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Abstract: Among the exciting recent advances in the field of carbon-based nanomaterials, the suc-
cessful realization of a carbon nanoribbon composed of 4–5–6–8-membered rings (ACS Nano 2023 17,
8717) is a particularly inspiring accomplishment. In this communication motivated by the aforemen-
tioned achievement, we performed density functional theory calculations to explore the structural,
electronic and mechanical properties of the pristine 4–5–6–8-membered carbon nanoribbons. More-
over, we also constructed four different nitrogen-terminated nanoribbons and analyzed their resulting
physical properties. The acquired results confirm that the pristine and nitrogen-terminated nanorib-
bons are are thermally stable direct-gap semiconductors, with very close HSE06 band gaps between
1.12 and 1.25 eV. The elastic modulus and tensile strength of the nitrogen-free 4–5–6–8-membered
nanoribbon are estimated to be remarkably high, 534 and 41 GPa, respectively. It is shown that nitro-
gen termination can result in noticeable declines in the tensile strength and elastic modulus to 473 and
33 GPa, respectively. This study provides useful information on the structural, thermal stability, elec-
tronic and mechanical properties of the pristine and nitrogen-terminated 4–5–6–8-membered carbon
nanoribbons and suggests them as strong direct-gap semiconductors for electronics, optoelectronics
and energy storage systems.

Keywords: carbon nanoribbons; density functional theory; semiconductor; mechanical

1. Introduction

Carbon, owing to its exceptional physics and chemistry, can appear in a wide range of
allotropes, spanning from zero to three-dimensional lattices, including zero-dimensional
fullerenes [1] and carbyne, one-dimensional (1D) carbon nanotubes, two-dimensional (2D)
graphene [2–4], graphyne and graphdiyne [5] and three-dimensional graphite and diamond.
Over time, different carbon allotropes have been discovered, each displaying fascinating
properties with potential applications in numerous fields. Among various carbon structures,
graphene [2–4], the so-called wonder material, has received significant attention due to its
unique electronic, mechanical, thermal and optical characteristics. However, the lack of a
finite electronic bandgap restricts the usefulness of graphene nanosheets in electronic and
optoelectronic nanodevices. One effective approach to adjusting the bandgap of graphene
involves modifying its topology and altering the original hexagonal rings with tetragonal,
pentagonal, heptagonal and octagonal rings. Theoretical calculations have confirmed that
2D carbon structures with non-hexagonal carbon rings can show diverse electronic prop-
erties, from metallic to semimetallic and semiconducting behaviors [6–15]. Nonetheless,
due to being metastable, the experimental realization of large-area planar carbon lattices
with non-hexagonal rings is challenging and consequently involves employing chemical
reaction processes. In an outstanding recent breakthrough by Fan et al. [6], a two-step poly-
merization method was devised utilizing a gold catalyst which could successfully produce
a biphenylene 2D network, a full-carbon lattice made entirely from 4–6–8-membered rings.
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In the latest advancement, Kang and coworkers [16] carried out face-to-face dehydro-
genative reactions of polyfluorene chains, triggering on-surface lateral fusion, and subse-
quently realized for the first time a carbon nanoribbon composed of 4–5–6–8-membered
rings which shows a semiconducting electronic bandgap of ~1.4 eV. In recent years, 2D lat-
tices consisting of covalently bonded carbon and nitrogen atoms have attracted remarkable
attention because of their exceptional physics and chemistry. Among them, several lattices
have been successfully realized, such as s- and tri-triazine-based graphitic carbon nitride
g-C3N4 [17], nanoporous C2N [18], all-triazine C3N3 [19], polyaniline-based C3N [20], and
s-heptazine C3N5 [21], which all show semiconducting electronic natures. Taking into
account the exceptional ability of nitrogen and carbon atoms to form strong covalent inter-
actions, there exists also the possibility of realizing nitrogen-terminated 4–5–6–8-membered
carbon nanoribbons. In particular, it is already well known that nitrogen-doped carbon-
based structures can show superior performances in energy storage applications [22]. On
this basis, inspired by the latest experimental achievement by Kang et al. [16], we per-
formed density functional theory (DFT) calculations to explore the structural, thermal
stability, electronic and mechanical properties of the pristine and nitrogen-terminated
4–5–6–8-membered carbon nanoribbons [23–29]. The theoretical results confirm the remark-
ably high elastic moduli, tensile strengths and direct-gap semiconducting natures of these
novel carbon-based 1D systems, which are highly attractive for further theoretical and
experimental endeavors.

2. Computational Methods

The Vienna ab initio simulation package (VASP) [30,31] was used to perform the DFT
calculations via employing the Perdew–Burke–Ernzerhof (PBE) and generalized gradient
approximation (GGA) methods along with Grimme’s DFT-D3 [32] van der Waals (vdW)
dispersion correction and a kinetic energy cutoff of 500 eV. Optimizations of both the lattice
parameters and atomic positions were conducted via the conjugate gradient method, using
a 3 × 1 × 1 Monkhorst–Pack [33] k-point grid with energy and force convergence criteria of
10−5 eV and 0.01 eV/Å, respectively. To prevent vdW interactions along the nanoribbons’
thicknesses and widths, we adopted 16 and 25 Å sizes along the corresponding directions
of the 3D periodic cells. Since the ordinary PBE/GGA tends to underestimate the electronic
gap, the HSE06 [34] hybrid functional was employed to acquire more accurate predictions.

3. Results and Discussions

We first investigate the structural characteristics of the pristine and nitrogen-terminated
4–5–6–8-membered carbon nanoribbons, which are illustrated in Figure 1. Figure 1a shows
the atomic structure of the pristine C52 (C52H16) lattice in which the CH groups on the
boundary can be replaced with various atoms like N and O and form different synthesizable
configurations. In this work, we replaced the 4, 8, and 12 CH groups with nitrogen atoms
in order to explore the nitrogen termination effects. It is worth noting that in order to avoid
the formation of N-N bonds, we did not consider the replacement of all CH groups in these
systems. For the case of termination with four nitrogen atoms, we considered two different
configurations: C48N4-1 and C48N4-2. According to our energy minimization results, the
sizes of the unitcells along the longitudinal direction for the C52, C48N4-1, C48N4-2, C44N8,
and C40N12 are predicted to be 16.391, 16.193, 16.225, 16.014, and 15.919 Å, respectively.
It is clear that by increasing the content of nitrogen atoms, the structures shrink slightly.
From basic physics, it is known that the regions with the weakest bonding can dominate
the transport properties. In these systems, two symmetrical C-C bonds in the center of the
large interior nanopore clearly play critical roles in the transport properties. The lengths
of these critical bonds for the C52, C48N4-1, C48N4-2, C44N8, and C40N12 are measured to
be 1.484, 1.494, 1.483, 1.491, and 1.482 Å, respectively. For the convenience of oncoming
studies, geometry-optimized lattices are included in the Supplementary Materials.
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Figure 1. Top views for the atomic structures of the C52 (a), C48N4-1 (b), C48N4-2 (c), C44N8 (d), and
C40N12 (e) nanoribbons. The green, yellow, and blue colors highlight the 4-, 5-, and 8-membered
rings, respectively.

To examine the thermal stability of the C52, C48N4-1, C44N8, and C40N12 lattices, we
conducted ab initio molecular dynamics (AIMD) simulations at 1000 K with a time step of
1 fs for around 9000 time steps, using a 2 × 1 × 1 K-point grid. The results for the evolution
of the systems’ total energies, shown in Figure 2, reveal complete structural and energetic
stability and consequently confirm that these systems exhibit robust flexibility and could
stay completely intact at a relatively high temperature, demonstrating their remarkable
thermal stability.
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Figure 2. Fluctuations in the total energy during the AIMD simulations at 1000 K. Insets show the
top and side views of the final atomic configurations at the end of the AIMD simulations.

Having analyzed the structural characteristics of the pristine and nitrogen-terminated
4–5–6–8-membered carbon nanoribbons, we now shift our attention to the analysis of their
electronic features. The electronic band structures of the considered systems are illustrated
in Figure 3 on the basis of the PBE/GGA and HSE06 methods. As an interesting preliminary
finding with both functionals, all studied systems show direct-gap semiconducting natures
occurring at the Γ point. The PBE(HSE06) electronic band gap of the C52, C48N4-1, C48N4-2,
C44N8, and C40N12 are predicted to be 0.59 (1.12), 0.59 (1.12), 0.65 (1.18), 0.64 (1.19), and
0.69 (1.25) eV, respectively. It is clear that the incorporation of nitrogen atoms into these
lattices shows marginal effects in the widening of the band gap. The estimated band
gap of 1.12 eV for the C52 system is nonetheless shorter than the value of 1.4 eV [16]
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that was measured experimentally, which can be either attributed to the substrate effects
or the necessity of considering excitonic effects using the advanced GW [35] functional
in the calculations.
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energy is set at zero.

Last but not least, we now investigate the mechanical properties of the pristine and
nitrogen-terminated 4–5–6–8-membered carbon nanoribbons, which could be also examined
using the machine learning interatomic potentials [36–40]. In order to report the mechanical
properties in the illustrative GPa unit, we assumed the fixed thickness and width of 3.35
and 11.75 Å, respectively, for these nanoribbons according to the vdW dimeter of carbon
atoms. According to the stress–strain curves shown in Figure 4, the tensile strengths of
the C52, C48N4-1, C48N4-2, C44N8, and C40N12 are predicted to be 40.8, 33.3, 40.8, 33.5, and
34.3 GPa, respectively. It is very interesting that the tensile strengths of the C52 and C48N4-2
and the C48N4-1C44N8 and C40N12 are very close, clearly revealing that the tensile strengths
of these 1D systems do not show strong dependencies on the content of nitrogen atoms but
on the location of nitrogen termination. As expected, and as also realized from the structural
data in Figure 4, the ruptures in these lattices always occur between the two symmetrical
C-C bonds in the center of the large interior nanopore. It was found that when the carbon
atoms are bonded with a single nitrogen atom, as in the C48N4-1 and C44N8 lattices, the
connecting C-C bonds show larger lengths, which naturally induces a weakening effect. It
can be concluded that if one of the carbon atoms in the aforementioned bonds is connected
with nitrogen atoms, the tensile strength drops from around 41 to 33 GPa; otherwise, the
tensile strength is not noticeably affected. The elastic moduli of the C52, C48N4-1, C48N4-2,
C44N8, and C40N12 systems are predicted to be 534, 500, 510, 473, and 493 GPa, respectively.
It is clear that the elastic values are close for different contents of nitrogen atoms, and a clear
trend cannot be established. The presented DFT results clearly show the remarkably high
mechanical properties of these novel carbon-based 1D systems.
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4. Concluding Remarks

In this communication, density functional theory calculations were performed to
explore the structural, thermal stability, electronic and mechanical properties of the pristine
and nitrogen terminated 4–5–6–8-membered carbon nanoribbons. Molecular dynamics re-
sults confirm outstanding thermal stability of the considered nanoribbons. It was confirmed
that the pristine and nitrogen-terminated nanoribbons are direct-gap semiconductors at
the Γ point, with very close HSE06 band gaps between 1.12 and 1.25 eV. It is shown that
the two symmetrical C-C bonds in the center of the large interior nanopore dominate the
mechanical strength in these systems. It is found that if one of the carbon atoms in the
aforementioned bonds is connected with nitrogen atoms, the tensile strength becomes
around 33 GPa; otherwise, it remains around 40 GPa, close to that of the pristine lattice. The
elastic modulus was found to vary between 534 and 473 GPa, depending on the location of
the nitrogen atoms’ termination. The DFT results confirm the outstanding thermal stability
and mechanical properties and the highly appealing electronic features of these novel
4–5–6–8-membered carbon-based nanoribbons, motivating more elaborate investigations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcs7070269/s1, atomic structures of the energy-minimized lattices.
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Supplementary Materials. Additional data presented in this study are also available upon request
from the corresponding author.

Acknowledgments: The author is greatly thankful to the VEGAS cluster team at Bauhaus University
of Weimar for providing the computational resources.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Ge, M.; Sattler, K. Observation of fullerene cones. Chem. Phys. Lett. 1994, 220, 192–196. [CrossRef]
2. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in

atomically thin carbon films. Science 2004, 306, 666–669. [CrossRef]
3. Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [CrossRef] [PubMed]
4. Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys.

2009, 81, 109–162. [CrossRef]
5. Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[CrossRef]
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