 such
that

‖𝑢(⋅, 𝑡) − 𝑢0‖𝐿∞(Ω) ≤ 𝐶(𝜂)e−(𝜆−𝜂)𝑡 for all 𝑡 > 𝑇 (25)

and

‖𝑣(⋅, 𝑡)‖𝐿∞(Ω) ≤ 𝐶(𝜂)e−(𝑢0−𝜂)𝑡 for all 𝑡 > 𝑇, (26)

where 𝑢0 ∶=
1|Ω| ∫Ω 𝑢(⋅, 𝑇), and where 𝜆 ∶= min{𝑢0 , 𝜆1}, with 𝜆1 > 0 denoting the principal

eigenvalue of −Δ under homogeneous Neumann boundary conditions onΩ.

We remark that in the particular three-dimensional case addressed in Ref. 27, the inequalities
in (25) and (26) have been found to remain valid with 𝜂 = 0 as well. Apart from that, extensions
of Theorem 5 to certain strip-like domains are discussed in Ref. 28.
In some application contexts, chemotactic motion cannot be assumed to be adequately

described by cross-diffusion operators as simple as that in (CC1). Typical examples for con-
siderable deviations include bacterial chemotaxis near surfaces which, in fact, may contain
rotational components orthogonal to the signal gradient (Ref. 29), or also nonnegligible depen-
dence of chemotactic responses on the concentration of the respective chemical (Ref. 9). As a
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LANKEIT and WINKLER 1205

generalization of (CC1) accounting for both these possibilities, let us consider the problem

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = Δ𝑢 − ∇ ⋅ (𝑢𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢𝑣 𝑥 ∈ Ω, 𝑡 > 0,

(𝑢𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣) ⋅ 𝜈 = ∇𝑣 ⋅ 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω,

(CC2)

where now 𝑆 is a suitably regular function that attains values in ℝ𝑛×𝑛; as prototypical
choices, one may think of tensor-valued 𝑆 containing off-diagonal entries such as, in the
case 𝑛 = 2,

𝑆(𝑥, 𝑠, 𝜎) ∶= 𝜒 ⋅

(
1 0

0 1

)
+ 𝛽 ⋅

(
0 1

−1 0

)
, (𝑥, 𝑠, 𝜎) ∈ Ω × [0,∞)2,

or also

𝑆(𝑥, 𝑠, 𝜎) ∶= Θ(𝜎 − 𝜎⋆)𝐄𝑛 (𝑥, 𝑠, 𝜎) ∈ Ω × [0,∞)2

with some 𝜎⋆ > 0, where 𝐄𝑛 denotes the 𝑛 × 𝑛 unit matrix, and whereΘ is some suitably smooth
approximation of theHeaviside function (Refs. 9, 29). In suchmore complex settings, subtle struc-
tures as that expressed in (2) apparently can no longer be expected. Consequently, the question
how far taxis-driven blowup is precluded by dissipation again becomes nontrivial already in two-
dimensional domains in which (CC1) allowed for the comprehensive result from Theorem 1. In
the following, we briefly reproduce an approach bywhich it becomes possible to nevertheless pro-
vide at least some basic indication for the guess that the consumptionmechanism in (CC2) should
exert some relaxing influence in comparison to situations in Keller–Segel-production systems. In
the absence of any further assumptions on 𝑆 other than regularity, it seems that the only expedi-
ent option to handle taxis is to simply estimate its effect in modulus. Here, a favorable difference
between (CC2) and (1) consists in the fact that solutions of arbitrary size, and in domains of any
dimension, should satisfy

∫
𝑇

0
∫
Ω

|∇𝑣|2 ≤ 1

2 ∫
Ω

𝑣2
0

for all 𝑇 > 0. (27)

Though rather poor with respect to its topological framework, this unconditional bound for the
cross-diffusive gradient can indeed be used to derive some basic regularity feature of the key quan-
tity 𝑢: Namely, analyzing the evolution properties of ∫

Ω
ln(𝑢 + 1) readily shows that when 𝑆 is

merely assumed to be bounded, estimates of the form

∫
𝑇

0
∫
Ω

|∇𝑢|2
(𝑢 + 1)2

≤ 𝐶 (28)

should be available for all 𝑇 > 0. Following this strategy in the course of an approximation by
global smooth solutions to regularized variants of (CC2), one can indeed derive a result on global
existence, albeit within a solution concept yet considerably weaker than that from Theorem 2.
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1206 LANKEIT and WINKLER

Theorem 6 Ref. 30. Let 𝑛 ≥ 2 and Ω ⊂ ℝ𝑛 be a bounded domain with smooth boundary, let 𝑆 ∈

𝐶2(Ω × [0,∞) × [0,∞);ℝ𝑛×𝑛) be bounded, and assume (8). Then there exists at least one pair (𝑢, 𝑣)
of nonnegative functions fulfilling (11) as well as

ln(𝑢 + 1) ∈ 𝐿2
𝑙𝑜𝑐

([0,∞);𝑊1,2(Ω)) (29)

such that (CC2) is solved in the sense that (14) is satisfied for any 𝜑 ∈ 𝐶∞
0
(Ω × [0,∞)), that

∫
Ω

𝑢(⋅, 𝑡) ≤ ∫
Ω

𝑢0 for a.e. 𝑡 > 0, (30)

and that for each nonnegative 𝜑 ∈ 𝐶∞
0
(Ω̄ × [0,∞)), the inequality

−∫
∞

0
∫
Ω

ln(𝑢 + 1)𝜑𝑡 − ∫
Ω

ln(𝑢0 + 1)𝜑(⋅, 0)

≥ ∫
∞

0
∫
Ω

|∇ ln(𝑢 + 1)|2𝜑 − ∫
∞

0
∫
Ω

∇ ln(𝑢 + 1) ⋅ ∇𝜑

−∫
∞

0
∫
Ω

𝑢

𝑢 + 1
∇ ln(𝑢 + 1) ⋅ (𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣)𝜑

+∫
∞

0
∫
Ω

𝑢

𝑢 + 1
(𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣) ⋅ ∇𝜑 (31)

holds.

The problem of determining how far solutions to (CC2)may enjoy regularity properties beyond
those from Theorem 6 forms a widely open challenge. Only in planar cases, some results on even-
tual smoothness and large-time stabilization in the style of Theorem 3 are available under the
general assumptions on 𝑆 from Theorem 6, provided that Ω is convex (Refs. 31, 32). In higher-
dimensional situations, it seems in general even unclear whether the natural mass conservation
property ∫

Ω
𝑢 = ∫

Ω
𝑢0 can be expected instead of the inequality in (30). After all, both this and

also eventual regularity as well as (10) could at least be asserted in frameworks of radially sym-
metric solutions to (CC2) in balls of arbitrary dimension, assuming that 𝑆 = 𝑆(𝑢, 𝑣) is sufficiently
smooth and bounded (Ref. 33). An important observation now confirms that not only the result
on global existence of classical small-signal solutions fromTheorem 4 extends to general bounded
matrix-valued 𝑆, but that moreover also any algebraic-type saturation of cross-diffusive fluxes at
large population densities prevents blowup. This is achieved in Ref. 34 by analyzing a functional
of the form 2 from (16) with a choice of 𝜑 similar to that in (18) (see also Ref. 35 for a precedent):

Theorem 7 Ref. 34. Let 𝑛 ≥ 2 and Ω ⊂ ℝ𝑛 be a bounded domain with smooth boundary, assume
(8), and let 𝑆 ∈ 𝐶2(Ω × [0,∞) × [0,∞);ℝ𝑛×𝑛) be bounded and such that either

|𝑆(𝑥, 𝑠, 𝜎)| ≤ 𝑆0(𝜎) for all (𝑥, 𝑠, 𝜎) ∈ Ω × [0,∞)2

with some nondecreasing 𝑆0 ∶ [0,∞) → [0,∞) (32)
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LANKEIT and WINKLER 1207

fulfilling

𝑆0
(‖𝑣0‖𝐿∞(Ω)

)
<

2𝑛

3𝑛(11𝑛 + 2)
,

or, alternatively,

|𝑆(𝑥, 𝑠, 𝜎)| ≤ 𝐶

(𝑠 + 1)𝜃
for all 𝑥 ∈ Ω, 𝑢 ≥ 0 and 𝜎 ∈ [0, ‖𝑣0‖𝐿∞(Ω)] and some 𝐶 > 0.

Then (CC2) admits a global bounded classical solution satisfying (9) as well as (10).

3 INCLUDING NONLINEAR DIFFUSION AND SINGULAR
SENSITIVITIES

Various types of nonlinear diffusion mechanisms play important roles in microbial motion (Refs.
36–38), and corresponding generalizations of (CC1) and (CC2), such as

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = ∇ ⋅ (𝐷(𝑢)∇𝑢)𝑢 − ∇ ⋅ (𝑢𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢𝑣 𝑥 ∈ Ω, 𝑡 > 0,

(𝐷(𝑢)∇𝑢)𝑢 − 𝑢𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣) ⋅ 𝜈 = ∇𝑣 ⋅ 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω

(CC3)

have quite intensely been studied in the literature. Especially in light of the standoff with regard
to global smooth solvability of (CC1) in three-dimensional domains, but also of (CC2) in planar
situations for general bounded 𝑆, a particular focus in this context is how far relaxing effects
can be expected to result from a presupposed enhancement of diffusion at large population den-
sities, such as present when in the prototypical choice of porous medium-type diffusion, that
is, in

𝐷(𝑠) = 𝑠𝑚−1, 𝑠 ≥ 0, (33)

the adiabatic exponent is assumed to satisfy 𝑚 > 1. Due to the degeneracy at vanishing popu-
lation densities which additionally goes along with such a simple functional setting, classical
solutions can apparently not be expected to exist for general nonnegative initial data. Accord-
ingly, a focus is commonly set on the construction of global weak solutions with uniformly
bounded components. Indeed, in two-dimensional convex domains and for arbitrary bounded
smooth matrix-valued functions 𝑆, such bounded weak solutions exist under the mere assump-
tion that 𝑚 > 1. The following result in this regard extends previous partial findings obtained in
Ref. 39.

Theorem8Ref. 40. LetΩ ⊂ ℝ2 be a bounded convex domainwith smooth boundary, assume (8), let
𝑆 ∈ 𝐶2(Ω × [0,∞) × [0,∞);ℝ𝑛×𝑛) be such that (32) holds, and suppose that (33) is valid with some

𝑚 > 1.
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1208 LANKEIT and WINKLER

Then there exist nonnegative functions{
𝑢 ∈ 𝐿∞(Ω × (0,∞)) and
𝑣 ∈ 𝐿∞((0,∞);𝑊1,∞(Ω))

(34)

such that

∇𝑢𝑚 ∈ 𝐿2
𝑙𝑜𝑐

(Ω × [0,∞);ℝ2) (35)

and that (CC3) is solved in the sense that

−∫
∞

0
∫
Ω

𝑢𝜑𝑡 − ∫
Ω

𝑢0𝜑(⋅, 0) = −∫
∞

0
∫
Ω

∇𝑢𝑚 ⋅ ∇𝜑 + ∫
∞

0
∫
Ω

𝑢(𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣) ⋅ ∇𝜑 (36)

as well as (14) hold for all 𝜑 ∈ 𝐶∞
0
(Ω × [0,∞)).

The derivation of a three-dimensional analog has apparently been forming a considerable
challenge for almost a decade, with partial results having successively been improved in several
steps; only recently, two independent approaches have led to an essentially complete picture in
this regard. One of these uses an adaptation of the energy inequality (2) to the present setting
involving nonlinear diffusion, and uses corresponding basic estimates in order to identify certain
quasi-energy properties of

𝑑

𝑑𝑡 ∫Ω

{|∇𝑢|2
𝑢

+ |Δ𝑣|2 + |∇𝑣|4}.

In Ref. 41, this indeed leads to a result parallel to that fromTheorem 8 under stronger assumptions
on the initial data, and under the additional condition that 𝑆 = 𝐄𝑛 is scalar. By means of second
and independent approach, it becomes possible not only to remove these restrictions, but also to
actually cover diffusivities with arbitrarily slow growth. In fact, by making essential use of some
favorable evolution properties of themixed functional ∫

Ω

𝑢

𝑣
|∇𝑣|2 it is possible to see thatwhenever

𝐷 is smooth on [0,∞) and positive on (0,∞)with𝐷(𝑠) → +∞ as 𝑠 → ∞, andwhenever thematrix-
valued 𝑆 is bounded, for some suitably chosen smooth nonnegative 𝜓 on [0,∞) an inequality of
the form

𝑑

𝑑𝑡 ∫Ω

{
𝜓(𝑢) + 𝑑1

𝑢

𝑣
|∇𝑣|2 + 𝑑2

1

𝑣3
|∇𝑣|4} + 𝑎 ∫

Ω

{
𝜓(𝑢) + 𝑑1

𝑢

𝑣
|∇𝑣|2 + 𝑑2

1

𝑣3
|∇𝑣|4} + ∫

Ω

|∇𝑢|2 ≤ 𝑏

holds for 𝑡 > 0 with some positive 𝑑1, 𝑑2, 𝑎, and 𝑏. Conclusions drawn from this can be
used, even under slightly milder assumptions on 𝑆 than mentioned above, to complete a
considerable history on blow-up prevention by arbitrarily mild diffusion enhancement in the
three-dimensional version of (CC3), as actually developed by several authors to be mentioned
here:
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LANKEIT and WINKLER 1209

Theorem 9 [Refs. 41–45, Corollary 1.2 and p. 95]. Let Ω ⊂ ℝ3 be a bounded domain with smooth
boundary, and suppose that

⎧⎪⎪⎨⎪⎪⎩
𝑆 ∈ 𝐶2(Ω × [0,∞) × (0,∞);ℝ3×3) is such that

|𝑆(𝑥, 𝑠, 𝜎)| ≤ 𝑆0(𝜎)

𝜎
1

2

for all (𝑥, 𝑠, 𝜎) ∈ Ω × (0,∞)2

with some nondecreasing 𝑆0 ∶ (0,∞) → (0,∞),

(37)

and that either (33) holds with some𝑚 > 1, or that

𝐷 ∈
⋃

𝜗∈(0,1)

𝐶𝜗
𝑙𝑜𝑐

([0,∞)) ∩ 𝐶2((0,∞)) is positive on (0,∞)

and such that lim inf 𝑠↘0
𝐷(𝑠)

𝑠
> 0 as well as

𝐷(𝑠) → +∞ as 𝑠 → ∞. (38)

Then given any initial data fulfilling (8), one can find functions 𝑢 and 𝑣 which are such that (34)
holds, that 𝑢 ≥ 0 and 𝑣 > 0 a.e. in Ω× (0,∞) and 𝑢|𝑆(⋅, 𝑢, 𝑣)| ∈ 𝐿1

𝑙𝑜𝑐
(Ω × [0,∞)), that (14) holds

for all 𝜑 ∈ 𝐶∞
0
(Ω × [0,∞)), and that writing 𝐷1(𝑠) ∶= ∫ 𝑠

0
𝐷(𝜎)𝑑𝜎 for 𝑠 ≥ 0 we have

−∫
∞

0
∫
Ω

𝑢𝜑𝑡 − ∫
Ω

𝑢0𝜑(⋅, 0) = ∫
∞

0
∫
Ω

𝐷1(𝑢)Δ𝜑 + ∫
∞

0
∫
Ω

𝑢(𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣) ⋅ ∇𝜑 (39)

for all 𝜑 ∈ 𝐶∞
0
(Ω × [0,∞)) satisfying 𝜕𝜑

𝜕𝜈
= 0 on 𝜕Ω × (0,∞).

In domains of dimension 𝑛 ≥ 4, more restrictive assumptions on 𝐷 seem necessary to ensure
global existence of bounded solutions, see Refs. 46–49, for instance; the to-date mildest assump-
tion on 𝑚 in (CC3)–(33) for such a conclusion to hold for 𝑆 = 𝐄𝑛 seems to require that 𝑚 >
3𝑛

2𝑛+2
(Ref. 50). Qualitative properties such as stabilization toward semitrivial steady states and

propagation features of supp 𝑢 have been discussed in Refs. 51 and 52. Combined effects of non-
linear porous medium-type diffusion and sensitivities 𝑆 = 𝑆(𝑥, 𝑢, 𝑣) either growing or decreasing
in an essentially algebraic manner as 𝑢 → ∞ have been studied in Refs. 53–59, for instance.
Interesting examples addressing exponentially decaying diffusion rates can be found in Refs. 60
and 61.
To appropriately cope with situations in which the intensity of chemotactic response depends

on the signal in a monotonically decreasing manner, Keller and Segel7 proposed the system

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = Δ𝑢 − ∇ ⋅ (𝑢𝑆(𝑣)∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢𝑣 𝑥 ∈ Ω, 𝑡 > 0,

(∇𝑢 − 𝑢𝑆(𝑣)∇𝑣) ⋅ 𝜈 = ∇𝑣 ⋅ 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω,

(CC4)
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1210 LANKEIT and WINKLER

with the particular choice

𝑆(𝑠) =
1

𝑠
, 𝑠 > 0 (40)

corresponding to the Weber–Fechner law of stimulus response (Ref. 62). In the presence of such
singular sensitivities, this specific version of (CC3) appears to be mathematically quite deli-
cate, as witnessed by the circumstance that although several findings indicate a strong support
of wave-like structured behavior (see Ref. 63 and also Ref. 64 for a survey), already in two-
dimensional cases neither a comprehensive theory of global classical solvability nor any result
on the occurrence of blow-up phenomena seem to have been established yet. After all, globally
smooth solutions can be constructed at least for suitably small initial data. Indeed, in Ref. 65 it
was observed that for arbitrary 𝜇 > 0, the expression

3(𝑡) ∶= ∫
Ω

𝑢 ln
𝑢

𝜇
+

1

2 ∫
Ω

|∇𝑣|2
𝑣2

acts as a conditional energy functional for the planar version of (CC4) in the sense that smooth
solutions satisfy

 ′
3
(𝑡) + ∫

Ω

|∇𝑢|2
𝑢

+

{
1

2
− 𝑎 ∫

Ω

|∇𝑣|2
𝑣2

− 𝑎 ∫
Ω

𝑢0

}
⋅ ∫

Ω

|Δ ln 𝑣|2 ≤ 0 (41)

with some 𝑎 = 𝑎(Ω). Suitably relating the ill-signed part in brackets to 3 itself leads to bounds
for 3 and the dissipation rate functionals ∫Ω |∇𝑢|2

𝑢
as well as ∫

Ω
|Δ ln 𝑣|2 which in planar cases

can be used as a starting point for a bootstrap-type series of regularity arguments, finally leading
to the following result on global existence of small-data solutions:

Theorem10Ref. 65. Suppose thatΩ ⊂ ℝ2 is a boundeddomainwith smooth boundary, andassume
(40). Then one can find 𝐾 > 0 and𝑚 > 0 with the property that whenever 𝑢0 and 𝑣0 satisfy (8) and
are such that

∫
Ω

𝑢0 < 𝑚 and ∫
Ω

𝑢0 ln
𝑢0
𝜇

+
1

2 ∫
Ω

|∇𝑣0|2
𝑣2
0

≤ 𝐾 −
𝜇|Ω|
𝑒

for some 𝜇 > 0, there exist functions 𝑢 and 𝑣 which are such that (9) holds, that 𝑢 ≥ 0 and 𝑣 > 0 in
Ω× [0,∞), and that (CC4) is solved classically. Moreover, this solution stabilizes in the sense that
(10) is valid.

For large initial data, only some generalized solutions have been found to exist. The follow-
ing result in this direction can be established by means of a far relative of the reasoning near
Theorem 6, supplemented by an application of the two-dimensional Moser–Trudinger inequality
in deriving certain 𝐿1 compactness properties in the first solution component. Accordingly, our
statement here goes beyond that from Theorem 6 in asserting that the obtained solutions indeed
enjoy the natural mass conservation property formally associated with (CC4).

 14679590, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12625 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LANKEIT and WINKLER 1211

Theorem 11 Refs. 65–67. Let Ω ⊂ ℝ2 be a bounded domain with smooth boundary, and assume
(40). Then for all 𝑢0 and 𝑣0 satisfying (8), the problem (CC4) admits at least one global generalized
solution in the sense that there exist functions 𝑢 and 𝑣 such that (11) holds, that 𝑢 ≥ 0 and 𝑣 > 0

a.e. inΩ× (0,∞),

ln(𝑢 + 1) ∈ 𝐿2
𝑙𝑜𝑐

([0,∞);𝑊1,2(Ω)) and ln 𝑣 ∈ 𝐿2
𝑙𝑜𝑐

([0,∞);𝑊1,2(Ω)),

that

∫
Ω

𝑢(⋅, 𝑡) = ∫
Ω

𝑢0 for a.e. 𝑡 > 0,

and that for each nonnegative 𝜑 ∈ 𝐶∞
0
(Ω̄ × [0,∞)), the identity in (14) as well as the inequality

−∫
∞

0
∫
Ω

ln(𝑢 + 1)𝜑𝑡 − ∫
Ω

ln(𝑢0 + 1)𝜑(⋅, 0)

≥ ∫
∞

0
∫
Ω

|∇ ln(𝑢 + 1)|2𝜑 − ∫
∞

0
∫
Ω

∇ ln(𝑢 + 1) ⋅ ∇𝜑

−∫
∞

0
∫
Ω

𝑢

𝑢 + 1
(∇ ln(𝑢 + 1) ⋅ ∇ ln 𝑣)𝜑

+∫
∞

0
∫
Ω

𝑢

𝑢 + 1
∇ ln 𝑣 ⋅ ∇𝜑

hold.

Now the observation that solutions to suitably regularized variants of (CC4) satisfy

1

𝑇 ∫
𝑇

0
∫
Ω

|∇𝑣|2
𝑣2

≤ 1

𝑇 ∫
Ω

ln
‖𝑣0‖𝐿∞(Ω)

𝑣0
+ ∫

Ω

𝑢0 for all 𝑇 > 0

facilitates a fruitful application of (41) also to trajectories more general than those from The-
orem 10. In fact, under a smallness assumption merely involving a total mass functional as a
quantity of immediate biological relevance, the following conclusion on eventual regularity can
thereby be drawn.

Theorem 12 Refs. 65, 68. Let Ω ⊂ ℝ2 be a bounded domain with smooth boundary, and assume
(40). Then there exists𝑀 > 0 with the property that whenever (8) holds with

∫
Ω

𝑢0 ≤ 𝑀,

one can find 𝑇 > 0 such that the global generalized solution (𝑢, 𝑣) of (CC4) from Theorem 12 satis-
fies (𝑢, 𝑣) ∈ (𝐶2,1(Ω × [𝑇,∞)))2 and 𝑣 > 0 inΩ× [𝑇,∞). Moreover, (10) holds, and additionally we
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1212 LANKEIT and WINKLER

have

∇𝑣(⋅, 𝑡)

𝑣(⋅, 𝑡)
→ 0 in 𝐿∞(Ω) as 𝑡 → ∞.

In higher-dimensional versions of (CC4), only in radially symmetric settings some global solu-
tions seem to have been constructed so far, and only in strongly generalized frameworks of
renormalized solutions (Ref. 69). For a Cauchy problem inℝ𝑛 associated with (CC4), under some
conditions inter alia requiring smallness of both ‖𝑢0‖𝑊1,2(ℝ𝑛) and ‖ ln 𝑣0‖𝑊1,2(ℝ𝑛), a result on
global existence and large-time stabilization of certain strong solutions was derived in Ref. 70.
Signal-dependent sensitivities less singular than those in (40) have been studied in contexts of
essentially algebraic behavior, as prototypically modeled by choices of the form

𝑆(𝑠) =
1

𝑠𝛼
, 𝑠 > 0, (42)

with 𝛼 ∈ (0, 1). Two results in this direction are summarized in the following.

Theorem13Refs. 71, 72. LetΩ ⊂ ℝ2 be a bounded domainwith smooth boundary, and assume (42)
with 𝛼 > 0.

(i) If

𝛼 < −
1

2
+

1

2
⋅

(
8
√
2 + 11

7

) 1

2

≈ 0.3927,

then for arbitrary 𝑢0 and 𝑣0 complying with (8), the problem (CC4) admits a global classical
solution satisfying (9) as well as 𝑣 > 0 inΩ× [0,∞).

(ii) If 𝛼 < 1, then there exist 𝛿 > 0 and𝑚 > 0 such that whenever (8) is valid with

‖𝑣0‖𝐿∞(Ω) ≤ 𝛿 and ∫
Ω

𝑢0 < 𝑚,

one can find a global classical solution of (CC4) for which (9) holds and 𝑣 > 0 inΩ× [0,∞).

Beyond this, a statement on boundedness of the solutions fromTheorem 13(ii) is available under
the assumption that, with some 𝜂 = 𝜂(𝛼) > 0,

‖𝑢0‖ 2

𝑛

𝐿1(Ω)
⋅
{‖𝑣0‖𝐿∞(Ω) + ‖𝑣0‖𝜃𝐿∞(Ω)

} ≤ 𝜂

holds (Ref. 45). If the first equation in (CC4) is replaced by

𝑢𝑡 = Δ𝑢 − ∇ ⋅

(
𝑓(𝑢)

𝑣
∇𝑣

)
,

 14679590, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12625 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LANKEIT and WINKLER 1213

with the nonnegative function 𝑓 reflecting suitably strong saturation effects in the sense that

𝑓(𝑠) ≤ 𝐶(𝑠 + 1)
1−

𝑛

4
−𝜂 for all 𝑠 ≥ 1 with some 𝐶 > 0 and 𝜂 > 0,

global classical solutions can be found in 𝑛-dimensional domains with 𝑛 ≥ 2 (Ref. 73). If, instead,
(CC4) is considered with its second equation altered to

𝑣𝑡 = Δ𝑣 − 𝑔(𝑢)𝑣,

where 0 ≤ 𝑔 ∈ 𝐶1([0,∞) satisfies 𝑔(0) = 0 and

𝑔(𝑠) ≤ 𝐶(𝑠 + 1)1−𝜂 for all 𝑠 ≥ 1 with some 𝐶 > 0 and 𝜂 > 0,

then in the corresponding two-dimensional boundary-value problem global classical solutions
exist (Ref. 74). Some further indications for the guess that strong singularities such as those in
(40) may go along with a significant loss of regularity can be gained upon observing that in con-
trast to the situation in (CC2), for corresponding quasilinear variants of (CC4) the literature so
far provides results on global existence of solutions which are at least locally bounded only under
considerably more restrictive assumptions on enhancement of diffusion. Specifically, if the first
equation in (CC4) is changed so as to become

𝑢𝑡 = ∇ ⋅ (𝐷(𝑢)∇𝑢) − ∇ ⋅
(𝑢
𝑣
∇𝑣

)
with 𝐷 being suitably smooth and satisfying 𝐷(𝑠) ≥ 𝐶𝑠𝑚−1 for all 𝑠 ≥ 0 with some 𝐶 > 0, then
for such locally bounded global weak solutions to exist in 𝑛-dimensional domains, to date the
literature requires the assumption that 𝑚 > 1 +

𝑛

4
(Ref. 75) which already in the case 𝑛 = 2 is

considerably stronger than the corresponding condition𝑚 > 1underlying the boundedness result
in Theorem 8. Findings concerned with further related variants of (CC4) are contained in Refs.
76–80, for instance.

4 COUPLINGS TO FURTHERMECHANISMS

The intention of this section is to review some developments related to the embedding of
chemotaxis-consumption systems into more complex models involving further interactionmech-
anisms and components. A first example in this regard is provided by the class of logistic
Keller–Segel-absorption systems,

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = Δ𝑢 − ∇ ⋅ (𝑢𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣) + 𝑓(𝑢), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢𝑣 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑢

𝜕𝜈
=

𝜕𝑣

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω,

(CC5)
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1214 LANKEIT and WINKLER

again with matrix-valued 𝑆, and with 𝑓 representing zero-order mechanisms of proliferation and
death; typical choices include

𝑓(𝑠) = 𝜌𝑠 − 𝜇𝑠𝜅, 𝑠 ≥ 0 (43)

with 𝜌 ∈ ℝ, 𝜇 > 0, and 𝜅 > 1.
Now a first effect of the superlinear damping thereby introduced becomes manifest in the fact

that beyond global generalized solvability, also in the presence of widely arbitrarymatrices 𝑆mass
conservation can be asserted, as implicitly contained in the proof presented in Ref. 81 (cf. also Ref.
82, where tensor-valued sensitivities are explicitly included).

Theorem 14 Ref. 81. Let 𝑛 ≥ 2 and Ω ⊂ ℝ𝑛 be a bounded domain with smooth boundary, let 𝑆 ∈

𝐶2(Ω × [0,∞) × [0,∞);ℝ𝑛×𝑛) be bounded, and let 𝑓 be as in (43) with 𝜌 ∈ ℝ, 𝜇 > 0, and 𝜅 > 1.
Then for any choice of 𝑢0 and 𝑣0 satisfying (8), it is possible to find nonnegative functions 𝑢 and 𝑣

which are such that (11) and (29) holds, that

𝑢 ∈ 𝐿𝜅
𝑙𝑜𝑐

(Ω × [0,∞))

with

∫
Ω

𝑢(⋅, 𝑡) = ∫
Ω

𝑢0 for a.e. 𝑡 > 0,

and that whenever 𝜑 ∈ 𝐶∞
0
(Ω × [0,∞)), (14) as well as the inequality

−∫
∞

0
∫
Ω

ln(𝑢 + 1)𝜑𝑡 − ∫
Ω

ln(𝑢0 + 1)𝜑(⋅, 0)

≥ ∫
∞

0
∫
Ω

|∇ ln(𝑢 + 1)|2𝜑 − ∫
∞

0
∫
Ω

∇ ln(𝑢 + 1) ⋅ ∇𝜑

−∫
∞

0
∫
Ω

𝑢

𝑢 + 1
∇ ln(𝑢 + 1) ⋅ (𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣)𝜑

+∫
∞

0
∫
Ω

𝑢

𝑢 + 1
(𝑆(𝑥, 𝑢, 𝑣) ⋅ ∇𝑣) ⋅ ∇𝜑 + ∫

∞

0
∫
Ω

𝑓(𝑢)

𝑢 + 1
𝜑

are valid.

Interestingly, the most prototypical choice 𝜅 = 2, as most commonly used in applications,
seems to play also a technical role, since it marks theminimal logistic degradation effect for which
global classical solutions can be found. In fact, the following statement in this regard concentrates
on scalar 𝑆, but could readily be extended to bounded smooth matrix-valued 𝑆 as well:

Theorem 15 Ref. 83. Let 𝑛 ≥ 2 and Ω ⊂ ℝ𝑛 be a bounded domain with smooth boundary, let 𝑆 ≡
𝜒 ∈ (0,∞), and let 𝑓 be as in (43) with 𝜌 ∈ ℝ, 𝜇 > 0 and

𝜅 = 2.
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LANKEIT and WINKLER 1215

Then, there exists 𝐶 > 0 such that whenever (8) holds with

𝜇 > 𝐶‖𝑣0‖ 1

𝑛

𝐿∞(Ω)
+ 𝐶‖𝑣0‖2𝑛𝐿∞(Ω)

,

the problem (CC5) admits a global classical solution satisfying (9) as well as sup𝑡>0 ‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) <

∞. If, moreover, 𝜌 > 0, then

𝑢(⋅, 𝑡) →
𝜌

𝜇
and 𝑣(⋅, 𝑡) → 0 in 𝐿∞(Ω) as 𝑡 → ∞. (44)

For the generalized solutions from Theorem 14, similar statements on asymptotic stabiliza-
tion are available actually for arbitrary 𝜅 > 1, albeit partially in weaker topological settings (Refs.
82, 84); in three-dimensional versions of (CC5) with scalar 𝑆, these solutions are even known to
become smooth eventually (Ref. 84; cf. also Ref. 85). For (CC5) and some quasilinear variants
involving singular sensitivities, some results on existence and qualitative properties have been
documented in Refs. 86–94. A second example of more involved mechanisms for interaction is
given by the following equations for indirect signal absorption where the signal substance is not
directly consumed upon contact with themotile cells but instead first an intermediate component
(of concentration 𝑤) is produced which then reduces the signal:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢𝑡 = Δ𝑢 − ∇ ⋅ (𝑢∇𝑣) 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑣𝑤 𝑥 ∈ Ω, 𝑡 > 0,

𝑤𝑡 = −𝛿𝑤 + 𝑢 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑢

𝜕𝜈
=

𝜕𝑣

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑤(𝑥, 0) = 𝑤0(𝑥) 𝑥 ∈ Ω.

(CC6)

While having exchanged 𝑢 for𝑤 in the second equation voids the cancellation onwhich (2) relied,
a reasoning based on (16) again makes it possible to obtain global small-data solutions (with the
condition from Ref. 95 improved in Refs. 96 and 97, similarly as in Theorem 4).
Supported by the observation that spatiotemporal 𝐿𝑝-bounds for 𝑢 entail temporally uniform

𝐿𝑝(Ω) bounds for 𝑤, a study of 2 from (16), now for 𝑝 ∈ (0, 1) and a new suitable choice of 𝜑,
reveals global existence of classical solutions (Ref. 95).
Extensions involving logistic source terms (Ref. 97) or nonlinear diffusion and sensitivity (Refs.

98, 99) are available, as are studies of (CC6) with additional diffusion of the intermediate (e.g.,
Refs. 100, 101).
Another class of systemswhich can be viewed as extensions of (CC1) is formed by the prey-taxis

models (Ref. 102)

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = Δ𝑢 − 𝜒∇ ⋅ (𝑢∇𝑣) + 𝛾𝑢ℎ(𝑣) + 𝑓(𝑢) 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢ℎ(𝑣) + 𝑔(𝑣) 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑢

𝜕𝜈
=

𝜕𝑣

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω,

(CC7)
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1216 LANKEIT and WINKLER

and their close relatives. Here, the evolution of 𝑣 is now influenced not only by the absorption
mechanism, expressed here through the summand −𝑢ℎ(𝑣) in a form slightly more general than
in the above systems, but moreover potentially also by the term +𝑔(𝑣) representing reproduction
in the considered prey population density 𝑣. The corresponding population density 𝑢 of predators,
in turn, benefits from consumption of preys through the term +𝛾𝑢ℎ(𝑣), and additionally may be
affected by spontaneous proliferation and death according to a law for 𝑓 preferably of the style in
(43). Under appropriate technical assumptions on its ingredients, this system can be seen to share
with (CC1) essential parts of the structural features discussed near (2). In consequence, a spatially
two-dimensional analysis can be designed similarly as that for (CC1), leading to the following
result.

Theorem16Ref. 103.LetΩ ⊂ ℝ2 be a bounded domainwith smooth boundary, let𝜒 > 0 and 𝛾 > 0,
and suppose that 𝑓 ∈ 𝐶1([0,∞)), 𝑔 ∈ 𝐶1([0,∞)) and ℎ ∈ 𝐶2([0,∞)) are such that

𝑓(0) = 0, 𝑓(𝑠) ≤ −𝜃𝑠 for all 𝑠 ≥ 0 and 𝑑

𝑑𝑠

(
𝑓(𝑠)

𝑠

)
≤ −𝐾𝑓 for all 𝑠 > 0, (45)

that

𝑔(0) = 0, 𝑔(𝑠) > 0 for all 𝑠 ∈ (0, 𝑠0) and 𝑔(𝑠) < 0 for all 𝑠 > 𝑠0, (46)

that

ℎ(0) = 0 as well as ℎ(𝑠) > 0, ℎ′(𝑠) > 0 and ℎ′′(𝑠) ≤ 0 for all 𝑠 > 0, (47)

and that

𝑔

ℎ
is continuously extensible to [0,∞) (48)

with some 𝜃 > 0, 𝐾𝑓 > 0, 𝐾𝑔 > 0, and 𝑠0 > 0. Then for arbitrary 𝑢0 and 𝑣0 fulfilling (8), there exists
a global classical solution of (CC7) which is bounded in the sense that with some 𝐶 > 0 we have

‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) + ‖𝑣(⋅, 𝑡)‖𝑊1,∞(Ω) ≤ 𝐶 for all 𝑡 > 0.

Forming a typical representative of statements on large-time behavior inmultispecies parabolic
systems involving taxis, the following theorem asserts that the dynamics of the associated ODE
system essentially determines the asymptotics also for (CC7) provided that either the former is
essentially trivial, or the considered chemotactic coefficient is appropriately small:

Theorem 17 Ref. 103. Let Ω ⊂ ℝ2 be a bounded domain with smooth boundary, let 𝛾 > 0, and
assume that besides satisfying (45)–(48) with some 𝜃 > 0, 𝐾𝑓 > 0, 𝐾𝑔 > 0, and 𝑠0 > 0, the functions
𝑓, 𝑔, and ℎ are such that

lim
𝑠↘0

𝑔(𝑠)

ℎ(𝑠)
> 0 and

( 𝑔

ℎ

)′

< 0 on (0,∞).
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LANKEIT and WINKLER 1217

(i) If

𝛾ℎ(𝑠0) < 𝜃,

then for any choice of (𝑢0, 𝑣0) fulfilling (8), the solution (𝑢, 𝑣) of (CC7) from Theorem 16 satisfies

𝑢(⋅, 𝑡) → 0 and 𝑣(⋅, 𝑡) → 𝑠0 in 𝐿∞(Ω) as 𝑡 → ∞.

(ii) If

𝛾ℎ(𝑠0) > 𝜃,

then there exists 𝜒0 > 0 such that if 𝜒 ∈ (0, 𝜒0), given any (𝑢0, 𝑣0) such that (8) holds, for the
solution (𝑢, 𝑣) of (CC7) found in Theorem 16 we have

𝑢(⋅, 𝑡) → 𝑢⋆ and 𝑣(⋅, 𝑡) → 𝑣⋆ in 𝐿∞(Ω) as 𝑡 → ∞,

where (𝑢⋆, 𝑣⋆) ∈ (0,∞) × (0, 𝑠0) is the unique solution of the algebraic system

𝛾𝑢⋆ℎ(𝑣⋆) + 𝑓(𝑢⋆) = 0, −𝑢⋆ℎ(𝑣⋆) + 𝑔(𝑣⋆) = 0.

Precedents and close relatives concerned with questions of global solvability, boundedness and
spatially homogeneous asymptotics in (CC7), and neighboring systems can be found in Refs. 51,
104–111, and an impression about the numerous recent developments in this field can be gained
upon consulting Refs. 110, 112–119, for instance.
From a mathematical point of view, considerably more thorough complexifications of (CC1)

are obtained when couplings to further taxis mechanisms are included. As an exemplary case of
such an extension, we here briefly consider the model

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢1𝑡 = Δ𝑢1 − ∇ ⋅ (𝑢1∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝑢2𝑡 = Δ𝑢2 − ∇ ⋅ (𝑢2∇𝑢1), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − (𝑢1 + 𝑢2)𝑣 − 𝜇𝑣 + 𝑟(𝑥, 𝑡), 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑢1

𝜕𝜈
=

𝜕𝑢2

𝜕𝜈
=

𝜕𝑣

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢1(𝑥, 0) = 𝑢10(𝑥), 𝑢2(𝑥, 0) = 𝑢20(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω

(CC8)

for the dynamics in so-called forager–exploiter systems. Here, individuals in a first population,
consisting of foragers and measured through the respective population density 𝑢1, are attracted
by a food resource at concentration 𝑣, while a second population of exploiters, accordingly repre-
sented by 𝑢2, orient their movement toward increasing concentrations of foragers. Besides being
consumed, nutrient is assumed to undergo spontaneous decay, and to be renewed froman external
source at a rate 𝑟(𝑥, 𝑡) (Ref. 120). As the presence of the additional taxis process determining the
evolution of 𝑢2 apparently rules out any global energy structure similar to that from (2), already
at the stage of questions from global solvability theory an analysis of (CC8) seems to require alter-
native tools. After all, by an appropriate further development of the approach outlined near (28) it
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1218 LANKEIT and WINKLER

becomes possible to derive a result on global generalized solvability in domains of arbitrary dimen-
sion, in a style similar to that from Theorem 6, under suitable smallness assumptions on both 𝑣0
and 𝑟 (Ref. 121; cf. also Ref. 122 for a related result on global existence even of classical small-
data solutions). Only in the case whenΩ ⊂ ℝ is a bounded interval, thanks to accordingly strong
smoothing regularization features of the Neumann heat semigroup, inter alia ensuring a priori
bounds for 𝑣𝑥 with respect to the norm in 𝐿𝑞(Ω) for arbitrary finite 𝑞 ≥ 1, global bounded solu-
tions to (CC8) have so far been constructed for data of arbitrary size (Ref. 123). Apart from that, the
inclusion of additional relaxationmechanisms, such as saturation effects in nutrient consumption
or taxis, nonlinear strengthening of diffusion at large densities of foragers and exploiters, or also
logistic-type growth restrictions, has been found to ensure global existence of solutions within
various concepts of solvability also in higher-dimensional domains (Refs. 124–132). Solutions are
known to stabilize to semitrivial homogeneous equilibria, both in the one-dimensional version
(CC8) and in some of its modified variants in higher-dimensional cases, if adequate assumptions
are imposed either on smallness of the initial data or 𝑟, or on strength of the respective relaxation
mechanisms (Refs. 122, 123, 133–136).

5 CAN CHEMOTAXIS-CONSUMPTIONMODELS SUPPORT
SPATIAL STRUCTURES?

In each of the results on large-time behavior reported above, the respective dynamics were deter-
mined by convergence to homogeneous states. In the context of the models (CC1)–(CC5), this
may be viewed as confirming the naive guess that in the long-term limit, all nutrients should
be consumed and hence any taxis gradient asymptotically disappear; in fact, also in the com-
plex settings of (CC7) and (CC8) all the mentioned results on stabilization have been derived
under assumptions leading to essentially similar situations. This final section attempts to describe
some developments which at their core aim at indicating that despite this homogenizing role
played by consumption, nevertheless some emergence and stabilization of spatial structures can
be supported.

5.1 Effects of nonhomogeneous boundary conditions

Our first focus in this regard will be on possible influences of boundaries; indeed, already in the
experimental framework underlying the introduction of the simple model (CC1), some nontrivial
effects related to nutrient balancing at boundaries have been pointed out (Refs. 8, 9). In fact, a
corresponding consideration on refined modeling near boundaries (Refs. 137–139) suggests the
variant of (CC1) given by

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = Δ𝑢 − ∇ ⋅ (𝑢∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢𝑣 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑢

𝜕𝜈
= 0,

𝜕𝑣

𝜕𝜈
= 𝛽(𝑥)(𝛾(𝑥) − 𝑣), 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω

(CC9)

as a modification which takes into account these boundary effects in a realistic manner; here, 𝛽
and 𝛾 are given nonnegative functions on Ω. In place of these Robin-type boundary conditions,
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LANKEIT and WINKLER 1219

inhomogeneous Dirichlet conditions, 𝑣|𝜕Ω = 𝛾(𝑥), may be imposed (e.g. Refs. 9, 140), which arise
as limiting case of the former, cf. [Ref. 138, Prop. 5.1].
A treatment along the lines of (2)–(6) meets the difficulty that both in (3) and in (5) boundary

integrals appear which no longer can be immediately estimated.
As an observation of major importance for the development of a basic solvability, the authors

in Ref. 139 incorporated a boundary contribution into the functional and derived a quasi-energy
inequality of the form

 ′
4
(𝑡) + 𝑎4(𝑡) ≤ 𝑏 for all 𝑡 > 0,

where with some 𝐿 > 0,

4(𝑡) ∶= ∫
Ω

𝑢 ln 𝑢 +
1

2 ∫
Ω

|∇𝑣|2
𝑣

+ ∫
𝜕Ω

𝛽(𝑥) ⋅
{
𝛾(𝑥) ln

𝛾(𝑥)

𝑣
− 𝛾(𝑥) + 𝑣

}
+𝐿 ∫

Ω

{
𝑣 ln

𝑣

𝛾(𝑥)
− 𝑣 + 𝛾(𝑥)

}
, 𝑡 ≥ 0. (49)

Accordingly obtained a priori estimates led to the following analog of the solvability statement in
Theorem 1.

Theorem 18 Ref. 139. Let Ω ⊂ ℝ2 be a bounded domain with smooth boundary, let 𝛽 ∈ 𝐶1(Ω)

and 𝛾 ∈ 𝐶1(Ω) be positive, and suppose that (8) holds. Then there exists a global classical solu-
tion of (CC9), uniquely determined through (9), such that 𝑢 ≥ 0 and 𝑣 > 0 in Ω× (0,∞), and that
sup𝑡>0 ‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) < ∞.

Weremarkhere that in three- andhigher-dimensional domains, a corresponding counterpart of
Theorem 2 can be derived on the basis (41) and a straightforward adaptation of the argument from
Theorem 2; for the particular case 𝑛 = 3, this can be found detailed in Ref. 139. A result on global
solvability in a parabolic–elliptic of (CC9) involving tensor-valued sensitivities has recently been
achieved in Ref. 141 by means of an interesting method suitably decomposing the spatial domain.
In Ref. 142, a localized energy functional (cutting off the functions near the boundary) served

as key ingredient in the construction of global generalized solutions to the Dirichlet variant of the
system, whereas Ref. 143 relied on the de facto one-dimensionality of said problem in a radially
symmetric setting in order to derive sufficient bounds on the integrands in the boundary terms.
Nowwith respect to the large-time behavior, it is quite evident from (CC9) that for any choice of

positive 𝛽 and 𝛾, no solution can exhibit a behavior similar to that in (10); indeed, any stabilization
toward a limit function 𝑣∞ in the second component should require 𝑣∞ to be nonconstant. In
the case when 𝛾 is constant, a more thorough description of the set of equilibria can be given as
follows.

Theorem 19 Ref. 138. Let 𝑛 ≥ 1 andΩ ⊂ ℝ𝑛 be a bounded domain with smooth boundary, and let
𝛽 ∈

⋃
𝜃>0

𝐶1+𝜃(Ω) and 𝛾 ∈ (0,∞). Then for any𝑀 > 0 there is exactly one pair (𝑢, 𝑣) ∈ (𝐶1(Ω) ∩

𝐶2(Ω))2 such that ∫
Ω
𝑢 = 𝑀, and thatΩ× [0,∞) ∋ (𝑥, 𝑡) ↦ (𝑢(𝑥), 𝑣(𝑥)) forms a classical solution

of the boundary-value problem in (CC9). This solution satisfies 𝑢 > 0 and 𝑣 > 0 inΩ as well as

𝑢 ≢ 𝑐𝑜𝑛𝑠𝑡. and 𝑣 ≢ 𝑐𝑜𝑛𝑠𝑡.
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1220 LANKEIT and WINKLER

Corresponding results for (CC9) with Dirichlet condition can be found in Refs. 143 and 144,
the latter of which is concerned with the formation of boundary layers in the limit of vanishing
diffusion of 𝑣.
An interesting open problem now consists in establishing a link between solutions of the

parabolic problem (CC9) and the steady states just characterized; in view of the uniqueness state-
ment in Theorem 19 it may be conjectured that 𝜔-limit sets at least of smooth trajectories should
consist exclusively of such equilibria at the respective mass level. A rigorous confirmation of this
has recently been achieved for certain small-data solutions to a parabolic–elliptic variant of (CC9)
(Ref. 145). For some further system variants closely related to (CC9), results on global solvability
were obtained in Refs. 107, 146–151, and corresponding steady-state analysis can be found in Refs.
152, 153.
Two recent examples of quasilinear variants of (CC9) involving nonhomogeneous Dirich-

let boundary conditions and an elliptic equation for 𝑣 show that the combination of signal
consumption with repulsive chemotaxis may even lead to finite-time blowup (Refs. 154, 155).

5.2 The role of cross-degeneracies in structure formation

In situations when significant parts of structure formation are expected to occur in the interior
of a spatial domain, model modifications merely concentrating on alternative boundary condi-
tions may be insufficient; striking experimental findings on fractal-like patterning in populations
of Bacillus subtilis suspended to nutrient-poor agars form particularly simple but convincing
examples (Refs. 156, 157). A recent modeling approach proposes systems of the form

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = ∇ ⋅ (𝑢𝑣∇𝑢) − ∇ ⋅ (𝑢2𝑣∇𝑣), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢𝑣 𝑥 ∈ Ω, 𝑡 > 0,

(𝑢𝑣∇𝑢 − 𝑢2𝑣∇𝑣) ⋅ 𝜈 = ∇𝑣 ⋅ 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω

(CC10)

for the description of such phenomena (Ref. 158), where a key novelty consists in the introduction
of the factor 𝑣 not only to the cross-diffusion term, but especially also to the part related to random
diffusion of cells. The reduction of motility thereby accounted for seems in good accordance with
experimentally gained knowledge on bacterial migration in nutrient-poor environments; how-
ever, the consequences for the mathematical properties of the resulting evolution system appear
to be rather drastic. In fact, the cross-degeneracy of diffusion thereby induced does not only go
along with an apparent loss of favorable parabolic smoothing features, but it seems to bring about
new qualitative features which let spatial structures seem to become an essential core, rather than
an exception:

Theorem 20 Refs. 159, 160. LetΩ ⊂ ℝ be a bounded open interval, and assume that 𝑢0 ∈ 𝑊1,∞(Ω)

is nonnegative with 𝑢0 ≢ 0.

(i) Whenever 𝑣0 ∈ 𝑊1,∞(Ω) is positive inΩ, there exist functions{
𝑢 ∈ 𝐶0(Ω × [0,∞)) ∩ 𝐿∞(Ω × (0,∞)) and

𝑣 ∈ 𝐶0(Ω × [0,∞)) ∩ 𝐶2,1(Ω × (0,∞)),
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LANKEIT and WINKLER 1221

such that

𝑢2𝑣 and 𝑢2𝑣𝑥 belong to ∈ 𝐿1
𝑙𝑜𝑐

(Ω × [0,∞)),

that 𝑢 ≥ 0 and 𝑣 > 0 inΩ× (0,∞), and that (CC10) is solved in the sense that (14) holds for all
𝜑 ∈ 𝐶∞

0
(Ω × [0,∞)), and that

−∫
∞

0
∫
Ω

𝑢𝜑𝑡 − ∫
Ω

𝑢0𝜑(⋅, 0) =
1

2 ∫
∞

0
∫
Ω

𝑢2𝑣𝑥𝜑𝑥 +
1

2 ∫
∞

0
∫
Ω

𝑢2𝑣𝜑𝑥𝑥 + ∫
∞

0
∫
Ω

𝑢2𝑣𝑣𝑥𝜑𝑥

for all 𝜑 ∈ 𝐶∞
0
(Ω × [0,∞)) fulfilling 𝜑𝑥 = 0 on 𝜕Ω × (0,∞). Moreover, there exists 𝑢∞ ∈ 𝐶0(Ω)

such that

𝑢(⋅, 𝑡) → 𝑢∞ in 𝐿∞(Ω) and 𝑣(⋅, 𝑡) → 0 in 𝐿∞(Ω) as 𝑡 → ∞. (50)

(ii) There exist 𝜃 > 0 and 𝛿 > 0 such that if 0 < 𝑣0 ∈ 𝑊1,∞(Ω) with

‖𝑣𝜃
0
‖𝑊1,∞(Ω) ≤ 𝛿, (51)

then in (50) we have

𝑢∞ ≢ 𝑐𝑜𝑛𝑠𝑡. (52)

We remark that beyond this result on potentially nontrivial stabilization, the cross-degeneracy
in (CC10) also facilitates a stability property that apparently is not frequently seen in contexts
of parabolic problems. Namely, it is evident that for arbitrary suitably regular 𝑢⋆ ∶ Ω → [0,∞),
the pair (𝑢⋆, 0) formally constitutes a steady-state solution of (CC10); it can now be shown that
within suitable topologies, any of these equilibria is stable in the classical flavor: Trajectories ema-
nating from initial data nearby remain close throughout evolution (Ref. 160). In this sense, the
cross-degeneracy in diffusion does not only bring about nontrivial asymptotics as in (50)–(52),
but also entails stabilization of arbitrary structures in nutrient-poor settings for which (CC10) has
been designed.
In higher-dimensional domains, up to now only certain small-signal solutions of (CC10)

have been shown to exist globally (Ref. 161); for initial data of arbitrary size, two results
on global solvability in two- and three-dimensional settings have recently been derived for a
variant of (CC10) involving some appropriate saturation of taxis at large population densities
(Ref. 162).
Similar effects of such cross-degeneracies could recently be detected to occur also in the model

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = Δ(𝑢𝜙(𝑣)), 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = Δ𝑣 − 𝑢𝑣 𝑥 ∈ Ω, 𝑡 > 0,

∇(𝑢𝜙(𝑣)) ⋅ 𝜈 = ∇𝑣 ⋅ 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω

(CC11)
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1222 LANKEIT and WINKLER

for microbial motion influenced by certain local sensing mechanisms (Refs. 163, 164). Indeed,
while solutions behave essentially as described in (10) when here the key ingredient 𝜙 is suffi-
ciently regular and strictly positive on [0,∞) (Refs. 165, 166; see also Refs. 167, 168 for precedent
existence results, and Refs. 169–173 for findings on some close relatives), a statement similar to
those in (50)–(52) holds when 𝜙 gives rise to a cross-degeneracy by satisfying 𝜙(𝑠) ≃ 𝑠 near 𝑠 = 0

in a suitable sense (Ref. 174). Another local sensing mechanism forms the basis of the system

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = ∇ ⋅
(
1

𝑣
∇
(
𝑢

𝑣

))
, 𝑥 ∈ Ω, 𝑡 > 0,

𝑣𝑡 = 𝜂Δ𝑣 − 𝑢𝑣, 𝑥 ∈ Ω, 𝑡 > 0,

∇(𝑢𝜙(𝑣)) ⋅ 𝜈 = ∇𝑣 ⋅ 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω,

(CC12)

which stems from a random walk where steps have constant length if distance is measured
with respect to the “food-metric” (Ref. 175). For (CC12) (with 𝜂 = 0 or 𝜂 ≥ 0) in one-dimensional
domains, traveling waves (Ref. 175), global existence (Refs. 176, 177) and first results indicating
structure formation were found.178
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