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Abstract
We introduce and discuss amultivariate version of the classical median that is based on
an equipartition property with respect to quarter spaces. These arise as pairwise inter-
sections of the half-spaces associatedwith the coordinate hyperplanes of an orthogonal
basis. We obtain results on existence, equivariance, and asymptotic normality.

Keywords Asymptotic normality · Consistency · Estimation of location · Euclidean
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1 Introduction

The classical one-dimensional median associated with a probability distribution P on
the Borel subsets of the real line R is any value θ that satisfies the inequalities

P
(
(−∞, θ ]) ≥ 1/2 , P

([θ,∞)
) ≥ 1/2 . (1)

Under certain conditions, for example if P has a positive density, we have equalities
in (1) and the median is unique. In general, the set of solutions is the bounded closed
interval

[
Med−(P),Med+(P)

]
with

Med−(P) := inf
{

x ∈ R : P
(
(−∞, x]) ≥ 1/2

}
,

Med+(P) := sup
{

x ∈ R : P
([x,∞)

) ≥ 1/2
}
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420 L. Baringhaus, R. Grübel

as the smallest and the largest median of P . Often, ‘the’ median of P is defined as the
corresponding midpoint,

Medm(P) := (
Med−(P) + Med+(P)

)
/2. (2)

For a data set x1, . . . , xn of real numbers a (sample) median is any (distributional)
median associated with the empirical distribution Pn := n−1 ∑n

k=1 δxk , where δx

denotes unit mass at x . With x(1) ≤ · · · ≤ x(n) as the values obtained by arranging
x1, . . . , xn in increasing order,

Medm(Pn) = Med−(Pn) = Med+(Pn) = x((n+1)/2)

is the unique sample median if n is odd, and we get
[
x(n/2), x(n/2+1)

]
as the set of

sample medians if n is even.
Historically, the first attempt to generalize this to dimensions d > 1 was to use

coordinates: If x1, . . . , xn is a subset of Rd for some d ≥ 2 then a coordinatewise
or marginal median of the empirical distribution Pn := n−1 ∑n

k=1 δxk is any vector
whose i th coordinate is a (one-dimensional) median of the respective i th coordinates
of the data vectors. This is the sample version; for a probability measure P on the
Borel subsets Bd of Rd the push-forwards Pπi of P under the coordinate projections
πi , i = 1, . . . , d, would be used. Formally, the marginal medians of P are elements
of the d-dimensional interval

[
MMed−(P), MMed+(P)

]
where MMed±(P) have

Med±(Pπi ) as their i th component, i = 1, . . . , d, and

MMedm(P) := (
MMed−(P) + MMed+(P)

)
/2 (3)

is the midpoint marginal median. It is well known that such component-wise exten-
sions of the one-dimensional median are not equivariant with respect to orthogonal
transformations and thus depend on the coordinate system chosen for the represen-
tation of the data. One way to repair this is by ‘averaging out’ (symmetrization), see
Grübel (1996).

Other generalizations of the one-dimensional median to higher dimensions start
with some characterizing property of the classical version and then use a mul-
tidimensional analogue. For example, it is known that in the one-dimensional
case any median θ minimizes the function x �→ ∫ |y − x | P(dy), which leads
to the spatial or L1-median of the data set, defined as a minimizer of x �→∑n

k=1 ‖x − xk‖, where ‖ · ‖ denotes Euclidean distance. As this distance is invariant
under orthogonal transformation, the spatial median does not depend on the chosen
coordinates.

Closer to the above equipartition property are the various concepts related to data
depth, where for each x ∈ R

d and each affine hyperplane H with x ∈ H the number of
data points to one side of H is the basic ingredient: A centerpoint median is defined as
any such x with the property that the minimum number is at least a fraction n/(d + 1)
of the data, and Tukey’s median is a point that maximizes these data depth values;
see e.g. Donoho and Gasko (1992). This whole area has attracted the attention of
many researchers, often with emphasis on robustness. The literature on multivariate
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Fig. 1 The city data (see text for details)

medians up to about 1990 is covered in the review of Small (1990), which includes
an interesting discussion of the history of the concept. For more recent reviews of this
subject we refer to the treatises of Oja (2013) and Dhar and Chaudhuri (2011).

In the present paper, following an idea of the late Dietrich Morgenstern, we again
start with the marginal median as in the work of Grübel (1996), but then use a vari-
ant of the equipartition property instead of symmetrization. In dimension d = 2, for
example, a coordinate system specifies four quarter spaces via the pairwise intersec-
tions of the half-spaces underlying the marginal median, and a quarter median of P
may be defined as any vector θ ∈ R

2 such that for some coordinate system centered
at θ all four of the respective quarter spaces have probability at least 1/4. Figure 1
shows a simple example that Professor Morgenstern would have liked: The data are
the locations of the cities in Germany with a population of at least 100,000 (in 2017).
We have n = 76 such cities in total, so we can aim for a partition with 19 cities in
each open quarter space. One resulting quarter median is nearby the exit Freuden-
berg of the A45 (Sauerlandlinie), and with the North–South axis tilted by about 39◦
counterclockwise; see the lines in Fig. 1. The data (longitude/latitude) for drawing
the German border are extracted from the file gadm36−DEU−0−sp.rds available
at https://gadm.org/data.html.
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422 L. Baringhaus, R. Grübel

Investigation of this concept leads to a number of interesting questions, starting
with the obvious ones concerning existence and uniqueness. Next, what are the equiv-
ariance properties of the quarter median? Further, in contrast to the spatial median a
quartermedian comeswith a systemof associated hyperplanes, whichmay be regarded
as a part of the estimator. In the two-dimensional case these are just two orthogonal
lines and can be parametrized by a counterclockwise rotation of the horizontal axis,
thus providing a connection to a real interval. In higher dimensions, however, spec-
ification of a topological notion of nearness of systems of coordinate hyperplanes is
less straightforward, but it is needed in connection with consistency of the estimators.
For asymptotic normality even a local linearization is required. Finally, there is the
algorithmic issue: How do we find a quarter median for a given data set?

Section 2 contains our main results, on existence, equivariance, and large sample
behavior. Elliptical distributions are treated in some detail and we compare the quarter
medianwith other estimators for several specific families.Wealso consider algorithmic
aspects together with the problem of measurable selection from the respective solution
sets. Section 3 presents numerical comparisons with existing multivariate medians.
Proofs are collected in Sect. 4.

2 Results

We first assemble some formal definitions and then give our results in separate sub-
sections.

2.1 Preliminaries and basic definitions

We regard vectors x ∈ R
d as column vectors and write 〈x, y〉 for the inner product

of x, y ∈ R
d . The transpose of the vector x is x t, so that 〈x, y〉 = x ty. Similarly, At

denotes the transpose of a matrix A. We write ‖ · ‖ for the Euclidean norm on R
d ,

Sd−1 is the unit sphere in R
d , O(d) is the group of orthogonal d × d-matrices, and

SO(d) denotes the group of rotations, consisting of those elements of O(d) that have
determinant 1.

If (Ω,A, P) is a probability space, if (Ω ′,A′) is a measurable space, and if the
mapping S : Ω → Ω ′ is (A,A′)-measurable then we write P S for the push-forward
of P under S, i.e. P S(A′) = P(S−1(A′)) for all A′ ∈ A′. If (Ω,A) = (Rd ,Bd) and
b ∈ Sd−1 or U ∈ O(d) then Pb and PU respectively refer to the push-forwards of P
under the mappings x �→ 〈b, x〉 and x �→ U x .

For a ∈ R
d and b ∈ Sd−1 we formally define the associated half-spaces by

H−(a; b) := {
x ∈ R

d : 〈b, x − a〉 ≤ 0
}
, H+(a; b) := {

x ∈ R
d : 〈b, x − a〉 ≥ 0

}
.

Let e1, . . . , ed be the vectors of the canonical basis of Rd . Then a marginal median
for a probability measure P on (Rd ,Bd) is any vector θ ∈ R

d with the property that

P
(
H+(θ; ei )

) ≥ 1/2, P
(
H−(θ; ei )

) ≥ 1/2, 1 ≤ i ≤ d. (4)
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For two orthogonal unit vectors b, b′ ∈ Sd−1 and a ∈ R
d the quarter spaces are the

intersections of these half-spaces,

V±±(a; b, b′) := H±(a; b) ∩ H±(a; b′),

with the obvious notational convention for the four possible combinations of plus
and minus signs. We then define a quarter median of a probability measure P on
(Rd ,Bd) as any vector θ ∈ R

d with the property that, for some orthonormal basis
B = {b1, . . . , bd} of Rd ,

P
(
H+(θ; bi )

) ≥ 1/2, P
(
H−(θ; bi )

) ≥ 1/2, 1 ≤ i ≤ d, (5)

and
P

(
V±±(θ; bi , b j )

) ≥ 1/4, 1 ≤ i < j ≤ d, (6)

for all combinations of plus and minus signs. If (5) and (6) hold then we call the pair
(θ, U ) ∈ R

d ×O(d), where U has rows bt1, . . . , btd , a solution of the quarter median
problem for the probability measure P . Again, the data versions of these notions refer
to the empirical distribution Pn .

If P is absolutely continuous then hyperplanes have zero probability and (5) follows
from (6). In general, this is not the case as the following simple example shows: Let
d = 2 and

P = 1
3

(
δ(0,0)t + δ(1/2,1)t + δ(1,1/2)t

)
.

Then (6) holds with b1 = e1, b2 = e2 and θ = (1, 1/2)t, but (5) is not true. Further,
with this choice of b1, b2 it is easily verified that the unique marginal median θ =
(1/2, 1/2)t is a quarter median. This example also shows that the quarter median may
not be unique. Further, if hyperplanes have probability zero, then the inequalities in
(5) and (6) can be replaced by equalities, and with (θ, U ) as solution of (6) we then
speak of a solution of the equipartition problem for P .

2.2 Existence and uniqueness

The existence of a median and thus of a marginal median follow immediately from the
monotonicity of distribution functions. For the quarter median counting the number
of variables and the number of constraints may give a first impression. For simplicity,
we temporarily assume that hyperplanes have probability zero, so that we have an
equipartition problem. If d = 2, there are then three unknowns, two for the location
parameter and one for the angle of rotation, see also Remark 1 (b) below, and one of
the four constraints is redundant, so that the number of unknowns is the same as the
number of equations. For d > 2 we first note that the conditions in (5) and (6) are
not independent. Indeed, for a given basis {b1, . . . , bd} of Rd it is enough to have
probability 1/2 for H+(θ, bi ), i = 1, . . . , d, and probability 1/4 for V++(θ; bi , b j )

for 1 ≤ i < j ≤ d, so that d + d(d − 1)/2 conditions remain. On the other hand,
we have d(d − 1)/2 parameters for the (special) orthogonal group, and there are d
components of the location vector, hence the number of unknowns is again the same
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424 L. Baringhaus, R. Grübel

as the number of independent constraints. This, of course, is just a heuristic argument,
as the respective conditions are nonlinear.

Using a general tool from algebraic topology, the homotopy invariance of the
Brouwer degree of continuous mappings, Makeev (2007) solved the equipartition
problem under the additional condition that P is absolutely continuous. A smoothing
argument leads to the extension needed here.

Theorem 1 A solution (θ, U ) of the quarter median problem exists for every proba-
bility measure P on (Rd ,Bd).

This result raises an obvious question: Is there a stronger equipartition in dimension
d > 2, such as an ‘octomedian’ if d = 3, with each of the octants receiving the same
probability?This is certainly possible for specific distributions, such as themultivariate
standard normal. However, if d = 3 then we have three unknowns for the location
vector, and three for the rotation, which can be parametrized by the Euler angles, and
the condition that the octants all have probability 1/8 would similarly lead to seven
constraints, which is one too many. Obviously, the difference would be even greater
for dimension d > 3 if all 2d intersections of coordinate half-spaces were to have
the same probability. According to Makeev (2007, p. 554) this dimension counting
argument already implies that a solution does not exist for a generic distribution.

The notion of uniqueness requires some attention. We say that a distribution P has
a unique quarter median if θ1 = θ2 for any two solutions (θ1, U1) and (θ2, U2) of the
quarter median problem. Obviously, the full pair (θ, U ) will never be unique: Any
linear hyperplane, i.e. a subspace H ofRd of dimension d −1, may be specified as the
orthogonal complement of the one-dimensional space (line) generated by a unit vector
b ∈ Sd−1 via H(b) := {x ∈ R

d : btx = 0}, but obviously −b would lead to the same
hyperplane. This simple observation already implies that we may restrict U to be an
element of SO(d) when searching for a quarter median. Further, the conditions (5)
and (6) are invariant under permutations of the rows of U . Conversely, given a set of
coordinate hyperplanes, a corresponding basis is a set with elements that are unique
up to a factor − 1. Putting this together we write U ∼ V for U , V ∈ O(d) if U
and V lead to the same set of linear hyperplanes; we then say that the solution of the
quarter median problem is unique if for any two solutions (θ1, U1) and (θ2, U2) we
have θ1 = θ2 and U1 ∼ U2.

The following formal approach will turn out to be useful. Let G1 be the subgroup
of O(d) that consists of the diagonal matrices with diagonal entries from {− 1,+ 1},
i.e. the subgroup that represents the compositions of reflections at the coordinate axes,
and let G2 be the subgroup of permutation matrices, which corresponds to coordinate
permutations. We write G for the subgroup generated by G1 and G2. This is the
system of all d × d-matrices A with entries ai j ∈ {−1, 0, 1} and such that for some
permutation π of {1, . . . , d} we have ai j �= 0 if and only if j = π(i). The above
transition from equality to equivalence can be then regarded as a transition from the
group O(d) to the factor group

H(d) := O(d)/G, (7)
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with the equivalence classes [U ] := {V ∈ O(d) : V ∼ U }, U ∈ O(d), as elements.
If we think of a solution of the quarter median problem as a pair (θ, H) ∈ R

d ×H(d),
then uniqueness means that two solutions are equal.

Remark 1 (a) The θ -part of a solution (θ, H) for the quarter median problem may be
unique while the H -part is not. For example, if P has a density that depends on
x ∈ R

d only through ‖x‖ then 0 is the unique quarter median, but all H ∈ H(d)

lead to a solution (0, H).
(b) In dimension d = 2 there is an (almost) canonical choice of an element U ∈ O(d)

from an equivalence class H ∈ H(d) corresponding to a set of hyperplanes, here
just two orthogonal lines L1, L2 meeting at the point 0 ∈ R

2. With a suitable
half-open interval I of length π/2, such as I = [−π/4, π/4), there is exactly one
α ∈ I such that the lines are represented by

Uα :=
(
cos(α) − sin(α)

sin(α) cos(α)

)
, (8)

which is the counterclockwise rotation of the canonical coordinate lines by the
angle α, in the sense that Li = {x ∈ R

2 : bti x = 0}, where bt1, bt2 are the rows of
U . The corresponding topology would then be that of the quotient space R/I .

(c) While we work with the space R
d of column vectors throughout the notions

of quarter median and quarter median problem make sense for an arbitrary
finite-dimensional Euclidean space (E, 〈·, ·〉). If (θ, U ) solves the quarter median
problem for a distribution P on (Rd ,Bd), then {b2, . . . , bd} is an orthonormal basis
for the linear space E = H(b1), which has dimension d − 1. Here bti denotes the
i th row of U , i = 1, . . . , d; equivalently, bi is the i th column of U t. If d ≥ 3, this
can be used to obtain a projectivity or consistency property that relates (θ, U ) to a
solution (θE , UE ) of the quarter median problem for the push-forward of P under
the orthogonal projection πE : Rd → E . In fact, let SE

d−1 = {y ∈ E : ‖y‖ = 1}
be the unit sphere in E . For c ∈ E and orthogonal unit vectors d, d ′ ∈ S

E
d−1 the

associated half-spaces and quarter spaces are given by

H E− (c; d) := {
y ∈ E : 〈d, y − c〉 ≤ 0

}
, H E+ (c; d) := {

y ∈ E : 〈d, y − c〉 ≥ 0
}
,

and
V E±±(c; d, d ′) := H E± (c; d) ∩ H E± (c; d ′).

Using that a vector x ∈ R
d can uniquely be written as x = ∑d

i=1〈x, bi 〉 bi

we see that the orthogonal projection of x in E is xE := πE (x) =∑d
i=2〈x, bi 〉 bi . It follows from π−1

E

(
H E± (θE ; bi )

) = H±(θ; bi ) for 2 ≤
i ≤ d, and π−1

E

(
V E±±(θE ; bi , b j )

) = V±±(θ; bi , b j ) for 2 ≤ i < j ≤
d, that PπE

(
H E± (θE ; bi )

) = P (H±(θ; bi )) for 2 ≤ i ≤ d, and that
PπE

(
V E±±(θE ; bi , b j )

) = P
(
V±±(θ; bi , b j )

)
for 2 ≤ i < j ≤ d.
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2.3 Equivariance

In the context of equivariance properties of location estimators for d-dimensional data
we start with a family (often a group) S of measurable transformations S : Rd → R

d

and we regard the location parameter θ ∈ R
d as a function θ = T (P) of P . Recall

that P S is the push-forward of P under the transformation S. Then T is said to be
S-equivariant if

T (P S) = (S ◦ T )(P) for all S ∈ S.

In cases where the parameter is not unique this might better be expressed as S(θ) being
a parameter of this type for P S if θ is for P .

For example,withS being one of the groupsG1 andG2 thatwere used in connection
with (7), it is easy to check that

S−1(MMedm(P S)
) = MMedm(P) for all S ∈ S, (9)

i.e. the specific marginal median introduced in (3) is equivariant with respect to reflec-
tions and coordinate permutations. It is easily seen that we may even take S = G.
This specific marginal median is also equivariant with respect to separate rescalings,
where the corresponding group is the set of all regular diagonal matrices.

The general idea is of course that statistical inference should respect the structure
of the data space. Equivariance of a location estimator with respect to shifts and
orthogonal linear transformations means that the estimator interacts in this way with
the full isometry group of Euclidean space.

At various stages the following function will be important,

Ψ (U , P) := U tMMedm(PU ), (10)

with U ∈ O(d) and P a probability measure on (Rd ,Bd); Ψ (U , P) is the specific
marginal median in the coordinate system associated with U , transformed back to
canonical coordinates. By definition, a quarter median is always a marginal median in
a specific coordinate system. Below, marginal medians in

M(P) :=
dą

i=1

{
Med−(Pπi ),Medm(Pπi ),Med+(Pπi )

}
(11)

will be of particular interest.

Proposition 1 Let P be a probability distribution on (Rd ,Bd), and let S be the set of
Euclidean motions.

(a) If θ is a quarter median for the distribution P then, for all S ∈ S, S(θ) is a quarter
median for P S.

(b) If U , V ∈ O(d) are such that U ∼ V then Ψ (U , P) = Ψ (V , P).
(c) If (θ, U ) solves the quarter median problem for P, then there is a marginal median

η ∈ M(PU ) such that (θ̃ , U ) with θ̃ = U tη is also a solution.
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Fig. 2 The median curve for the
city data
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(d) If (θ, U ) solves the quarter median problem for P and S ∈ S, S(x) = Ax + b,
then (Aθ + b, UAt) solves the quarter median problem for P S. Moreover, if Pb

has a unique median for all b ∈ Sd−1,

Ψ
(
UAt, P S) = S

(
Ψ (U , P)

)
. (12)

(e) Suppose that Pb has a unique median for all b ∈ Sd−1. Then, the function
Ψ ( · , P) : O(d) → R

d is continuous.

Part (a) is the equivariance on the set level. Part (b) shows that Ψ (·, P) may
be regarded as a function on H(d). Part (c) is of importance when developing an
algorithm for searching a solution of empirical quarter median problems: For each
U ∈ O(d) the set of potential θ -values in (11) consists of three vectors only,
separately for each coordinate. It is tempting to think that this could be reduced
further to the respective midpoint, but the uniform distribution on the six points
(−2,−2)t, (−1, 3)t, (1,−1)t, (2, 2)t, (3, 4)t, (4, 0)t in the plane provides a counterex-
ample: The pair

(
(2, 2)t, U

)
with U = diag(1, 1) solves the quarter median problem

for this distribution, but the midpoint of the associated rectangle [1, 2] × [0, 2] of
multivariate medians would lead to

(
(1.5, 1)t, U

)
, which is not a solution. Part (d)

notices the Euclidean motion equivariance of the quarter median for distributions P
with the property that Pb has a unique median for all b ∈ Sd−1, a condition that will
be used repeatedly below.

Similar to the spatial median and the orthomedian introduced by Grübel (1996), the
quarter median is not affine equivariant. In particular, it is not equivariant with respect
to separate rescalings of the coordinates, in contrast to the special marginal median,
but for distributions P with the property that Pb has a unique median for all b ∈ Sd−1,
equivariance does hold (and is used in the proofs below) for simultaneous rescalings,
where the group S consists of all positive scalar multiples of the identity matrix.

Any quarter median is a marginal median in a suitably chosen coordinate system,
whichwemay take to be generated by an orthogonalmatrixwith determinant 1. Grübel
(1996) introduced the orthomedian of P as the integral of the function Ψ (·, P) over
SO(d)with respect to the Haar measure with total mass 1. Thus, the orthomedian may
be seen as the expected value of this function with U chosen uniformly at random,
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and its orthogonal equivariance is then an immediate consequence of the fact that the
Haar measure is invariant under the group operations. In contrast, the quarter median
picks a marginal median from the range of the set-valued function

U �→
{

U tη : η ∈ [
MMed−(PU ), MMed+(PU )

]}

via the partition constraint (6). Figure 2 shows the range of the function U �→
Ψ (U , Pn) for the empirical distribution Pn associated with the city data in Fig. 1,
where n = 76. The parts colored red correspond to possible quarter medians.

2.4 Asymptotics

Throughout this section we assume that P is a probability measure on (Rd ,Bd) with
the property that

Pa has a unique median for all a ∈ Sd , (13)

and that X1, X2, . . . are independent copies of a random vector X with distribution
P . We further assume that, for each n ∈ N, the pair (θn, Un) ∈ R

d × O(d) with
θn = θn(X1, . . . , Xn), Un = Un(X1, . . . , Xn), is a solution of the quarter median
problem for the (random) empirical distribution Pn associated with X1, . . . , Xn . We
also assume that θn andUn aremeasurable with respect to the respective Borel σ -fields
on (Rd)n . A discussion of the associated selection problem and an extension of the
results to more general random elements is given in Sect. 2.6.

We deal with consistency first and then consider asymptotic normality. Recall that
uniqueness and convergence refer not to the U -matrices themselves, but to the associ-
ated equivalence classes [U ] ∈ H(d), hence we have to specify what convergence of
theU -part means. OnO(d)we use the topology induced byRd×d where a sequence of
matrices converges if all entries converge individually. It is well known that this makes
O(d) a compact and separableHausdorff space.We use the quotient topology onH(d),
which is the finest topology with the property that the mapping SO(d) → H(d),
U �→ [U ], is continuous. As we have H(d) = O(d)/G with some finite group
G ⊂ O(d), the space H(d) with this topology is again a compact and separable
Hausdorff space.

Theorem 2 Suppose that (13) holds.

(a) If the quarter median for P is unique and given by θ ∈ R
d , then θn converges

almost surely to θ as n → ∞.
(b) If the solution of the quarter median problem for P is unique and given by (θ, H) ∈

Sd−1 × H(d), then (θn, [Un]) converges almost surely to (θ, H) as n → ∞.

In connection with distributional asymptotics we require (13) and also that P is
absolutely continuous. Let Ma = M(a) be the (unique) median of Pa , a ∈ Sd−1. As
in the paper of Grübel (1996) we further assume that Pa has a density fa such that

(a, t) → fa(t) is continuous at each (a, t) ∈ D := {(
a, Ma

) : a ∈ Sd−1
}
, (14)
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fa(Ma) > 0 for each a ∈ Sd−1, (15)

and, in addition, that

there is a point θ ∈ R
d such that Ma = atθ for each a ∈ Sd−1. (16)

For example, (16) is satisfied if P is symmetric about θ in the sense that (X1 − θ)

and −(X1 − θ) have the same distribution. Of course, if (13) and (16) hold then the
quarter median for P is unique and given by θ .

For U ∈ O(d) with rows bt1, . . . , btd let

Δ(P, U ) := diag

(
1

fb1(Mb1)
2 , · · · ,

1

fbd (Mbd )
2

)
. (17)

Of course, fa and Ma also depend on P . Finally, we write Xn →d Q for convergence
in distribution of a sequence (Xn)n∈N of random variables to a random variable with
distribution Q, and Nd(μ,Σ) for the d-dimensional normal distribution with mean
vector μ and covariance matrix Σ .

Theorem 3 Suppose that the conditions (13)–(16) hold and that the solution of the
quarter median problem for the absolutely continuous probability measure P is unique
and given by (θ, H). Then, in the above setup, and with U ∈ H,

√
n
(
θn − θ) →d Nd

(
0,Σ(P, U )

)
as n → ∞, (18)

where Σ(P, U ) := U tΔ(P, U )U and Δ(P, U ) is given by (17).

As part of the proof we will show that Σ(P, U ) does not depend on the choice of
the element U of H .

2.5 Elliptical distributions

We now consider a special family of distributions in more detail. Let h : R+ → R+
be a function with the property

0 < cd(h) :=
∫

R
d

h(‖x‖2) dx < ∞. (19)

Then, for each μ ∈ R
d and each positive definite matrix Σ ∈ R

d×d ,

f (x) = f (x;μ,Σ) = 1

cd(h)(detΣ)1/2
h
(
(x − μ)tΣ−1(x − μ)

)
, x ∈ R

d ,

is the density of a probability measure P on (Rd ,Bd), the elliptical distribution with
location vector μ and dispersion matrix Σ . We abbreviate this to P = Elld(μ,Σ; h).
If μ = 0 and Σ = Id we write Symd(h) for Elld(0, Id ; h) and speak of a spherically
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symmetric distribution with the density h
(‖x‖2)/cd(h), x ∈ R

d . A transformation to
spherical coordinates leads to

cd(h) = 2πd/2

Γ (d/2)

∫ ∞

0
rd−1h(r2) dr = πd/2

Γ (d/2)

∫ ∞

0
r

d
2 −1h(r) dr . (20)

The function h is said to be the density generator of the elliptical distributions
Elld(μ,Σ; h). For h(t) = exp(−t/2) the associated constant is cd(h) = (2π)d/2,
and we obtain the multivariate normal distributions Nd(μ,Σ).

For later purposes we list some properties of elliptical distributions. Clearly, if
P = Elld(μ,Σ; h) and if T : Rd → R

d , T (x) = Ax + b with A ∈ R
d×d regular,

b ∈ R
d , then PT = Elld(μ+ b, AΣ At; h). Further, for d ≥ 2 the univariate marginal

densities of P = Symd(h) coincide and are given by

g1(y) = g(y2)/cd(h), y ∈ R,

where

g(y) =
∫

R
d−1

h
(
y + x22 + · · · + x2d

)
dx2 . . . dxd

= π
d−1
2

Γ
( d−1

2

)
∫ ∞

y
h(t)

(
t − y

) d−1
2 −1

dt, y ≥ 0.

The function g is nonincreasing and continuous on (0,∞). Hence the univariate
marginal distributions are unimodal with mode 0 and their density is continuous on
R\{0}; see e.g. Fang et al. (1990, p. 37).

In what follows we deal with generators h that satisfy the condition

sup
0≤t≤ε

h(t) < ∞ for some finite interval [0, ε]. (21)

Then g and g1 are bounded and continuous. Additionally, with

ck(h) := 2πk/2

Γ (k/2)

∫ ∞

0
rk−1h(r2) dr = πk/2

Γ (k/2)

∫ ∞

0
r

k
2−1h(r) dr (22)

for k = 1, . . . , d − 1, we have 0 < ck(h) < ∞; especially, g(0) = cd−1(h). Finally,
the transformation law mentioned above can be generalized to k × d-matrices with
rank k < d at the cost of changing the function h. In particular, the first marginal
distribution associated with Elld(0,Σ; h) is Ell1(0, σ11; g) if Σ = (σi j )

d
i, j=1, and

has a density that is bounded, continuous and strictly positive at 0. More generally, if
P = Elld(μ,Σ; h) then the density fa of Pa for a ∈ Sd−1 is given by

fa(t) = 1

cd(h)(atΣa)1/2
g

(
(t − atμ)2

atΣa

)
, t ∈ R,
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Ma = atμ is the unique median of Pa , fa(Ma) is positive for all a ∈ Sd−1, and the
function (a, t) → fa(t) is continuous. Hence the assumptions (13)–(16) of Theorem 3
are satisfied.

As Σ is positive definite and symmetric the principal axes theorem applies and
gives the representation

Σ = U t diag(λ1, . . . , λd) U (23)

with someU ∈ O(d) and λ1 ≥ λ2 ≥ · · · ≥ λd > 0, where the λi ’s are the eigenvalues
of Σ . The distribution P = Elld(μ,Σ; h) is said to be strictly elliptical if no two of
these eigenvalues coincide. The next theoremdealswith the uniqueness of (the solution
of) the quarter median (problem) for elliptical distributions. Note that condition (21)
is not imposed there.

Theorem 4 If P = Elld(μ,Σ; h), then the quarter median of P is unique and given
by μ. Moreover, if P is strictly elliptical, then the solution of the quarter median
problem is unique and given by (μ, [U ]) with U as in (23).

For samples from strictly elliptical distributions with density generators satisfying
(21)we obtain asymptotic normality for a sequence of associated quartermedians θn =
θn(X1, . . . , Xn). Part (a) of the following result is essentially a corollary to Theorem 3.
In the symmetric case we only have weak uniqueness, hence we need to consider this
situation separately. Intermediate cases, where only some of the eigenvalues coincide,
can be treated similarly, but require a certain amount of bookkeeping.

Theorem 5 Let Xn, n ∈ N, be independent random vectors with distribution P =
Elld(μ,Σ; h), with h satisfying (21). Let cd−1(h), cd(h) be as in (19) and let

σ 2
QMed := cd(h)2/(2cd−1(h))2.

(a) Suppose that (θn, Un)n∈N is a sequence of random variables with values in R
d ×

O(d) such that, for all n ∈ N, (θn, Un) solves the quarter median problem for Pn.
Then, if P is strictly elliptical,

√
n(θn − μ) →d Nd

(
0, σ 2

QMed Σ
)

as n → ∞. (24)

(b) Suppose that Σ = λId for some λ > 0. Let (Un)n∈N be an arbitrary sequence of
elements of O(d) and suppose that, for all n ∈ N, θn is a marginal median of PUn

n .
Then √

n(θn − μ) →d Nd
(
0, σ 2

QMed Σ
)

as n → ∞. (25)

Remarkably, the covariance matrix of the limiting normal distribution always is a
fixedmultiple of the dispersionmatrixΣ . This is in contrast to other familiar estimators
of μ such as the empirical spatial median SMed(X1, . . . , X1), for example. In fact,
with reference to Bai et al. (1990) where the asymptotics of the spatial median are
considered in an even more general context, Somorčík (2006) states that in the d-
dimensional case under some weak conditions

SMed(X1, . . . , X1) →d Nd(0, V ), (26)
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where the asymptotic covariance matrix is given by

V = D−1
1 D2D−1

1 (27)

with

D1 = E

(
1

‖X1 − μ‖
(

Id − (X − μ)(X − μ)t

‖X − μ‖2
))

and

D2 = E

(
(X − μ)(X − μ)t

‖X − μ‖2
)

.

In the special (spherical) symmetric case Σ = Id the identity (27) simplifies to

V = σ 2
SMed Id ,

where

σ 2
SMed = d

(d − 1)2

(
E

(
1

‖X − μ‖
))−2

. (28)

It was shown by Grübel (1996) that in this symmetric case the empirical orthomedian
has the same asymptotic covariance matrix as the spatial median. In what follows, we
give a comparison of the covariances of the limit distributions for some estimators of
μ, in particular for QMed(X1, . . . , Xn) as the empirical quarter median, the sample
mean 1

n

∑n
j=1 X j , and the maximum likelihood estimator ML(X1, . . . , Xn), for some

special distribution families, where our main focus is on strictly elliptical distribution
families. In all cases, the limit distribution of the standardized estimators is a centered
multivariate normal, and by asymptotic covariance we mean the respective covariance
matrix.

Example 1 We work out the details for some specific distribution families in the case
of dimension d = 2.

(a) For normal distributions P = N2(μ,Σ) Theorem 5 (a) leads to

√
n(QMed(X1, . . . , Xn) − μ) →d N2

(
0, π

2 Σ
)
. (29)

The maximum likelihood estimator of μ is the sample mean; its (asymptotic) covari-
ance is simply Σ itself, hence the asymptotic efficiency of the quarter median is about
64%. Of course, the quarter median is more robust with respect to gross outliers in
the data. In the symmetric case Σ = I2 both orthomedian and spatial median have
asymptotic covariance 4

π
I2.

For non-symmetric two-dimensional normal distributions with Σ = diag(1, λ),
0 < λ < 1, Brown (1983) and Grübel (1996) obtained expressions for the asymptotic
covariance matrices of the spatial median and the orthomedian. Both are of diagonal
form, with the two diagonal entries given by expressions involving infinite series and
double integrals respectively. These can be used numerically, see Brown (1983, Table
1) and Grübel (1996, Table 1). For the second value, referring to the shorter axis, we
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have the simple explicit formula λπ/2 for the quarter median, which is smaller than
the value for the spatial median if λ < 0.038, and for the orthomedian if λ < 0.1.

(b) Taking h(t) = exp(− 1
2

√
t), t ≥ 0, we obtain the bivariate doubly exponential

distributions MDE2(μ,Σ), with densities given by

f (x;μ,Σ) = 1

8π

1√
detΣ

exp

(
− 1

2

(
(x − μ)tΣ−1(x − μ)

) 1
2
)

, x ∈ R
2.

The asymptotic covariance matrix for the sample mean of independent two-
dimensional random vectors X1, . . . , Xn with the density f (·;μ,Σ) is given by
cov(X1) = 12Σ ; see, e.g. (Gómez et al. 1998, Proposition 3.2 (iii)). Using

c1(h) = 2
∫ ∞

0
e− 1

2 t dt = 4, c2(h) = 2π
∫ ∞

0
te− 1

2 t dt = 8π,

weobtainσ 2
QMed = π2, so thatπ2Σ is the asymptotic covariancematrix for the sample

quarter median. For a given fixed symmetric positive definiteΣ the Fisher information
matrix can be calculated to be 1

8Σ
−1 (see, e.g. Mitchell 1989, formulas (3.2), (3.3)).

So, by the general asymptotic theory of maximum likelihood estimation 8Σ is the
asymptotic covariance of the maximum likelihood estimator ML(X1, . . . , Xn). In the
symmetric case Σ = Id , it follows from (26) and (28) that

SMed(X1, . . . , Xn) →d N2(0, 8I2), (30)

whichmeans that the asymptotic covariances ofSMed(X1, . . . , Xn) andML(X1, . . . , Xn)

coincide in this case. This is not surprising, because SMed(X1, . . . , Xn) is the maxi-
mum likelihood estimator of μ in this symmetric case.

(c) With h(t) = (1 + t)−3/2 we obtain a class of bivariate Cauchy distributions
MC2(μ,Σ) with densities

f (x;μ,Σ) = 1

2π

1√
detΣ

(
1 + (x − μ)tΣ−1(x − μ)

)− 3
2
, x ∈ R

2.

The associated marginal distributions are univariate Cauchy distributions. For this
distribution family the sample mean is not even consistent, hence we do not take
it into consideration as an estimator for μ. Again we use (Mitchell 1989, formulas
(3.2),(3.3)) to see that for given fixed positive definiteΣ the Fisher information matrix
is 3

5Σ
−1. Thus, by the general asymptotic theory of maximum likelihood estimators,

ML(X1, . . . , Xn) →d N2

(
0, 5

3Σ
)

.

Using

c1(h) = 2
∫ ∞

0

(
1 + t2

)− 3
2 dt = 2, c2(h) = 2π

∫ ∞

0
t
(
1 + t2

)− 3
2 dt = 2π
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we arrive at the value π2

4 Σ for the asymptotic covariance matrix of the sample quarter
median. In the symmetric case Σ = Id , using (26) and (28), it follows that

SMed(X1, . . . , Xn) →d N2(0, 2I2). (31)

(d) With h(t) = (1 − t)2 for 0 ≤ t ≤ 1 and 0 elsewhere we have a special class of
symmetric bivariate Pearson type II distributions SMPII2(μ,Σ) with densities

f (x;μ,Σ) = 3

π

1√
detΣ

max
{
0, 1 − (x − μ)tΣ−1(x − μ)

}2
, x ∈ R

2.

The asymptotic covariance matrix for the sample mean of independent two-
dimensional random vectors X1, . . . , Xn with the density f (·;μ,Σ) is cov(X1) =
1
8Σ ; see Fang et al. (1990, p. 89). The centered bivariate limit normal distribution of
the maximum likelihood estimator has the covariance matrix 1

12Σ . Using

c1(h) = 2
∫ 1

0

(
1 − t2

)2
dt = 16

15
, c2(h) = 2π

∫ 1

0
t
(
1 − t2

)2
dt = π

3

it follows that 25
1024π

2Σ is the asymptotic covariance matrix for the sample quarter
median. In the symmetric case Σ = Id we obtain

SMed(X1, . . . , Xn) →d N2

(
0,

25

128
I2

)
.

(e) Taking h(t) = exp(−t)
(1+exp(−t))2

, t ≥ 0, we obtain the symmetric bivariate logistic

distributions SML2(μ,Σ), with densities given by

f (x;μ,Σ) = 1

π
√
detΣ

exp
(−(x − μ)tΣ−1(x − μ)

)

(
1 + exp

(−(x − μ)tΣ−1(x − μ)
))2 , x ∈ R

2.

For X ∼ SML2(0, I2) the distribution of R2 = ‖X‖2 is the univariate half-logistic
distribution with density 2 exp(−t)

(1+exp(−t))2
, t ≥ 0. Then,

mSML2 := 1

2
E(R2) =

∫ ∞

0
t

exp(−t)

(1 + exp(−t))2
dt ≈ 0.69314718 (32)

and cov(X) = mSML2 I2. From this we deduce that the asymptotic covariance matrix
for the sample mean of independent two-dimensional random vectors X1, . . . , Xn

with the above density f (·;μ,Σ) is cov(X1) = mSML2Σ . With

kSML2 := 4
∫ ∞

0
t

(
1 − exp(−t)

1 + exp(−t)

)2 exp(−t)

(1 + exp(−t))2
dt ≈ 1.59086291 (33)
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Table 1 Relative asymptotic efficiencies

Distribution family eff(Mean,ML) eff(QMed,ML)

Bivariate normal 1 2
π

Bivariate doubly exponential 2
3

8
π2

Bivariate Cauchy – 20
3π2

Bivariate Pearson type II 2
3

256
75π2

Symmetric bivariate logistic 0.90686321 0.46253446

the Fisher information matrix is kSML2Σ
−1, and the centered bivariate limit normal

distribution of the maximum likelihood estimator has the covariance matrix k−1
SML2

Σ .
Further, with

c1(h) =
∫ ∞

0
t−

1
2

exp(−t)

(1 + exp(−t))2
dt ≈ 0.67371824,

c2(h) = π

∫ ∞

0

exp(−t)

(1 + exp(−t))2
dt = π

2

we obtain that c2(h)2

(2c1(h))2
Σ ≈ 1.35901156Σ is the covariance matrix of the centered

limiting normal distribution of the quarter median. In the symmetric case Σ = Id we
get

SMed(X1, . . . , Xn) →d N2

(
0,

1

2c1(h)2
I2

)
,

where 1
2c1(h)2

≈ 1.10157328. Numerical values for the ratios k−1
SML2

/mSML2 and

k−1
SML2

/(
c2(h)
2c1(h)

)2 are shown in the last line of Table 1.

Wesummarize some special results presented inExample1 for the respective strictly
elliptical cases in Table 1, where the relative asymptotic efficiencies eff(Mean,ML),
and eff(QMed,ML) of the mean and the quarter median with respect to the maximum
likelihood estimator are shown; these are the ratios σ 2

ML/σ 2
Mean and σ 2

ML/σ 2
QMed.

In contrast to the other multivariate versions of the median that appear in the above
example the quarter median goes beyond providing a location estimate as it comes
with an equipartition basis. In the elliptical case P = Elld(μ,Σ; h) the basis elements
are the unit vectors proportional to the eigenvectors ofΣ and thus contain information
about the dispersion parameter. In Theorem 3 the asymptotic behavior of (Un)n∈N is
important. In the strictly elliptical case we have consistency and we may assume that
convergence takes place inSO(d); see also the beginning of the proof ofTheorem3.We
aim at a second order statement about the distributional asymptotics of this sequence.

In the following theorem we only consider d = 2, but see the ensuing remarks. We
can then use the parametrization of SO(2) given in Remark 1 (b) by an angle from an
half-open interval I of length π/2. We assume that U = Uα with I chosen such that
α is in its interior. Then consistency implies that Un = Uαn with I -valued random
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variables αn that converge to α with probability 1. It then makes sense to consider the
distributional asymptotics of

√
n(αn − α) as n → ∞.

Theorem 6 Let P = Ell2(μ,Σ; h) and let Xn, θn, Un, n ∈ N, be as in Theorem 5(a).
Let λ1 and λ2 be the eigenvalues of Σ , with λ1 > λ2. Then, with α and αn as defined
above, √

n(αn − α) →d N
(
0, σ 2(λ1, λ2)

)
,

where

σ 2(λ1, λ2) = c2(h)2λ1λ2

4c1(h)2(
√

λ1 − √
λ2)2

. (34)

Moreover, αn and θn are asymptotically independent.

In particular, the asymptotic variance in (34) is large if the eigenvalues are close
to each other. This is to be expected as Ell2(μ,Σ; h) is then close to a symmetric
distribution, where U is not unique.

In dimensions higher than two a possible approach could be based on the rep-
resentation of the Lie group SO(d) by its Lie algebra so(d), which consists of the
skew-symmetric matrices A ∈ R

d×d , whereU ∈ SO(d) is written as the matrix expo-
nential U = exp(A) of some A ∈ so(d); see Muirhead (1982, Theorem A9.7) for
a proof of the latter assertion, and Hall (2004) for an elementary introduction to Lie
groups, Lie algebras, and representations. This leads to an asymptotic distribution Q
for (U tUn)

√
n as n → ∞, where Q is a probability measure on (the Borel subsets

of) SO(d), and it avoids any ambiguities caused by parametrization. In fact, Q is
the distribution of the random orthogonal matrix exp(A), where A is a random skew
symmetric matrix with jointly normal subdiagonal entries. If d = 2, as in the above
theorem, then

Uα = exp
(

A(α)
)

with A :=
(
0 −α

α 0

)
,

and A is then specified by its one subdiagonal entry, which has a central normal
distribution with variance given by (34).

2.6 Measurability, selection and algorithms

Let S be a topological space with Borel σ -field B(S). We write Cb(S) for the set
of bounded continuous functions f : S → R. Let Z , Z1, Z2, . . . be S-valued ran-
dom variables, i.e. B(S)-measurable functions on some probability space (which may
depend on the respective variable). In its classical form, convergence in distribution
Zn →d Z of Zn to Z as n → ∞ means that

lim
n→∞ E f (Zn) = E f (Z) for all f ∈ Cb(S). (35)

This is the notion that we used in Sect. 2.4. An extension of this concept, due to
Hoffmann–Jørgensen, can be applied if the Zn’s are not measurable with respect to
the full Borel σ -field on S; roughly, the expectations E f (Zn) in (35) are then replaced
by outer expectations E� f (Zn). Similarly, almost sure convergence now refers to

123



The quarter median 437

outer probabilities. The research monographs of Dudley (1999) and van der Vaart and
Wellner (1996) give an in-depth treatment of this circle of ideas, together with a variety
of applications. This extension appears in our proof of Theorem 3 in connection with
empirical processes; it can also be used if the estimators (θn, Un) are not measurable.
We refer the reader to the paper of Kuelbs and Zinn (2013), where this is worked out
in detail for the related situation of quantile processes.

While this avoids the problem of choosing an estimator from the respective solution
set in a measurable way, it is of independent interest whether such a selection is
possible. For the classical one-dimensional median and the marginal median this can
obviously be done by choosing the midpoint of the respective (component) interval,
but no such simple rule seems to exist for the quarter median.

We think of estimators as functions of the random variables Xi , i ∈ N, and it is then
enough to establish measurability for these functions. To be precise, for a given n ∈ N

and ann-tuple (x1, . . . , xn) ∈ (Rd)n wedenote by
(
θn(x1, . . . , xn), Un(x1, . . . , xn)

) ∈
R

d × SO(d) a solution of the quarter median problem for the empirical distribution
Pn;x1,...,xn = n−1 ∑n

k=1 δxk .

Proposition 2 There exists a function τ : (Rd)n → R
d × SO(d) that is measurable

with respect to the Borel σ -algebra on (Rd)n and the Borel σ -algebra on R
d ×SO(d)

such that, for each (x1, . . . , xn) ∈ (Rd)n,

(
θn(x1, . . . , xn), Un(x1, . . . , xn)

) := τ(x1, . . . , xn)

is a solution of the quarter median problem for Pn;x1,...,xn .
Moreover, τ may be chosen to be permutation invariant in the sense that

τ(xπ(1), . . . , xπ(n)) = τ(x1, . . . , xn) (36)

for all permutations π of {1, . . . , n}.
Permutation invariance means that the estimates depend on the data only through

the respective empirical distribution.
Selecting a solution in ameasurable way from the respective set of all solutionsmay

seem as a corollary to establishing an algorithm that returns an estimate for every data
input x1, . . . , xn . Indeed, without such an algorithm a statistical procedure would seem
to be of limited use. In dimension two, and using the parametrization in Remark 1 (b),
we obtain a real function on the interval [0, π/2) by counting the number of data points
in the upper right quadrant specified by Uα and MMedm(PUα ); see Fig. 3 for a plot
of this function for the city data in Fig. 1, where the counts refer to the open quarter
space. By construction, all half-spaces contain at least half of the data points, so each
angle that leads to a count of n/4 (if n is divisible by 4) would give a quarter median.
For absolutely continuous distributions this approach, together with the intermediate
value theorem, leads to a proof of Theorem 1 in dimension 2, and this may be used
numerically via bisection. Such a bisection argument also works for functions that are
piecewise constant and have jumps of size ±1 only, provided a solution exists.

In what follows, still considering the case d = 2, we present a different algorithm.
Let x1, . . . , xn be n ≥ 2 pairwise distinct data points in R

2. For 1 ≤ i < j ≤ n let
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α
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Fig. 3 Number of cities in the upper right quadrant, α ∈ [0, π/2)

bi j = x j −xi
‖x j −xi ‖ ∈ S1 be the direction of the line through xi and x j , and let b′

i j ∈ S1 be

orthogonal to bi j . With the empirical distribution Pn = n−1 ∑n
k=1 δxk we associate

the finite setL (Pn) of pairs (θi j , Ui j ), withUi j ∈ O(2) as the matrix with row vectors

bti j and b′
i j
t, and θi j = U t

i jη with some η ∈ M(
P

Ui j
n

)
.

Theorem 7 There is an element (θi j , Ui j ) ∈ L (Pn) that solves the quarter median
problem for Pn.

Hence, checking successively the conditions (5) and (6) for all
(
θi j , Ui j

) ∈ L (Pn),
1 ≤ i < j ≤ n, provides a solution of the quarter median problem for Pn . This
procedure, however, may lead to an estimator that is not permutation invariant in the
sense of (36), meaning that it would not be a function of the empirical distribution
Pn . For our introductory data example, see Fig. 1, this happens for both of the above
algorithms: Fig. 3 shows that different solutions appear depending on whether the
angles are scanned clockwise or counterclockwise. Similarly, the algorithm based on
Theorem 7 could lead to the (i, j)-pair corresponding to the cities Berlin and Frankfurt
am Main, or München and Dortmund, for example.

3 Numerical comparison

Wepresent a small simulation study on the performance of the quarter median (QMed)
as a location estimator, comparing it with that of three other procedures—the spatial
median (SMed); Oja’s simplicial median (OMed), see Oja (1983); and Tukey’s half-
space median (TMed), see Tukey (1975). For a detailed description of these classical
estimatorswe refer to the survey papers of Small (1990) andOja (2013).AMonteCarlo
study on the performance of the three (and some other bivariate location) estimators
is given by Massé and Plante (2003).
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Samples are drawn from the strictly elliptical distributions N2(μ,Σ) (bivariate
normal), MDE2(μ,Σ) (bivariate doubly exponential), SMPII2(μ,Σ) (symmetric
bivariate Pearson type II), and SML2(μ,Σ) (symmetric bivariate logistic) introduced
in Example 1. The bivariate Cauchy distributions MC2(μ,Σ) also discussed there
are not taken into consideration for the simulation study, as the Oja median does not
exist for this distribution family. In fact, for a given distribution P onR2, independent
X j ∼ P , j = 1, 2, and θ ∈ R

2, let Δ(X1, X2, θ) be the area of the triangle in R
2

with vertices X1, X2, θ. If the expectation γP (θ) := E (Δ(X1, X2, θ)) is finite for
all θ ∈ R

2, the Oja median is a point θOja(P) ∈ R
2 that minimizes the function

θ �→ γP (θ). Obviously, γP ≡ ∞ for P = MC2(0,Σ), while for the other elliptical
distributions P under consideration θOja(P) = μ.

Without loss of generality we take μ = 0. The dispersion matrix chosen

is Σ =
(
1 0
0 λ

)
, with λ ∈ {0.01, 0.1, 0.5, 0.9}. Repeatedly, with r = 10,000

replications, samples of size n = 100 are drawn from the underlying dis-
tribution. Let SMedn,i ,OMedn,i ,TMedn,i ,QMedn,i be the observed values of
the corresponding estimators obtained in the i th repetition. Table 2 shows the
numerical values of the components m̂1, m̂2 of the empirical means and the
numerical values of the eigenvalues l̂1, l̂2 of the empirical covariance matrices of√

nSMedn,i ,
√

nOMedn,i ,
√

nTMedn,i ,
√

nQMedn,i , i = 1, . . . , r . The simulations
are conducted by using the statistical software environment R; the calculation of the
estimators SMed, OMed, and TMed is easily done by applying the corresponding
functions med(…,method="Spatial"), med(…,method="Oja",…) and
TukeyMedian(…) provided with the additional R software packages depth and
TukeyRegion. Note that, in the later package, the Tukey median is defined to be
the barycenter of the Tukey region.

Roughly, for the bivariate distributions considered the Oja median seems to have
the best power performance; it is followed by the Tukey median, the spatial median
and the quarter median (in this order). But note the exceptional case λ = 0.01, with
the smaller values of l̂2 and l̂1l̂2 for QMed compared to that of SMed. Note also that
as we already pointed out above, the quarter median contains information about the
dispersion parameter and so goes beyond providing a location estimate.

For samples taken from bivariate normal distributions with dispersion matrix

Σ =
(
1 0
0 λ

)
the limit distributions of SMed, OMed, and QMed as n → ∞

are the centered bivariate normal distributions with the diagonal covariance matri-

ces ΣSMed =
(

l1,SMed 0
0 l2,SMed

)
, see Brown (1983), where also expressions for

the diagonal elements l1,SMed, l2,SMed and their numerical values for some spe-

cial values of λ are given, ΣOMed =
(
4/π 0
0 4λ/π

)
, see Oja and Niinimaa (1985),

and ΣQMed =
(

π/2 0
0 πλ/2

)
. The limit distribution of TMed is the distribution of

arg supt∈R2 infu∈S1
(

Z(u) − 1
2πλ1/2

utt
)
, where (Z(u), u ∈ S1) is a centered Gaus-

sian process with the covariance function cov (Z(u), Z(v)) = P(V++(0; u, v) −
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Table 2 Components m̂1, m̂2 of the empirical means, and eigenvalues l̂1, l̂2 of the empirical covariance
matrices of the

√
n-scaled estimators SMed, OMed, TMed, QMed obtained by simulations with 10,000

replications for strictly elliptical distributions with dispersionmatrixΣ =
(
1 0
0 λ

)
, λ ∈ {0.01, 0.1, 0.5, 0.9};

sample size n = 100

m̂1 m̂2 l̂1 l̂2

λ = 0.01

N2(0, Σ)

SMed 0.009648 − 0.002215 1.453955 0.019903

OMed 0.001726 − 0.001769 1.282321 0.012935

TMed − 0.000700 − 0.001661 1.311815 0.013135

QMed 0.010454 − 0.001571 1.558638 0.015973

MDE2(0, Σ)

SMed 0.062843 0.000282 9.651512 0.132048

OMed 0.047608 − 0.001115 8.376979 0.084180

TMed 0.041778 − 0.001260 8.548116 0.085507

QMed 0.066367 0.000427 10.363242 0.102538

SMPII2(0, Σ)

SMed − 0.002203 0.000669 0.227956 0.003093

OMed − 0.000128 0.000219 0.201077 0.001999

TMed 0.000433 0.000230 0.205588 0.002041

QMed − 0.003445 0.000139 0.243375 0.002450

SML2(0, Σ)

SMed − 0.004630 − 0.000134 1.245813 0.017274

OMed − 0.014100 − 0.000211 1.102237 0.010843

TMed − 0.014277 − 0.000292 1.127860 0.011012

QMed − 0.001921 − 0.000723 1.326942 0.013266

λ = 0.1

N2(0, Σ)

SMed 0.003782 − 0.002045 1.347796 0.139426

OMed 0.002807 − 0.000513 1.290243 0.127393

TMed 0.004400 − 0.001163 1.316496 0.129837

QMed 0.001002 − 0.002581 1.550401 0.157899

MDE2(0, Σ)

SMed − 0.024886 − 0.014379 8.864224 0.937143

OMed − 0.025370 − 0.011321 8.434326 0.854891

TMed − 0.020137 − 0.009642 8.564605 0.873420

QMed − 0.031408 − 0.003320 10.250833 1.052323

SMPII2(0, Σ)

SMed − 0.008639 − 0.002740 0.204793 0.021491

OMed − 0.006975 − 0.002715 0.197094 0.019512

TMed − 0.006893 − 0.002416 0.201236 0.019897

QMed − 0.011107 − 0.001635 0.232204 0.023828

123



The quarter median 441

Table 2 continued

m̂1 m̂2 l̂1 l̂2

SML2(0, Σ)

SMed − 0.008358 − 0.006214 1.175185 0.120428

OMed − 0.011263 − 0.004974 1.119404 0.110270

TMed − 0.013367 − 0.005026 1.146522 0.112307

QMed − 0.007513 − 0.001273 1.351009 0.136288

λ = 0.5

N2(0, Σ)

SMed 0.011107 − 0.007306 1.274190 0.639970

OMed 0.011333 − 0.006804 1.274619 0.636957

TMed 0.011808 − 0.005540 1.309882 0.650354

QMed 0.009552 − 0.007997 1.551297 0.767945

MDE2(0, Σ)

SMed − 0.022503 − 0.017123 8.333408 4.103622

OMed − 0.019896 − 0.016413 8.340335 4.101557

TMed − 0.018584 − 0.020229 8.551098 4.201095

QMed − 0.022966 − 0.005561 10.177384 5.088397

SMPII2(0, Σ)

SMed − 0.005249 − 0.001641 0.197165 0.097735

OMed − 0.005218 − 0.001727 0.196625 0.097539

TMed − 0.005330 − 0.002090 0.200822 0.099652

QMed − 0.006836 − 0.000873 0.237224 0.118714

SML2(0, Σ)

SMed 0.008670 0.013723 1.099552 0.563826

OMed 0.009137 0.013315 1.101891 0.561546

TMed 0.006853 0.015428 1.125076 0.573525

QMed 0.012909 0.018256 1.337041 0.684311

λ = 0.9

N2(0, Σ)

SMed 0.010573 0.002084 1.284202 1.157361

OMed 0.010942 0.001677 1.291926 1.166358

TMed 0.009962 0.002722 1.314541 1.191291

QMed 0.007804 0.005679 1.553846 1.414504

MDE2(0, Σ)

SMed 0.036521 0.070980 8.360825 7.417609

OMed 0.037581 0.072080 8.417271 7.462682

TMed 0.037717 0.070611 8.586432 7.609654

QMed 0.007530 0.087122 10.274479 9.154238
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Table 2 continued

m̂1 m̂2 l̂1 l̂2

SMPII2(0, Σ)

SMed − 0.006974 − 0.000672 0.193231 0.178529

OMed − 0.006773 − 0.001132 0.194627 0.178877

TMed − 0.006907 − 0.001222 0.198142 0.183445

QMed − 0.005604 − 0.002042 0.234378 0.220361

SML2(0, Σ)

SMed − 0.003381 0.003081 1.078231 0.982265

OMed − 0.005205 0.002348 1.082106 0.989597

TMed − 0.002501 0.003175 1.107970 1.007464

QMed − 0.010836 − 0.000977 1.321225 1.190672

Table 3 Bivariate normal case:
Empirical eigenvalues l̂1, l̂2 and
eigenvalues l1, l2 of
ΣSMed,ΣOMed, and ΣQMed

l̂1 l̂2 l1 l2

λ = 0.01

SMed 1.453955 0.019903 1.460156 0.019491

OMed 1.282321 0.012935 1.273240 0.012732

QMed 1.558638 0.015973 1.570796 0.015708

λ = 0.1

SMed 1.347796 0.139426 1.347542 0.140825

OMed 1.290243 0.127393 1.273240 0.127324

QMed 1.550401 0.157899 1.570796 0.157080

λ = 0.5

SMed 1.274190 0.639970 1.281958 0.641807

OMed 1.274619 0.636957 1.273240 0.636620

QMed 1.551297 0.767945 1.570796 0.785398

λ = 0.9

SMed 1.284202 1.157361 1.273457 1.146117

OMed 1.291926 1.166358 1.273240 1.145916

QMed 1.553846 1.414504 1.570796 1.413717

1/4, u, v ∈ S1; see Nolan (1999). To the best of our knowledge, nothing is known
about the type of this distribution. In this respect, see for example also the interesting
results on the asymptotic behaviour of the empirical Tukey depth process given by
Massé (2004).

Table 3 shows the values of l̂1, l̂2 and, for comparison, that of the diagonal elements
l1, l2 of ΣSMed,ΣOMed, and ΣQMed.
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4 Proofs

4.1 Proof of Theorem 1

Using Makeev’s result, we only need to remove the smoothness assumption.
For an arbitrary probability measure P on (Rd ,Bd) let Pε = P ∗ Nd(0, ε Id) be the

convolution of P with a centered d-dimensional normal distribution with independent
components that all have variance ε > 0. Then Pε is absolutely continuous with an
everywhere positive density, so that a solution

(
θε, Uε) of the equipartition problem

exists. Let ||| · ||| be a matrix norm on Rd×d that is compatible with the Euclidean norm
‖ · ‖ on Rd . From θε = U t

εUεθε it then follows that

‖θε‖ ≤ |||U t
ε |||‖Uεθε‖ ≤ s‖Uεθε‖, (37)

where s = supU∈SO(d) |||U t||| < ∞. Let t = lim supε→0 ‖Uεθε‖. Hence there exists
a sequence (εn)n∈N with εn → 0 such that ‖Uεn θεn ‖ → t and Uεn → U ∈ O(d)

as n → ∞. As a consequence, P
Uεn
εn → PU weakly. Due to the fact that Uεn θεn is

a marginal median of P
Uεn
εn we deduce from this that the sequence

(‖Uεn θεn ‖
)∞

n=1 is
bounded; hence, by (37), the sequence (θεn )

∞
n=1 is also bounded. Therefore, θεn′ →

θ ∈ R
d and Uεn′ → U ∈ O(d) along some subsequence (εn′) of (εn). To see that

(θ, U ) solves the quarter median problem for P we use that P
Uεn′
εn′ → PU weakly and

argue as follows: With btεn′ ,1, . . . , btεn′ ,d and bt1, . . . , btd as the row vectors of Uεn′ and
U , respectively, we have that, for each 1 ≤ i < j ≤ d and each δ > 0,

1

4
≤ lim sup

n′→∞
Pεn′

(
V+−

(
θεn′ ; bεn′ ,i , bεn′ , j

))

≤ lim sup
n′→∞

Pεn′
(
btεn′ ,i x ≥ btiθ − δ, btεn′ , j x ≤ btiθ + δ

)

≤ P
(
bti x ≥ btiθ − δ, btj x ≤ btiθ + δ

)
.

Let δ ↓ 0 to obtain P
(
V+−(θ; bi , b j )

) ≥ 1
4 . The other inequalities stated in (5) and

(6) can be verified in the same way.

4.2 Proof of Proposition 1

(a) Let θ be a quarter median for P with b1, . . . , bd an associated orthonormal basis
of Rd such that the constraints (5) and (6) are satisfied. Further, let S(x) = Ax + c
with A ∈ O(d), c ∈ R

d , be a Euclidean motion. Then b′
1, . . . , b′

d with b′
i := Abi ,

1 ≤ i ≤ d, is again an orthonormal basis for Rd , and it is easily checked that

S−1(H±
(

Aθ + c; b′
i

)) = H±(θ; bi ), 1 ≤ i ≤ d,

S−1(V±±
(

Aθ + c; b′
i , b′

j

)) = V±±(θ; bi , b j ), 1 ≤ i < j ≤ d.
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444 L. Baringhaus, R. Grübel

In view of the definition of push-forwards this implies that S(θ) is a quarter median
for P S , with b′

1, . . . , b′
d an associated equipartition basis.

(b) If V = AU with A ∈ G then

Ψ (V , P) = (AU )tMMedm
((

PU )A) = U tAtAMMedm
(
PU ) = Ψ (U , P),

where we have used (9) and G ⊂ O(d).
(c) Let bt1, . . . , btd be the row vectors of U . With

θU = (θU ,1, . . . , θU ,d)t := Uθ = (
bt1θ, . . . , bt

dθ
)t

it holds that θ = U tθU = ∑d
i=1 θU ,i bi and that, by definition, θU is a marginal median

of PU . We can now choose an element θ̃U = (θ̃U ,1, . . . , θ̃U ,d)t ∈ M (
PU

)
such that

P
(
bti x ≥ θU ,i

) = P
(
bti x ≥ θ̃U ,i

)
, P

(
bti x ≤ θU ,i

) = P
(
bti x ≤ θ̃U ,i

)

for 1 ≤ i ≤ d, and

P
(
bti x ≥ θU ,i , btj x ≥ θU , j

) = P
(
bti x ≥ θ̃U ,i , btj x ≥ θ̃U , j

)

P
(
bti x ≥ θU ,i , btj x ≤ θU , j

) = P
(
bti x ≥ θ̃U ,i , btj x ≤ θ̃U , j

)

P
(
bti x ≤ θU ,i , btj x ≥ θU , j

) = P
(
bti x ≤ θ̃U ,i , btj x ≥ θ̃U , j

)

P
(
bti x ≤ θU ,i , btj x ≤ θU , j

) = P
(
bti x ≤ θ̃U ,i , btj x ≤ θ̃U , j

)

for 1 ≤ i < j ≤ d. Then putting θ̃ = U tθ̃U = ∑d
i=1 θ̃U ,i bi we have

P
(
bti x ≥ btiθ

) = P
(
bti x ≥ bti θ̃

)
, P

(
bti x ≤ btiθ

) = P
(
bti x ≤ bti θ̃

)

for 1 ≤ i ≤ d, and

P
(
bti x ≥ btiθ, btj x ≥ btjθ

) = P
(
bti x ≥ bti θ̃ , btj x ≥ btj θ̃

)

P
(
bti x ≥ btiθ, btj x ≤ btjθ

) = P
(
bti x ≥ bti θ̃ , btj x ≤ btj θ̃

)

P
(
bti x ≤ btiθ, btj x ≥ btjθ

) = P
(
bti x ≤ bti θ̃ , btj x ≥ btj θ̃

)

P
(
bti x ≤ btiθ, btj x ≤ btjθ

) = P
(
bti x ≤ bti θ̃ , btj x ≤ btj θ̃

)

for 1 ≤ i < j ≤ d. Thus, (θ̃ , U ) solves the quarter median problem for P .
(d) The first statementmay be regarded as an equivariance property of solution pairs

for the quarter median problem; its proof proceeds as in (a). For the second statement
we note that A ∈ O(d) and then calculate, using the shift equivariance of the marginal
median,

Ψ (UAt, P S) = (UAt)tMMedm
((

P S)UAt)
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= AU t(MMedm
(
PU At A) + UAtb

)

= AΨ (U , P) + b = S
(
Ψ (U , P)

)
.

(e) LetU ∈ O(d) and (Un)∞n=1 be a sequence of elements inO(d) converging toU .

Due to PUn → PU weakly and the fact that Pb has a unique median for all b ∈ Sd ,

it follows that MMedm(PUn ) → MMedm(PU ). Then, from

|||Un
t MMedm

(
PUn

) − U t MMedm
(
PU )|||

= |||U t
n MMedm

(
PUn

) − U t
n MMedm

(
PU ) + U t

n MMedm
(
PU ) − U t MMedm

(
PU )|||

≤ |||U t
n |||‖MMedm

(
PUn

) − MMedm
(
PU )‖ + |||U t

n − U t|||‖MMedm(PU )‖

and the compactness ofO(d)we deduce thatU t
n MMedm(PUn ) → U tMMedm(PU ).

4.3 Proof of Theorem 2

We will make use of the fact that if mn, n ∈ N, are medians of univariate distributions
that converge weakly as n → ∞ to a univariate distribution with unique median m,
then limn→∞ mn = m. Further, we only prove the second part of the theorem as the
arguments for (a) are similar.

Let (Ω,A,P) be a probability space on which the random vectors X1, X2, . . . are
defined, so that PX j = P for all j ∈ N. Then there is a P-null set N ∈ A such that for
each ω ∈ N c

Pn;ω := 1

n

n∑

j=1

δX j (ω) → P weakly.

Fix ω ∈ N c; until further notice we omit the argument ω below. By definition, the
quarter median θn of Pn can be written as θn = U t

nηn with some Un ∈ O(d) and some
ηn ∈ [MMed−(PUn

n ), MMed+(PUn
n )] (both may depend on ω ∈ N c). Let (Un′) be a

subsequence of (Un). AsO(d) is compact a subsubsequence (Un′′) converges to some

V ∈ O(d), and we have weak convergence P
Un′′
n′′ → PV by the extended continuous

mapping theorem; see Billingsley (1968, Theorem 5.5). As the distribution Pb has a

unique median for all b ∈ Sd−1, the marginal median η′′
n of P

Un′′
n′′ converges to the

marginal median η of PV . Now fix i, j with 1 ≤ i < j ≤ d. Let a′′
n , b′′

n , a, b be the
corresponding rows in U ′′

n and V respectively. Using the same arguments as in the
proof of Theorem 1 we then obtain for each ε > 0, and with m instead of n′′,

1

4
≤ lim sup

m
Pm

(
at

m x ≤ at
mθm, btm x ≥ btmθm

)

≤ lim sup
m

Pm
(
at

m x ≤ atη + ε, btm x ≥ btη − ε
)

≤ P
(
atx ≤ atη + ε, btx ≥ btη − ε

)
,

where in the first line we have used that (θm, Um) solves the quarter median problem
for Pm . Letting ε ↓ 0 we get P (V−+(η; a, b)) ≥ 1/4. More generally, and using the
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same argument, we obtain P
(
V±±(η; a, b)

) ≥ 1/4 as well as P
(
H±(η; a)

) ≥ 1/2 and
P

(
H±(η(ω); b)

)
) ≥ 1/2. Recall that some of the quantities depend on the ω chosen

above so that, for example,

P
(
H+(η; a)

) = P
(
H+(η(ω); a(ω))

) = P
({x ∈ R

d : 〈a(ω), x − η(ω)〉 ≥ 0}).

In summary, we have shown that every limit point (η(ω), V (ω)) of the sequence
(θn(ω), Un(ω))n∈N is a solution of the quarter median problem for P . Hence, if the
solution is unique and given by (θ, H) ∈ R

d × H, then, on a set of probability 1,
η = θ and [V ] = H .

4.4 Proof of Theorem 3

Invariance with respect to shifts means that we may assume θ = 0. As already
noticed in Sect. 4.3, the quarter median θn can be written as θn = U t

nηn with
ηn ∈ [MMed−(PUn

n ), MMed+(PUn
n )]. Theorem 2 implies that ([Un])n∈N converges

almost surely to H with respect to the quotient topology on H(d). The mapping
p : O(d) → H(d), U �→ [U ], associates to each H ∈ H(d) a finite fiber p−1({H}),
and O(d) is a covering space for H(d). General results from algebraic topology, see
e.g. tom Dieck (1991, Section II.6), imply that p may locally be inverted to obtain
homeomorphisms to open subsets of the individual sheets of the covering space. In
particular, we may assume that the matrices Un converge in O(d) to some U ∈ H
almost surely as n → ∞.

For each a ∈ Sd−1 and n ∈ N let M±
n (a) := Med±

(
Pa

n

)
, and let M(a)

be the uniquely determined median of Pa . We define two stochastic processes
Y ±

n = (
Y ±

n (a), a ∈ Sd−1
)
with index set Sd−1 by

Y ±
n (a) = √

n
(
M±

n (a) − M(a)
)

for all a ∈ Sd−1,

and will use results presented by Grübel (1996) and adopt arguments used by Kuelbs
and Zinn (2013) to prove that

Y ±
n →d Y as n → ∞. (38)

Here Y = (Ya, a ∈ Sd−1) is a centered Gaussian process with continuous paths and
covariance function

cov(Ya, Yb) = K (a, b)

fa(M(a)) fb(M(b))
, (39)

with

K (a, b) = P
({x ∈ R

d : atx ≤ M(a), btx ≤ M(b)}) − 1

4
. (40)

We regard the Y ±
n as processes with paths in �∞(Sd−1), the space of real-valued

bounded functions on Sd−1 endowed with the supremum norm, and the symbol ’→d’
refers to weak or distributional convergence in the sense of Hoffmann–Jørgensen; see
e.g. van der Vaart and Wellner (1996) and Dudley (1999) for details.
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For the proof of (38)we startwith a functional central limit theorem for the empirical
processes and then use an almost sure representation in order to be able to work with
individual paths in an ε–δ style.

Let F(a, ·) := Fa(·) be the distribution function of atX and let

Fn(a, ·) = Fa,n(·) = 1

n

n∑

j=1

1
(
atX j ≤ · )

be the (random) distribution function associated with Pa
n , a ∈ Sd−1. Here 1( · )

denotes the indicator function of its (logical) argument. We introduce the empirical
process Zn = (√

n (Fn(a, t) − F(a, t)) , (a, t) ∈ Sd−1 × R
)
as a process with paths

in �∞(Sd−1 × R). We obtain a semimetric d on Sd−1 × R via

d
(
(a, s), (b, t)

)2 = E
((
1(atX ≤s) − P(atX ≤s)

) − (
1(btX ≤ t) − P(btX ≤ t)

))2
,

(a, s), (b, t) ∈ Sd−1 × R. As noticed in Grübel (1996, Proof of Theorem 1), we then
have Zn →d Z0, where Z0 = (Z0(a, t), (a, t) ∈ Sd−1 × R) is a centered Gaussian
process with covariance function

E
(
Z0(a, s)Z0(b, t)

) = E
((
1(atX ≤s) − P(atX ≤s)

)(
1(btX ≤ t) − P(btX ≤ t)

))
,

(a, s), (b, t) ∈ Sd−1 × R, and sample paths that are bounded and continuous with
respect to d. The assumptions on P ensure that the covariance function is continuous
with respect to the usual topology on Sd−1 × R. This implies that the process Z0 has
continuous sample paths.

For the remainder of the proof we abbreviate ‘almost surely’ to ‘a.s.’, and conver-
gence refers to n → ∞ unless specified otherwise.

By the Skorokhod–Dudley–Wichura representation theorem (Dudley 1999, The-
orem 3.5.1) there exists a probability space (Ω̃, Ã, P̃) together with perfect and
measurable maps gn : Ω̃ → Ω , n ∈ N0, such that P̃

gn = P for all n ∈ N0, and
such that, with Z̃n := Zn ◦ gn ,

sup
(a,t)∈Sd−1×R

∣∣Z̃n(a, t) − Z̃0(a, t)
∣∣ → 0 P̃-a.s.. (41)

As Fn is a deterministic function of Zn it follows that F̃n := Fn ◦ gn has the
same distribution under P̃ as Fn under P, n ∈ N. This extends to the associ-
ated one-dimensional projections and their medians, and to the Yn-processes, where
M̃±

n (a) := Med±
(
F̃n(a, ·)) and Ỹ ±

n := Y ±
n ◦ gn , n ∈ N.

Arguing as in Grübel (1996, Proof of Theorem 1) we obtain that

Ỹ ±
n (a) → Ỹ (a) := − fa

(
M(a)

)−1
Z̃0

(
a, M(a)

)
P̃-a.s.
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for all a ∈ Sd−1, and that

sup
a∈Sd−1

∣∣Ỹ ±
n (a)

∣∣ = O(1) P̃-a.s.. (42)

For the integral of the marginal medians needed by Grübel (1996) this was enough,
but here we need the stronger stronger statement

sup
a∈Sd−1

∣∣Ỹ ±
n (a) − Ỹ (a)

∣∣ → 0 P̃-a.s.. (43)

For the proof of (43) we adopt some arguments given in Kuelbs and Zinn (2013, Proof
of Proposition 1). First we note that F

(
a, M(a)

) = 1/2 and then write

F
(
a, M(a) + h

) − 1/2 = fa
(
M(a)

)
h + r(a, h)h, (44)

where r(a, h) = fa
(
M(a) + ζa,hh

) − fa
(
M(a)

)
with some ζa,h ∈ [0, 1]. Using

compactness of Sd−1 we see that the assumption (14) implies

sup
a∈Sd−1

|r(a, h)| ≤ sup
a∈Sd−1

sup
|s|≤|h|

| fa (M(a) + s) − fa (M(a))| → 0 as h → 0.

Further, (42) yields

Tn := sup
a∈Sd−1

∣∣M̃±
n (a) − M(a)

∣∣ → 0 P̃-a.s.

in view of the definition of the Y -processes. Taken together this gives, P̃-a.s,

sup
a∈Sd−1

∣∣r
(
a, M̃±

n (a) − M(a)
)∣∣ ≤ sup

a∈Sd−1

sup
|s|≤Tn

∣∣ fa
(
M(a) + s

) − fa
(
M(a)

)∣∣ → 0,

and using (42) again we get

B̃±
n := sup

a∈Sd−1

|Ỹ ±
n (a)||r(a, M̃±

n (a) − M(a))| → 0 P̃-a.s..

From (41) and the continuity of a → Z̃0 (a, M(a)) it follows that, again P̃-a.s.,

sup
a∈Sd−1

∣
∣∣
√

n
(

F̃n
(
a, M̃±

n (a)
) − F

(
a, M̃±

n (a)
)) − Z̃0

(
a, M(a)

)∣∣∣ → 0. (45)

Absolute continuity of P implies that samples from P are in general position with
probability 1, meaning that at most d points are on a hyperplane. Hence at most d of
the variables atX1, . . . , atXn coincide, and thus, given that the range of F̃n = Fn ◦ gn

is contained in the range of Fn ,

∣∣F̃n
(
a, M̃±

n (a)
) − 1/2

∣∣ ≤ d/n .
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with probability 1. Using this and (45) we get

sup
a∈Sd−1

∣∣∣
√

n
(

F
(
a, M̃±

n (a)
) − 1/2

)
+ Z̃0

(
a, M(a)

)∣∣∣ → 0 P̃-a.s..

From

√
n
(

F
(
a, M̃±

n (a)
) − 1/2

)
= Ỹ ±

n (a)
(

fa
(
M(a)

) + r
(
a, M̃±

n (a) − M(a)
))

,

which holds by (44), we obtain that, P̃-a.s.,

Ã±
n := sup

a∈Sd−1

∣∣∣Ỹ ±
n (a)

(
fa

(
M(a)

) + r
(
a, M̃±

n (a) − M(a)
)) + Z̃0

(
a, M(a)

)∣∣∣ → 0.

Thus,

sup
a∈Sd−1

∣∣∣Ỹ ±
n (a) fa

(
M(a)

) + Z̃0
(
a, M(a)

)∣∣∣ ≤ Ã±
n + B̃±

n → 0 P̃-a.s.,

which finishes the proof of (43) as a �→ fa(M(a)) is bounded away from 0 on Sd−1.
Returning to the un-tilded variables we see that this establishes the functional limit

theorems in (38).
We note in passing that supa∈Sd−1

∣
∣Ỹ +

n (a) − Ỹ −
n (a)

∣
∣ → 0 P̃-a.s., which implies

sup
a∈Sd−1

∣∣√n
(
M+

n (a) − M−
n (a)

)∣∣ → 0 in P-probability. (46)

This shows that the volume of the interval [MMed−(PUn
n ), MMed+(PUn

n )] shrinks
fast enough so that the choice of a vector from this interval is irrelevant for the distri-
butional asymptotics.

Now let bn(i)t and b(i)t be the i th row of Un , n ∈ N, and U respectively, for i =
1, . . . , d. In view of Un → U in O(d) we have bn(i) → b(i) P-a.s. for i = 1, . . . , d.
Let Wn := √

nηn = Un
√

n(θn − θ) and

W ±
n := √

n

⎛

⎜
⎝

M±
n (bn(1))

...

M±
n (bn(d))

⎞

⎟
⎠ , W :=

⎛

⎜
⎝

Y (b(1))
...

Y (b(d))

⎞

⎟
⎠ .

Note thatWn is an element of the d-dimensional interval [W −
n , W +

n ]with probability 1.
As the paths of the limit process are continuous the functional limit theorems (38) now
imply W ±

n →d W , hence
Wn →d W , (47)

with W ∼ Nd(0, Ξ), where the entries of Ξ can be calculated from (39) and (40).
Indeed, as M ≡ 0 and as (0, U ) solves the quarter median problem for P , we obtain
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K (bi , bi ) = 1/4 and K (bi , b j ) = 0 if i �= j , so that Ξ = Δ(P, U ) with Δ(P, U )

the diagonal matrix given in (17).
We now apply U t

n on the left hand side, U t on the right hand side of (47) and
use (Billingsley 1968, Theorem 5.5) again to obtain the claimed asymptotic normality
of

√
n(θn − θ), together with the mean and covariance matrix of the limit distribution.

It remains to show that Σ(P, U ) does not depend on the choice of U from the set
H . This follows easily from the fact that, for diagonal matrices Δ, we always have
P tΔP = Δ if P corresponds to the permutation of two rows or the multiplication by
−1 of some row.

For the proof the assumption (16) is important. Without such an assumption
we would need the decomposition of

√
n
(
M±

n (bn(i))) − M(b(i))
)
into two terms√

n
(
M±

n (bn(i))) − M(bn(i))
)
and

√
n
(
M(bn(i))) − M(b(i))

)
. The first could still be

analyzed with the above arguments, but for the second term the local behaviour of the
function a �→ M(a) and distributional asymptotics of the estimatesUn would become
important; see also Theorem 6.

Further, (46) and the ensuing comment show that the original estimate θn need not
be permutation invariant. This may seem surprising as the proof relies on empirical
process theory, which deals with the data through their empirical distribution. Here it
turned out to be enough that the estimate can be squeezed between two other estimates
that are such functions of the empirical distribution.

4.5 Proof of Theorem 4

The transformation law for d-dimensional elliptical distributions, together with the
equivariance from Proposition 1 (a), means that we may assume that μ = 0 and that
Σ = diag(λ1, . . . , λd). Recall that e1, . . . , ed is the canonical basis ofRd . For a subset
I of {1, . . . , d} let

AI := {
x ∈ R

d : x tei ≥ 0 for i ∈ I , x tei ≤ 0 for i /∈ I
}
.

The assumptions imply that PT = P for all reflections T : Rd → R
d about hyper-

planes H(ei ), hence P(AI ) does not depend on I ; also,
∑

I⊂{1,...,d} P(AI ) = 1. A

quarter space such as {x ∈ R
d : x tei ≥ 0, x te j ≥ 0} with i �= j can be written as

the union of 2d−2 such sets AI , where the intersections are all P-null sets, hence all
of these have probability 2d−22−d = 1/4. This shows that (0,Σ) solves the quarter
median problem for P .

In order to see that the quarter median is unique it is enough to show that
MMed(PU ) = 0 for all U ∈ O(d) under the above assumptions on P . This follows
from the fact that Elld(0,Σ; h) is invariant under the reflection x �→ −x , x ∈ R

d .
It remains to show that the solution of the quarter median is unique in the strictly

elliptical case. To prove this, we recall that μ = 0 and that Σ = diag(λ1, . . . , λd).
Assume that (0, [U ]) with U ∈ O(d) is a solution of the quarter median problem.
Let bt1, . . . , btd be the row vectors of U . Then PU = Elld(0, Σ̃; h), where Σ̃ =(
σ̃i j

)
1≤i, j≤d = UΣU t . With Ui j as the 2 × d matrix with the rows bti , btj , 1 ≤ i <

j ≤ d, we see that Pi j := PUi j is the elliptical distribution Ell2(0, Σ̃i j ; h2) with
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dispersion matrix

Σ̃i j = Ui j Σ U t
i j =

(
σ̃i i σ̃i j

σ̃ j i σ̃ j j

)

and density generator h2 which is equal to h if d = 2 and given by

h2(u) = πd/2−1

Γ (d/2 − 1)

∫ ∞

u
(t − u)d/2−2 h(t) dt for u > 0,

if d ≥ 3; see, e.g. Fang et al. (1990, Section 2.2.3). According to Grübel (1996,
p. 1466) the probability assigned by Pi j to the left lower quadrant is given by

1

4
+ 1

2π
arcsin

(
σ̃i j/(σ̃i i σ̃ j j )

1/2
)

,

which is equal to 1
4 if and only if σ̃i j = 0, i.e. if and only if Σ̃i j is a diagonal

matrix with positive diagonal elements. Therefore, Σ̃ = UΣU t is a diagonal matrix,
Σ̃ = diag(λ̃1, . . . , λ̃d) say, or equivalently, Σ = U tΣ̃U = U tdiag(λ̃1, . . . , λ̃d)U . It
follows from this that the set of eigenvalues

{
λ̃1, . . . , λ̃d

}
of Σ̃ and the set of eigen-

values
{
λ1, . . . , λd

}
of Σ coincide and, as a consequence, that there is a permutation

matrix � such that �tΣ� = Σ̃ , which in turn implies U t�tΣU� = Σ. Thus,
putting U t�t =: Q = (qi j ) we have QΣ = Σ Qt, i.e. qi jλ j = λi qi j . As the λ j are
pairwise distinct this gives qi j = 0 for i �= j . Thus Q is a diagonal matrix with the
entries ±1 in the diagonal so that U ∼ Id . Taken together this shows that (0, [Id ]) is
the unique solution of the quarter median problem.

4.6 Proof of Theorem 5

(a) We first assume that μ = 0 and that Σ = diag(λ1, . . . , λd). Using Theorem 3 we
only need to evaluate the diagonal elements of Δ(P, U ), and because of Theorem 4
we may take U to be the identity matrix. In particular, bi = ei for i = 1, . . . , d. Then
fei is the i th marginal density of P , and the calculations preceding Theorem 4 lead to

fei

(
M(ei )

) = cd−1(h)√
λi cd(h)

, i = 1, . . . , d.

Putting this together we see that, for such P , the asymptotic covariance matrix is
indeed the specified multiple of Σ .

We now use the equivariance properties of the quarter median to ‘bootstrap’ this
to general strictly elliptical distributions. Hence suppose that P = Elld(μ,Σ; h) and
that λ1 > λ2 > · · · > λd are the eigenvalues of Σ . Then, for some U ∈ O(d),
Σ = U tdiag(λ1, . . . , λd)U . If Xi , i ∈ N, are independent with distribution P then
the random variables Yi := U (Xi − μ), i ∈ N, are independent with distribution
Elld(0, diag(λ1, . . . , λd); h). As U (θn −μ

)
is a quarter median of Y1, . . . , Yn the first
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part of the proof leads to

√
n U

(
θn − μ

) →d Nd(0, Ξ),

with Ξ = σ 2
QMed diag(λ1, . . . , λd). Using the well-known properties of weak

convergence and the behavior of multivariate normal distributions under affine trans-
formations we finally obtain (24).

(b) Suppose that the eigenvalues ofΣ coincide and let (Un)n∈N be as in the statement
of the second part of the theorem. Then, for any subsequence (Un′) there exists a
subsubsequence (Un′′) such that Un′′ → U0 for some U0 ∈ O(d) as n′′ → ∞. With
m for n′′ and bm(i)t, b(i)t the i th row of Um respectively U0, and using the same
arguments as for (47), we obtain

√
m

⎛

⎜
⎝

Mm(bm(1))
...

Mm(bm(d))

⎞

⎟
⎠ →d

⎛

⎜
⎝

Y (b(1))
...

Y (b(d))

⎞

⎟
⎠ as m → ∞.

The symmetry of P implies that the limit distribution does not depend on U0.

4.7 Proof of Theorem 6

As the result is somewhat tangential to the topic of multivariate location estimation
we only provide the main ideas together with some arguments specific to the quarter
median application.

The general approach consists in writing the parameter θ = θ(P) as the solution
of an equation ΨP (θ) = z with a suitably chosen function ΨP and known z. Let Ψn be
the empirical version of ΨP and suppose that Ψn(θn) sufficiently close to z for large
n ∈ N. Then, under certain conditions, properties of the estimator sequence (θn)n∈N
can be obtained by localizingΨP near θ and then using the delta method. An excellent
general exposition of this approach can be found in the textbook of van der Vaart
(1998), see also van der Vaart (2002). Specifically, van der Vaart(1998, Theorem 5.9)
together with van der Vaart (2002, Theorem 6.17) may serve as a guide towards filling
in the details. Ultimately, this would also lead to an alternative proof for Theorem 5
in the case d = 2 that does not make use of the results presented by Grübel (1996).

For a, b > 0 let

E(a, b) :=
{
(x, y)t ∈ R

2 : x2

a2 + y2

b2
= 1

}
= {

(a cos(t), b sin(t))t : 0 ≤ t < 2π
}

be the boundary of the two-dimensional centered ellipse with main half-axes parallel
to the unit vectors e1 and e2 and of length a and b respectively. On this set we consider
the push-forward Q(a, b) := unif(S1)Ta,b of the uniform distribution on S1 = E(1, 1)
under the mapping Ta,b : R2 → R

2, (x, y)t �→ (ax, by)t. If a �= b then the solution
of the quarter median problem for Q(a, b) is unique and given by μ = (0, 0)t and
U = diag(1, 1) = Uα with α = 0.
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Let P be a probabilitymeasure on theBorel subsets ofR2.We introduce the function
ΨP : R × R × [−π/4, π/4) → R

3, where the components ΨP,i are the respective
probabilities of the upper right, upper left and lower left quarter spaces associated with
the argument. Formally, and with bα, b′

α the columns of U t
α ,

ΨP,1(x, y, α) = P
(
V++((x, y)t; bα, b′

α)
)
,

and ΨP,2(x, y, α) = P
(
V−+(· · · )), ΨP,3(x, y, α) = P

(
V−−(· · · )).

Suppose that P = Q(a, b) with a �= b. Then elementary geometric considerations
lead to the following matrix of partial derivatives of ΨP at (x, y, z) = (0, 0, 0),

M(a, b) := 1

2πab

⎛

⎝
−b b b
−a −a a

b − a a − b b − a

⎞

⎠ . (48)

For later use we note that

M(a, b)−1 := π

⎛

⎝
0 −b ab/(b − a)

a −b 0
a 0 ab/(b − a)

⎞

⎠ .

In order to obtain the derivative formore general P weuse some structural properties
of symmetric and elliptical distributions. Note that Q(r , r) is the uniform distribution
on the boundary of the sphere with radius r . If X ∼ Sym2(h) then ‖X‖ has density

f‖X‖(r) = 2π

c2(h)
r h(r2), r > 0,

and given ‖X‖ = r , X is uniformly distributed on {x ∈ R
2 : ‖x‖ = r}. Taken together

this implies the mixture representation

Sym2(h) = 2π

c2(h)

∫ ∞

0
Q(r , r) r h(r2) dr .

Elliptical distributions are affine transformations of symmetric distributions. In par-
ticular,

P := Ell2
(
(0, 0)t, diag(a2, b2); h

) = Sym2(h)Ta,b ,

so that

P = 2π

c2(h)

∫ ∞

0
Q(ar , br) r h(r2) dr .

Inserting quarter spaces we obtain a relation between ΨP and the Ψ -functions cor-
responding to the measures Q(a, b), a, b > 0. This in turn can be used to relate the
derivative D(P) of ΨP at (0, 0, 0) to the derivatives obtained earlier for Q(a, b), and
we arrive at

D(P) = 2π

c2(h)

∫ ∞

0
M(ar , br) r h(r2) dr = πc1(h)

c2(h)
M(a, b),
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and thus

D(P)−1 = c2(h)

c1(h)

⎛

⎝
0 −b ab/(b − a)

a −b 0
a 0 ab/(b − a)

⎞

⎠ .

If (x, y, α) solves the quarter median problem for an absolutely continuous P ,
then ΨP (x, y, α) = (1/4, 1/4, 1/4). For a sample of size n from P the random
vector of observation counts in the quarter spaces associated with the solution of
the quarter median problem for P has a multinomial distribution with parameters
n and (1/4, 1/4, 1/4, 1/4). The multivariate central limit theorem shows that the
standardized counts in the three quarter spaces corresponding to the components of
Ψ are asymptotically normal with mean vector 0 and covariance matrix

Σ0 :=
⎛

⎝
3/16 −1/16 −1/16

−1/16 3/16 −1/16
−1/16 −1/16 3/16

⎞

⎠ .

We may now apply the delta method to obtain asymptotic normality for the triplet
consisting of the quarter median coordinates and the rotation angle for a sequence of
independent random variables with distribution P = Ell2

(
(0, 0)t, diag(a2, b2); h

)
.

The limiting normal distribution is centered and has covariance matrix

Σ1 = (D(P)−1)t Σ0 D(P)−1 = c2(h)2

4c1(h)2

⎛

⎝
a2 0 0
0 b2 0
0 0 a2b2/(a − b)2

⎞

⎠ .

It remains to extend this to P = Ell2(μ,Σ; h). We use essentially the same argu-
ment as at the end of Sect. 4.6 (a). By assumption and Theorem 4, we have that Σ =
U t

αdiag(λ1, λ2)Uα , where Uα is the matrix representing the rotation by the angle α in
the interior of the half-open interval I , see (8), and that (μ, Uα) is the unique solution
of the quarter median problem for P . Theorem 2 implies that αn −α ∈ (−π/4,+π/4)
with probability 1 for n sufficiently large. Let Yi := U t

α(Xi − μ), i ∈ N. Then, with
probability 1 for n large enough,

(
U t

α(QMed(X1, . . . , Xn) − μ), Uαn(X1,...,Xn)−α

)
is

a solution of the quarter median problem for Y1, . . . , Yn . Noting that λ1 = a2 and
λ2 = b2 we may now apply the above asymptotic normality result to the Y -sequence
to obtain

(
U t

α 0
0 1

)(√
n
(
QMed(X1, . . . , Xn) − μ

)
√

n
(
αn(X1, . . . , Xn) − α

)
)

→d N3(0,Σ1).

Consequently,

(√
n
(
QMed(X1, . . . , Xn) − μ

)
√

n
(
αn(X1, . . . , Xn) − α

)
)

→d N3

(

0, σ 2
QMed

(
Σ 0
0 λ1λ2

(
√

λ1−√
λ2)2

))

,

(49)
which is the statement of the theorem.
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4.8 Proof of Proposition 2

We denote by C the set of non-empty closed subsets of Rd ×SO(d). For x1, . . . , xn ∈
R

d letΓ (x1, . . . , xn) be the (by Theorem 1 non-empty) set of solutions (θ, U ) ∈ R
d ×

SO(d) of the quarter median problem for Pn;x1,...,xn . As permutations of x1, . . . , xn

do not change Pn;x1,...,xn we may regard Γ as a function on E := (Rd)n/ ∼, where
(x1, . . . , xn), (y1, . . . , yn) ∈ (Rd)n are equivalent if yi = xπ(i) for i = 1, . . . , n for
some permutation π of the set {1, . . . , n}. We aim to prove that the function Γ has
values in C and that it is measurable in the sense that the set

A(C) := {
z ∈ E : Γ (z) ∩ C �= ∅}

(50)

is a Borel set for each C ∈ C. Then, by the measurable selection theorem of Kura-
towski and Ryll–Nardzewski (see, e.g. Rockafellar 1976, 1.C Corollary) there exists
a measurable function τ : E → R

d × SO(d) such that τ(z) ∈ Γ (z) for all z ∈ E . In
fact, we will prove that the set A(C) is closed whenever C ∈ C.

Arguing as in the first part of the proof of Theorem 1 in Sect. 4.1 we see that if
(θ�, U�)�∈N is a sequence of elements in Γ (z) converging to (θ, U ) ∈ R

d × SO(d) as
� → ∞, then (θ, U ) ∈ Γ (z). This shows that the function Γ has values in C.

Now, more generally, fix C ∈ C, let A(C) be as in (50), and let (z�)�∈N be a
sequence of elements of A(C) that converges to some element z ∈ E as � → ∞.
As pointed out in connection with the transition from O(d) to H(d) in Sect. 4.4 we
can find (x (�)

1 , . . . , x (�)
n ) ∈ z�, l ∈ N, and (x1, . . . , xn) ∈ z such that (x (�)

1 , . . . , x (�)
n )

converges to (x1, . . . , xn) ∈ z in the space (Rd)n . Then for each � ∈ N there exists
an associated element (θ�, U�) of Γ (x (�)

1 , . . . , x (�)
n ). Arguing as in Sect. 4.1 again, we

see that along some subsequence (�′) it holds that (θ�′ , U�′) → (θ, U ) ∈ R
d ×SO(d)

and
P

U�′
n;x (�′)

1 ,...,x (�′)
n

→ PU
n;x1,...,xn

weakly.

With bt1, . . . , btd as the row vectors of U this gives Pn;x1,...,xn

(
V±±(θ; bi , b j )

) ≥ 1
4 .

Consequently, (θ, U ) ∈ Γ (z); also, z ∈ A(C) as C is closed.

4.9 Proof of Theorem 7

Let θ be a quarter median of Pn , with associated orthogonal directions b, b′ ∈ S2. Let
Lθ,b = {θ + tb : t ∈ R}, Lθ,b′ = {θ + tb′ : t ∈ R} be the axes of the rectangular
coordinate system with origin θ and directions b, b′. We consider two cases.

(i) θ ∈ {x1, . . . , xn}. We may assume without loss of generality that θ = x1, and
define

ψ = min
(
min

{
arccos(|bt1 j b|) : 2 ≤ j ≤ n

}
, min

{
arccos(|bt1 j b

′|) : 2 ≤ j ≤ n
})

.

There are orthogonal directions b∗, b′∗ ∈ S1 obtained from b, b′ by the same clock-
wise or counterclockwise rotation with the angle ψ , where b∗ or b′∗ is an element
of {−b12, b12, . . . ,−b1n, b1n}. By construction, the number of data points x j lying
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in V±±(θ; b∗, b′∗) is greater than or equal to the number of data points x j lying in
V±±(θ; b, b′); also the number of data points x j lying in H±(θ; b∗) and the number of
data points x j lying in H±(θ; b′∗) is greater than or equal to the number of data points
x j lying in H±(θ; b) and the number of data points x j lying in H±(θ; b′), respectively.
It follows that (θ, U∗) with U∗ as the matrix with the row vectors b∗, b′∗ solves the
quarter median problem for Pn . Thus by Proposition 3 (c) there is an η ∈ M(

PU∗
n

)

such that (θ∗, U∗)with θ∗ = U t∗η also solves the quarter median problem for Pn . Note
that η = αb∗ + βb′∗, where α is median of Pb∗

n and β is a is median of Pb∗
n . Because

b∗ or b′∗ is an element of {−b12, b12, . . . ,−b1n, b1n}, and

Med±
(

P−b∗
n

)
= −Med∓

(
Pb∗

n

)
, Med±

(
P

−b′∗
n

) = −Med∓
(
P

b′∗
n

)
, (51)

it follows that (θ∗, U∗) ∈ L (Pn).

(ii) θ /∈ {x1, . . . , xn}. With θ̃ as the intersection point of the line parallel to Lθ,b

through the data point x̃ ∈ {x1, . . . , xn}with the shortest distance to Lθ,b, i.e. inf{‖x̃ −
y‖ : y ∈ Lθ,b} = min

{
inf{‖x j − y‖ : y ∈ Lθ,b} : 1 ≤ j ≤ n

}
, and the line parallel

to Lθ,b′ through the data point ˜̃x ∈ {x1, . . . , xn} with the shortest distance to Lθ,b′ , we
have that (θ̃ , U )withU as matrix with the row vectors b, b′ is a solution of the quarter
median problem for Pn . If x̃ = ˜̃x then θ̃ = x̃ = ˜̃x and we arrive at case (i). So, we can
(and do) assume that there are two points, x1, x2 say, such that x1 ∈ Lθ,b, x2 ∈ Lθ,b′ .
Now we put B := {b1 j : 2 ≤ j ≤ n} ∪ {b2 j : 3 ≤ j ≤ n} and define

ψ = min
(
min

{
arccos(|d tb|) : d ∈ B

}
, min

{
arccos(|d tb′|) : d ∈ B

})
.

There are orthogonal directions b∗, b′∗ ∈ S1 obtained from b, b′ by the same clockwise
or counterclockwise rotation with the angle ψ , where b∗ or b′∗ is an element of B ∪
(−B). With L1 = {x1 + tb∗ : t ∈ R} and L2 = {x2 + tb′∗ : t ∈ R} we obtain the
axes of a new rectangular coordinate system. The origin θ of the coordinate system
with the axes Lθ,b and Lθ,b′ and the origin θ∗ of the new system are both located
on the Thales circle about the line segment connecting x1 and x2. By construction,
the number of data points x j lying in V±±(θ∗; b∗, b′∗) is greater than or equal to the
number of data points x j lying in V±±(θ; b, b′). Further, the number of data points x j

lying in H±(θ∗; b∗) and the number of data points x j lying in H±(θ∗; b′∗) are greater
than or equal to the number of data points x j lying in H±(θ; b) and the number of data
points x j lying in H±(θ; b′), respectively. Consequently, (θ∗, U∗) with U∗ as matrix
with the row vectors b∗, b′∗ solves the quarter median for Pn . Again, by Proposition
3 (c), there is an η ∈ M(

PU∗
n

)
such that (θ∗∗, U∗), with θ∗∗ = U t∗η also solves the

quarter median problem for Pn . Here, b∗ or b′∗ is an element of B ∪ (−B), so that,
again by (51), we have

(
θ∗∗, U∗

) ∈ L (Pn).
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