
Pose Optimization of Task-Redundant Robots in
Second-Order Rest-to-Rest Motion with Cascaded
Dynamic Programming and Nullspace Projection

Moritz Schappler1[0000−0001−7952−7363]

Leibniz University Hannover, Institute of Mechatronic Systems,
An der Universität 1, 30823 Garbsen, Germany
moritz.schappler@imes.uni-hannover.de

Abstract. An optimal trajectory for the redundant coordinate for robots
in tasks with rotational symmetry such as machining has to be found to
ensure good performance and overall feasibility. Due to high nonlinearity
of performance criteria especially for parallel robots a sole local optimiza-
tion may lead to infeasible solutions for large-scale motion. A pointing
task consisting of multiple rest-to-rest trajectories with given dense sam-
ple times is regarded as given. Constraints regarding system limits on
position, velocity and acceleration have to be met. The proposed algo-
rithm combines nullspace projection for local optimization between the
rest poses with dynamic programming at the rest poses in a cascaded
scheme to optimize the rotation around the tool axis. Applications to
other types of redundancy are also possible. The proposed local/global
optimization scheme only needs wide discretization of the redundant co-
ordinate and therefore has acceptable computational performance for
offline optimization of robot motion. It is able to find feasible and near-
optimal trajectories for a six-degree-of-freedom (DoF) parallel robot in
several exemplary five-DoF tractories with many constraints.

Keywords: Robot manipulator · Task redundancy · Inverse kinematics
· Trajectory optimization · Dynamic programming · Nullspace projection

1 Introduction and State of the Art

Resolution of kinematic redundancy is a persistent topic in robotics research.
Task redundancy or functional redundancy is a special case if the task requires
less DoF than are controlled by the end effector in it’s operational space regard-
less of the dimension of the joint space. It is explicitly relevant for (fully) parallel
robots where not the joint space as for serial robots, but the operational space
of the moving platform is the essential structural kinematic characteristic. The
focus on the following discussion of related work and of the paper’s examples
is therefore put on parallel robots. However, the proposed approach of this pa-
per is not restricted to task redundancy or parallel robots and can be directly
transferred to serial robots with one DoF of redundancy.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

2 M. Schappler.

1.1 State of the Art and Related Work

Kinematic redundancy can be distinct in intrinsic redundancy, (e.g. 7-DoF serial
robots in 6-DoF tasks), and task redundancy, as e.g. for 6-DoF robots in 5-DoF
tasks. The degree of intrinsic [task] redundancy is the excess of dimension of
the joint space [operational space] over the task space. A formal definition of
redundancy is given in [29, 11, 15] for serial robots and in [8] for parallel robots.

Applications for task redundancy are mainly tasks with rotational symmetry
of the tool or the process in general. Machining tasks using serial robots are
discussed for milling in [34, 18, 19] or for drilling in [35]. Other examples using
serial robots are arc welding [11] and fiber placement for composite materials
[5]. The main difference of these tasks from a kinematic point of view is that
milling tasks (and arc welding) usually require redundancy optimization for a
continuous trajectory (which is also the focus of this paper) and drilling (or
spot welding) only requires an optimization for approaching the pointing pose.
Examples for parallel robots’ task redundancy with more than one redundant
DoF are end milling [30] or milling with a spherical cutter [32], where all three
rotational coordinates can be subject to optimization.

The objective of exploiting the redundancy is for once to improve feasibil-
ity by avoiding joint limits [11, 35] or singularities. Obstacle collision avoidance
can be implemented by minimizing corresponding potential functions [21, 10, 4].
Singularity avoidance can be implemented as an optimization objective e.g. by
– the joint space distance to the first joint configuration that violates a pa-

rameter of singularity [11],
– the squared condition number of the robot Jacobian [35, 15, 2],
– the condition number of the parallel robot forward kinematics Jacobian [7],
– a fraction containing all singular values of the Jacobian [26],
– the Jacobian’s determinant [1]
– directly using the Jacobian’s condition number [28].

The homogenized pose error can be minimized as a measure for accuracy as well
as singularities [12], Other optimization criteria may be rather specific such as
milling process stability [19]. In general, any optimization criterion dependent
on the robot configuration can be used, with certain restrictions to continuous
differentiability depending on the optimization method.

The potential function of the optimization objective can be visualized well
over a trajectory for the case of redundancy of degree one. This performance
(criterion) map was introduced by Wenger for serial robots and parallel robots,
as summarized in [25], there termed “feasibility map”. This map is especially
useful for visual inspection in the case of large-scale motion relative to the robot
workspace size. An exemplary map is given Fig. 1 for a hexapod robot with re-
dundant orientation coordinate ϕz, which may be the irrelevant rotation around
a tool axis. The map was e.g. used in [25] to create cycloidic trajectories directly
in the performance map to plan changes between the 23 working modes (elbow
configurations) of a planar parallel robot. A “robot transmission ratio map” was
used in [34] to optimize the trajectory for a six-axis serial robot in a milling task.
Maps called “state space grids” were used in [4] for a seven-DoF serial robot in

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 3

norm. trajectory progress s

re
du

nd
an

t
co
or
di
na

te
(ϕ

z
) (a) performance map (b) hexapod parallel robot

trajectory
s=0...7

ϕz

prismatic
joint

universal
joint

spherical
jointmoving

platform

self

singularity trajec-

good bad

collision

tories leg

fixed base

Fig. 1. Exemplary surface map of a performance criterion (a) for a parallel robot (b)

six-DoF tasks. The maps for the 23 extended aspects (e.g. base, elbow and hand
configurations) were created for one joint angle as the redundancy parameter.

For two degrees of redundancy the heatmap visualisation for the trajectory
is not possible any more and a two-dimensional map can be given for single
poses of the robot. This has been shown for seven-DoF robots in five-DoF tasks
such as medical laser operations [27] or by using an additional rotary table for
an industrial robot in five-DoF milling tasks [18]. The performance map is then
build by discretization of one joint axis and the end effector rotation.

Different geometric methods for redundancy resolution are available, mainly
with the goal to separate the kinematic formulation into task and redundant
coordinates for the subsequent optimization. A non-exhaustive list comprises
– task space orthogonal decomposition [15, 2] and twist decomposition [11],
– separation of joint coordinates in redundant and non-redundant on position

level for serial [23] and parallel [16] robots or on velocity level [24],
– giving a parametric form of the dynamics equation with the redundant end

effector coordinate [22],
– expressing the end effector angular velocity in the local frame and removing

the last component corresponding to the redundant coordinate [36, 24] (for
serial robots), trivial for the planar case [1] (e.g. for a planar parallel robot),

– formulating the inverse kinematics on position level and exploiting nonlinear
orientation to eliminate the redundant task space coordinate by using a
Z-Y -X Tait-Bryan-angle residual [28] (for position level and higher order).
For online optimization and fast offline planning nullspace projection is the

most efficient optimization algorithm for the differential inverse kinematics. It
is the basis for many works on serial robots using locally optimal redundancy
resolution [21, 3, 11, 36, 24, 14]. Due to more sophisticated modeling, nullspace
projection is more scarce in parallel robot inverse kinematics literature. The
method is used mainly for kinematic redundancy [26] and a review on “redun-
dancy in parallel mechanisms” [8] does not mention the case of task redundancy
at all. It is introduced e.g. in [1] for the trajectory of a planar parallel robot and
in the author’s previous work [28] generally for spatial (fully) parallel robots.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

4 M. Schappler.

Most formulations presented above are on velocity level (first order) which
hinders trajectory optimization using acceleration and actuator force constraints
like in [26], which can be avoided by an acceleration-level (second-order) formu-
lation. Using only proportional feedback of the optimization objective potential
there as in [21, 1] may lead to unwanted oscillations, which might be encountered
by a PD feedback [3, 28] or an analytic derivative of the nullspace projection [24].

Other approaches than nullspace projection for trajectory redundancy opti-
mization can be chosen from various existing optimization algorithms such as
– SQP [15] (for an industrial robot, without input or state constraints),
– the Simplex algorithm and quadratic programming [22] (hexapod example),
– discrete optimization of a redundant coordinate at rest poses of a kinemati-

cally redundant planar parallel robot [12],
– interval analysis [16] (at the example of a hexapod robot),
– (binary) small-angle perturbation [6] of the redundant coordinate of a task-

redundant planar parallel robot.
– bracketing and bisection, Brent-Dekker method [35],
– genetic algorithms (GA) [30] (for three redundant coordinates of a hexapod).
While apart from the heuristic GA, the aforementioned algorithms also are

only locally optimal like nullspace projection, dynamic programming (DP) is a
deterministic global optimization algorithm. It is based on discretization of the
optimization variable (redundant coordinate) on discrete stages (time steps).
Examples for using dynamic programming in robotics are
– optimizing the time evolution of a given trajectory [31] as an early work,
– using Pontryagin’s maximum principle for kinematic redundancy [20],
– investigation of Pareto optimality for multiple objectives for pose optimiza-

tion of a seven-DoF serial robot [9],
– position-level optimization of two redundant DoF of a seven-DoF robot [27],
– wide and fine discretization of redundant joint coordinates in a static pose

optimization of an industrial robot with an additional positioner [5].
For continuous trajectory optimization the method of differential dynamic

programming (DDP) is advantageous. An overview and an elaboration on using
the method on problems consisting of multiple phases is given in [13]. Each rest-
to-rest motion can be considered as such a phase and each time step as a stage.
Several works have used DDP in robotics, such as
– motion planning of a humanoid robot and a contribution regarding imple-

menting box constraints in DDP [33],
– a constraint approach by an augmented Lagrangian validated at an example

of reaching a target position with a seven-DoF arm [10],
– an application of DDP to task-redundant parallel robots [26] in combination

with nullspace projection on velocity level.

1.2 Summary of the State of the Art and Scenario of the Paper

The main requirements on the trajectory optimization algorithm developed in
this paper are motivated by machining tasks and other processes, where task
redundancy of degree one exists and the desired task space trajectory of the

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 5

end effector is given, including the time profile. The task is considered to con-
sist of connected second-order rest-to-rest trajectories e.g. from G-code in CNC
machining, which ensures a continuous velocity profile. Extending the resting
condition also to the nullspace motion has the potential to reduce oscillations
and to decouple the optimization. A feasible and desirably optimal trajectory for
the redundant coordinate has to be found. A kinematic formulation is sufficient
but can be extended by dynamics constraints regarding actuator force limits.

For the sake of simplicity, the reconfiguration of the robot between working
modes is out of scope of this paper assuming a trajectory that can be performed
only with one working mode. One reason is that distinct reconfiguration mo-
tion [12] reduces productive times of the machine. Reconfiguration during robot
motion as discussed in [25] for parallel robots requires flipping the elbow con-
figuration of a passive joint, which might not be possible to detect by sensors.
Further, this motion leads through kinematic singularities, which can have un-
wanted side-effects. Additionally, the complete discretization of a performance
map for all working modes of the robot is necessary for each task space tra-
jectory. Ideally, the computation of the performance map is no requirement for
obtaining the full trajectory and is only used for optional visualization.

As stated in [13], usually DDP approaches consider only one phase, i.e. one
robot rest-to-rest motion. Combining rest-to-rest trajectories presents a special
case regarding optimization, which has high practical relevance. DDP requires
computing the variational formulation of the optimization problem with Jaco-
bian and eventually Hessian w.r.t. input and state variables. This can be omitted
by using just local optimization which requires only robot Jacobians and gra-
dients of their performance criteria which are easy to obtain. Performing an
unknown number of iterations of forward and backward passes in DDP can be
avoided by using DP. In summary a trajectory optimization algorithm below
the complexity of DDP for the envisioned use case scenario would increase robot
performance in the given task.

1.3 Contribution of the Paper

The optimization of multiple rest-to-rest (i.e. multi-phase) trajectories can be
solved by connecting the local optimality of nullspace projection with the global
optimality of dynamic programming. This allows to use the local nullspace projec-
tion scheme for the optimization of the redundant coordinate between rest poses
in a fine sampling time with continuous states. The approximation of global op-
timality of the trajectory is achieved with dynamic programming of the same
optimization variable at rest poses based on the actual obtained coordinates
from the local optimization. Thereby an extension to dynamic programming is
proposed such that state values of the optimization variable are not given as
discrete values, but as an interval determined by the final value of the nullspace
projection. The performance of this approximation depends on the quality of
the local optimization and the underlying assumption of limited changes of the
feasibility map during one phase.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

6 M. Schappler.

The contributions of the paper therefore are in summary
– a cascaded scheme of dynamic programming and nullspace optimization,
– an extension to dynamic programming regarding interval optimization,
– the application of the scheme on second-order rest-to-rest robot motion,
– the extension of the second-order nullspace projection inverse kinematics

approach presented in [28] to support the cascaded dynamic programming.
The problem from the author’s preceding conference paper [28] is solved globally
using the new dynamic programming scheme. The remainder of the paper is
structured as follows. The problem description in the sense of optimization is
presented in Sect. 2. The nullspace optimization scheme for the robot from [28] is
revised and extended in Sect. 3. Finally, the methods are combined for trajectory
optimization in Sect. 4 with simulation results shown in Sect. 5.

2 Problem Description: Task Redundancy Optimization

A robot manipulator, either serial or parallel, is able to create motion with
it’s end effector in the operational space. The corresponding end effector pose
variable is denoted as xE=(rx, ry, rz, ϕx, ϕy, ϕz)

T and contains position r and
orientation ϕ. The latter is expressed with the X-Y ′-Z ′′ Cardan angles such that
the end effector’s rotation matrix is formed as 0RE(x)=Rx(ϕx)Ry(ϕy)Rz(ϕz).
The benefit of this selection is, as elaborated in [28], that rotation around the
zE axis – by definition the tool axis – of the end effector corresponds to the last
coordinate ϕz. This coordinate does not influence tasks with five DoF and can
therefore be eliminated in their task space coordinates yE=(rx, ry, rz, ϕx, ϕy)T.

The desired task trajectory is given as a time series of partial poses, i.e.
yE(t), which is sampled discretely as yE(tk) with N + 1 samples. An at least
two times continuous differentiability of the position profile (preferably an S-
curve) is required, therefore also ẏE(t) and ÿE(t) exist. Since the trajectory
consists of multiple (NR) rest-to-rest phases, at rest times tRi

the condition

ẏE(tRk
) = 0 for k = 0, ..., NR (1)

has to hold. Under the assumption of task redundancy, the robot is controlled
in it’s operational space xE and only a continuous one-DoF trajectory ϕz(t) has
to be generated by optimization, since yE(t) is already given.

2.1 Static Formulation of the Optimization Problem

A static formulation of the optimization problem only for the rest poses at
tRk

does not include system dynamics. Therefore the state can be chosen as
xk = ϕz(tRk

) as the redundant coordinate at rest times. The running cost
l(xk) only depends on the current state. The total cost is then defined as
J =

∑NR

k=0 l(xk) and an optimal sequence of states minimizes the total cost
by X∗ = argminX J(X) = {x∗0, x∗1, ..., x∗NR

}. This formulation still ignores the
transition between the states, which can be included as shown next or by the
complete DP formulation of Sect. 4.1.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 7

2.2 Differential Formulation of the Optimization Problem

To incorporate also states between the rest poses, a dynamic formulation can
be used, such as differential dynamic programming [33]. The problem can be
described by a dynamic system xi+1=f(xi, ui), where the state is denoted
by xi=[ϕz(ti), ϕ̇z(ti)]

T and the input by ui=ϕ̈z(ti). The objective is to ob-
tain a trajectory {X,U} of all N samples consisting of the control sequences
U={u0, u1, ..., uN−1} and state sequences X={x0,x1, ...,xN}. The final cost is
defined as lf(xN), the running cost as l(xi, ui) and the total cost is

J(x0,U) =
N∑

i=0

l(xi, ui) + lf(xN). (2)

The optimal sequence U∗ = argminU J(x0,U) minimizes the total cost. For a
rest-to-rest motion additionally the condition

ϕ̇z(tRk
) = 0 for k = 0, ..., NR (3)

is regarded to reduce oscillations and allow pausing the complete trajectory
motion at rest times. This presents a phase constraint between multiple phases
according to [13] and complicates using DDP with classical schemes.

2.3 Hypothesis of the Paper: Decoupling of Problem Phases

It is desirable to decouple the problem of the single rest-to-rest phases to simplify
the overall optimization problem to solve. The decoupling makes it necessary to
avoid using a fine discretization of the state xk at the coupling points (rest times).
Otherwise, the coupled problem of Sect. 2.2 arises. The main requirement for
the decoupling is the coincidence of global cost of the static problem of Sect. 2.1
and local costs of the rest-to-rest-problem of Sect. 2.2 solved differentially. In
other words, the time interdependence of current states and future costs should
be low. By this, locally optimizing the cost also leads to global optimization in
general. To avoid local optima, the static optimization of Sect. 2.1 performs an
adequate exploration at the rest times.

If in the robot example of this paper e.g. a feasible trajectory is the overall
goal (regarding singularity, joint limits and collision avoidance), then this as-
sumption is likely to hold. If the objective is rather a complex relation of the
robot state over a long time horizon, the proposed approach will less likely con-
verge to a global optimum. Exemplarily this can be the case for the minimization
of the energy consumption over the trajectory, as local increases of kinetic or
potential energy may be beneficial depending on later states.

3 Local Optimization: Second-Order Inverse Kinematics

It is assumed that the optimal sequence U∗k from Sect. 2.2 for rest-to-rest motion
k with tRk

≤ t ≤ tRk+1
can be approximated by local optimization using the

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

8 M. Schappler.

locally optimal nullspace projection (“NP”) scheme, yielding U∗k ≈ Uk,NP. This
assumption holds for short trajectories in terms of distance in the performance
map. The claim is only qualitative and has to be evaluated for the specific task
at hand. In the following, the nullspace projection scheme for the second-order
inverse kinematics is wrapped up for serial and parallel robots and extensions are
presented which improve using it for global optimization in the next section 4.

3.1 Kinematics Model for Serial and Parallel Robots

Due to their differences in modeling, the kinematics of serial and parallel robots
are introduced separately in the following. However, the general relations can be
handled interchangeably in the section thereafter on nullspace trajectory motion.

Kinematics of Serial Robots are handled in robotics textbooks like [29]. The
position-level forward kinematics present a mapping of joint coordinates q and
end effector coordinates xE(q). The end effector pose1 x is chosen as presented
in Sect. 2. By analytic differentiation the linear velocity and acceleration relation

ẋ = Jxq̇ and ẍ = J̇xq̇ + Jxq̈ (4)

can be obtained, where Jx denotes the analytic manipulator Jacobian, as op-
posed to the geometric one. The solution to the (non-redundant) inverse differ-
ential kinematics is obtained via

q̈ = J−1
x (ẍ− J̇xq̇). (5)

Kinematics of Parallel Robots are constructed differently than those for
serial robots, since they consists of several kinematic chains, called legs, which
connect at a moving platform. The approach to kinematics is the definition of
constraints equations Φ(q,x) = 0, see e.g. the textbook [17]. Parallel robots’
joint coordinates q also contain those of passive joints in the general case, which
is regarded in the following. Time differentiation of the constraints leads to

Φ∂qq̇ +Φ∂xẋ = 0 and q̇T = −Φ−1
∂qΦ∂xẋ = J−1

q,xẋ, (6)

where the index “T” denotes the task solution of the differential inverse kinemat-
ics (6) as opposed to the nullspace solution “N” discussed later. The index “∂x”
denotes the gradient w.r.t. the coordinate x and J−1

q,x is the inverse manipulator
Jacobian2 referring to all coordinates. The second time derivative is obtained by
differential calculus as

q̈T = J−1
q,xẍ+ J̇

−1

q,xẋ. with J̇
−1

q,x = Φ−1
∂q (Φ̇∂qΦ

−1
∂qΦ∂x − Φ̇∂x). (7)

1 For the sake of readability, xE and yE will be written as x and y in Sect. 3.
2 The expression is not a regular inverse, since it is not square and the non-inverse
does not exist. The notation is used to unify the symbols with those of serial robots.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 9

The manipulator Jacobian Jx can be obtained by selecting the rows in J−1
q,x

associated to the active joint’s coordinates θ = P θq and matrix inversion by

Jx =
(
J−1
x

)−1
=
(
P θJ

−1
q,x

)−1
. (8)

The forward differential equations from actuator to end effector velocities and
accelerations can then be expressed like in (4) as

ẋ = Jxθ̇ and ẍ = J̇xθ̇ + Jxθ̈. (9)

If actuator entities are given, they can be transferred to the full joint space by

q̇ = J−1
q,xJxθ̇ and q̈ = J−1

q,xJxθ̈ + J−1
q,xJ̇xθ̇ + J̇

−1

q,xJxθ̇. (10)

3.2 Second-Order Nullspace Inverse Kinematics Controller Scheme

In the following, all relations hold for serial and parallel robots simultaneously.
Since all joints of serial robots are assumed as active, θ := q holds in that case.
The inversion of the kinematics equations provides a nullspace solution if a task
redundancy exists. The transfer from operational space x to task space y is
simplified by the chosen X-Y ′-Z ′′-angle representation such that the last row of
(4) and (9) can be removed with y = P yx and Jy = P yJx (for serial and for
parallel robots). If no specific value for the redundant coordinate is given, the
minimum-norm solution for the task motion can be obtained using the pseudo
inverse † as

θ̈T,minnorm = J†y(ÿ − J̇yθ̇). (11)

The nullspace solution of the inverse kinematics on acceleration level is ob-
tained as the homogenous solution of (11), neglecting the term Ṅθ, as

θ̈N = (I − J†yJy)vθ = Nθvθ, (12)

which projects arbitrary vectors vθ into the nullspace. The full expression for
the actuator accelerations can thus be combined from θ̈T from (5)/(7) (se-
rial/parallel) or (11) in combination with θ̈N from (12) as

θ̈ =

{
θ̈T + θ̈N for a given ϕz = ϕz,ff

θ̈T,minnorm + θ̈N otherwise.
(13)

In the following, the vector vθ for the second-order nullspace projection (12)
is created by a PD controller scheme [3, 28] such that a stable nullspace opti-
mization is performed. This substitutes the analytic scheme of [24] numerically.
By using h∂θ as a feedback for vθ the performance criterion h is optimized, as
discussed in the next subsection. The overall nullspace controller is shown in
the right part of Fig. 2 and contains the controller with PD gains KP, KD and
additional damping Kv. The trajectory input from (13) is placed on the left
part of the figure and allows switching between the cases whether a feedforward

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

10 M. Schappler.

∫ ∫
θ̈T

θ̇

θ
h(θ)

Nθvθ

θ̈N

KP

KD

−hT
∂θ(θ)

Kv

d/dt
vθ

θ̈(11)

(7)

ÿ

[ÿT, ϕ̈z]
T

ϕ̈z,ff
ẍ

q, q̇,x, ẋ (9)
[
θ

θ̇

]

(12)
(13) θ̈

′
N

−
θ̇v

Fig. 2. Nullspace motion controller scheme with nullspace trajectory feedforward

term ϕ̈z,ff for the redundant coordinate is given or not. In the first case, the
nullspace motion develops around the feedforward trajectory ϕz,ff(t) and in case
of h = const the redundant coordinate will move according to it.

The model requires computing matrices J−1
q,x and J̇q,x which depend on the

full robot state q, q̇,x, ẋ, shown by the upper feedback branch. The actual value
ϕz of the redundant coordinate has to be computed via the position-level inverse
kinematics and the velocity ϕ̇z using the manipulator Jacobian with (4) or (9).

3.3 Performance Criteria for Gradient Projection

For a feasible motion strict constraints regarding self collision, joint limits and
singularities have to be met, which are implemented as objective within the
nullspace optimization. Optimizing multiple criteria hi with only one degree of
freedom does not allow using task priority schemes like [21, 14]. The drawback
of a weighted sum h=

∑
wihi as nullspace objective is that prioritization is per-

formed by the weights wi, which lack of a physical meaning and often have to be
tuned manually. To encounter the weights-tuning problem, optimization criteria
to achieve feasibility constraints were chosen that lead to infinite penalty, follow-
ing e.g. [35]. The multi-objective problem is encountered by choosing objective
functions with an activation threshold to avoid permanent activity of multiple
criteria. This can be seen as a special case of set-based task-priority frameworks
like [14].

Joint Limits are regarded with the hyperbolic joint limit criterion

hlim(q) =
1

dim(q)

dim(q)∑

i=1

hlim(qi) with hlim(qi) = hlim,hyp(qi) and (14)

hlim,hyp(qi) =
(qi,max−qi,min)2

8

(
1

(qi−qi,min)2
+

1

(qi−qi,max)2

)
≥ 1 (15)

from [35] with the modification of an activation threshold. The criterion is only
active if the limit is approached passing a lower or upper threshold qi,thr,min or
qi,thr,max. The continuous differentiability is achieved via cubic spline transitions

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 11

and switching points qi,sw,min and qi,sw,max, resulting in the criterion

hlim(qi) =

∞ for qi < qi,min (lower limit)

hlim,hyp(qi) for qi,min ≤ qi < qi,sw,min

hspline,ll(qi) for qi,sw,min ≤ qi < qi,thr,min

0 for qi,thr,min < qi < qi,thr,max (inactive)

hspline,ul(qi) for qi,thr,max ≤ qi < qi,sw,max

hlim,hyp(qi) for qi,sw,max ≤ qi ≤ qi,max

∞ for qi,max < qi (upper limit).

(16)

The gradient h∂q = ∂h/∂q can be obtained analytically. In the paper’s examples,
qi,thr is set to be 90% of the limit range and qi,sw,max = (qi,thr,max + qi,max)/2.

Platform coordinate limits have to be restricted for the global optimization
algorithm presented in Sect. 4. The redundant coordinate’s range is ϕz,min ≤
ϕz ≤ ϕz,max, also ensured by nullspace optimization and a criterion hϕz,lim

analogue to (16) with ϕz instead of qi. The limit ϕz,min can be adjusted over time
around a given feedforward reference ϕz,ff(t) to enlarge or diminish the allowed
range of the redundant coordinate, as shown in Sect. 4 by spline interpolation.

Singularities are avoided by means of nullspace optimization, where the con-
dition number hcond,II = cond(Jx) of the manipulator Jacobian is used directly
as objective. Inconsistent units of the condition number and questionable phys-
ical meaning [17, 12] are ignored since an infinite numerical value represents a
singularity in any case. To allow optimization of other criteria as well, an activa-
tion threshold hcond,act for the singularity criterion is defined and a cubic spline
transition hspline leads to direct use of the condition number after the threshold
hcond,thr, resulting in

hsing =

0 for hcond < hcond,act (inactive)

hspline(hcond) for hcond,act ≤ hcond < hcond,thr

hcond otherwise (reaches ∞ in singularity).

(17)

For obtaining the gradient h∂q=∂h/∂q, a numeric implementation via difference
quotients is used, as detailed in [28]. In the further examples of this paper,
hcond,II,act=hcond,II,thr=1 leads to a permanent optimization of the condition
number, which has a weak (but questionable) correlation with other performance
criteria [17].

Additionally, singularities of the inverse kinematics of Φ∂q for parallel robots
and Jy for serial robots are handled in the same manner. This allows to avoid
serial (type I, Φ∂q) and parallel (type II, Jx) singularities for parallel robots.
The respective criteria are termed hsing,I and hsing,II.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

12 M. Schappler.

Self-Collisions of the robot structure are considered by a simplified convex
geometric model of the robot. The six links are represented by capsules (cylinders
ending in half-spheres) to allow a fast geometric check for body intersection. The
platform is modeled as a ring of six capsules, resulting in 39 elementary collision
checks with a minimal distance dcoll,min = min di of any of the objects. An
intersection leads to a negative value. The collision criterion

hcoll(dcoll,min) =

0 for dcoll,min ≥ dcoll,thr (safe distance)

hspline(dcoll,min) for dthr,hyp ≤ dcoll,min < dcoll,thr

hcoll,hyp(dcoll,min) for 0 < dcoll,min < dthr,hyp

∞ for dcoll,min ≤ 0 (collision)

(18)
is activated if a safety threshold dcoll,thr is exceeded. A cubic spline sets the
transition from zero to one branch of a hyperbola similar to (15), beginning at
distance dthr,hyp, which reaches∞ in case of collision. The gradient is computed
numerically via difference quotients.

The Combined Performance Criterion is obtained by a weighted sum

h = wsing,Ihsing,I + wsing,IIhsing,II + wlimhlim + wcollhcoll + wϕz,limhϕz,lim, (19)

where wsing,I/II=1, wlim=1, wcoll=1 and wϕz,lim=100 are chosen by manual tun-
ing to obtain a sufficiently strong repulsion from the coordinate limits for the
example in Sect. 4. The gains KP=1, KD=0.7 and Kv=0.8 were chosen to re-
duce oscillations of the second-order system resulting from the PD feedback of a
double integrator plant. For visualization of h within a performance map, high
values above a threshold of e.g. hthr = 1000 are saturated to increase the number
of heatmap colors for distinction of good values. The component of h leading to
infinity can then be highlighted by a separate marker.

3.4 Extensions for Rest-to-Rest Motion

To achieve a rest-to-rest motion of the robot trajectory x(t), an additional brak-
ing has to be implemented within the nullspace motion ϕz(t). Otherwise, a
nullspace velocity ϕ̇z is likely to still persist at the task’s resting points. As
elaborated before in Sect. 2 and (1), rest-to-rest motion for the task trajectory
y(t) is assumed as given. A time-varying technically feasible limit ϕ̇z,min(t) and
ϕ̇z,max(t) for the redundant coordinate’s velocity is set. When the resting time
tR is approached with t > tR−Tdec, the limit is linearly decreasing to zero in the
deceleration time Tdec, which is obtained from acceleration and velocity limits.
The nullspace braking is implemented within the saturation block in Fig. 2. A
predicted velocity from the task and nullspace acceleration for the next discrete
time step is computed by θ̇pre(k+1) = θ̇(k)+(θ̈T + θ̈

′
N)∆t. The redundant coor-

dinate’s velocity is obtained by the Jacobian relation ϕ̇z,pre = P ϕz
Jxθ̇pre(k+1),

where P ϕz = [0T, 1] selects the last row. If ϕ̇z,pre exceeds the limit ϕ̇z,max, an

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 13

additional nullspace acceleration ϕ̈z,add = (ϕ̇z,max − ϕ̇z,pre)/∆t is created to
truncate the velocity. This acceleration is then added to the robot’s joint space
by θ̈N = θ̈

′
N + J−1

x [0T, ϕ̈z,add]T.
Additionally, a damping is added in the nullspace, which promotes follow-

ing the redundant coordinate’s feedforward ϕ̇z,ff . The block Kv in Fig. 2 is
implemented by a feedback law θ̇v = KvP ϕz

Jx(ϕ̇z − ϕ̇z,ff) of the redundant
coordinate’s velocity.

3.5 Trajectory Performance Criterion

To obtain a criterion for evaluation of the complete rest-to-rest trajectory k, an
RMS criterion w.r.t. the normalized path coordinate s is defined as

hint =
1

sRk
− sRk−1

∫ sRk

sRk−1

h(q(s),xE(s))ds. (20)

The path coordinate s is used instead of time t to reduce the weight of sections
with low velocity. It has integer values at the rest times tRk

and interpolates
linearly according to the distance of the task coordinate y. The use of the root
mean square (RMS) in (20) and the definition of h in (19) make it susceptible
to the nearly infinite penalty values when a singularity or a limit is approached.
This desirable behavior allows the simultaneous incorporation of the constraints
and the objective in the optimization of rest poses via dynamic programming,
which is the focus of the next section.

4 Global Optimization: Dynamic Programming

The local optimization using nullspace projection from Sect. 3 is now used for
the global trajectory optimization problem introduced in Sect. 2. First, the prob-
lem is solved with the well-known (discrete) dynamic programming method in
Sect. 4.1 which is then extended to a novel state-interval-based dynamic pro-
gramming method in Sect. 4.2.

4.1 Discrete Dynamic Programming

The stage-wise definition of the rest-to-rest trajectory optimization problem is

J∗ = min
U

J(u1, ..., un) =
n∑

k=1

lk(xk−1, uk) (21)

s.t. xk = fk(xk−1, uk) (22)
xk ∈ Xk (23)
uk ∈ Uk(xk−1). (24)

The total cost J is a sum of costs lk on each of the n stages, which are only influ-
enced by decisions uk on that stage and the stage’s initial state xk−1. The initial

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

14 M. Schappler.

value x0 is given. The goal is to find a trajectory of decisions U = {u0, u1, un−1}
as argmin in (21). Optimal values are marked with an asterisk, like J∗. Only
a discrete set of states Xk is possible (23). The transfer between states is de-
noted as function fk in (22) which produces the transfer costs lk. Decisions are
restricted to a set Uk leading to these exact states (24). The set of states is
predetermined as a discretization of the continuous decision variable x for nref

reference values as
Xref = {xref,1, xref,2, ..., xref,nref

}. (25)

In a forward iteration, the running costs are obtained for in total |Xk−1||Uk|
different transfers from stage k − 1 to stage k, termed by

lk(xk−1, uk) ∀ xk−1 ∈ Xk−1 ∧ uk ∈ Uk(xk−1). (26)

The cumulated cost Jk for each of the states xk of stage k is then obtained
via

Jk(xk−1, uk) = J∗k−1(xk−1) + lk(xk−1, uk), (27)

where J∗k−1(xk−1) is the optimal total cost from x0 to xk−1, initialized with
J∗0 (x0)=0. The optimal series of decisions for each state xk on stage k is obtained
via considerations based on Bellman’s principle of optimality as

J∗k (xk) = min {Jk(xk−1, uk) | xk=f(xk−1, uk) ∧ uk ∈ Uk(xk−1)}. (28)

All predecessor states xk−1 are considered. The set Uk(xk−1) of decision variables
is selected such that each of the reference states Xk := Xref is reached once. If
the state xk−1 can only be reached by violation of a constraint, this is marked
by the previous iteration with infinite cost J∗k (xk−1) for that state, resulting to

Uk(xk−1) =

{
∅ for J∗k (xk−1) =∞
{uk | xk=f(xk−1, uk) ∀ xk∈Xk} otherwise.

(29)

The optimal series of decisions and states leading to J∗k (xk) is written as

U∗(xk) = {u∗1, ..., u∗k} and

X∗(xk) = {x∗0, x∗1, ..., x∗k−1, xk}. (30)

The dynamic programming algorithm now consists of alternating forward passes
(26) and backward passes (28) to select optimal stage decisions. The algorithm
is performed for all stages from k = 1, ..., n. The best final state then contains
the optimal solution as

J∗ = J∗k (x∗n) = min J∗k (xn) (31)
U∗ = U∗(x∗n) = {u∗1, ..., u∗n} (32)
X∗ = X∗(x∗n) = {x∗0, x∗1, ..., x∗n} (33)

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 15

Robot Trajectory Example: The general form of the algorithm is transferred
to the robot example in the following by assigning the DP variables from above
with the physical variables in Sect. 2 and 3. The stages correspond to the rest
positions of the trajectory. In the example of [28] depicted in Fig. 1 this means
n = NR = 7. Each transition xk=f(xk−1, uk) is a rest-to-rest trajectory ϕz(t)
for the redundant coordinate computed by a trapezoidal velocity profile for the
given trajectory time base tRk−1

≤ t ≤ tRk
between given states in xk−1 =

ϕz(tRk−1
) and xk = ϕz(tRk

). The decision uk is therefore just the selection of
a target position xk. The discretization is chosen as xmin = ϕz,min = −180◦,
xmax = ϕz,max = 180◦ and nref = 9, leading to ∆x = ∆ϕz = 45◦. The cost is
determined by the RMS of the performance criterion (20), according to Sect. 3.3,
i.e.

lk(xk−1, uk) =
1

sRk
− sRk−1

∫ sRk

sRk−1

h(q(s),xE(s))dt. (34)

The initial value x0 = ϕz,0 ≈ −35◦ and q(t=0) is selected by a gradient-
descent approach for the optimal joint limit criterion. The joint configuration
q(t) is obtained by the inverse kinematic scheme from Sect. 3.

A step-by-step solution with the dynamic programming approach above is
shown in Fig. 3,a for the first stage k = 1. As only one previous stage X0 = {x0}
exists, the only one transfer to each xk from (30) is the optimal transfer. The
trajectory evaluation is immediately aborted if a robot constraint is violated.
This speeds up the algorithm and is marked by black lines in Fig. 3. The corre-
sponding cost lk is set to a high penalty (in this case ∞) to discard this state
automatically in the backward recursion (28). If all decisions towards a state
xk−1 are invalid, the first condition in (29) becomes active and from this state
no actions will be taken on further. The forward iteration for the next stage
k = 2 therefore only continues for valid states. Only one trajectory for the first
state and the last state give feasible transfers, as visible in Fig. 3,b. The recur-
sion therefore remains trivial. In iteration k = 3 both remaining states from X2

lead to feasible transfers to the three states in X3, as can be seen in Fig. 3,c.
Further, each state in X3 can be reached by both states of X2, from which the
upper one has lower cost and is therefore marked as optimal (magenta). Lines
originating from the lower state are marked as valid (cyan), but not optimal.

The final result of the algorithm after performing the remaining stages k =
4...7 is shown in Fig. 4 with the highlighted optimal trajectory that has been
found. The continuous optimization variable can only very roughly be approxi-
mated by the chosen discretization of ϕz = 45◦. Choosing a finer discretization
is able to improve the result in this case, but using the discrete DP is not appli-
cable to the general case, if a feasible solution can not be found via straight lines
in the performance map. Further, the DP algorithm has complexity O(nn2

ref),
making the presented implementation inefficient for such continuous problems.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

16 M. Schappler.

0 0.5 1

-50

0

50

100

R
ed

u
n
d
an

t
co

o
rd

in
a
te

'
z

in
d
eg (a) stage 1

1 1.5 2

Normalized trajectory progress s

(b) stage 2

2 2.5 3

(c) stage 3

200

400

600

800

1000

P
er

fo
rm

an
ce

cr
it
er

io
n

h
(c

on
d
.)

invalid valid optimal singularity collision

Fig. 3. Decisions on the first three stages using discrete DP for the reference problem

0 1 2 3 4 5 6 7

Normalized trajectory progress s

-50

0

50

100

R
ed

u
n
d
an

t
co

or
d
in

at
e

'
z

in
d
eg

200

400

600

800

1000

P
er

fo
rm

an
ce

cr
it
er

io
n

h
(c

on
d
.)

valid stage opt. global opt. singularity collision

Fig. 4. Result of discrete dynamic programming for the reference problem

4.2 State-Interval Dynamic Programming

The drawbacks of the classical discrete dynamic programming can be solved by
defining a target interval for the states rather than a fixed value. A state interval

[x] = [x̄− ∆x/2, x̄+ ∆x/2] (35)

is defined by a center x̄ and the interval width ∆x. Instead of a fixed set of
discretized reference states Xref in (25), the states are now3

Xref = {[xref,1], [xref,2], ..., [xref,nref
]}. (36)

The DP formulation from the previous section is adapted in such a way that
previous states remain specific values xk−1. Future states are considered as an

3 Intervals are assumed non-overlapping (i.e. half-open) for the sake of mathematical
proof, however the symbol [·] for closed intervals is used to enhance readability.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 17

interval, allowing a set of solutions xk ∈ [xk] or x̄k−∆x/2 ≤ xk < x̄k+∆x/2. The
set of decision variables from (29) now becomes

Uk(xk−1) =

{
∅ for J∗k (xk−1) =∞
{uk | f(xk−1, uk) ∈ [xk] ∀ [xk] ∈ Xk} otherwise. (37)

Since the intervals do not overlap, Bellman’s principle of optimality still holds
under the assumption of an optimal state transfer regarding the subproblem
in f(xk−1, uk). This means that the transfer to the actual reached state xk
within the interval [xk] is assumed to be optimal among all possible local transfer
strategies ũk, i.e.

lk(xk−1, uk) = min
ũk

{lk(xk−1, ũk) ∀ ũk | f(xk−1, ũk) ∈ [xk]}. (38)

The transition strategy uk in this case is not only correspondence to a target
state xk, but also a specific control strategy for the subproblem f(xk−1, uk).
In the trajectory optimization example this includes the optimal decision for
each of the dense trajectory samples, as mentioned in Sect. 2.2. The assumption
(38) is unlikely to strictly hold in the presented highly nonlinear robot applica-
tion. However, approximating this by a near-optimal or at least feasible uk may
already be enough to obtain acceptable results regarding difficulties in finding
valid solutions at all, facing the constraints.

The decision uk now only has to assure that the next state lies in it’s al-
lowed interval. This improves the possibility to perform a local optimization in
the state transfer function, which corresponds to the trajectory optimization
via the nullspace projection. Reaching the interval has to be implemented with
extensions to the local optimization or with constraints, as discussed in Sect. 3.3.

The backward recursion from (28) using the interval approach now is

J∗k ([xk]) = min {Jk(xk−1, uk) | f(xk−1, uk) ∈ [xk] ∧ uk ∈ Uk(xk−1)}. (39)

The cumulated cost Jk(xk−1, uk) does not change compared to (27), since looking
retrospectively, the previous state xk−1 is the actual obtained value, no interval.

The proposed approach is illustrated at the previous robot trajectory ex-
ample. Interval limits are set as before as xref,1 = ϕz,min = −180◦, xref,nref

=
ϕz,max = 180◦, nref = 9, ∆x = ∆ϕz = 45◦ and x0 = ϕz,0 ≈ −35◦. The term xmin

and xmax is not used since the limits for the optimization variable are extended
by the interval half-span ∆x/2. A decision uk consists of a reference trajectory
as in the previous discrete DP example. This trajectory is only tracked via a
feed-forward gain and a nullspace controller, as explained in Sect. 3. A tolerance
band around the trajectory ensures reaching the respective target interval [xk],
as shown in Fig. 5 for three exemplary decisions on the first stage.

As in the previous example, not all target states lead to valid results, es-
pecially since the global distribution of the performance map is not known in
advance and therefore a wide span is chosen. All transitions of the first stage

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

18 M. Schappler.

0 0.5 1

-50

0

50

100

re
d
.
co

o
rd

.
'

z
in

d
eg

(a) f(x0; u1)2[xref;1]

4

5

6

7

0 0.5 1

Normalized trajectory progress s

(b) f(x0; u1)2[xref;4]

4

5

6

7

0 0.5 1

(c) f(x0; u1)2[xref;7]

4

5

6

7

200

400

600

800

1000

P
er

f.
cr

it
.
h

(c
on

d
.)

reference border invalid valid singularity collision

Fig. 5. Decisions u1 on the first stage using state-interval dynamic programming to
exemplary state intervals 1 (a), 4 (b) and 7 (c) on stage 2. The numbers i on the axis
to the right of each performance map correspond to the state intervals [xref,i]

0 0.5 1

Norm. traj. progress s

-50

0

50

100

R
ed

u
n
d
an

t
co

or
d
in

at
e

'
z

in
d
eg

(a) stage 1

4

5

6

7

[x
re

f;
8
]

1 1.5 2

Norm. traj. progress s

(b) stage 2

4

5

6

7

[x
re

f;
8
]

200

400

600

800

1000

P
er

fo
rm

an
ce

cr
it
er

io
n

h
(c

on
d
.)

invalid valid optimal singularity collision

Fig. 6. All decisions on the first two stages using state-interval DP

1 1.5 2

-50

0

50

100

re
d
.
co
or
d
.
'

z
in
d
eg

(a) f(x1; u2)2[xref;3]

4

5

6

7

1 1.5 2

Normalized trajectory progress s

(b) f(x1; u2)2[xref;4]

4

5

6

7

1 1.5 2

(c) f(x1; u2)2[xref;5]

4

5

6

7

200

400

600

800

1000

P
er
f.
cr
it
.
h
(c
on
d
.)

reference border invalid valid singularity collision

Fig. 7. Decisions u2 on the second stage from x1 ∈ [xref,4] using state-interval DP

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 19

0 1 2 3 4 5 6 7

Normalized trajectory progress s

-50

0

50

100

R
ed

u
n
d
an

t
co

o
rd

in
a
te

'
z

in
d
eg

200

400

600

800

1000

P
er

fo
rm

an
ce

cr
it
er

io
n

h

valid stage opt. global opt. singularity collision

Fig. 8. Result of state-interval dynamic programming for the reference problem

are shown in Fig. 6,a. The valid lines are continued in the next stage. Since only
one starting state exists, all valid lines are also optimal, which is highlighted
by the color magenta. The continuation for stage 2 is shown first exemplarily
together with the reference trajectory and spline-based tolerance intervals in
Fig. 7. Figure. 6,b contains all transfers. Multiple decisions u1 lead to the same
state intervals of [x2], as visible for the cyan lines ending in [xref,5] and [xref,6]
(noted by the numbers at the right side of Fig. 6,b). Therefore the best decisions
according to (39) are selected for continuation, marked magenta. The result of
the algorithm is depicted in Fig. 8.

4.3 Overlapping Intervals

The approach presented above enforces the redundant coordinate in a tolerance
band by using a repulsing potential hϕz,lim. This has the effect that a local
optimum on this border between intervals can not be reached. A solution to
achieve this is the use of overlapping intervals. It still has to be assured, that at
each stage only the prescribed number of state intervals are continued. Otherwise
the number of states will grow from state to state and the underlying optimality
principle of dynamic programming does not hold any more. The extension leads
to additional possible decisions on each set, extending the set Xk in (37) to

X ′k = {[xref,1], [xref,2], ..., [xref,nref
], [xadd,1], ..., [xadd,nadd

]}. (40)

The additional intervals are set to be overlapping with the existing ones, i.e.

[xadd,k] = [xref,k] + ∆x/2 = xref,k ≤ x < xref,k+1 (41)

and nadd = nref − 1. To prevent the number of states from increasing, the
cumulated cost in the backward recursion (39) is not evaluated for the new,
overlapping intervals from (40).

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

20 M. Schappler.

0 0.5 1

-50

0

50

100

re
d
.
co

o
rd

.
'

z
in

d
eg

(a) f(x0; u1)2[xref;3]

[x
re

f;
3
]

[x
re

f;
4
]

0 0.5 1

Normalized trajectory progress s

(b) f(x0; u1)2[xref;4]

[x
re

f;
3
]

[x
re

f;
4
]

0 0.5 1

(c) f(x0; u1)2[xadd;3]

[x
re

f;
3
]

[x
re

f;
4
]

200

400

600

800

1000

P
er

f.
cr

it
.
h

(c
on

d
.)

reference border invalid valid singularity collision

Fig. 9. Decisions u1 on the first stage using overlapping state-intervals in dynamic
programming to exemplary state intervals 3 (a), 4 (b) and the overlapping interval
in-between (c) on stage 2

0 0.5 1

Norm. traj. progress s

-50

0

50

100

R
ed

u
n
d
an

t
co

or
d
in

at
e

'
z

in
d
eg

(a) stage 1

[x
re

f;
3
]

[x
re

f;
4
]

1 1.5 2

Norm. traj. progress s

(b) stage 2

[x
re

f;
3
]

[x
re

f;
4
]

200

400

600

800

1000

P
er

fo
rm

an
ce

cr
it
er

io
n

h
(c

on
d
.)

invalid valid optimal add. overlap sing. coll.

Fig. 10. Decisions on stage 1 and 2 for the reference problem using overlapping intervals

Robot Trajectory Example: The modification of overlapping intervals is
again demonstrated at the robot example. The chosen parameters are now
nref = 5 with ∆x = ∆ϕz = 90◦. Due to the overlapping intervals, the num-
ber of forward iterations stays the same, but fewer states are considered for
continuation. Similar to Fig. 5, the first stage transfer is investigated in Fig. 9.
The transfer in Fig. 9,c corresponds to the additional interval [xadd,3] between
[xref,3] in Fig. 9,a and [xref,4] in Fig. 9,b.

Similar to Fig. 6 all transfers on the first two stages are shown in Fig. 10.
Transfers from additional overlapping intervals are marked with dashed lines.
Now already in the first stage in Fig. 10,a multiple actions lead to a transfer
to the interval [xref,3], which seemingly contains the local optimum. The best of
these is selected in stage 2 (Fig. 10,b) for continuation.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 21

DP 45° DP 15° SI 45° OL 90° NP

0 1 2 3 4 5 6 7

Normalized trajectory progress s

-60

-40

-20

0

20

40

60

80

100

120

R
ed

u
n
d
an

t
co

o
rd

in
at

e
'

z
in

d
eg

(a)

100

200

300

400

500

600

700

800

900

1000

P
er

fo
rm

a
n
ce

cr
it
er

io
n

h
(c

on
d
it
io

n
.)

sing. coll.

0 1 2 3 4 5 6 7
Norm. traj. progr. s

50

75

100

150

200

300

400

500

600

(b)

153
133
135
113
140

RMS

Fig. 11. Nullspace motion in performance map (a) and evolution of criterion (b)

5 Simulative Validation for a Parallel Robot

In the following a quantitative evaluation of the proposed new method of state-
interval dynamic programming (SI-DP) from Sect. 4.2 is performed with a com-
parison against classical dynamic programming (DP) from Sect. 4.1 and the
previous approach of local optimization using nullspace projection (NP) from
Sect. 3 (and [28]). An overview of robot and task can be obtained from Fig. 1.
The same benchmark task as in the previous section is used. The robot has the
following dimensions: base diameter 1200 mm, platform diameter 300 mm and
distance of hexagonally aligned platform coupling joint pairs of 100 mm. Colli-
sion bodies for the leg chains have a diameter of 40 mm. The task is beginning at
[rx, ry, rz] = [−50, 40, 700]mm and [ϕx, ϕy] = [45◦, 0◦] in the robot base frame
and has a length of 900 mm and duration of 31.6 s with seven rest poses. The
trajectory has 31647 samples with a sample time of 1 ms.

The comparison in Fig. 11 shows that the SI-DP with a discretization of
45◦ outperforms the classical discrete DP with the same discretization in the
critical phases of the trajectory. Further, DP presents a different trajectory with
ϕz=90◦ at s=2 due to the narrow passage. The reason can be found in the only
very rough discretization, which is beneficial for the SI-DP and reduces compu-
tation time. A further improvement is achieved by using the overlapping (OL)
intervals from Sect. 4.3 with discretization of 90◦. The evaluation of one trajec-
tory sample needs 0.4 ms for the DP and 1.2 ms for the SI-DP and OL-SI-DP,
due to more complex nullspace equations. A Linux desktop computer with Intel
i5-7500 CPU and Matlab implementation using mex-compiled functions was
used. The total optimization for DP with 45◦ took 3.4 min with 535k trajectory
samples, corresponding to 16.9 times the full trajectory length. The SI-DP with

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

22 M. Schappler.

45◦ took 13.2 min for 664k samples, i.e. 21 full trajectory equivalents and the
OL-SI-DP took 10 min for 421k samples. The RMS value according to (20) is
given in Fig. 11,b and shows the improved performance by the SI-DP by a value
of 135 and OL by 113. The DP results can be improved by finer discretization
of 15◦, which leads to a similar RDP value of 134 like SI-DP, instead of 153, but
takes 25.7 min for 4M samples, i.e. 128 full trajectory equivalents.

The NP method performs better in the first two phases since the optimal
solution is between intervals of the SI-DP, which is a repulsing potential. Using
the OL method solves this problem. The only local optimality of NP becomes
visible at s=5 where a local optimum is followed by a region of high cost terms,
which has to be traversed. This leads to a moderately worse RMS value of 140,
but needs the least computational effort with 39 s for one full trajectory.

The example is modified in the following to pose higher restrictions on
the robot. The trajectory length is increased to 1400 mm and the pointing
direction now is 45◦ to the outside, i.e. [rx, ry, rz] = [−200, 150, 700]mm and
[ϕx, ϕy] = [−45◦, 0◦] for the starting point. The robot is shown in Fig. 12 for
three different points of this second trajectory. The cases of singularity and col-
lision are highlighted for illustration. The trajectory optimization is performed
with the same methods and settings as before with results presented in Fig. 13.
Due to the very narrow passages of possible rotation angle ϕz, the 45◦-DP does
not find a solution, as well as the local optimization. The fine-discretization 15◦-
DP and the proposed 45◦-SI-DP find a solution, where SI-DP outperforms the
DP by means of RMS of the condition number and OL performs best due to less
constraints for enforcing the interval.

(a) singularity (b) normal case (c) collisions=1.1

hcond=105ϕz=36.3◦
s = 3.0

ϕz=0◦
s=4.7

ϕz=−70.2◦hcond=92 hcond=191

dmin=−14mm

Fig. 12. Robot in three poses of the second performance map example from Fig. 13

For both examples oscillations can be observed in Fig. 11 and Fig. 13 for
the nullspace optimization methods SI-DP, OL-SI-DP and NP. This could be
omitted by further tuning of PD gains and damping. However at least for SI-DP
the oscillation is partially inherent to the method since a repulsing potential
from the coordinate limits is used.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 23

DP 45° DP 15° SI 45° OL 90° NP

0 1 2 3 4 5 6 7

Normalized trajectory progress s

-60

-40

-20

0

20

40

60

80

100

120

R
ed

u
n
d
an

t
co

o
rd

in
at

e
'

z
in

d
eg

(a)

200

300

400

500

600

700

800

900

1000

1100

P
er

fo
rm

an
ce

cr
it
er

io
n

h
(c

on
d
it
io

n
.)

0 1 2 3 4 5 6 7
Norm. traj. progr. s

100

200

300

400

500

700

900

(b)

284
266
255

RMS:

Fig. 13. Results for the second example: Performance map (a) and criterion (b)

6 Conclusion

The presented algorithm corresponds to a combination of differential and classi-
cal dynamic programming and is applicable to trajectory optimization problems
of dynamic systems with continuous state and stage variables and rest-to-rest
state transitions. The performance measure in intermediate steps should have
a correlation with the global optimization objective. This can be the case by
globally optimizing the average values of local objectives and in the presence
of high penalties for constraints. An example of a robot trajectory optimization
is given, however similar problems may arise in other disciplines as well. The
results show the improved performance compared to discrete DP or local opti-
mization at acceptable computation times for offline trajectory planning. The
approach is not restricted to second-order trajectories or task redundancy within
robotics. Optimizing multiple redundant degrees of freedom is also possible, but
without the performance map visualization used throughout the paper. Instead
of nullspace optimization, also other local optimization techniques could be used,
which leads to a still open future investigation on conditions for the analogy of
the proposed method to existing ones like DDP.

Acknowledgements The author acknowledges the support by the Deutsche
Forschungsgemeinschaft (DFG) under grant number 341489206. Matlab Code
to reproduce the results is available at GitHub under free license at
https://github.com/SchapplM/robotics-paper_icinco2021.

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

24 M. Schappler.

References

1. Agarwal, A., Nasa, C., Bandyopadhyay, S.: Dynamic singularity
avoidance for parallel manipulators using a task-priority based con-
trol scheme. Mechanism and Machine Theory 96, 107–126 (2016).
https://doi.org/10.1016/j.mechmachtheory.2015.07.013

2. Corinaldi, D., Angeles, J., Callegari, M.: Posture optimization of a functionally
redundant parallel robot. In: Advances in Robot Kinematics 2016, pp. 101–108.
Springer (2016). https://doi.org/10.1007/978-3-319-56802-7_11

3. De Luca, A., Oriolo, G., Siciliano, B.: Robot redundancy resolution at the accel-
eration level. Laboratory Robotics and Automation 4, 97–97 (1992)

4. Ferrentino, E., Salvioli, F., Chiacchio, P.: Globally optimal redundancy resolu-
tion with dynamic programming for robot planning: a ros implementation. MDPI
Robotics 10(1), 42 (2021). https://doi.org/10.3390/robotics10010042

5. Gao, J., Pashkevich, A., Caro, S.: Optimization of the robot and positioner motion
in a redundant fiber placement workcell. Mechanism and Machine Theory 114,
170–189 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.04.009

6. Gao, Y., Chen, K., Gao, H., Xiao, P., Wang, L.: Small-angle perturbation method
for moving platform orientation to avoid singularity of asymmetrical 3-RRR plan-
ner (sic) parallel manipulator. Journal of The Brazilian Society of Mechanical Sci-
ences and Engineering 41, 1–18 (2019). https://doi.org/10.1007/s40430-019-2012-4

7. Gosselin, C., Schreiber, L.T.: Kinematically redundant spatial parallel mechanisms
for singularity avoidance and large orientational workspace. IEEE Transactions on
Robotics 32(2), 286–300 (2016). https://doi.org/10.1109/tro.2016.2516025

8. Gosselin, C., Schreiber, L.T.: Redundancy in Parallel Mechanisms: A Review. Ap-
plied Mechanics Reviews 70(1) (01 2018). https://doi.org/10.1115/1.4038931

9. Guigue, A., Ahmadi, M., Hayes, M., Langlois, R., Tang, F.: A dynamic program-
ming approach to redundancy resolution with multiple criteria. In: Proceedings
2007 IEEE International Conference on Robotics and Automation. pp. 1375–1380.
IEEE (2007). https://doi.org/10.1109/ROBOT.2007.363176

10. Howell, T.A., Jackson, B.E., Manchester, Z.: Altro: A fast solver for con-
strained trajectory optimization. In: 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). pp. 7674–7679 (2019).
https://doi.org/10.1109/iros40897.2019.8967788

11. Huo, L., Baron, L.: The joint-limits and singularity avoidance in robotic
welding. Industrial Robot: An International Journal 35(5), 456–464 (2008).
https://doi.org/10.1108/01439910810893626

12. Kotlarski, J., Do Thanh, T., Heimann, B., Ortmaier, T.: Optimization strategies
for additional actuators of kinematically redundant parallel kinematic machines.
In: Robotics and Automation (ICRA), 2010 IEEE International Conference on. pp.
656–661. IEEE (2010)

13. Lantoine, G., Russell, R.P.: A hybrid differential dynamic programming algorithm
for constrained optimal control problems. part 1: Theory. Journal of Optimization
Theory and Applications 154(2), 382–417 (2012). https://doi.org/10.1007/s10957-
012-0039-0

14. Lillo, P.D., Chiaverini, S., Antonelli, G.: Handling robot constraints within a
set-based multi-task priority inverse kinematics framework. In: 2019 Interna-
tional Conference on Robotics and Automation (ICRA). pp. 7477–7483 (2019).
https://doi.org/10.1109/ICRA.2019.8793625

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

Dynamic Programming and Nullspace Projection for Task Redundancy 25

15. Léger, J., Angeles, J.: Off-line programming of six-axis robots for optimum
five-dimensional tasks. Mechanism and Machine Theory 100, 155–169 (2016).
https://doi.org/10.1016/j.mechmachtheory.2016.01.015

16. Merlet, J.P., Perng, M.W., Daney, D.: Optimal trajectory planning of a 5-axis
machine-tool based on a 6-axis parallel manipulator. In: Advances in Robot Kine-
matics, pp. 315–322. Springer (2000). https://doi.org/10.1007/978-94-011-4120-
8_33

17. Merlet, J.P.: Parallel Robots, Solid Mechanics and Its Applications, vol. 128.
Springer Science & Business Media, 2nd edn. (2006). https://doi.org/10.1007/1-
4020-4133-0

18. Mousavi, S., Gagnol, V., Bouzgarrou, B.C., Ray, P.: Control of a multi degrees func-
tional redundancies robotic cell for optimization of the machining stability. Proce-
dia CIRP 58, 269–274 (2017). https://doi.org/10.1016/J.PROCIR.2017.04.004

19. Mousavi, S., Gagnol, V., Bouzgarrou, B.C., Ray, P.: Stability optimiza-
tion in robotic milling through the control of functional redundancies.
Robotics and Computer-Integrated Manufacturing 50, 181–192 (2018).
https://doi.org/10.1016/j.rcim.2017.09.004

20. Nakamura, Y., Hanafusa, H.: Optimal redundancy control of robot manip-
ulators. The International Journal of Robotics Research 6(1), 32–42 (1987).
https://doi.org/10.1177/027836498700600103

21. Nakamura, Y., Hanafusa, H., Yoshikawa, T.: Task-priority based redundancy con-
trol of robot manipulators. The International Journal of Robotics Research 6(2),
3–15 (1987)

22. Oen, K.T., Wang, L.C.T.: Optimal dynamic trajectory planning for linearly
actuated platform type parallel manipulators having task space redundant
degree of freedom. Mechanism and Machine Theory 42(6), 727–750 (2007).
https://doi.org/10.1016/j.mechmachtheory.2006.05.006

23. Ozgoren, M.K.: Optimal inverse kinematic solutions for redundant manipulators
by using analytical methods to minimize position and velocity measures. Journal
of Mechanisms and Robotics 5(3) (06 2013). https://doi.org/10.1115/1.4024294

24. Reiter, A., Müller, A., Gattringer, H.: On higher order inverse kinematics meth-
ods in time-optimal trajectory planning for kinematically redundant manipu-
lators. IEEE Transactions on Industrial Informatics 14(4), 1681–1690 (2018).
https://doi.org/10.1109/TII.2018.2792002

25. Reveles R., D., Pamanes G., J.A., Wenger, P.: Trajectory planning
of kinematically redundant parallel manipulators by using multiple
working modes. Mechanism and Machine Theory 98, 216–230 (2016).
https://doi.org/10.1016/j.mechmachtheory.2015.09.011

26. Santos, J.C., da Silva, M.M.: Redundancy resolution of kinematically redundant
parallel manipulators via differential dynamic programing. Journal of Mechanisms
and Robotics 9(4) (2017). https://doi.org/10.1115/1.4036739

27. Schappler, M.: Simulative Optimierung der Bahnplanung mit mehrfacher
Redundanz bei der roboterassistierten Laserosteotomie. Bachelor’s thesis,
Leibniz Universität Hannover, Institut für Mechatronische Systeme (2013).
https://doi.org/10.15488/10214

28. Schappler, M., Ortmaier, T.: Singularity avoidance of task-redundant robots
in pointing tasks: On nullspace projection and cardan angles as orienta-
tion coordinates. In: Proceedings of the 18th International Conference on
Informatics in Control, Automation and Robotics (ICINCO 2021) (2021).
https://doi.org/10.5220/0010621103380349

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

26 M. Schappler.

29. Sciavicco, L., Siciliano, B.: Modelling and control of robot manipulators. Springer
Science & Business Media (2012). https://doi.org/10.1007/978-1-4471-0449-0

30. Shaw, D., Chen, Y.S.: Cutting path generation of the Stewart-platform-based
milling machine using an end-mill. International Journal of Production Research
39(7), 1367–1383 (2001). https://doi.org/10.1080/00207540010023529

31. Shin, K., McKay, N.: A dynamic programming approach to trajectory planning
of robotic manipulators. IEEE Transactions on Automatic Control 31(6), 491–500
(1986). https://doi.org/10.1109/TAC.1986.1104317

32. Smirnov, V., Plyusnin, V., Mirzaeva, G.: Energy efficient trajectories of in-
dustrial machine tools with parallel kinematics. In: 2013 IEEE Interna-
tional Conference on Industrial Technology (ICIT). pp. 1267–1272 (2013).
https://doi.org/10.1109/icit.2013.6505855

33. Tassa, Y., Mansard, N., Todorov, E.: Control-limited differential dy-
namic programming. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA). pp. 1168–1175. IEEE (2014).
https://doi.org/10.1109/ICRA.2014.6907001

34. Zargarbashi, S., Khan, W., Angeles, J.: Posture optimization in robot-assisted
machining operations. Mechanism and Machine Theory 51, 74–86 (2012).
https://doi.org/10.1016/j.mechmachtheory.2011.11.017

35. Zhu, W., Qu, W., Cao, L., Yang, D., Ke, Y.: An off-line programming
system for robotic drilling in aerospace manufacturing. The International
Journal of Advanced Manufacturing Technology 68(9-12), 2535–2545 (2013).
https://doi.org/10.1007/s00170-013-4873-5

36. Žlajpah, L.: On orientation control of functional redundant robots. In: Robotics
and Automation (ICRA), 2017 IEEE International Conference on. pp. 2475–2482.
IEEE (2017). https://doi.org/10.1109/ICRA.2017.7989288

Copyright (c) 2023 Springer. Personal use of this material is permitted. For any other purposes,
permission must be obtained from Springer International Publishing AG, Cham.

This is the author’s version of an article that has been published in the Springer book series LNEE.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1007/978-3-031-26474-0_6

