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1. Introduction

This work considers a nonlinear coupled fluid flow heat system. Fluid flow is described by
the incompressible Navier–Stokes equations [1, 2] (for important numerical developments, we
refer to [3–11]) and the heat distribution by an advection-diffusion equation. The resulting
PDE (partial differential equation) system is known as Boussinesq model [12]. This model has
been widely applied in various fields such as climate modeling [13] or earth mantle convection
problems [14]. Furthermore, the Boussinesq equation can serve as a sub-model within laser
material processing [15] in wave guide modeling (e.g., [16, 17]) where heated material starts to
flow due to local heat sources. A mathematical analysis of the stationary model that serves as our
point of departure was done in [18].

The objective of this work is to design a robust and efficient framework using adaptive finite
elements for the numerical discretization of the Boussinesq system proposed in [18]. Specifically,
we derive multigoal a posteriori error estimates with respect to one or several quantities of
interest [19–21]. This is intriguing since we deal with a coupled system of partial differential
equations in which various parts of the solution might be of interest simultaneously. We notice
that related results of coupling the stationary Navier–Stokes equations to the heat equation are
published in some conference proceedings and the PhD thesis of the second author [22, 23].
Moreover, there is only one other study [24] in which this multigoal-framework was applied so
far to a nonlinear coupled system.

In more detail, we formulate an optimization problem in which the discretization error
measured in the goal functional is minimized with respect to a constraint. This constraint is
nothing else than the PDE problem itself. For a very detailed description we refer the reader
to the introduction of [24]. The resulting optimality system consists of the primal problem (the
PDE, here the Boussinesq model) and a linear adjoint problem [25, 26]. These results allow to
design error identities and estimators for model errors ( [27, 28]), discretization and linearization
errors [20,29,30]. In this work, we consider discretization and linearization errors. In order to use
the error estimators for local mesh adaptivity we localize them to single mesh elements using
a partition-of-unity localization [31]. This allows us to employ the algorithms from [32] and to
apply them in this work to the Boussinseq system. For verification, we use one benchmark and
we design two novel prototype experiments. Therein, we study error reductions and effectivity
indices.

The outline of this paper is as follows: In Section 2, we explain our problem statement,
derive the weak form and briefly explain the finite element discretization. Next, in Section 3,
goal oriented adaptivity including multigoal estimates are addressed. Then, in Section 4, we
conduct three numerical tests in order to substantiate our algorithmic developments. Our work
is summarized in Section 5.

2. Boussinesq model: coupling Navier–Stokes to the heat equation

Let d = 2 (we notice that d = 3 is possible as well) be the problem dimension and let Ω ⊂ Rd

be a bounded domain with boundary ∂Ω. For flow boundary conditions, ∂Ω is decomposed
into non-overlapping parts ΓvD and Γv N := ∂Ω \ ΓvD , where ΓvD indicate homogeneous or
inhomogeneous Dirichlet conditions, respectively, and Γv N homogeneous or inhomogeneous
Neumann conditions, respectively. For the temperature equation, ∂Ω is decomposed into non-
overlapping parts ΓϑD and ΓϑN := ∂Ω\ΓϑD . We note that for each numerical example, we specify
the boundaries separately. Moreover, we denote the L2 scalar product in L2(Ω;R), L2(Ω,Rd ) or
L2(Ω;Rd×d ) by (·, ·) and the L2 scalar product over a boundary by 〈·, ·〉.
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2.1. Model in strong form

In this section, the strong form of the governing model is formulated.

2.1.1. Parameters and constitutive laws

Let α ∈ R be related to the coefficient of volume expansion, g :Ω→ Rd be the external forces
(for instance gravity) of the flow, f :Ω→ [0,∞) be a heat source, and k : R→ (0,∞) be the thermal
conductivity. Moreover, let the Cauchy stress tensor be given by

σ :=σ(v, p,ϑ) =−pI +ρν(ϑ)
(∇v +∇vT )

, (1)

where I is the identity matrix and ρ > 0 is the density. The temperature-dependent kinematic
viscosity is given by

ν(ϑ) := ν0e
E A
Rϑ , (2)

where E A > 0 and ν0 > 0 are material constants and R > 0 is the universal gas constant.
Specifically, (2) is the Arrhenius equation; see [33, 34] for chemical reactions and [35–39] for
viscosity.

2.1.2. Strong form

With these definitions at hand, our problem statement reads: Find vector-valued velocities
v : Ω→ Rd , a scalar-valued pressure p : Ω→ R, and a scalar-valued temperature ϑ : Ω→ (0,∞)
such that

(ρv ·∇)v −∇·σ−αϑg =0 in Ω,

∇· v =0 in Ω,

−∇· (k(ϑ)∇ϑ)+ v ·∇ϑ= f in Ω.

(3)

In the manner of the Boussinseq approximation, [40, 41], possible variations of the density due
to temperature differences are neglected except for their most significant effect in the form of
buoyancy forces (−αϑg ), so that in (3) ρ is constant.

2.1.3. Boundary conditions

Furthermore, we have fluid flow boundary conditions

v =vD on ΓvD ,

ρν(ϑ)
∂v

∂n
−p ·n =σN on Γv N ,

(4)

where vD is some given Dirichlet data and σN is the Neumann data. It is assumed that ΓvD has a
non-zero ((d −1)-dimensional) measure. Moreover, n denotes the outer normal vector. Next, we
have the temperature boundary conditions

ϑ=ϑD on ΓϑD ,

k(ϑ)
∂ϑ

∂n
=0 on ΓϑN ,

with given Dirichlet data ϑD > 0. Here, we assume that ΓϑD has a non-zero measure. The different
boundary parts and their values are specified for each example.
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2.2. Weak form

In this subsection, we present the weak formulation via variational-monolithic coupling by
standard arguments. First we construct the function spaces:

V v :=
{

v ∈ [
H 1(Ω)

]d
∣∣∣v = 0 on ΓvD

}
,

V p := L2(Ω)/R,

V ϑ := {
ϑ ∈ H 1(Ω)

∣∣ϑ= 0 on ΓϑD
}

.

Let us introduce the space X :=V v ×V p ×V ϑ. In the following, we give a weak formulation using
the notation of a semi-linear form A(U )(Ψ) which is nonlinear in its first argument (i.e., the trial
function U ) and linear with respect to the second argument (i.e., the test functionΨ). This gives

Problem 1. Let {πvD ,0,πϑD } be an extension of nonhomogeneous Dirichlet data. Furthermore,
let the semi-linear form A(U )(Ψ) be given by

A(U )(Ψ) :=(
ρ(v ·∇)v,ψv )+ (

σ,∇ψv )−〈
σN ,ψv 〉

Γv N
− (
αϑg ,ψv )

+ (∇· v,ψp)

+
(
k(ϑ)∇ϑ,∇ψϑ

)
+

(
v ·∇ϑ,ψϑ

)
−

(
f ,ψϑ

)
, U ∈ X D ,Ψ ∈ X ,

(5)

where σ is as in (1), ν is taken from (2) and k : R→ (0,∞) is a continuous positive function.
Find U = (v, p,ϑ) ∈ X D := {πvD ,0,πϑD }+X such that

A(U )(Ψ) = 0 ∀Ψ :=
(
ψv ,ψp ,ψϑ

)
∈ X . (6)

We recall [18, Theorem 2.1], merely adjusting the notation to the problem description given
above:

Theorem 2. Let Ω ⊂ Rd , d ∈ {2,3}, be a bounded domain with Lipschitz boundary, ν,k ∈ C 0(R)
positive functions, assumeα ∈R, g ∈ [L2(Ω)]d ,ϑD ∈ H

1
2 (∂Ω)∩L∞(∂Ω). Let f = 0, vD = 0, ΓvD = ∂Ω,

Γv N =;, ΓϑD = ∂Ω. and ΓϑN =;. Then the problem has a weak solution.

The extension of the problem of [18] by a non-zero external source f is straight-forward. For
the change of the fluid boundary conditions to the mixed conditions in (4) we refer to [42, Sec. 3],
where solvability of a Navier–Stokes system with these boundary conditions, but without any
influence of the temperature, was proven.

2.3. Discretization and numerical solution

The problem in equation (6) is discretized with a Galerkin finite element scheme [43] using
quadrilaterals with hanging nodes for local mesh refinement. The choice of employing quadri-
laterals is motivated by the finite element library deal.II [44, 45] that we use for the implemen-
tation and numerical simulations. To this end, we introduce finite dimensional conforming sub-
spaces Xh ⊂ X , where Xh = V v

h ×V p
h ×V ϑ

h . Furthermore, let {πvh,D ,0,πϑh,D } be an extension of
the discretized boundary data. Then, the problem statement reads: Find Uh = (vh , ph ,ϑh) ∈ X D

h =
{πvh,D ,0,πϑh,D }+Xh such that

A(Uh)(Ψh) = 0 ∀Ψh ∈ Xh . (7)

This finite-dimensional nonlinear system is solved with Newton’s method: Given an initial guess
U 0

h ∈ {πvh,D ,0,πϑh,D }+Xh , find δUh ∈ Xh for j = 1,2,3, . . . such that

A′
(
U j

h

)
(δUh ,Ψh) =−A

(
U j

h

)
(Ψh) ∀Ψh ∈ Xh . (8)

U j+1
h =U j

h +ωδUh , (9)
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where ω ∈ (0,1] is a line-search parameter for globalization. Inside Newton’s method, the arising
systems of linear equations are solved with a sparse direct solver (UMFPACK [46]).

3. Goal-oriented error control

In goal-oriented error estimation the aim is to estimate the error in a certain quantity of interest
J : X D 7→R. Examples for such quantities of interest could be a point evaluation, an integral eval-
uation of any solution component or some other possibly nonlinear quantity J . In the following,
first the abstract primal problem from before is stated, and subsequently the associated adjoint
problem is given. Both are employed to derive an error identity.

3.1. Primal problem

The primal problem is given by: Find U = (v, p,ϑ) ∈ X D such that

A(U )(Ψ) = 0 ∀Ψ ∈ X . (10)

The discrete version of this problem reads as discussed above: Find Uh = (vh , ph ,ϑh) ∈ X D
h , such

that

A(Uh)(Ψh) = 0 ∀Ψh ∈ Xh .

Our aim is to obtain J (U ), however all we can compute is J (Uh). To estimate the error we use the
adjoint problem for J as proposed in [25, 47]. This approach is known as dual-weighted residual
method (DWR), which is inspired by optimal control, and therefore both are conceptionally
similar. In the DWR method we aim to minimize the approximation error subject to a PDE
constraint, here A(U )(Ψ) = 0. The approximation error may consist of the discretization error
only, but can also include iteration errors [29, 48, 49] or model errors [27, 28]. This minimization
problem is given by [25, Section 2.2]

min J (U ) s.t. A(U )(Ψ) = 0,

which can be solved by formulating the Lagrangian L(U , Z ) with the adjoint variable Z ∈ X .
The resulting optimality system is obtained by differentiation with respect to U and Z , which is
conceptionally similar to numerical optimization such as optimal control or topology optimiza-
tion [50–53].

3.2. Adjoint problem

The adjoint problem is given by: Find Z = (zv , zp , zϑ) ∈ X such that

A′(U )(Ψ, Z ) = J ′(U )(Ψ) ∀Ψ ∈ X , (11)

where A′ and J ′ are the Fréchet derivatives with respect to U . However, also the adjoint problem
has to be discretized. The discretized adjoint problem reads: Find Zh = (zv

h , zp
h , zϑh ) ∈ Xh such that

A′(Uh) (Ψh , Zh) = J ′(Uh)(Ψh) ∀Ψh ∈ Xh . (12)

3.3. Error representation

Using the solutions of the primal and adjoint problem, we obtain the following theorem:
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Theorem 3. Let A be as in (5) and J ∈C 3(X D ,R). If U solves (10) and Z solves (11) for U , then for
every Ũ ∈ X D and Z̃ ∈ X , the error J (U )− J (Ũ ) can be written as

J (U )− J (Ũ ) = 1

2
ρ(Ũ )(Z − Z̃ )+ 1

2
ρ∗(Ũ , Z̃ )(U −Ũ )−ρ(Ũ )(Z̃ )+R(3) (Ũ , Z̃ ,eu ,ez

)
, (13)

where the primal and adjoint residuals are given by

ρ(Ũ )(·) :=−A(Ũ )(·),

ρ∗(Ũ , Z̃ )(·) := J ′(Ũ )− A′(Ũ )(·, Z̃ ),

respectively, and the remainder term

R(3) (Ũ , Z̃ ,eu ,ez
)

:= 1

2

∫ 1

0

[
J ′′′

(
Ũ + seu

)
(eu ,eu ,eu)

− A′′′ (Ũ + seu
)(

eu ,eu ,eu , Z̃ + sez
)−3A′′ (Ũ + seu

)
(eu ,eu ,eu)

]
s(s −1)d s, (14)

with eu =U −Ũ and ez = Z − Z̃ .

This error representation allows us to represent the error in a different way. However (13) still
depends on U and Z , which are both unknown.

Proof. For information on the proof, we refer to [25, 29, 32]. Note that we use positivity of ϑ in
order to avoid singularities in ρ,ρ∗ and R(3). □

Remark 4. Since this error representation holds for all Ũ and Z̃ , it also holds for Ũ = Uh and
Z̃ = Zh , provided that Uh ∈ X D and Zh ∈ X . We note that Xh ⊂ X , but for non-trivial boundary
data, X D

h ̸⊂ X D .

3.4. Error estimators

If we replace U and Z in (13) by approximations, we obtain an error estimator instead of an error
representation. This can be realized by higher order interpolation or enriched approximation.
Both methods are described in more details in [25] and a mixed method is presented in [23,30]. In
this work, we will use and describe enriched approximation in more detail. We consider X (2)

h and

X 0,(2)
h to be enriched spaces, i.e Xh ⊂ X (2)

h ⊂ X and X 0
h ⊂ X 0,(2)

h ⊂ X 0. Examples of such enriched
spaces can be generated by refining the mesh or using other finite elements. This leads us to the
enriched model problem: Find U (2)

h = (v (2)
h , p(2)

h ,ϑ(2)
h ) ∈ X (2)

h , such that

A
(
U (2)

h

)(
Ψ(2)

h

)
= 0 ∀Ψ(2)

h ∈ X 0,(2)
h . (15)

The enriched adjoint problem reads: Find Z (2)
h = (zv,(2)

h , zp,(2)
h , zϑ,(2)

h ) ∈ X 0,(2)
h such that

A′
(
U (2)

h

)(
Ψ(2)

h , Z (2)
h

)
= J ′

(
U (2)

h

)(
Ψ(2)

h

)
∀Ψ(2)

h ∈ X 0,(2)
h . (16)

As above, U and Z in the right hand side of the error representation (13) are replaced by U (2)
h and

Z (2)
h and Ũ and Z̃ by Uh and Zh , respectively. We obtain the error estimation formula

J (U )− J (Uh) ≈
1

2
ρ(Uh)

(
Z (2)

h −Zh

)
+ 1

2
ρ∗(Uh , Zh)

(
U (2)

h −Uh

)

︸ ︷︷ ︸
ηh

−ρ(Uh)(Zh)︸ ︷︷ ︸
ηk

+R(3) (Uh , Zh ,e(2)
u ,e(2)

z

)
︸ ︷︷ ︸

ηR

, (17)

where e(2)
u := U (2)

h −Uh and Z (2)
h − Zh . Here U (2)

h and Z (2)
h are the solutions of (15) and (16)

respectively.

Remark 5. For the error estimator (17), Uh and Zh need not be the exact solutions of the discrete
problem but can be some approximations of it as well.
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The first part of the error estimator ηh

The part ηh represents the discretization error as proposed in [22, 29, 32]. Here

ηh,p := ρ(Uh)
(

Z (2)
h −Zh

)

is the primal part of the error estimator and

ηh,a := ρ∗(Uh , Zh)
(
U (2)

h −Uh

)

is the adjoint part. In the literature the adjoint part of the error estimator is often replaced with
the primal error part ρ. In [25,54], it is proven that the adjoint part can be expressed as the primal
part and higher order terms depending on the problem and the goal functionals. For moderate
nonlinear problems, this approximation often works very well [25, 55]. In this work, both parts
are considered. The localization is done by using the partition of unity technique proposed
in [31]. Alternatives are the filtering approach [28] (which works as well on the variational level)
or integration by parts [25]. However, specifically for coupled problems (as in the current work)
the latter is error prone and computationally expensive since the strong form operators must be
evaluated.

The second part of the error estimator ηk

This part mimics the iteration error as in [29, 32]. It can be used as stopping criterion of the
solver on each level. If Uh is the exact solution of (7) then this part vanishes.

The third part of the error estimator ηR

This part is usually of higher order [25, 29]. Mostly, ηR is neglected in the evaluation of the
error estimator. Recent studies and investigations of ηR with the help of numerical examples
were undertaken in [32].

The practical error estimator

After the previous assumptions and explanations, the practical error estimator is given by
η := ηh + ηk . As proven in [32] (see also [22]), this error estimator is efficient and reliable if a
certain saturation assumption is fulfilled. Furthermore, interpolation techniques for a new class
of algorithms were established in [30].

3.5. Finite element discretization and polynomial spaces

Having the primal and adjoint problems at hand, we employ the following finite elements in our
algorithms and numerical experiments. We use

• continuous piecewise bi-quadratic functions Qc
2 for the velocity v and

• continuous piecewise bilinear functions Qc
1 for the pressure p and temperature ϑ.

The adaptively refined mesh will lead to hanging nodes in the mesh [56]. These nodes are
constrained such that generated functions in the finite element space are continuous. For more
information about this topic we refer to [57, 58]. For the enriched space we have

• continuous piecewise bi-quartic functions Qc
4 for the velocity v and

• continuous piecewise quadratic functions Qc
2 for the pressure p and temperature ϑ.

A comparison of different finite elements and uniform mesh refinement for the enriched space
can be found in [59].



8 Sven Beuchler, Bernhard Endtmayer, Johannes Lankeit and Thomas Wick

3.6. Multiple goal functionals and algorithms

In many applications, such as multiphysics problems, or coupled problems in general (as in this
work), more than one goal functional is of interest. Let us assume we are interested in N goal
functionals J1, . . . , JN . Later in Section 4, we have up to N = 7. A straightforward application of
the previous concepts would be to compute an error estimator for each functional and to com-
bine them afterwards. However, for this approach we have to solve the adjoint problem N times;
see [19, 60]. This would lead to a non-acceptable computational cost. To overcome this prob-
lem, several techniques have been proposed such as a combined functional by solving an ad-
ditional dual-dual problem for the sign computation in the combined functional [19, 60], using
generalized Green’s functions [61], by a linear combination of the functionals [62, 63], by refor-
mulation to a minimization problem where the quantities of interest serve as constraints [64,65],
and combined functionals with hierarchical higher order approximations for the sign computa-
tion [20, 22, 66]. In this work we follow the approach proposed in [20, 66]. We combine the func-
tionals to one by using

Jc :=
N∑

i=1
ωi Ji , (18)

with

ωi :=




sign
(

Ji

(
U (2)

h

)
− Ji (Uh)

)
/ |Ji (Uh)| for |Ji (Uh)| ≥ 10−12,

103sign
(

Ji

(
U (2)

h

)
− Ji (Uh)

)
.

The overall algorithmic realization using Jc has been described in detail in [32] and we simply
apply exactly these schemes to the Boussinesq model in the current paper.

4. Numerical experiments

In this section, we investigate three numerical examples. The programming code is based on the
open-source finite element library deal.II [44, 45]. All geometry data and material parameters are
given in SI units. To measure the quality of our error estimators we employ so-called effectivity
indices.

Definition 6. For the functional J the effictivity index Ie f f , the primal effectivity index Ie f f ,p and
the adjoint effectivity index Ie f f ,a are defined as

Ie f f := ηh

J (U )− J (Uh)
, Ie f f ,p :=

ηh,p

J (U )− J (Uh)
and Ie f f ,a := ηh,a

J (U )− J (Uh)
.

For the real error J (U )− J (Uh), we compute a reference solution on sufficiently refined meshes
as it is often done.

4.1. A flow benchmark

In this first example we apply our method to a problem featuring a flow around a cylinder as
in [67].

4.1.1. Configuration, geometry, parameters, boundary conditions

The domain is given byΩ := (0,2.2)×(0,0.41)\B where B := {x ∈R2 : |x−(0.2,0.2)| < 0.05}. The
domain as well as the boundary conditions are depicted in Figure 1.
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Γintflow

ΓϑN

Γoutflow

ΓϑN

∂B

x1 x2

Figure 1. The domainΩwith boundary conditions.

In the strong model given in Section 2.1, we set g = (0,0)T ,k(ϑ) = 1 and1 E A = 1.49 × 104,
ν0 = 2.22× 10−6, and R = 8.31. Next, the thermal expansion coefficient is α = 6.88× 10−5 and
the density is ρ = 998.21. Constant conductivity was chosen for simplicity, in order to focus
on prototype situations within the development of the multigoal framework for the Boussinesq
model.

Furthermore we have no-slip boundary conditions on ΓϑN and ∂B, do-nothing conditions on
Γoutflow and an inflow on Γintflow, i.e

v = 0 on ΓϑN ∪∂B,

v = vin on Γintflow,

σ ·n = 0 on Γoutflow,

∂ϑ

∂n
= 0 on ∂Ω\ (∂B∪Γintflow) ,

ϑ=ϑintflow on Γintflow,

ϑ=ϑ∂B on ∂B,

where vi n(x, y) := 4vm
y(H−y)

H 2 with vm = 0.3 and H = 0.41. In the following, two possible configu-
rations are considered:

• “cold to warm”: ϑintflow = 278.15, ϑ∂B = 353.15,
• “warm to cold”: ϑintflow = 353.15, ϑ∂B = 278.15.

4.1.2. Goal functionals

In this example, a pressure difference serves as goal functional:

pdiff(U ) := p (x1)−p(x2),

where x1 := (0.15,0.2) and x2 := (0.25,0.2) as in the original benchmark problem [67]. The
reference values are

pdiff(U ) =114.68898895581040 for “cold to warm”

and

pdiff(U ) =101.97737719601436 for “warm to cold”.

We remark that due to the pointwise evaluation pdiff(U ) is not well-defined on the solution space
X D introduced in Section 2.2 and the adjoint equation features Dirac delta distributions at x1 and

1The values are computed by using the data for 293.15K and 353.15K in https://www.lss.ovgu.de/lss_media/
Downloads/Lehre/Str%C3%B6mungsmechanik/Arbeitsheft/IV.pdf.

https://www.lss.ovgu.de/lss_media/Downloads/Lehre/Str%C3%B6mungsmechanik/Arbeitsheft/IV.pdf
https://www.lss.ovgu.de/lss_media/Downloads/Lehre/Str%C3%B6mungsmechanik/Arbeitsheft/IV.pdf
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x2 on the right hand side. Therefore higher regularity of solutions to (6) (respectively (3)) has to
be assumed here. For corresponding conditions on data and domain cf. also [18, Theorem 2.3].

4.1.3. Discussion of our findings

The numerical results are displayed in Figures 2 to 7. More precisely, Figure 2 and Figure 3 show
the error and error estimator for the configurations “cold to warm” and “warm to cold”, respec-
tively. The magnitude of the velocity (including streamlines), the pressure and the temperature
are visualized in the next three figures for both configurations. Finally, the meshes are displayed
in Figure 7.

We observe that in the configuration “cold to warm” the vortices are much bigger than in the
configuration “warm to cold”. This is a result of the temperature dependent viscosity, which is
smaller around the cold cylinder. This also leads to higher convection terms in the configuration
“cold to warm”. In Figure 7, we notice that this effect also has a big influence in the adaptive
refinement. In both configurations the temperature is almost constant on the other side of the
cylinder, see Figure 6. Furthermore, it is close to the temperature at ∂B. From Figure 5, we deduce
that the high dependency of the viscosity on the temperature has a big impact on the pressure
p. The error reduces approximately with the rate O (DOFs−1) for both configurations, cf. Figure 2
and Figure 3, respectively. Surprisingly, the error estimator shows a more uniform behavior in the
convergence than the error itself. One can observe a strong refinement of the mesh around the
cylinder. On the other hand, the mesh has almost no refinement on the right side, namely on the
outflow boundary.
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Figure 4. The magnitude of the velocity and the streamlines for “cold to warm” (above) and
“warm to cold” (below)
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Figure 7. The mesh for the configuration “cold to warm” (above) and “warm to cold”
(below)

4.2. Laser point source

In this second example, we consider the flow in a square without inflow and outflow. The
temperature on the boundary is constant. A heat point source2 enters as right hand side into
the flow equations and generates a flow field.

4.2.1. Configuration, geometry, parameters, boundary conditions

We considerΩ := (0,1)2. The right hand side f of (3) is

f (x) := 10ψx0 (x) where ψx0 (x) := 104
p

2πe−104|x−x0|2 ,

with x0 := (0.75,0.75). This models a laser pointing at x0. The boundary conditions are

v = 0 on ∂Ω and ϑ= 293.15 on ∂Ω.

The gravity is given by g = (0,−9.81)T and the thermal expansion coefficient is α= 6.88×10−5.

4.2.2. Goal functionals

Our quantities of interest are the mean value of the velocity and the mean value of the
temperature

¯|v |(U ) := 1

|Ω|

∫

Ω
|v |dx and ϑ̄(U ) := 1

|Ω|

∫

Ω
ϑdx.

We use the adaptive strategy for ¯|v |, ϑ̄, and for both of these at once in the combined func-
tional JE.

4.2.3. Discussion of our findings

The numerical results are presented in Figures 8 to 16. More precisely, the first six figures
display error and error estimator in one picture and effectivity index in a second picture for the
temperature ϑ̄, the absolute value of the velocity ¯|v | and the combination of both, respectively.
The streamlines of the flow and the magnitude of the temperatureϑ are displayed in Figure 14 left.
The refined meshes after 21 refinement steps are depicted in Figure 15. In Figure 16, the value of
the error estimator and the marked elements are displayed. Good effectivity indices for ¯|v |, ϑ̄ and
for the combination JE are observed on the refined meshes. Figure 12 provides us information
on the error of the individual functionals, the combined error and the error estimator. The error

2The motivation of this example is due to laser wave guide modeling in which a laser causes temperature changes and
for which material starts to flow.
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for ¯|v | dominates the error of ϑ̄. Therefore, JE has a similar behavior as ¯|v |. This is an explanation
for the similar behaviour of the refined meshes. In all three cases, there is a strong refinement
around the point source. This clover is a typical refinement structure around point sources. There
is a big vortex in the center, two smaller vortices on the right side, c.f. Figure 14. Moreover, there
are smaller vortices in the left vertices of the square. This is similar to the driven cavity problem. A
more detailed picture of this part of the domain is displayed in Figure 14 (right).
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4.3. Y-beam splitter

In this third example, we consider a Y-beam splitter with a laser that generates a flow field due to
gravity. This application is motivated from PhoenixD3 and is an important configuration in wave
guide modeling [68].

3https://www.phoenixd.uni-hannover.de/en/

https://www.phoenixd.uni-hannover.de/en/
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Figure 15. Section 4.2. The mesh after 21 refinements for ϑ̄ (left), JE (center) and ¯|v |(right).

Figure 16. Section 4.2. Error estimator (left) and marked elements for refinement (right) for
the mesh JE displayed at the center of Figure 15.

4.3. Y-beam splitter

In this third example, we consider a Y-beam splitter with a laser that generates a flow field due to
gravity. This application is motivated from PhoenixD3 and is an important configuration in wave
guide modeling [68].

4.3.1. Configuration, geometry, parameters, boundary conditions

The domainΩ and its subdomainsΩ1,Ω2,Ω3 are depicted in Figure 17. Furthermore, we have
the fluid flow boundary conditions

v =0 on Γ0 = ΓvD ,

ν(ϑ)
∂v

∂n
−p ·n =0 on Γ1 ∪Γ2 ∪Γ3 = Γv N ,

the temperature boundary conditions

ϑ=293.15 on Γ1 = ΓϑD ,

∂ϑ

∂n
=0 on ∂Ω\Γ1 = ΓϑN .

3https://www.phoenixd.uni-hannover.de/en/

Figure 15. Section 4.2. The mesh after 21 refinements for ϑ̄ (left), JE (center) and ¯|v |(right).
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4.3.1. Configuration, geometry, parameters, boundary conditions

The domainΩ and its subdomainsΩ1,Ω2,Ω3 are depicted in Figure 17. Furthermore, we have
the fluid flow boundary conditions

v = 0 on Γ0 = ΓvD ,

ν(ϑ)
∂v

∂n
−p ·n = 0 on Γ1 ∪Γ2 ∪Γ3 = Γv N ,

the temperature boundary conditions

ϑ= 293.15 on Γ1 = ΓϑD ,

∂ϑ

∂n
= 0 on ∂Ω\Γ1 = ΓϑN .

The right hand side f is chosen as

• Configuration 1: f (x) :=ψA(x), A = (0.5,0.1),
• Configuration 2: f (x) := 1

2ψB (x)+ 1
2ψC (x), B = (0.5,0.3), C = (0.5,0.7),

• Configuration 3: f (x) :=ψE (x), E = (0.5,1),
• Configuration 4: f (x) :=ψD (x), D = (0.55,1),
• Configuration 5: f (x) :=ψF (x), F = (0.3,1.4),
• Configuration 6: f (x) :=ψC(x).

The function

ψx0 (x) := 104
p

2πe−104|x−x0|2 ,

resembles the laser centered at x0 ∈ {A,B ,C ,D,E ,F }, and the function

ψC(x) := 500

|C|
p

2πe−104dist (x,C)2
,

resembles the laser along the curve C where di st (x,C) := infx∗∈C |x − x∗| and |C| is the length of
the curve C. The curve C is given by circular arcs, with continuous tangent through the points
((0.5,0), A,B ,C ,D,E , (0.45,1),F, (0.3,1.5)), where we start with a line between (0.5,0) and A.
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Figure 17. The domain Ω, the boundary
parts, the domains for our quantites of
interest, the curveC and the points for the
different configurations.
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In the following, we discuss our quantitative findings. First, the reference values are provided
in Table 1. The errors and error estimators versus the degrees of freedom are displayed in
the Figures 21 to 26. The various effectivity indices are shown in the Figures 27 to 32, from
which we observe excellent performances. This is in particular remarkable due to the different
configurations and the nonlinear behavior of the coupled PDE system. It can be inferred that our
multigoal framework is robust and yields a cost-efficient numerical procedure.

Figure 17. The domainΩ, the boundary
parts, the domains for our quantites of
interest, the curve C and the points for
the different configurations.

Figure 18. The initial mesh for all con-
figurations.

4.3.2. Goal functionals

We consider seven goal functionals:

J1(U ) :=
∫

Γ1

v ·ndx, J2(U ) :=
∫

Γ2

v ·ndx,

J3(U ) :=
∫

Γ3

v ·ndx, J4(U ) := 1

|Ω1|

∫

Ω1

ϑdx,

J5(U ) := 1

|Ω2|

∫

Ω2

ϑdx, J6(U ) := 1

|Ω3|

∫

Ω3

ϑdx,

J7(U ) :=(J5(U )− J6(U ))2.

Remark 7. Due to symmetry, J7 vanishes for the Configurations 1-3.

4.3.3. Discussion of our findings

The magnitude of the velocity and the temperature for different configurations are displayed
in Figure 19. Furthermore, different locally refined meshes are shown in Figure 20. These show
refinement in geometric singularities such as the kink where the splitter branches, but as well
local refinement due to the goal functionals.

In the following, we discuss our quantitative findings. First, the reference values are provided
in Table 1. The errors and error estimators versus the degrees of freedom are displayed in
the Figures 21 to 26. The various effectivity indices are shown in the Figures 27 to 32, from
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which we observe excellent performances. This is in particular remarkable due to the different
configurations and the nonlinear behavior of the coupled PDE system. It can be inferred that our
multigoal framework is robust and yields a cost-efficient numerical procedure.

Table 1. Reference values

Config. 1 2 3
J1 -5.1630481e-06 -2.1224898e-05 -3.36248616e-05
J2 2.5815241e-06 1.0612449e-05 1.68124308e-05
J3 2.5815241e-06 1.0612449e-05 1.68124308e-05
J4 2.9511378e+02 2.9511878e+02 2.95118918e+02
J5 2.9704640e+02 3.0918292e+02 3.20253892e+02
J6 2.9704640e+02 3.0918292+02 3.20253892e+02
J7 0 0 0

Config. 4 5 6
J1 -3.3629129e-05 -3.7522141e-05 -7.2595565e-05
J2 1.7183604e-05 1.3366980e-05 3.2117505e-05
J3 1.6445525e-05 2.4155161e-05 4.0478060e-05
J4 2.9511892e+02 2.9511902e+02 2.9670043e+02
J5 3.2052058e+02 3.2170400e+02 3.4082013e+02
J6 3.2001790e+02 3.3282825e+02 3.4671220e+02
J7 2.5268810e-01 1.237489e+02 3.4716466e+01

Figure 19. The magnitude of the velocity (above) and the temperature (below) for Config-
uration 1-6 from left to right.
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Figure 20. The initial and final mesh for Configuration 1-6 from left to right.
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Figure 21. The error and error estimator
for Configuration 1.
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Figure 22. The error and error estimator
for Configuration 2.

5. Conclusions

In this work, we modeled laser material processing with the help of a generalized Boussinesq
model. The resulting PDE system is nonlinear and we considered a monolithic coupling scheme.
The focus was on multi-goal a posteriori error estimation and local mesh adaptivity. Since the
Boussinesq system consists of two coupled PDEs (i.e., incompressible Navier–Stokes coupled
to a stationary heat equation) several quantities of interest (i.e., goal functionals) might be of
interest simultaneously. In our multigoal-framework, a combined goal functional is defined and
serves as right hand side in the adjoint problem from which local sensitivity measures enter
the error estimator. Three numerical experiments were conducted: One classical benchmark
problem and two configurations that are motivated from interdisciplinary collaborations in our
Cluster of Excellence. In all tests, we observed error reductions and effectivity indices. The latter
show excellent performance and indicate that we have a robust and efficient adaptive framework
at hand. In future work, we plan to extend this framework to three-dimensional situations.



Sven Beuchler, Bernhard Endtmayer, Johannes Lankeit and Thomas Wick 19Sven Beuchler, Bernhard Endtmayer, Johannes Lankeit and Thomas Wick 19

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10000 100000 1e+06

DOFs

Configuration 3

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

DOFs−1

Figure 23. The errors and error estimator
for Configuration 3.

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

100 1000 10000 100000 1e+06

DOFs

Configuration 4

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

DOFs−1

Figure 24. The errors and error estimator
for Configuration 4.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 5

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 25. The errors and error estimator
for Configuration 5.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

DOFs

Configuration 6

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 26. The errors and error estimator
for Configuration 6.

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 1

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 27. Effectivity indices for Config-
uration 1.

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 2

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 28. Effectivity indices for Config-
uration 2.

Figure 23. The errors and error estimator
for Configuration 3.

Sven Beuchler, Bernhard Endtmayer, Johannes Lankeit and Thomas Wick 19

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10000 100000 1e+06

DOFs

Configuration 3

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

DOFs−1

Figure 23. The errors and error estimator
for Configuration 3.

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

100 1000 10000 100000 1e+06

DOFs

Configuration 4

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

DOFs−1

Figure 24. The errors and error estimator
for Configuration 4.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 5

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 25. The errors and error estimator
for Configuration 5.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

DOFs

Configuration 6

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 26. The errors and error estimator
for Configuration 6.

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 1

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 27. Effectivity indices for Config-
uration 1.

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 2

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 28. Effectivity indices for Config-
uration 2.

Figure 24. The errors and error estimator
for Configuration 4.

Sven Beuchler, Bernhard Endtmayer, Johannes Lankeit and Thomas Wick 19

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10000 100000 1e+06

DOFs

Configuration 3

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

DOFs−1

Figure 23. The errors and error estimator
for Configuration 3.

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

100 1000 10000 100000 1e+06

DOFs

Configuration 4

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

DOFs−1

Figure 24. The errors and error estimator
for Configuration 4.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 5

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 25. The errors and error estimator
for Configuration 5.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

DOFs

Configuration 6

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 26. The errors and error estimator
for Configuration 6.

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 1

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 27. Effectivity indices for Config-
uration 1.

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 2

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 28. Effectivity indices for Config-
uration 2.

Figure 25. The errors and error estimator
for Configuration 5.

Sven Beuchler, Bernhard Endtmayer, Johannes Lankeit and Thomas Wick 19

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10000 100000 1e+06

DOFs

Configuration 3

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

DOFs−1

Figure 23. The errors and error estimator
for Configuration 3.

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

100 1000 10000 100000 1e+06

DOFs

Configuration 4

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

DOFs−1

Figure 24. The errors and error estimator
for Configuration 4.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 5

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 25. The errors and error estimator
for Configuration 5.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

DOFs

Configuration 6

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 26. The errors and error estimator
for Configuration 6.

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 1

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 27. Effectivity indices for Config-
uration 1.

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 2

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 28. Effectivity indices for Config-
uration 2.

Figure 26. The errors and error estimator
for Configuration 6.

Sven Beuchler, Bernhard Endtmayer, Johannes Lankeit and Thomas Wick 19

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10000 100000 1e+06

DOFs

Configuration 3

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

DOFs−1

Figure 23. The errors and error estimator
for Configuration 3.

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

100 1000 10000 100000 1e+06

DOFs

Configuration 4

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

DOFs−1

Figure 24. The errors and error estimator
for Configuration 4.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 5

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 25. The errors and error estimator
for Configuration 5.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

DOFs

Configuration 6

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 26. The errors and error estimator
for Configuration 6.

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 1

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 27. Effectivity indices for Config-
uration 1.

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 2

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 28. Effectivity indices for Config-
uration 2.

Figure 27. Effectivity indices for Config-
uration 1.

Sven Beuchler, Bernhard Endtmayer, Johannes Lankeit and Thomas Wick 19

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

100 1000 10000 100000 1e+06

DOFs

Configuration 3

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

DOFs−1

Figure 23. The errors and error estimator
for Configuration 3.

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

100 1000 10000 100000 1e+06

DOFs

Configuration 4

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

DOFs−1

Figure 24. The errors and error estimator
for Configuration 4.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 5

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 25. The errors and error estimator
for Configuration 5.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

DOFs

Configuration 6

Error in Jc

ηh

Error in J1

Error in J2

Error in J3

Error in J4

Error in J5

Error in J6

Error in J7

O (DOFs− 3
2 )

Figure 26. The errors and error estimator
for Configuration 6.

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 1

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 27. Effectivity indices for Config-
uration 1.

0.01

0.1

1

10

100 1000 10000 100000 1e+06

DOFs

Configuration 2

Ie f f

Ie f f ,a

Ie f f ,p

1

Figure 28. Effectivity indices for Config-
uration 2.

Figure 28. Effectivity indices for Config-
uration 2.

Theorem 2.2 and the multigoal framework in general cover three-dimensional domains (see
also [22, 69]). A suitable analogue for the Y-beam splitter of Section 4.3 would be Ω× I , with
I = (0,0.2), ΓνN = (Γ1 ∪Γ2 ∪Γ3)× I etc. (where Ω, Γ1, Γ2, Γ3 are as in section 4.3), and the points
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5. Conclusions

In this work, we modeled laser material processing with the help of a generalized Boussinesq
model. The resulting PDE system is nonlinear and we considered a monolithic coupling scheme.
The focus was on multi-goal a posteriori error estimation and local mesh adaptivity. Since the
Boussinesq system consists of two coupled PDEs (i.e., incompressible Navier-Stokes coupled
to a stationary heat equation ) several quantities of interest (i.e., goal functionals) might be of
interest simultaneously. In our multigoal-framework, a combined goal functional is defined and
serves as right hand side in the adjoint problem from which local sensitivity measures enter
the error estimator. Three numerical experiments were conducted: One classical benchmark
problem and two configurations that are motivated from interdisciplinary collaborations in our
Cluster of Excellence. In all tests, we observed error reductions and effectivity indices. The latter
show excellent performance and indicate that we have a robust and efficient adaptive framework
at hand. In future work, we plan to extend this framework to three-dimensional situations.
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to a stationary heat equation ) several quantities of interest (i.e., goal functionals) might be of
interest simultaneously. In our multigoal-framework, a combined goal functional is defined and
serves as right hand side in the adjoint problem from which local sensitivity measures enter
the error estimator. Three numerical experiments were conducted: One classical benchmark
problem and two configurations that are motivated from interdisciplinary collaborations in our
Cluster of Excellence. In all tests, we observed error reductions and effectivity indices. The latter
show excellent performance and indicate that we have a robust and efficient adaptive framework
at hand. In future work, we plan to extend this framework to three-dimensional situations.
Theorem 2.2 and the multigoal framework in general cover three-dimensional domains (see
also [22, 69]). A suitable analogue for the Y-beam splitter of Section 4.3 would be Ω× I , with
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A, . . . ,F obtaining an additional third component of 0.1 each; a choice of g = (0,0,−9.81)T in
place of g = (0,−9.81)T would be interesting. The form of the goal functionals of Section 4.3.2
remains unchanged. However, the computational extension requires some work, with the main
bottleneck being the linear solver and preconditioners that need to be developed due to memory
consumptions and computational cost. Finally, another future extension are time-dependent
cases by using a space-time framework.
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