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Summary
Within this work, we consider optimization settings for nonlinear, nonstation-
ary fluid-structure interaction (FSI). The problem is formulated in a mono-

lithic fashion using the arbitrary Lagrangian-Eulerian framework to set-up the

fluid-structure forward problem. In the optimization approach, either optimal
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control or optimal design problems are treated. In the latter, the stiffness of
the solid is estimated from given reference values. In the numerical solution,
the optimization problem is solved with a gradient-based solution algorithm.
The nonlinear subproblems of the FSI forward problem are solved with a New-
thomas.wick@ifam.uni-hannover.de ton method including line search. Specifically, we will formally provide the
backward-in-time running adjoint state used for gradient computations. Our
algorithmic developments are demonstrated with some numerical examples as,
for instance, extensions of the well-known fluid-structure benchmark settings

and a flapping membrane test in a channel flow with elastic walls.
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1 | INTRODUCTION

This article is devoted to the study of optimal control and optimal design problems of nonstationary, nonlinear
fluid-structure interaction (FSI). For general overviews on the FSI forward problem, we refer to the books.!® FSI is chal-
lenging for mainly two reasons. First, the interface must be discretized with sufficient accuracy since otherwise the
kinematic and dynamic coupling conditions are not correctly transferred to the other problem. Evidence is given in
Reference 4 [p. 415ff] in which the FSI-2 benchmark is not listed (p. 424-425) because most codes were not able to obtain
robust results under spatial and temporal refinement. Specifically, the elastic beam will only start moving when the inter-
face conditions are accurately resolved. Second, numerical algorithms are sensitive in terms of stability to the physical
parameters; known as added-mass effect.”!? In order to formulate the fluid equations to match with the solid Lagrangian
coordinate system at the interface, we employ the well-known arbitrary Lagrangian-Eulerian (ALE) technique.!31> Here,
we notice that two schools exist: the ALE formulation of the time derivative, for example, References 2,15 in which the
flow problem is still given in the moving domain Q(t) and'%!7 in which the entire flow problem is rewritten in the reference
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domain €. In this work, we follow the second approach because both authors have made excellent computational and
theoretical experiences as indicated in References 18-23. Specifically, these studies include matching of stationary and
nonstationary FSI benchmark values (proposed in Reference 1 and detailed comparisons of several groups, including us,
are presented in Reference 4), adjoint-based goal-oriented error estimation for spatial and temporal mesh refinements,
a parallel monolithic solver substantiated with scalability studies, and well-posedness results as well as differentiability
with respect to problem data for stationary FSI.

Employing FSI as forward problem within an optimization framework contains the previously mentioned difficulties
and yields significant further challenges when dealing with nonstationary problem settings. Historically, this subject falls
into the category of partial differential equation (PDE)-constrained optimization.?* Studies concentrating on theoretical
and computational aspects for stationary FSI optimization are.>?>?7 Here, we notice that the required adjoints are the
same as used for adjoint-based error estimation; see, for instance, References 28, 29. Nonlinear (stationary) FSI investigat-
ing various partitioned coupling techniques was recently subject in Reference 30. The by far more challenging situation of
nonstationary settings is listed in the following. A nonstationary situation assuming a rigid solid was theoretically studied
in Reference 31. Further theoretical results for a boundary control FSI problem were established in Reference 32. Param-
eter estimation to detect the stiffness of an arterial wall with a well-posedness analysis and numerical simulations was
addressed in Reference 33. Again in blood flow simulations, data assimilation problem were formulated in References 34
and *°, in which however, the arterial walls were not considered. A full FSI problem for data assimilation using a Kalman
filter was subject in Reference 36 and applied in References 37, 38 to the identification of arterial wall stiffnesses. In Refer-
ence 39, the authors used optimization techniques to formulate the FSI coupling conditions. Adjoints for one-dimensional
FSIwere derived in References 40, 41. Reduced basis methods for FSI-based optimization were developed in Reference 42.
Optimal control of nonstationary FSI applied to benchmark settings was investigated in Reference 43. A linearized FSI
optimization problem was addressed in Reference 44 and detailed results for full-time-dependent FSI optimal control
were summarized in Reference 45. In this respect, we also mention?' in which the adjoints required for optimization
were employed for dual-weighted residual error estimation for time adaptivity. Most recently, a uncertainty quantification
framework for FSI with applications in aortic biomechanics was developed in Reference 46.

The significance of the current work is on the development of a fully monolithic formulation for gradient-based opti-
mization for nonstationary, nonlinear FSI problems. For the gradient computation, we employ the adjoint. One burden in
this approach is the derivation, implementation, and computation of the additional adjoint equation. On the other hand,
adjoint approaches allow an easy calculation of the gradient, for example, References 47,48, independent of the dimen-
sion of the control space. In this context, the formulation of the FSI problem in a reference domain has become popular
in optimization as it allows for a convenient variational setting with fixed function spaces independent of the current
deformed domain, for example, Reference 49.

For this reason, we are interested in an FSI formulation in a common coordinate system. To this end, the coupled
problem is prescribed in the reference configuration with the help of the ALE approach in a variational-monolithic way.
As previously summarized in our literature review, only very few results exist to date for such a framework. Indeed the
challenges consist of both the nonlinearities and the nonstationary nature of the problem. FSI in the forward state is itself
a highly nonlinear problem. Moreover, interesting nonstationary configurations require several thousands of time steps.
For instance, the FSI three benchmark®!® requires about 6000 to 10 000 time steps for a fully developed oscillatory solu-
tion. These are costly computations, even for a moderate number of spatial degrees of freedom. Numerically, an inf-sup
stable spatial discretization is applied to the FSI forward problem. Time discretization is based on a one-step-theta formu-
lation. The discretized subproblems are solved with Newton solver including line search. In order to apply gradient-based
techniques, the adjoint state is running backward-in-time and must access the primal solution at the time points when
treating nonlinear problems. Such derivations and implementations are very tedious. In this work, we carefully derive and
implement them in order to test their performance. Our overall approach is a discretize-then-optimize technique since
time discretization is not derived from a Galerkin scheme. The advantage of this approach is that all solution unknowns
are discretized first. Consequently, the computation of derivatives is a priori simpler since we work in finite-dimensional
spaces and the discretization of the adjoint variable is determined by the test space for the discrete state. These are tested
with the help of the modification of well-known FSI benchmark settings*® and a flapping membranes example that was
originally proposed in Reference 50 and later modified in Reference 51.

The outline of this article is as follows: In Section 2, the equations for fluid flow and solids are summarized. More-
over, the FSI setting is formulated in a monolithic fashion using the ALE framework. Section 3 contains temporal and
spatial discretizations. The main results are presented in Section 4 in which the gradient computation, including details
on the adjoint, are presented. In Section 5 the solution algorithms for the FSI optimization framework are presented. Our
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algorithmic techniques are substantiated with several numerical tests in Section 6. We summarize our main findings in
Section 7.

2 | MODELING THE FSI FORWARD PROBLEM
2.1 | Notation

We denote by Q := Q(f) ¢ R?, d = 2, the domain of the FSI problem. The domain consists of two time-dependent subdo-
mains €r(t) and (f). The FSI-interface between Q(t) and Q,(¢) is denoted by I'j(¢) = 0_Qf(t) N 082(t). The initial (or later
reference) domains are denoted by f!, fzf, and Qs, respectively, with the interface I i =0 AS} no 1} Furthermore, we denote
the outer boundary by 0Q =T =1, Ul'p Ul oy where ['p and [}, are Dirichlet boundaries (for the velocities and dis-
placements) and "o, denotes a fluid outflow Neumann boundary, respectively. The displacements are set to zero on [oy;.

As frequently used in the literature, we denote the L? scalar product in Q with (a, b) := (a,b)q := an - b dx for vectors
a, b. For (second-order) tensor-valued functions A, B, it yields (A, B) := (A, B)g := fQA : Bdx,where A : B= 23.:1 AyiBjj
and A; and Bj; are the entries of A and B.

2.2 | Spaces

For the function spaces in the (fixed) reference domains Q, Qf, Q,, we define spaces for spatial discretization only. Rather
than employing Bochner-spaces®>> for space-time functions, the time ¢ is later explicitly accounted for, for example,
Reference 54 (Section 7.1). Here, let I := [0, T] be the time interval and T the end time value. First, we define

V= H'(Q)"
Next, in the fluid domain, we define further:
Ly := L2(Gy),
ij? = LX(Qn)/R,
V]? ={y e Hl(Qf)d : 9 =0 on f‘in Uf‘D},

A

Ve =ty e H'Q): ty =y on T, 2y =0 on [y UTp UToul,
f/;’aﬁ = (P € HY(Q)? : r=0 on [ Ul UTp U o).
In the solid domain, we use
Ly := L2y,
VO = {n,e H(Q)? : ,=0 on [p)}.

For the FSI problem using variational-monolithic coupling!”55% the velocity spaces are extended from Q; and € to
the entire domain Q such that we can work with global H! functions. Thus, we define:

VO i={(heH'?: =0 on [ulp). 1)
By this choice, the kinematic and dynamic coupling conditions are automatically satisfied in a variational sense.

Finally, we notice that the spaces on the current domains Q, Qy, ; are defined correspondingly without “hataAZaAZ
notation.

2.3 | The ALE concept, transformed fluid flow, and solids in Lagrangian coordinates

In this section, we recapitulate the ingredients to formulate a coupled problem (ie, FSI) with the help of the ALE approach.
The ALE mapping A : Qf — Q is defined first.
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2.3.1 | The ALE transformation and ALE time-derivative

First, we define the ALE transformation:

Definition 1. The ALE mapping is defined in terms of the vector-valued (artificial) fluid mesh displacement iy : fzf -
R¢ such that

AG,t) 1 Qp xT — Qp,  with AR, 1) =%+ (%, 1), )
which is specified through the deformation gradient and its determinant
Fi=VA=1+V0, J:=det(E) 3
Furthermore, function values in Eulerian and Lagrangian coordinates are identified by
w(x) =: ay®), with x = A, 0. @)
Here, I denotes the identity matrix. The mesh velocity is defined by W := 9,.A. The key quantity to measure the
fluid mesh regularity is J. The artificial fluid displacement {iy (the mesh motion) is obtained in this work by solving a
biharmonic equation.!%26-56:57

Finally, the transformation between different coordinate systems requires transformation of derivatives. For a
vector-valued function u € Q and & € Q it holds, for example, Reference 58:

Vu = VaF.

Finally, the ALE time-derivative is the total derivative of an Eulerian field and is important when working on moving
domains:

Ol 4vr(x, £) =W - Vr + 0yvr(x, ). 5)

2.4 | Equations for fluids and solids

In this section, we briefly state the basic underlying equations first separately. In the following, we first present fluid flow
and then the solid part.

241 | Strong forms

The isothermal, incompressible Navier-Stokes equations in an ALE setting read: Given viy, hy, and vo; find vy © Qr(£) X I —
R9 and py : Q(#) X I — R such that

P10l jvr + pr(vy — W) - Vvp — V- op(vp,pp) =0, V-vp =0 in Qp(t),

V]? =vp on Iy, vr=0on I'p, —prag+prveVvr-np =0 on Ty, V5= hf on I3,

vr(0) = vy in €7(0),
where the (symmetric) Cauchy stress is given by

or(vr,pr) 1= —pI + ppvp(Vv + Vvl),

with the density py and the kinematic viscosity v. Later in the FSI problem, the function h; will be given by the solid
velocity vg. The normal vector is denoted by n;y.
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The equations for geometrically nonlinear elastodynamics are given as follows: Given hy, tio, and Do; find oty : Qg x I —
R such that
P50~V - (FE)=0 in Q
0,=0on ['p, F¥-A,=h on [},

,(0) = &y in Q;x {0}, D5(0) = 1o in Qyx {0}.
The constitutive law is given by the tensor:
$ = $.(,) = 2ub + Atr(B)I,  with = %(FTP - 6)
Here, u and A are the Lamé coefficients for the solid. The solid density is denoted by j; and the solid deformation
gradient is F = I + Vii,. Later in FSI, the vector-valued function h; will be given by the normal stress from the fluid
problem. Furthermore, #i; denotes the normal vector.
2.4.2 | Variational forms

The previous Navier-Stokes equations in a variational ALE framework described in a reference domain Qf are given by:

Formulation1 (ALE Navier-Stokesin Qf). Let f)}) a suitable extension of Dirichlet inflow data. Find vector-valued veloci-

ties and a scalar-valued pressure {5, pr} € {f)}? + 1719} X I:}? such that the initial data D¢(0) = fz}) are satisfied, and for almost
all times ¢ € I holds:

prJToy, Vo, + prdF~ (b — W) - Vi, ¥P)a, + Jo;F T, @lf/f")gf
~(JgF g 0, — 6 g 0N, =0 Y9y € V)

f 9
Ao (TE-15.) Py, — AP ~ 70
(div (JF~Dp), 7 )Qf =0 Vv 7 € Lf.
Here, g7 := —pAfva‘T@f)fT denotes a correction term on the outflow boundary and 7 is the outer normal vector. The
transformed Cauchy stress tensor reads:
67 = —f)fj + 2ﬁf\/f(©f)fﬁ_l + F_Tﬁfl}w) (7)

The variational formulation for elastodynamics can be formulated as a first-order-in-time system:
Formulation 2. (First-order system in time weak formulation of elasticity including strong damping). Find &, € V¥ and
s € L, with the initial data i1,(0) = 1y and d4(0) = D, such that for almost all times t € I:
D55, 9o, + (FE, V) — (FER,0Y)p, =0 Y gy € V7,

ps(@ilts — D5, 5, =0 V' € L.

2.5 | Variational-monolithic ALE FSI
2.5.1 | FSIinterface coupling conditions

The coupling of a fluid with a solid must satisfy two physical conditions; namely, continuity of velocities and continuity
of normal stresses. A third condition of geometric nature is necessary when working with the ALE framework: continuity
of displacements, which couples the physical solid #, and the fluid mesh motion &i;. Mathematically, the first and third
conditions can be classified as (nonhomogeneous) Dirichlet conditions and the second condition is a (nonhomogeneous)
Neumann condition.
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In variational-monolithic coupling these Dirichlet conditions are built into the corresponding function space by
employing a globalized Sobolev space V° (see (1)). Neumann type conditions are weakly incorporated through interface
integrals, which actually cancel out in the later models because of their weak continuity thanks to working with the
space V°.

For the fluid problem, continuity of velocities is required (ie, a kinematic coupling condition):

P =19 on I} (8)

To complete the solid problem, we must enforce the balance of the normal stresses on the interface (ie, a dynamic
coupling condition):

JoiE TRy + FEA; =0 on I 9)
For the geometric problem, we have
oy =10, on I} (10)

from which we obtain immediately d;il; = 5 = ¥y on [; by temporal differentiation.

2.5.2 | The FSI model using biharmonic mesh motion

Combining the previous equations for fluids and solids and applying biharmonic mesh motion for realizing the ALE
mapping, we obtain the following FSI model:!%-26-

Formulation 3. (Variational-monolithic ALE FSI in Q). Let the constitutive laws from before be given and @ > 0 be a
small parameter. Find a global vector-valued velocity, vector-valued displacements, additional displacements (due to the
splitting of the biharmonic mesh motion model into two second-order equations) and a scalar-valued fluid pressure,
that is, {9, iy, s, W, pr} € (PP + V) x {aj? + 17fOﬁ} x (0P + V0 x V x LY, such that 9(0) = #°, 2;(0) = aj?, and 15(0) = 20
are satisfied, and for almost all times ¢t € I holds:

U0, 0", + PIE® =) - D9), 00, + T6ET, 090

Fluid/solid momentum § +(jpveJ(F~TVdT i) BT, )

@Viblg . Virt)g, =0 Vyrel? ..
Fluid mesh motion (biharmonic/split) Pk
@, ") — @V, V) =0 VyreV
Solid momentum, second equation {ﬁs(atas =Vlg e =0 Vy*els
Fluid mass conservation {(div JF-19), Ii/]’f )a, =0 V y?)‘f’ e I:}’.

The Neumann coupling conditions on I7; are fulfilled in a variational way and cancel in monolithic modeling due to
the global test space V° in which the test functions from both the fluid and the solid subdomains coincide on the interface.
Thus, the condition

Jo;EThp, g ) + (FER, Gy =0 V¥ € VO (11)

is implicitly contained in the above system.
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3 | DISCRETIZATION

In this section, we discuss temporal and spatial discretization of the forward problem. Our derivation contains many
details on all terms of the FSI forward problem. The overall problem can be posed, however, in an abstract fashion, which
facilitates the derivation of the backward-in-time adjoint problem in Section 4.

3.1 | Temporal discretization

Our goal is to apply A-stable finite differences in time. Specifically, time discretization is based on a One-step-6 scheme
as presented for the pure FSI problem, Formulation 3, in Reference 19.

In more detail, semidiscretization in time yields a sequence of generalized steady-state problems that are completed
by appropriate boundary values at every time step. Let

I={0}ulUu---Uly
be a partition of the time interval I into half open subintervals I, := (t,_1, t,] of (time step) size k : =k, :=t, — t,_; with
0=t <---<ty=T.

Time derivatives are discretized with a backward difference quotient such that
N 1

N - A b=—9"
dtu ~ T, a,v ~ K .

1

where @t 1= 0" 1= 0(t,), D := V" := (), 0" i = ((tp_y), P! 1= D(t,—;). Furthermore, the mesh velocity 9,4 =W is
numerically realized as w = k™! (@i — a}"l).

A

Formulation 4. (The time-discretized abstract problem). We aim to find U" = (", &", i, W", [)jf.‘} € XY, where X0 :=
(0P + VO x {ft]];) + Vfoﬁ} x VO x Vxﬁj? and X = V0 x V,?af x VO x VXI:}), foralln =1,2,..., N such that

AP =0 V¥eX, (12)
where the semilinear form A(-)(:) is split into
AWUYY) 1= Ar(O™(P) + A(U(P) + AU () + Ap(U™)(P).

Details of this decomposition are provided in Definition 2.

Definition2 (Arranging the semilinear form A(U")(¥) into groups). We formally split the semilinear form into four cat-
egories: time equation terms (including the time derivatives); implicit terms (such as the fluid incompressibility and also
the biharmonic mesh motion); pressure terms; and finally all “standardAAZAAZ terms (eg, stress terms, fluid convection).
We then obtain the decomposition:

ArO)(P) = Tprod. 9", = BrIE - V)9).0")g, + (5s00. 9")g, + (BsOills. )g,
A O)) = @Viblg . Vi), + @) = @Vilgs, Vi) + (div TF19).9))g .
Ap(O)(®) = J7,F 7. Vg .

ApO)W) = B ED - V)9). 0, + Topanl T, Vi),

W ETVVDE TGV + FE Vs — (55D, 9e, s (13)
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where the fluid stress tensor 6 is further split into 6y, 67p:
brp = =Dl Grau = prvp(VOE + ETVHT).

The (nonlinear) time derivative in A7(U)(¥) is approximated by a backward difference quotient. For the time step
tyelforn=12,...,N(N € N),we compute d :=9",1I; := ay @i=f,s)via

Ar( U™ (P) ~

1 n, D 1 An—
E(pff 0= 00) = 1 (HOF @ -1 - D )Qf
+ 7 (s

L (RO = 71975 + 2 (s = 87D, 5)

=: EAT,k(Un5 Un_l’lv T)&
where we introduce the parameter 6 € [0, 1]. Furthermore, we use
J = 01"+ (1 - 6)",

and 0" := (), 9" 1= d(t,),andJ :=J" :=J(t,). In our computations in Section 6, we always consider J"%. The former
time step is given by 9”71, and so on for i = f; s.

Formulation 5. Let the previous time step solution U1 = {1, 4=, 471, "1, p;—l} and the time stepk : =k, = t, —

f s g ’
tn_1 be given. In order to solve (12), we seek U" = {¥", @I A}’, gy, wh, ﬁ;} € X° by employing one-step-6 splitting:
App@", TP + 0kA(O™(P) + KARU"(W) + kAT =~ 1 = OkARU" (D). (14)

The concrete scheme depends on the choice of the parameter 6 € [0, 1]. For § = 1 we obtain the strongly A-stable
backward Euler scheme (BE). If k < 0.5, for 6 = 0.5 + k, we obtain the second order (shown for linear parabolic problems
in References 59,60), A-stable, globally stabilized, Crank-Nicolson scheme.

Remark 1. Formulation 5 is still nonlinear and continuous on the spatial level.

3.2 | Spatial discretization

The time-discretized formulation is the starting point for the Galerkin discretization in space. To this end, we construct a
finite-dimensional subspace X' ;l’ c X to find an approximate solution to the continuous problem. As previously explained,
in the context of our variational-monolithic formulation, the computations are done on the reference configuration €. We
use two-dimensional (2D) shape-regular meshes. A mesh consists of quadrilateral cells K. They perform a nonoverlap-
ping cover of the computation domain Q c R¢, d = 2. The corresponding mesh is given by 7, = {K}. The discretization
parameter in the reference configuration is denoted by h and is a cell-wise constant that is given by the diameter flk of
the cell K.

On ﬁl the conforming finite element space for { Dy, fi ., @l 4, Pr.n, W } is denoted by the space X, c X.For Navier-Stokes
flow, that is, {Dx,prn}, we prefer the biquadratic, discontinuous-linear Qg /P‘fc element. For the specific definitions
of the single elements, we refer the reader to Reference 61. The property of the Qf /P‘lic element is continuity of the
velocity values across different mesh cells.®> However, the pressure is defined by discontinuous test functions. There-
fore, this element preserves local mass conservation, is of low order, gains the inf-sup stability, and is an optimal
choice for both fluid problems and FSI problems. The two displacement variables, namely, i1, W), are discretized with
Q; elements.

In total, the discretized forward problem consists of

Formulation 6. (Abstract forward problem). Given U° € X finding U = (U")N € XN solving

85UB017 SUOUIWIOD aA11e81D) 3ol jdde ay) Aq peuenob ae saoiLe VO '8sN JO Sa[n. 1oy Akeid1T8UIIUQ AB]1AA U (SUONIPUOD-PUR-SWBIALIOY™AB | 1M Afe.d] 1 Bul [UO//ScY) SUORIPUOD pue SWie 1 84} 88S *[£202/0T/0T] Uo AkeidiauljuO AB]1IM SBUI0!IGIGSUO LI U | 8YSIUYDS | AQ Z/£9°9WU/Z00T OT/I0P/W0d A8 | Ake.q i pul|uo//sdiy woiy papeojumoqd ‘6T ‘T202 ‘£020.60T



5438 Wl LEY WICK AND WOLLNER

N
> (Arc@y, O + OkARD(Th)
n=1

+ KAp(UM) (W) + KAU () + (1 - e)kAE(U;—l)ci'Z)) =0 V@Y, eXV. (15)

This abstract formulation serves as basis to derive the adjoint state in Section 4.

4 | GRADIENT COMPUTATION

We are interested optimal control and the design of material parameters, for example, u in (6). To this end, we denote by
q € RP, with p > 1, the collection of these parameters, and will define suitable cost functionals .7 (q, U) to be minimized.
To highlight the dependence of the equation on the parameters g, we add an additional g argument to the form A, for
example, we consider Ag(q, U;l‘)(‘i‘Z) instead of AE(U;)(@Z) in (15).
Formulation 7. (Abstract optimization problem). Minimize the cost functional J(q, Uh") subject to the state equation
A(q, UZ)(‘i’Z) = 0 (defined in Formulation (15)) for (g, U7") € RP x X}.

Assuming that (15) admits a unique solution for any given g, we can obtain an optimality system by the standard
Lagrange formalism, see, for example, References 24,63,64. For a rigorous proof of the required differentiability properties,
some progress has been made for stationary FSI-problems in Reference 23. A rigorous derivation of the corresponding

adjoints in the context of shape optimization can be found in Reference 65.
The formal Lagrange approach provides an adjoint equation to (15) as

Formulation 8. (Abstract adjoint problem). Find Z € XY solving

N
Y (000 Ara(Op OF )W, 2 + g A O, O W 20
n=1

+ 0k 09 Ap(q, UN(¥n, 2 + k 0 Ap(U (¥, Z8) + k 0 AlU(¥, 21

A A An—1 A A A A &
+ (L= O0k0guiAp(g. Oy (W 20) = 057 (0. O)¥) ¥ (P, e X7 (16)
Here, d;.A denotes the directional derivative of the form A with respect to its U" argument, and the first argument of
the second parentheses denotes the respective direction.

With this adjoint, we obtain the total derivative of the cost functional q — J(q) := J(q, U) in a direction 6q as

N
d 2 8 A rn n A frn— n
407@ 0090 = 0,7 (. 0)6q) + Y (0k 0,Ap(q. UF)6q.27) + (1 — 0)k 0,Ap(q. Ur~)(6q. 2)

n=1

allowing the calculation of the reduced gradient VJ(q) € RP of the cost functional by
(VI(@).50) = §7(q. 00q ¥ og € 77 (17)

cf., for example, Reference 47.

5 | SOLUTION ALGORITHMS

In order to minimize the cost functional 7 (q), we consider two solution algorithms in this work. First, we employ a stan-
dard globalized gradient method. Second, as it is well known that gradient methods suffer from bad-scaling in the problem,
we additionally design an inverse Broyden-Fletcher-Goldfarb-Shanno (BFGS, for example, Reference 66) method.

The gradient method reads:
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Algorithm 1. Gradient method
Let q° € RP be aninitial guess, and pick parametersy € (0,1/2)and § € (0,1). Fork = 0,1, ... until IIVqJ(qk)HQ < TOL
iterate

Solve the (nonlinear) primal problem (15) to obtain U, € Xﬁ’ using Algorithm 3.
Solve the (linear) adjoint problem (16) to obtain Z;, € )A(;ZV

Compute the gradient V.J (q*) using (17).

Find the largest | € {0, 1, ...} such that (Armijo-rule)

AL b~

TG = VTG <TG - yBIVIGHN?

holds and set f, = p.
5. Update

g1 =q" - BVI ().

The BFGS method is defined as:

Algorithm 2 . Inverse BFGS method
Let ¢° € RP and By € RP*? be an initial guess for the control and inverse Hessian, and pick parameters y € (0,1/2) and
n € (y,1). Fork=0,1,... until ||V,J (¢")|lqo < TOL iterate

Solve the (nonlinear) primal problem (15) to obtain U}, € Xﬁ’ using Algorithm 3.
Solve the (linear) adjoint problem (16) to obtain Z;, € )A(;IV

Compute the gradient V J (q*) using (17) and set d* = —B,V.J (¢").

Find a step-length t; such that the Powell-Wolfe conditions

AL b~

J(@" - td") < T(@) + rt(VT ("), d¥),
(VI(G" + tedb), d*) > n(VI(g"), d")

hold.
5. Set y* = VI(g~ + txd") — VI(g¥), and update

(ted® — By)(d)T + trd*(d* — Biy")T  (ted® — By . ¥%) 4 er
)+ - d“(d")

B, =B
e (d¥, y<y (d, yky?

6. Update

qk+1 — qk+de.

Remark 2. Since it is easy to guess and invert the Hessian part corresponding to a||q||?, we always utilize By = 51 € RP*p,
To obtain a step-length satisfying the Powell-Wolfe conditions we utilize [ 7, algorithm 9.3].

In both optimization algorithms, the nonlinear FSI forward problem (15) needs to be solved. At each time point the
following problem is given:
AUHP) =0 VPeX,
To this end, we employ the following classical algorithm:

Algorithm 3. Residual-based Newton's method for solving the forward problem
We omit h and n for the convenience of the reader. Choose an initial Newton guess U° € X. For the iteration steps k =
0,1,2,3,...
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1. Find §U* € X° such that

A(UYHGUR, ¥y = —A0P) vPeX, (18)

Uk = O + 360, (19)

for Ay = 1. The arising linear equations are solved with a direct method; namely, UMFPACK.%® This choice is justified
since the spatial numbers of degrees of freedom is moderate in our numerical examples. Moreover, in order to save compu-
tational cost, we adopt simplified Newton steps; that is, the matrix A'(U*)(5U*, W) is only rebuild when /lfc < 1 (defined
below) or ||A(UY)|| € [0.001, 1]|JA(T*Y)].

2. The criterion for convergence is the contraction of the residuals:

JAT D < JATD]. (20)

3. If(20)isviolated, recompute in (19) U**! by choosing A, = 0.6', and compute for | =1, ..., Iy (eg, Iy = 5) a new solution
Akl _ vk o gl sk
Ut =0+ AU

until (20) is fulfilled for a I* < ly; or Iy is reached. In the latter case, no convergence is obtained and the program aborts.
4. Incaseof I" < Iy we check next the (velative) stopping criterion:

A < |AD°)]| TOLy.

If this is criterion is fulfilled, set U™ := U**'. Otherwise, we increment k — k + 1 and goto Step 1.

6 | NUMERICAL TESTS

We conduct three numerical tests in this section. In the first example, the design of a material parameter in a quasista-
tionary setting is considered. The second example addresses the same question for a fully nonstationary configuration. In
the third example, a flapping membrane example is studied. Therein, wall stresses shall be minimized by controlling the
stiffness of the elastic membrane.

The numerical examples are implemented in the open-source package DOpEILib!®%° using the finite elements of
deal.IL”° An open-source implementation of (15), used as basis for our computations, can be found in DOpEIib in
Examples/PDE/InstatPDE/Example2.

6.1 | Material parameters

The material parameters for the FSI-1 and FSI-3 tests are chosen as proposed in References 4,16 and listed in Table 1. The
parameters for the flapping example are a mixture of References 21,50,51.

TABLE 1 Material parameters for all test cases

FSI-1 FSI-3 Flapping
vy 1073 m?/s 10-3m?/s 10~tcm?/s
U 0.5 - 10°kg/ms? 2.0 - 10%kg/ms? 1.0 - 10°g/cms?
Ve 0.4 0.4 0.4
Ps 10%kg/m3 10%kg/m3 10%g/cm?
s 10%kg/m3 10%kg/m3 10%g/cm?

Abbreviation: FSI, fluid-structure interaction.
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6.2 | Example 1: Optimal design within the FSI 1 benchmark

In this first numerical example, we consider a quasistationary setting based on the FSI 1 benchmark.*!¢ The for-
ward problem is solved with the BE scheme, that is, § = 1, since the configuration is stationary and we only use a
time-dependent method to find the stationary limit.

Formulation 9. The optimization problem reads: design of the Lamé parameter q := u, from desired displacements of the
beam-tip at A : = (0.6,0.2) by minimizing the cost functional (21). The exact values ug4 are taken from a reference solution
with g = 0.5 - 10°%kg/ms>.

6.2.1 | Costfunctional

The cost functional reads:
~ 1, .
7(q.0) = (A T) ~ ua)* + 719 — gal’. 1)

with ug = 2.27007 - 10~ and g, will be specified in the respective computations.

6.2.2 | Configuration

The geometry of the FSI-1 and FSI-3 settings are displayed in Figure 1. An elastic beam is attached to a cylinder and is
surrounded by an incompressible fluid. The initial geometry is once uniformly refined in space.

On the cylinder and outer boundary I',, we enforce zero Dirichlet boundary conditions for ¥ and . On the outflow
boundary Iy we prescribe the do-nothing outflow condition.” The inflow profile on Iy, is given by:

A 4
V(O,J’) =15y (0.41 —J’) m Vmean(£).

The mean inflow Vyeqan(¢) is 0.2 m/s for Example 1 (FSI 1) and 2.0 m/s in Example 2 (FSI 3). In the FSI 1 test case, we
compute n = 25 time steps using k = 1 s and in the FSI 3 example, we work with k = 0.001 s with T = 0.6 s corresponding
to n = 6000 time steps.

6.2.3 | Discussion of the FSI 1 findings

Our results for three different configurations are displayed in the Tables 2, 3, and 4. In the first run with a« = 0.001, the
algorithm converges slowly in order to estimate g* and to reduce the cost functional [J(q*). The main reason is due to
the low regularization, which is confirmed by two further runs with @ = 0.1 and 1. In the first two tests, Tables 2 and 3,
the reduction in the computational cost between the gradient-based algorithm and the BFGS method is significant. In the

0,0.41) r, (2.5,041)
> A=(0.6,0.2)
Ly > C):l‘ Lout
- Q
FIGURE 1 FSI-1 and FSI-3 benchmarks (Examples 1 and
2): flow around cylinder with elastic beam with circle-center
C = (0.2,0.2) and radius r = 0.05. FSI, fluid-structure interaction 0,0) | S (2.5,0)
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last test, Table 4, the difference reduces. Due to the higher cost in steps four and five of the BFGS algorithm, the overall
performance of both algorithms is similar.

In Table 3, the value of « is enlarged to 0.1. Here, in 155 gradient iterations, the cost functional is reduced by an order
to 10'* from an initial control g° = 5000 to g*>°> = 10°.

Increasing further « to 1 (Table 3) yields a reduction in .7 (¢) from about 10" to 10~°. The gradient algorithm converges
in five iterations.

6.3 | Example 2: Optimal design within the FSI 3 benchmark

In this second numerical test, we employ the same geometry as in Example 1. The material parameters and boundary
data can be found in Table 1 and Section 6.2.2. Since this numerical test is nonstationary with periodic solutions in the
original forward run, we use the shifted Crank-Nicolson time-stepping scheme with minimal numerical dissipation.

Formulation 10. We consider an optimal design problem for q := y, such that the displacement value at the beam-tip
at (0.6,0.4) is close to a desired displacement uy obtained by the FSI 1 simulation in Example 1, but not FSI 3. To this
end, (22) is minimized.

6.3.1 | Costfunctional

The cost functional is given by:
N 1.
7q.0) = S((A. T) — ug)* + 219 — gal’ (22)

with uy = 2.27007 - 10~ and g, will be specified in the respective computations.

6.3.2 | Discussion of the FSI 3 findings

Graphical plots of the solution are provided in Figure 2. Our quantitative results are shown in Table 5. The gradient
algorithm converges in 29 iterations in which the cost functional is reduced by 10 and the control is approximated by
q® = 572378.

Similar to Example 1, the reduction in the computational cost between the gradient-based algorithm and the BFGS
method is significant as being observed in Table 5.

FIGURE 2 Example 2: At T = 5s (time step No. 5000): v(£), u,(f), and p(t) in the deformed configuration Q(%). Left column: the primal
states are shown. Right column: the corresponding adjoint states are shown
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TABLE 2 Optimization .
P Gradient method BFGS method
results for the FSI 1 example p—— p——
. _ 1n6 k k q k k q
with a = 0.001 and g, = 10 Iter  J(q%) q V@] J ) q NT@)l
0 4913108 5000 1.0000 - 107° 4913108 5000 1.0000 - 1070
1 4.9033 - 108 5987.54 9.9901 - 10! 2.758 - 10* 99 2545 7.4929 - 1073
2 4.8936 - 108 6974.11 9.9802 - 10! 6.361 - 1071 10° <1011
3 4.8838 - 108 7959.69 9.9703 - 107!

101 4.0201 - 108 99 950.5 9.0457 - 107!
102 4.0121 - 108 100844 9.0367 - 107!
103 4.0042 - 108 101736 9.0278 - 107!

198 3.3157 - 108 182600 8.2151 - 107!
199 3.3091 - 108 183411 8.2069 - 107!
200 3.3025 - 108 184222 8.1988 - 107!

Note: The initial Residual in g, = 5000 is |V.J(¢°)| = 987.5.
Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; FSI, fluid-structure interaction.

TABLE 3 Optimization

Gradient method BFGS method
results for the FSI 1 example —— ——
. _ _1n6 k k q k k q

with @ = 0.1 and qd =10 Iter J(q ) q VT (@®)] J(q ) q VT (g
0 4913 -10'° 5000 1.0000 - 1070 4913 -10'° 5000 1.0000 - 1070
1 3.9862 - 100 103754 9.0075 - 107! 2.758 - 106 992 545 7.4929 - 1073
2 3.2342 - 10 192707 8.1135-107! 6.360 - 1071 10° <1071
3 2.6241 - 10%° 272832 7.3082 - 107!
101 3.3216 - 10! 999974 2.6001 - 10~°
102 2.6950 - 10! 999977 2.3421-107°
103 2.1865 - 10! 999979 2.1096 - 10~°
154 5.1211-10~* 10° 1.0210 - 1077
155 4.1550 - 10~ 10° 9.1962 - 1078

Note: The initial Residual in g, = 5000 is | V.7 (¢°)] = 9.875 - 10*.
Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; FSI, fluid-structure interaction.

TABLE 4 Optimization

Gradient method BFGS method
results for the FSI 1 example —— ——
. k k q k k q

with « = 1 and g; = 500000 Iter  J(q") q NT@] Cy q N T@]
0 1.216 - 10 5000 1.0000 - 107 1.216 - 10 5000 1.0000 - 107
1 6.8268 - 10° 496291 7.4929 - 1073 6.827 - 10° 496 291 7.4929 - 1073
2 3.8328 - 102 499972 5.6144 - 1075 1.187 - 107V 500 000 <10 11
3 2.1519 - 1072 500000 4.2068 - 1077
4 1.2082 - 107 500000 3.1522-107°

Note: The initial Residual in g, = 5000 is [V.J(q°)| = 4.913 - 10°.
Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; FSI, fluid-structure interaction.
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TABLE 5 Optimization results for the FSI-3 example with « = 0.1 and g; = 500 000
Gradient method BFGS method

Iter TG q* Residual TG gk Residual

0 1.117 - 101 2-10° 1.0000 - 1070 1.117 - 10" 2-10° 1.0000 - 10~°

1 9.0593 - 1010 1.85112 - 10° 9.0075 - 10~ 6.270 - 10° 511 239 7.4929 - 1073

2 7.3502 - 10%° 1.71702 - 10° 8.1135- 1071 1.653-107° 500 000 <1071

3 5.9636 - 100 1.59623 - 10° 7.3082 - 107!

100 7.5488 - 10! 500043 2.8866 - 107>

101 6.1247 - 10! 500039 2.6001 - 1073

154 9.4595-10~* 500000 1.0210 - 1077

155 9.4595 - 107* 500000 9.1962 - 1078

Note: The initial Residual in g, = 2 - 10° is 1.489 - 10°.
Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; FSI, fluid-structure interaction.

6.4 | Example 3: 2D flapping membranes
In this third example, we consider 2D flap dynamics. This test is a challenge because of the thin flaps and the mesh
regularity. The original setups for forward simulations were inspired by Reference 50. Our configuration here is a further

extension, toward FSI-optimization, of References 51 and 21.
The problem statement reads:

Formulation 11. Design of the Lamé parameter q := u; in the elastic flaps such that the wall stresses are minimized. To
this end, we consider the cost functional (23) to be minimized.

6.4.1 | Costfunctional

The cost functional is given by:

J(q, U) = F(Pop, T) + %lq —qal? (23)

where g, = 105, and T is the end time value as in the other examples and F(-) is the wall stress functional in e; direction
(here x-direction) defined as

F(Top, T) 1= / (67-7)- e ds (24)
lﬁ‘ﬂpl

where 7 is the unit normal vector pointing outward of the domain € and e, the first unit vector in R2. The boundary
part, where the drag is evaluated is

A

Fopt :={2<x<8; y=0}.

Moreover, we notice that we only control y in the elastic flaps, while in the rest of the solid, the value is as in Table 1.
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FIGURE 3 Example 3: Configuration. All data
given in cm .
1.61 - 1.81
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FIGURE 4 The mesh for the flapping membranes example at the initial time step. All geometric values are given in cm. The solid
boundaries are colored in dark green. The flaps are located at 1.9788 cm < x < 2.0cm

FIGURE 5 Interpolated flow rate profile v(¢) that is used to scale the inflow profile
of the flapping membrane example

— Vmean(?

6.4.2 | Configuration

The geometry is shown in Figure 3. The initial mesh is once uniformly refined yielding the mesh shown in Figure 4.
On the inflow boundary, I}, := {x = 0;-0.1 <y < 1.61}, we prescribe a parabolic inflow profile

v(0,y) :=0.15y(1.61 —y)%vmean(t) for t eI :=1[0,0.9],

where Vmean(f) taken from Figure 5.
At the outflow boundary the do-nothing outflow condition [y is prescribed for v and p, while the displacements are
fixed there. On the outer wall boundaries

A

Iwan :={0<x<8y=-01}Uu{0<x<8y=-1.61}

we use homogeneous Neumann conditions for the displacements and the velocity in order to allow the solid to move
freely.

The computations are performed on the time interval I = (0,0.579375s). The end time value T = 0.579375 s is chosen
such that the first maximal stress appears for the initial control ¢°. For the computations, the time interval is split into
618 time steps.
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1.6 FIGURE 6 Example 3: At

1.4 T = 0.579375s (time step No.

1.2 618): v(t) and p(t) are displayed

; g in the deformed configuration

0.6 Q(). Going from top to bottom:

g-; v.(t = 0.5793755) in the

0 0 optimization cycle 0 (classical

forward run with

p=q° =2-107). The maximum
velocity (in red) has the value
3.15cm/s. In the second row,
V(t = 0.5793755s) in the eighth
optimization cycle is displayed;
here p = g® = 5- 10°, which
means less-stiff flaps and
corresponding higher
displacements. Consequently,
the maximum velocity is
reduced and has the value

2.3 cm/s. In the rows three and
four the corresponding pressure
fields are shown. The maximum
pressure values are 3012 and
2825 g/cms?, respectively

QOQOQOOQO KKK
QN KOO NKOG

QOO0 QORKKKN
OQNBRONOONKOR

QOO0 QORKKNKN
ONHBOLOONKOG

6.4.3 | Discussion of the flapping membrane findings

The flow and pressure fields in the physical configuration () are displayed in Figure 6. Therein, it is visible that the solid
flaps undergo large deformations. In the optimized configuration after eight cycles the flaps even deform more. Here,
a robust mesh motion model is indispensable. In Table 6, the performance of the optimization procedure is shown. A
reduction of 10'? in the cost functional is achieved. The optimal ¢® is 5 - 10°.

Furthermore, we observe that the reduction in the computational cost between the gradient-based algorithm and the
BFGS method is less significant in this example as shown in Table 6.

7 | CONCLUSIONS

In this work, we developed settings for FSI-based optimization. Therein, the FSI problem is nonlinear and nonstationary
and allows for large solid deformations. Consequently, when working with the ALE technique, a robust mesh motion
model must be chosen. Here, it is based on a biharmonic equation. Based on this forward model, we provide the adjoint
state, which is running backward-in-time. The resulting FSI-optimization problems are solved with a gradient-type and
an inverse BFGS method. Three numerical examples are designed to investigate the performance of our algorithmic
techniques. In the first numerical test an extension of the steady-state FSI 1 benchmark is considered. In the second
and third examples, fully nonstationary tests are investigated. Specifically, the last numerical test is numerically chal-
lenging, even for the forward problem, because the flaps are very thin, while undergoing large solid deformations.
Here, we observe significant reductions of the cost functional and excellent convergence properties of the optimization
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TABLE 6 Optimization results for the flapping membrane example with « = 1 and g, = 5 - 10°
Gradient method BFGS method
ter  J@Y g L) J@ ¢ Lo
0 1.265 - 10 2107 1.0000 - 1070 1.265 - 10 2107 1.0000 - 107°
1 1.9517 - 1012 3.13665 - 109 1.2422 - 1071 1.952 - 102 3.13665 - 10° 1.242 107!
2 3.0118 - 10'° 5.23147 - 108 1.5432-1072 8.346 - 102 5-10° <1071
3 4.6476 - 108 4.97125 - 10° 1.9170-1073
4 7.1728 - 10° 5.00357 - 10° 2.3813-107*
5 1.1151 - 10° 4.99956 - 10° 2.9582-107°
6 2.5424 - 103 5.00006 - 10° 3.6747 - 107°
7 8.6090 - 102 4.99999 - 10° 4.5649 - 1077
8 8.3495 - 10% 5.10° 5.6707 - 1078

Note: The initial Residual in g, = 2 - 107 is |V.J(¢°)| = 1.686 - 10”.
Abbreviations: BFGS, Broyden-Fletcher-Goldfarb-Shanno; FSI, fluid-structure interaction.

algorithm. Furthermore, the BFGS algorithm yields a significant reduction in the computational cost compared with a
gradient-based approach for the first two numerical examples. In the flapping membrane test, still the BFGS has fewer
iterations, however, the higher cost in constructing the algorithm should be kept in mind here.
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