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Abstract
We prove in this paper, the Ax–Schanuel conjecture for all admissible variations of
mixed Hodge structures.
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Z. Gao, B. Klingler

1 Introduction

In this paper, we prove the Ax–Schanuel conjecture for all admissible, graded-
polarized, integral variation of mixed Hodge structures over a smooth complex
quasi-projective variety S.

Let (VZ, W•,F•) → San be an admissible, graded-polarized, integral variation of
mixed Hodge structures on the complexmanifold San associated to S. Let [�] : San →
�\M be the associated complex analytic period map, where M denotes the period
domain classifying graded polarized mixed Hodge structures of the relevant type and
� is an arithmetic subgroup in the group of automorphisms of M. The classifying
space M admits a natural realization as a real semi-algebraic subset, open in the
usual topology, of a complex algebraic variety M∨. The Ax–Schanuel conjecture is
a functional transcendence statement comparing the algebraic structure on M∨ and
the algebraic structure on S, via [�] and u : M → �\M. Consider the commutative
diagram in the category of complex analytic spaces

San × M∨ San × M San ×�\M M pM

pS

M
u

San
[�] �\M

.

We prove the following result, conjectured in [23, Conj. 7.5] (we refer to Definition
2.5 for the definition of weak Mumford–Tate subdomains ofM):

Theorem 1.1 Let Z be a complex analytic irreducible subset of San ×�\M M. Then

dimZZar − dimZ ≥ dim pM(Z)ws, (1.1)

where ZZar denotes the Zariski closure of Z in S ×M∨, and pM(Z)ws is the smallest
weak Mumford–Tate subdomain of M containing pM(Z).

In the course of the proof, we also explain how to construct pM(Z)ws. Let S′ be the
Zariski closure of pS(Z). Let N be the connected algebraic monodromy group of
(VZ, W•,F•)|S′ → S′an. Then pM(Z)ws is the N (R)+Ru(N )(C)-orbit of any point
z̃ ∈ pM(Z), where Ru(N ) is the unipotent radical of N ; see Remark 7.3.

The idea of functional transcendence statements related to Hodge theory first
appeared in the context of Shimura varieties, where [�] is the identity. Motivated by
Pila’s pioneer work [29] on theAndré–Oort conjecture for copies ofmoduli curves, the
Ax–Lindemann conjecture (a special case of the Ax–Schanuel conjecture) was proved
for various cases in [32, 33, 37] and ultimately for all pure Shimura varieties in [24];
this was extended to mixed Shimura varieties in [17]. After the proof of the André–
Oort conjecture [36] (see [16] for mixed Shimura varieties), and in order to attack the
more general Zilber–Pink conjecture, Theorem 1.1 was proved for copies of moduli
curves in [34] and for any pure Shimura variety in [27]; this was extended to mixed
Shimura varieties of Kuga type in [19]. In [23, Conj. 7.5] the second author suggested
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The Ax–Schanuel conjecture for variations…

that these functional transcendence statements should hold much more generally for
all admissible, graded polarizable, integral variation of mixed Hodge structures over
a smooth complex quasi-projective variety S and formulated Theorem 1.1; this was
proved in [6] if the variation of Hodge structures in question is pure.

All theseworks have been important ingredients in the proofs of various diophantine
results: the André–Oort conjecture for mixed Shimura varieties, results in the direction
of the more general Zilber–Pink conjecture [14], use of [27] to prove the submersivity
of the Betti map in [1], use of [6] for Shafarevich type results in [25, 26], use of [19]
to fully study the Betti rank in [18] which eventually was applied to prove a rather
uniform bound on the number of rational points on curves [13]. Hast [20] recently
proved a transcendence property of the unipotent Albanese map assuming Theorem
1.1. We expect Theorem 1.1 to have more applications in diophantine geometry, for
instance in direction of the general Hodge-theoretical atypical intersection conjecture
[23, Conj. 1.9] and its special case [23, Conj. 5.2].

The strategy for proving Theorem 1.1 is similar in spirit to previous works, in
particular [6, 19, 27]. However its implementation in the mixed non-Shimura case
contains serious new difficulties.

For readers’ convenience, we start the paper by recalling basic knowledge on vari-
ations of mixed Hodge structures and mixed Mumford–Tate domains in Sects. 2, 3,
4 and 5. Unlike for the pure or the Shimura case, references to some of the results
recalled hereby are not easy to find.We also give proofs in these sections andAppendix
1 to some results which are surely known to experts but whose proofs we cannot find in
existing references. For example, mixed Mumford–Tate domains are complex spaces
and are stable under intersection; as an upshot, the classifying space M in Theorem
1.1 can be replaced by a suitable mixed Mumford–Tate domainD. We also use mixed
Hodge data developed in [23] to prove that we are able to take quotients by normal
groups in the category of mixed Mumford–Tate domains, and each such quotient is a
holomorphic map. All these results are fundamental to the proof of Theorem 1.1. In
fact, with these preparations, we can prove a particular case of Theorem 1.1, called
the logarithmic Ax theorem, in Sect. 7.

Another formalism we do for our strategy is the fibered structure of mixed
Mumford–Tate domains. We also need to discuss the real points of mixed Mumford–
Tate domains; they correspond to mixed Hodge structures split over R. This is done
in Sect. 6.

Then we move on to prove Theorem 1.1. We start by some dévissages in Sect. 8,
and reduce to the case where the projection of Z in S is Zariski-dense in S and that
Z is an irreducible component of the intersection of its Zariski-closure with �: see
Lemma8.1. In order to obtain a better group theoretical control ofZ,we also replace the
classifying spaceM by its refinementD, the mixedMumford–Tate domain associated
to the generic Mumford–Tate group P of the variation (VZ, W•,F•).

The first step in the proof of Theorem1.1 consists of proving that the inequality (1.1)
holds true if the Q-stabilizer of ZZar (for the action of P on the second factor of
San × D), denoted by HZZar , is zero dimensional; see Proposition 9.1. To do so we
use o-minimal geometry (more precisely the result of [3] generalizing [4] saying that
mixed period maps are definable in some o-minimal structure, and the celebrated
Pila-Wilkie theorem [29, 3.6]) to prove a counting result Theorem 9.3.
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More precisely, take a suitable semi-algebraic fundamental set F for D → �\D.
As in all proofs of Ax–Schanuel type transcendence results via o-minimality, we start
by constructing a definable subset � of P(R) which contains all integer elements
γ ∈ � such that γ (S × F) ∩Z �= ∅. We wish to prove that � contains semi-algebraic
curves with arbitrarilymany integer elements; this will yield the non-triviality of HZZar

unless (1.1) already holds true by induction. The Pila-Wilkie theorem then reduces the
question to showing that the number of elements in � ∩ � of height at most T grows
at least polynomially in T . The latter is precisely Theorem 9.3.

The first main new difficulty lies in the proof of this counting result. It occupies the
full Sect. 9 and is quite technical. While in the pure case it follows from an explicit
description of the semi-algebraic fundamental set F for � in terms of Siegel sets
furnished by reduction theory and from the non-positive curvature in the horizontal
direction for pure Mumford–Tate domains (see [6]), in the mixed case we have only
an implicit knowledge of F: its construction in [3] relies fundamentally on the rather
mysterious retraction of D on its subvariety DR of real split mixed Hodge structures
furnished by the sl2-splitting of mixed Hodge structures. Instead, we use the natural
fibered structure

D = Dm → Dm−1 → · · · → D0 (1.2)

of mixedMumford–Tate domains associated to the weight filtration of the variation of
Hodge structures. Each step is a vector bundle. Considering the successive projections
Zk of Z to the storeys S × Dk , we proceed as follows:

– assuming that the required estimate holds for Zk we prove that we can “lift” this
estimate toZk+1: see Proposition 9.10 and Sect. 9.8. As in [19], there are two cases
to consider for this lifting process, namely the “horizontal” case Lemma 9.12 and
the “vertical” case Lemma 9.11.

– we initiate the process at the smallest integer k0 such that the projection of Z to
Dk0 is not a point. If k0 = 0 the required estimate follows from [6] as D0 is a
pure Mumford–Tate domain. On the other hand there is some non-trivial work to
be done if k0 > 0 (the unipotent case, or equivalently when the maximal pure
quotient of the variation is constant): see Sect. 9.5, more precisely Proposition 9.5.

The second step in the proof of Theorem 1.1 consists of dealing with the case
where the group HZZar is positive dimensional. In that case one wants to reduce to the
first step by working in the quotient Mumford–Tate domainD/HZZar . Such a quotient
exists as a Mumford–Tate domain only if the group HZZar is normal in the generic
Mumford–Tate group P . Following the guideline of [27], we prove in Sect. 10 that
HZZar is normal in the algebraic monodromy group of this variation of mixed Hodge
structures. While this immediately implies that HZZar is normal in P in the pure case,
it turns out to be more subtle in the mixed case. We solve this problem in Sect. 11,
by doing an intermediate quotient (Ru(P)(Q) ∩ �)\D, applying Pila–Wilkie in the
unipotent part, and analyzing the unipotent part of the HZZar by passing to a suitable
quotient space which a priori is only a real manifold. This guideline was executed for
the universal abelian variety in [19, Sect. 6.3]. A key new input at this step compared
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with [19, Sect. 6.3], as for the lifting process of point counting from the first step
explained above, is the retraction mapD → DR from [3] obtained by the sl2-splitting.

Right before the first version of this paper was publicized, we received a preprint
[9] from Chiu independently proving the same result. Both papers use extensively
o-minimality and the Pila–Wilkie counting theorem, rely on the estimate results for
the pure case of Bakker–Tsimerman [6], use the retraction map D → DR, and use
the idea of separating the “horizontal” and “vertical” cases for point counting as was
done in [19].

Themajor differences of the two papers lie in the specific treatments of the two steps
of the proof of Theorem 1.1. For the first step, we obtain the desired point counting
result by successive liftings explained in the paragraph containing (1.2), while Chiu
separate the unipotent part from the semi-simple part at the beginning. For the second
step, we work in theMumford–Tate domainD and prove that theQ-stabilizer HZZar of
ZZar is positive dimensional unlessZ takes some particular form and that Theorem 1.1
easily holds true, and then proceed to prove the normality of HZZar in the Mumford–
Tate group P in Sect. 11 in order to do the quotient P/HZZar . Chiu works in the weak
Mumford–Tate domain corresponding to a suitable normal subgroup N of P and does
the estimates directly on (N/HZZar)(R), and instead of proving the normality of HZZar

in P he reduces to the case where Z is contained in one fiber and handles this case
in [9, Sect. 8]. Apart from these, we also include a summary of basic knowledge and
results on variations of mixed Hodge structures and mixed Mumford–Tate domains in
Sects. 2, 3, 4, 5 and Appendix 1, as the references to some of the results are not easy
to find in contrast to the pure or the Shimura case.

In the end, we would like to point out that our first version had a serious (Hodge-
theoretic) mistake in the previous Sect. 11 while Chiu’s proof was correct. To fix this
mistake, we had to go back to the argument of the first author’s [19, Sect. 6.3] and
use again the retraction map D → DR, and this makes our current Sect. 11 similar to
Chiu’s treatment in [9, Sect. 8].

2 Mixed Hodge structures, classifying space, andMumford–Tate
domains

2.1 Mixed Hodge structure

In this subsection, we recall some definitions and properties of Q-mixed Hodge struc-
tures.

Definition 2.1 Let V be a finite dimensional Q-vector space and VC := V ⊗Q C its
complexification.

(i) A Q-pure Hodge structure on V of weight n is a decreasing filtration F• (the
Hodge filtration) on VC such that VC = F pVC ⊕ Fn+1−pVC for all p ∈ Z.

(ii) A Q-mixed Hodge structure on V consists of two filtrations, an increasing fil-
tration W• on V (the weight filtration) and a decreasing filtration F• on VC (the
Hodge filtration) such that for each k ∈ Z theQ-vector space GrWk V = Wk/Wk−1
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is a pure Hodge structure of weight k for the filtration on GrWk V ⊗Q C deduced
from F•.

The numbers h p,q(V ) = dimC F pGrWp+q(VC)/F p+1GrWp+q(VC) are called the
Hodge numbers of (V , W•, F•).

Q-mixed Hodge structures, defined in terms of two filtrations, can be equivalently
described in terms of bigradings. This is classical in the pure case, where a weight n
Q-pure Hodge structure on V is equivalently given by a direct sum decomposition
VC = ⊕p+q=n V p,q (the Hodge decomposition) into C-vector spaces, such that the
complex conjugate V q,p coincides with V p,q for all p, q ∈ Z with p + q = n.
The relation between the Hodge filtration and the Hodge decomposition is given by
F pVC = ⊕p′≥pV p′,n−p′

. In the general mixed case Deligne [11, 1.2.8] proved the
following:

Proposition 2.2 A Q-mixed Hodge structure on V is the datum of a bigrading

VC =
⊕

p,q∈Z
I p,q (2.1)

satisfying that each complex vector subspace Wk VC = ⊕

p+q≤k I p,q of VC is defined
over Q and

I p,q ≡ I q,p mod
⊕

r<p,s<q

I r ,s . (2.2)

The Hodge filtration is then defined by F pVC = ⊕

r≥p I r ,q .

We will use a third, more group-theoretic, point of view on Q-mixed Hodge struc-
tures. Let S = ResC/RGm,C be the Deligne torus, this is the real algebraic group such
that S(R) = C∗ and S(C) = C∗ × C∗, with the action of the complex conjugation
twisted by the automorphism that interchanges the two factors. The character group
of S, denoted by X∗(S), identifies with Z ⊕ Z under

Z ⊕ Z
∼−→ X∗(S)

(p, q) �→ (

z ∈ S(R) = C∗ �→ z−pz−q ∈ C∗).

Given a Q-vector space V a bigrading VC = ⊕p,q∈Z I p,q is thus equivalent to a
homomorphism h : SC → GL(VC). In particular we deduce from the paragraph above
that any mixed Hodge structure on V defines a homomorphism h : SC → GL(VC).
In [30] Pink identified the conditions such a homomorphism has to satisfy to define a
mixed Hodge structure on V :

Proposition 2.3 [30, 1.4 and 1.5] Let V be a finite dimensional Q-vector space. A
morphism h : SC → GL(VC) defines a MHS on V if and only if there exists a connected
Q-algebraic subgroup P ⊂ GL(V ) such that h factors through PC and which satisfies
the following conditions:
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(i) The composite SC

h→ PC → (P/W−1)C is defined over R, where W−1 denotes
the unipotent radical of P. Call this composite h.

(ii) The composite Gm,R
w→ S

h→ (P/W−1)R is a cocharacter of the center of
(P/W−1)R defined over Q.

(iii) The weight filtration on Lie P defined by AdP ◦ h satisfies W0 Lie P = Lie P
and W−1(Lie P) = Lie W−1.

Ifh ∈ M let us define theMumford–Tate groupMT(h)of theQ-mixedHodge structure
(M, h) as the smallestQ-subgroup of GL(V )whose complexification contains h(SC).
One easily checks that the groups P satisfying the conditions of Proposition 2.3 are
precisely the ones containing MT(h).

We finish this subsection by recalling the definition of polarizations.

Definition 2.4 Let (V , W•, F•) be a Q-mixed Hodge structure. A (graded) polariza-
tion is a collection of non-degenerate (−1)k-symmetric bilinear forms

Qk : GrWk (V ) ⊗ GrWk (V ) → Q

such that

(i) Qk(F pGrWk VC, Fk−p+1GrWk VC) = 0 for each k (first Riemann bilinear relation);
(ii) the Hermitian form on GrWk (V )C given by Qk(Cu, v) is positive-definite, where

C is the Weil operator (C |I p,q = i p−q for all p, q).

One easily checks that the Mumford–Tate group of a polarizable pure Q-Hodge struc-
ture is reductive.

2.2 Classifying space

In this subsection, we discuss the classifying space of all Q-mixed Hodge structures
with given weight filtration, graded polarization and Hodge numbers.

LetV be afinite dimensionalQ-vector space, endowedwith the following additional
data:

(i) a finite increasing filtration W• of V ;
(ii) a collection of non-degenerate (−1)k-symmetric bilinear forms

Qk : GrWk (V ) ⊗ GrWk (V ) → Q ;

(iii) a partition {h p,q}p,q∈Z of dim VC into non-negative integers.

Given these data, one forms the classifying spaceM parametrizingQ-mixedHodge
structures (V , W•, F•) with the following properties:

(1) the (p, q)-constituent V p,q := Gr p
F GrW

p+q VC has complex dimension h p,q ;

(2) Qk(F pGrWk VC, Fk−p+1GrWk VC) = 0 for each k (first Riemann bilinear relation);
(3) (V , W•, F•) is graded-polarized by Qk .
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Let us summarize the construction and basic properties ofM; see [21], [28, below
(3.7) to Lemma 3.9] for more details. First one defines the complex algebraic variety
M∨ parametrizing mixed Hodge structures satisfying only the conditions (1) and (2)
above (see [28, Lem. 3.8]). This is a homogeneous space under PM(C), where PM
is the Q-algebraic group defined as follows: for any Q-algebra R,

PM(R) := {g ∈ GL(VR) : g(Wk) ⊆ Wk and GrWk (g) ∈ AutR(Qk) for all k ∈ Z}.
(2.3)

The classifying space M is defined as the real semi-algebraic open subset of M∨
consisting of mixed Hodge structures which satisfy moreover condition (3) above (see
[28, Lem. 3.9 and above]). The fact thatM is open inM∨ endowsM with a natural
complex analytic structure. The real semi-algebraic group

{g ∈ PM(C) : GrWk (g) ∈ AutR(Qk) for all k ∈ Z} (2.4)

identifies with PM(R)+WM−1 (C), where WM−1 is the unipotent radical of PM, see [28,
Remark below Lem. 3.9]. It acts transitively on M.

2.3 Adjoint Hodge structure

For each h ∈ M Proposition 2.3 defines a natural Q-mixed Hodge structure on
Lie PM via AdM ◦ h : SC → PM

C
→ GL(Lie PM)C: the adjoint Hodge structure

associated with h. One easily checks that the corresponding weight filtration and
graded polarization are independent of h. Indeed theweight filtrationW• onLie PM ⊆
End(V ) = V ⊗ V ∨ is the one deduced from the weight filtration W• on V . Similarly
for the graded-polarization.

2.4 (Weak) Mumford–Tate domains

Proposition 2.3 suggests to attack the problem of classifying mixed Hodge structures
by rather considering mixed Hodge structures with prescribed Mumford–Tate group.
This leads abstractly to the notionofmixedHodgedata, seeSect. 4.1; andgeometrically
to the notion of (weak) Mumford–Tate domain refining the classifying space M.

Definition 2.5 (i) A subset D of the classifying space M is called a Mumford–Tate
domain if there exists an element h ∈ D such that D = P(R)+W−1(C)h, where
P = MT(h) and W−1 = Ru(P) is the unipotent radical of P .

(ii) A subset D of the classifying spaceM is called a weak Mumford–Tate domain if
there exist an element h ∈ D and a normal subgroup N of P = MT(h) such that
D = N (R)+Ru(N )(C)h, where Ru(N ) is the unipotent radical of N .

In the definition, as N � P , we have Ru(N ) = W−1 ∩ N . One easily checks that
M is a Mumford–Tate domain in itself, for P = PM. A closer look at the geometry
of general Mumford–Tate domains is given in Appendix 1. In particular we will prove
the following results (well-known in the pure case):
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Proposition 2.6 Every weak Mumford–Tate domain in M is a complex analytic sub-
space of M.

Lemma 2.7 Let D1 and D2 be Mumford–Tate domains in M. Then every irreducible
component of D1 ∩ D2 is again a Mumford–Tate domain in M.

This lemma has the following immediate corollary.

Corollary 2.8 Let Z be a complex analytic irreducible subset of M. Then there exists
a smallest Mumford–Tate domain, denoted by Zsp and called the special closure of Z,
which contains Z.

We close this subsection with some discussion on the generic Mumford–Tate group
of a complex analytic irreducible subvariety ofM. In particular the discussion applies
to weak Mumford–Tate domains. The trivial local system V = M × V underlies a
natural family ofmixedHodge structures: for each h ∈ M the triple (V , (W•)h, (F•)h)

is a mixed Q-Hodge structure. For any complex analytic irreducible subset Z of M,
the first part of the proof of [2, Sect. 4, Lemma 4] applies: for a very general element
h ∈ Z, the Mumford–Tate group P(h) does not depend on h. Such an h is said to be
Hodge–generic inZ and its Mumford–Tate group is called the generic Mumford–Tate
group of Z. We write MT(Z) to denote the generic Mumford–Tate group of Z. It
satisfies the following property: MT(h′) < MT(Z) for any h′ ∈ Z.
Lemma 2.9 Let D = P(R)+W−1(C)h be a Mumford–Tate domain in M (thus h ∈ D,
P = MT(h) and W−1 is the unipotent radical of P). Then P = MT(D).

Proof By definition of MT(D) the group P is a subgroup of MT(D). Thus we are
reduced to proving the converse inclusion.

Each h′ ∈ D is of the form ghg−1 for some g ∈ P(R)+W−1(C), and hence the
homomorphism h′ =: SC → GL(VC) factors through g PCg−1 = PC. This implies
that MT(h′) < P for all h′ ∈ D. Looking at a Hodge generic point h′ we are done.

The following lemma, whose proof is given Appendix 1, is useful to determine
when an orbit is a Mumford–Tate domain.

Lemma 2.10 Let P be a Q-subgroup of GL(V ) with W−1 = Ru(P) and let D be a
P(R)+W−1(C)-orbit in M. If some h ∈ D satisfies that h : SC → GL(VC) factors
through PC then D is a Mumford–Tate domain and MT(D) � P.

3 Variation of mixed Hodge structures

Let f : X → S be a morphism of algebraic varieties. If f satisfies a sharp notion
of topological local constancy (suffice it to say here it is automatically satisfied if f
is proper smooth, and is true over a Zariski-open subset of S for any morphism of
varieties), then f gives rise to a family of mixed Hodge structures (pure when f is
proper smooth) on Hn(Xs, Q), as s varies over San, subject to certain rules. This leads
to the notion of a (graded-polarizable) variation of mixed Hodge structures, which we
now recall:
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Definition 3.1 Let S be a connected complex manifold. A variation of mixed Hodge
structures (abbreviated VMHS) on S is a triple (VZ, W•,F•) consisting of:
(i) a local system VZ of free Z-modules of finite rank on S;
(ii) a finite increasing filtration W• of the local system V := VZ ⊗ZS QS by local

subsystems (weight filtration);
(iii) a finite decreasing filtrationF• of the holomorphic vector bundleV := VZ⊗ZOS

by holomorphic subbundles (Hodge filtration),

satisfying the following conditions:

(1) for each s ∈ S, the triple (Vs, W•(s),F•(s)) is a mixed Hodge structure;
(2) the connection ∇ : V → V ⊗OS �1

S whose sheaf of horizontal sections is VC :=
V ⊗Q C satisfies the Griffiths’ transversality condition

∇(Fp) ⊆ Fp−1 ⊗ �1
S . (3.1)

Definition 3.2 AVMHS (VZ, W•,F•) on S is calledgraded-polarizable if the induced
variations of pure Q-Hodge structures (VHS) GrWk V, k ∈ Z, are all polarizable, i.e.
for each k ∈ Z there exists a morphism of local systems

Qk : GrWk V ⊗ GrWk V → QS

inducing on each fiber a polarization of the corresponding Q-Hodge structure of
weight k.

From now on all VMHS are assumed to be graded-polarizable.

3.1 Mumford–Tate group andmonodromy group

Let S be a connected complexmanifold and (VZ, W•,F•) aVMHSon S. The pull-back
π∗VZ of VZ along the universal covering map π : ˜S → S is canonically trivialized:
π∗VZ � ˜S × VZ, with VZ = H0(˜S, π∗VZ).

For s ∈ S, we denote by MTs ⊆ GL(Vs) the Mumford–Tate group of the Hodge
structure Vs and by Hmon

s ⊆ GL(Vs) the connected algebraic monodromy group at
s, that is the connected component of identity of the smallest Q-algebraic subgroup
of GL(Vs) containing the image under monodromy of π1(S, s).

By definition the algebraic monodromy group Hmon
s is locally constant on S. By

[2, Sect. 4, Lemma 4], following [12, Sect. 7.5] in the pure case, the Mumford–Tate
group MTs ⊂ GL(Vs) is locally constant on S◦ = S\	 where 	 denotes a meager
subset of S; and Hmon

s is a subgroup of MTs for all s ∈ S◦ as (VZ, W•,F•) is graded-
polarizable. We call S◦ the Hodge-generic locus. For s ∈ S◦ the group MTs0 is called
the generic Mumford–Tate group MT(S) of (VZ, W•,F•).

3.2 Admissible VMHS

Admissible VMHSs are the ones with good asymptotic properties. The concept was
introduced by Steenbrick–Zucker [35, Properties 3.13] on a curve and Kashiwara [22,
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1.8 and 1.9] in general. All VMHSs which arise from geometry are admissible [15]
and all VHSs are automatically admissible. We recall briefly the definition.

Definition 3.3 (admissible VMHS) A VMHS (VZ, W•,F•) over the punctured unit
disc �∗ is called admissible if

(i) it is graded-polarizable;
(ii) the monodromy T around zero is quasi-unipotent and the logarithm N of the

unipotent part of T admits a weight filtration M(N , W•) relative to W• (see [22,
Sect. 3.1]);

(iii) Let V, resp. WkV, be Deligne’s canonical extension of V, resp. ofO�∗ ⊗Q WkV,
to �. The Hodge filtration F• extends to a locally free filtration F•

of V such
that Grp

FGr
W
k V is locally free.

Let S be a connected complex manifold compactifiable by a compact complex ana-
lytic space S. A graded-polarizable variation of mixed Hodge structure (VZ, W•,F•)
on S is said admissible with respect to S if for every holomorphic map i : � → S
which maps �∗ to S, the variation i∗(VZ, W•,F•) is admissible.

Let S be a smooth complex quasi-projective variety. The property for a VHMS on
San to be admissible with respect to a smooth projective compactification S

an
is easily

seen to be independent of the choice of S. Hence we can and will talk of admissible
VMHSson San.From now on, and in order to simplify notations, we will not distinguish
between S and San, the meaning being clear from the context.

Admissible VMHSs have the following advantage (see André [2, Sect. 5, Theo-
rem 1], following [12, Sect. 7.5] in the pure case):

Theorem 3.4 (Deligne, André) Let (VZ, W•,F•) be an admissible VMHS over a
smooth connected complex quasi-projective variety S. Then for any Hodge-generic
point s ∈ S◦, the connected algebraic monodromy group Hmon

s is a normal subgroup
of the derived group MT(S)der of the generic Mumford–Tate group of S.

4 Mixed Hodge data

Classifying mixed Hodge structures with prescribed Mumford–Tate group leads to
the formalism of mixed Hodge data introduced in [23], following [30] in the Shimura
case. This group theoretical formalism is useful to relate VMHS and Mumford–Tate
domains.

4.1 Mixed Hodge data

Definition 4.1 A connected mixed Hodge datum is a pair (P,X), where P is a con-
nected linear algebraic group over Q whose unipotent radical we denote by W−1,
and X ⊆ Hom(SC, PC) is a P(R)+W−1(C)-conjugacy class such that one (and then
any) h ∈ X satisfies property (i), (i i) and (i i i) of Proposition 2.3. A morphism
(P,X) → (P ′,X ′) of mixed Hodge data is a morphism P → P ′ of Q-algebraic
groups inducing an equivariant map X → X ′.
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Let (P,X)be amixedHodgedatum.As ahomogeneous spaceunder P(R)+W−1(C),
the setX is naturally endowedwith a structure of real semi-algebraic variety. In general
however it does not carry any complex structure. To relate X to complex geometry,
let us fix ρ : P → GL(V ) a Q-representation. By Proposition 2.3, for each h ∈ X the
map ρ ◦ h endows V with a rational mixed Hodge structure, whose weight filtration
and Hodge numbers are easily seen to be independent of h ∈ X. We thus obtain a
P(R)+W−1(C)-equivariant map

ϕρ : X → M,

for M a classifying space as in Sect. 2.2. By [30, 1.7], ϕρ factors through a complex
manifold D which is independent of ρ.1 From now on we will just write

ϕ : X → D (4.1)

and call this map the classifying map of the Hodge datum (P,X). The group
P(R)+W−1(C) acts onD preserving its complex structure, and the action of W−1(C)

on D is holomorphic.

Lemma 4.2 [30, 1.8(b)] For each x ∈ D, the fiber ϕ−1(x) is a principal homogeneous
space under exp(F0

x (Lie W−1)C).

In particular ϕ is an isomorphism in the pure case.

4.2 Mixed Hodge data andMumford–Tate domains

We now relate mixed Hodge data and Mumford–Tate domains by showing that
the complex space D in (4.1) is a Mumford–Tate domain, and that conversely any
Mumford–Tate domain appears as a target in (4.1) for some connected mixed Hodge
datum. We start with the case where D = M is a classifying space.

Lemma 4.3 Let M be a classifying space of mixed Hodge structure as in Sect.2.2,
PM the corresponding group, and WM−1 its unipotent radical.

There exists a mixed Hodge datum (PM,XM) such that the classifying map (4.1)
for (PM,XM) reads ϕM : XM → M. For any h ∈ XM, the mixed Hodge structures
on Lie PM induced by h and by ϕM(h) coincide.

Proof Take h ∈ M. Then h ∈ Hom(SC, PM
C

) satisfies conditions (i), (i i) and (i i i)
of Proposition 2.3. In particular (PM,XM) is a mixed Hodge datum, where XM : =
PM(R)+WM−1 (C)h ⊆ Hom(SC, PM

C
). The existence of ϕM follows from [30, 1.7];

it is precisely the ϕ from (4.1) for (PM,XM). ��
Proposition 4.4 LetM be a classifying space of mixed Hodge structure as in Sect.2.2,
with associated connected mixed Hodge datum (PM,XM) and classifying map
ϕM : XM → M as in Lemma 4.3.

1 Take ρ to be a faithful representation of P , then we can take D = ϕρ(X).
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(i) For each Mumford–Tate domain D in M, there exists a sub-mixed Hodge datum
(MT(D),X) of (PM,XM) such that ϕM(X) = D. Moreover ϕ := ϕM|X : X →
D is precisely the classifying map (4.1) for (MT(D),X).

(ii) Conversely for any sub-mixed Hodge datum (P,X) of (PM,XM), the image
ϕM(X) is a Mumford–Tate domain in M (whose generic Mumford–Tate group is
a normal subgroup of P).

Proof For (i): for simplicity we write P for MT(D) and W−1 for Ru(P). Take a
point x ∈ D; it gives rise to a homomorphism hx : SC → PC. View hx ∈ XM,
then ϕM(hx ) ∈ D by definition of ϕM. Let X = P(R)+W−1(C)hx ⊂ M. As
ϕM is PM(R)+WM−1 (C)-equivariant, we have ϕM(X) = P(R)+W−1(C)ϕM(hx ) =
P(R)+W−1(C)x = D. By Proposition 2.3 the pair (P,X) is a mixed Hodge datum
and by construction ϕ = ϕM|X is precisely the map in (4.1).

For (ii): Denote by D = ϕM(X). Then D is a P(R)+W−1(C)-orbit because the
mapϕM is PM(R)+WM−1 (C)-equivariant.Moreover for any x ∈ D, the corresponding
homomorphism hx : SC → GL(VC) factors through PC by definition of mixed Hodge
data. Thus D is a Mumford–Tate domain and MT(D) � P by Lemma 2.10. ��

5 Quotients

5.1 Quotient of mixed Hodge datum

Given a connected mixed Hodge datum (P,X) and a normal subgroup N � P , the
quotient mixed Hodge datum

qN : (P,X) → (P,X)/N (5.1)

is defined as follows. Given h ∈ X ⊆ Hom(SC, PC) we denote by h ∈
Hom(SC, (P/N )C) the homomorphism SC

h−→ PC→(P/N )C. Note thatRu(P/N )=
W−1/(W−1 ∩ N ). Denote by X/N = (P/N )(R)+(W−1/W−1 ∩ N )(C)h ⊆
Hom(SC, (P/N )C). One easily checks that (P,X)/N : = (P/N ,X/N ) is a con-
nected mixed Hodge datum, independent of the choice of h ∈ X. The morphism
qN : (P,X) → (P/N ,X/N ) is what we desire. Moreover qN : X → X/N is clearly
real algebraic.

5.2 Quotient of Mumford–Tate domains

Next we prove that Mumford–Tate domains are stable under taking quotients. This
operation is important to understand the structure of Mumford–Tate domains.

Let VZ be a free finite rankZ-module and V := VZ⊗ZQ be the associatedQ-vector
space. Let M be the classifying space of certain polarized mixed Hodge structures
and let PM be the Q-group, both from Sect. 2.2.
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Proposition 5.1 Let D be a Mumford–Tate domain in M with P = MT(D), and let
(P,X) and ϕ : X → D be as in (4.4)(i). Let N be a normal subgroup of P. Then there
exists a quotient pN : D → D/N, in the category of complex varieties, such that

(i) D/N is a Mumford–Tate domain in some classifying space of mixed Hodge
structures, and MT(D/N ) = P/N.

(ii) Each fiber of pN is an N (R)+(W−1 ∩ N )(C)-orbit, where W−1 = Ru(P).
(iii) For the quotient mixed Hodge datum qN : (P,X) → (P/N ,X/N ) defined in

(5.1), the classifying map (4.1) for (P/N ,X/N ) has image D/N, thus defining
ϕ/N : X/N → D/N.

(iv) The following commutative diagram commutes

X
ϕ

qN X/N

ϕ/N

D pN D/N .

(5.2)

Proof Consider the quotient mixed Hodge datum qN : (P,X) → (P/N ,X/N )

defined in (5.1). Any h ∈ X/N ⊆ Hom(SC, (P/N )C) induces a Q-mixed Hodge
structure on Lie(P/N ), via AdP/N ◦ h : SC → (P/N )C → GL(Lie(P/N ))C, which
satisfies the three properties listed in Definition 4.1 with P replaced by P/N and h
replaced by h.

Fix a faithful representation ρ : P/N → GL(V ′) defined over Q. Then the mor-
phism ρ ◦ h induces a Q-mixed Hodge structure on V ′ by Proposition 2.3 for each
h ∈ X/N , and the weight filtration and the Hodge numbers do not depend on the
choice of h ∈ X/N . Thus we obtain a map

ϕ/N : X/N → {mixed Hodge structures on V ′}.

Set D/N = ϕ/N (X/N ). Then we get ϕ/N : X/N → D/N , which by [30, 1.7]
is (P/N )(R)+(W−1/(W−1 ∩ N ))(C)-equivariant (here W−1 = Ru(P) and hence
Ru(P/N ) = W−1/(W−1 ∩ N )). This establishes (iii) for the space D/N .

By [30, 1.12] the Q-mixed Hodge structures on V ′ thus obtained are graded-
polarized by some collection of non-degenerate bilinear forms (same for all h). So
D/N is a contained in some classifying space M′. This establishes (i).

Now let us construct the map pN : D → D/N and prove properties (ii) and (iv).
Take x ∈ D, and take any hx ∈ ϕ−1(x). Then ϕ−1(x) = exp(F0

x (Lie W−1)C)hx by
Lemma 4.2. Note that exp(F0

x (Lie W−1)C) is a subgroup of PC. Then qN (ϕ−1(x)) =
qN (exp(F0

x (Lie W−1)C)hx ) = exp(F0
x (Lie W−1)C)

N (C)∩exp(F0
x (Lie W−1)C)

qN (hx ).

On the other hand define x := ϕ/N (qN (hx )). Then ϕ−1
/N (x) = exp(F0

x (Lie W−1/

(W−1 ∩ N ))C)qN (hx ) again by Lemma 4.2.

We claim that exp(F0
x (Lie W−1)C)

N (C)∩exp(F0
x (Lie W−1)C)

= exp(F0
x (Lie W−1/(W−1 ∩ N ))C). Indeed

it suffices to check for Lie algebras, i.e. it suffices to prove F0
x (Lie W−1)C/(Lie NC ∩

F0
x (Lie W−1)C) � F0

x (Lie W−1/(W−1 ∩ N ))C canonically. As N � P , we have
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AdP (Lie N ) ⊆ Lie N . So Lie N is a sub-mixed Hodge structure of the adjoint Hodge
structure on Lie P . Thus Lie NC ∩ F0

x (Lie W−1)C = F0
x (Lie W−1 ∩ N )C. Thus we

proved the desired claim.
By the last three paragraphs, we have qN (ϕ−1(x)) = ϕ−1

/N (x). So the map D →
D/N , x �→ x := ϕ/N (qN (hx )) is well-defined. Call this map pN . Then property (iv)
holds true by construction of pN . Property (ii) then is not hard to check.

Now the map is complex analytic by property (ii). ��

6 Fibered structure and real points

Let D be a Mumford–Tate domain in some classifying space M with P = MT(D).
Let the connected mixed Hodge datum (P,X) and the P(R)+W−1(C)+-equivariant
map ϕ : X → D be as in Proposition 4.4.(i). In particular by Lemma 4.2, the fiber
ϕ−1(x) is a principal homogeneous space under exp(F0

x (Lie W−1)C) for each x ∈ D.

6.1 Fibered structure of Mumford–Tate domains

Let 0 = W−(m+1) ⊆ W−m ⊆ · · · ⊆ W−1 be the sequence of unipotent normal
subgroups of P defined in (B.1).

First for each k ∈ {0, . . . , m}, let Xk = X/W−(k+1) and let

pk : D → D/W−(k+1) =: Dk (6.1)

be the quotient constructed in Proposition 5.1. Notice that Xm = X and pm is the
identity on D.

Observe that we have (P/W−k,Xk) = (P/W−(k+1),Xk+1)/(W−(k+1)/W−(k+2))

and Dk = Dk+1/(W−(k+1)/W−(k+2)). Denote by qk+1,k : (P/W−(k+1),Xk+1) →
(P/W−k,Xk) and pk+1,k : Dk+1 → Dk the quotients. Then by Proposition 5.1 we
have the following commutative diagram

X = Xm
qm,m−1

ϕm :=ϕ

Xm−1
qm−1,m−2

ϕm−1

Xm−2
qm−2,m−3

ϕm−2

· · · q2,1 X1
q1,0

ϕ1

X0

ϕ0

D = Dm
pm,m−1 Dm−1

pm−1,m−2Dm−2
pm−2,m−3· · · p2,1 D1

p1,0 D0

.

(6.2)

By Lemma 4.2, ϕ0 is bijective. But the other ϕi ’s are not injective in general.
Let k ∈ {0, . . . , m − 1}. Recall that W−(k+1)/W−(k+2) = Lie W−(k+1)/W−(k+2) is

a vector group. Thus for any xk ∈ Dk , the notation F0
xk

(W−(k+1)/W−(k+2))C makes
sense.

Lemma 6.1 For each k ∈ {0, . . . , m} and any point xk ∈ Dk , we have that

(i) the fiber ϕ−1
k (xk) is a principal homogeneous space under F0

xk
(W−(k+1)/

W−(k+2))C.
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(ii) (for k ≤ m − 1) the fiber p−1
k+1,k(xk) is a principal homogeneous space under

(W−(k+1)/W−(k+2))(C)/F0
xk

(W−(k+1)/W−(k+2))C.

Proof Part (i) follows directly from Lemma 4.2.
For (ii): By [30, 1.8(a)], each fiber of qk+1,k is a principal homogeneous space

under (W−(k+1)/W−(k+2))(C). Combined with part (i) we can conclude. ��

6.2 Real points

Define DR to be the set of x ∈ D such that the mixed Hodge structure parametrized
by x is split over R. Namely, DR = ϕ(XR) with XR = {h : SC → PC :
h is defined over R} ⊆ X.

It is known that DR = P(R)+x for some x ∈ D; see [28, last Remark of Sect. 3].
Moreover for any x ∈ DR, it is not hard to check that F0

x (Lie W−1)C∩Lie PR = {0}.
So by Lemma 4.2, p0 : P → G = P/W−1 induces

StabP(R)+(x) � StabG(R)+(p0(x)). (6.3)

Consider the real semi-algebraic P(R)+-equivariant retraction induced by the sl2-
splitting [5, Thm. 2.18] (see also [3, Cor. 3.12])

r : D → DR. (6.4)

For each k ∈ {0, . . . , m − 1}, Dk is a Mumford–Tate domain and hence we can
define Dk,R as above. Then Dk,R is a (P/W−(k+1))(R)+-orbit, and there is a real
semi-algebraic (P/W−(k+1))(R)+-equivariant retraction rk : Dk → Dk,R induced by
the sl2-splitting.

Let pk : D → Dk be from (6.1). The following diagram is commutative by [3,
Lem. 6.6]:

D pk

r

Dk

rk

DR

pk |DR Dk,R.

(6.5)

We close this subsection with the following proposition, which states that DR can
be split (non-canonically) into the product of aMumford–Tate domain for pure Hodge
structures and some vector spaces.

Proposition 6.2 There exists a real algebraic isomorphism

DR � D0 × (W−1/W−2)(R) × · · · × (W−(m−1)/W−m)(R) × W−m(R) (6.6)

with the following properties.
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(i) For any g = (g0, w1, . . . , wm) ∈ P(R)+ under the identification (B.6) and any
x = (x0, x1, . . . , xm) ∈ DR under (6.6), the action of P(R)+ on DR is given by
the formula

gx = (g0x0, w1 + g0x1, w2 + g0x2 + calb2(w1, g0x1), . . . ,

wm + g0xm + calbm(wm−1, g0xm−1)) (6.7)

where wk = (w1, . . . , wk) and xk = (x1, . . . , xk) for all k ≥ 1, and the calbk’s
are the Q-polynomials of degree at most k − 1 given by Lemma B.3.

(ii) The decomposition (6.6) is compatible with taking quotients of W−(k+1) on both
sides for each k ∈ {0, . . . , m − 1}, i.e., the following diagram commutes

DR

∼

pk |DR

D0 × (W−1/W−2)(R) × · · · × (W−(m−1)/W−m)(R) × W−m(R)

Dk,R
∼ D0 × (W−1/W−2)(R) × · · · × (W−k/W−(k+1))(R)

where the top arrow is (6.6), the bottom arrow is (6.6) applied to Dk,R, and the
right arrow is omitting the last m − k factors.

Proof First note that D0,R = D0 because every pure Hodge structure is split over R.
Now (B.6) and (6.3) together induce a real algebraic isomorphism as in (6.6). Part (ii)
is clear. Part (i) follows from the group law given by (B.7). ��

7 PeriodMap and Logarithmic Ax

7.1 Periodmap

Let S be an irreducible algebraic variety definedoverC.Assume that S carries a graded-
polarized VMHS (VZ, W•,F•) → S. Then it induces a period map [�] : S → �\M
where M is the classifying space and � is an arithmetic subgroup of PM(Q).

The period map [�] factors through another quotient space in the following way.
In the context of Theorem 1.1, we have a complex analytic irreducible subset Z of
S ×�\M M = {(s, x) ∈ S × M : [�](s) = u(x)}, where u : M → �\M. For the
projection pM : S × M → M, we have that pM(Z) is irreducible and is contained
in u−1([�](S)). Let ˜S be a complex analytic irreducible component of u−1([�](S))

which contains pM(Z). Then Z ⊆ S × ˜S. Let D = ˜Ssp, the smallest Mumford–Tate
domain containing ˜S; see Corollary 2.8. Let P = MT(˜S) and W−1 = Ru(P), then D
is a P(R)+W−1(C)-orbit. Now we have [�](S) ⊆ u(D).

Let �P = � ∩ P(Q), then [�] factors through S → �P\D. The inclusionD ⊆ M
induces a finite map �P\D → �\M.
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Let � = S ×�P\D D. So to prove Theorem 1.1, it suffices to work in the following
diagram and assume Z ⊆ �

S × D ⊇ �

uS

D
u

S
[�]

�P\D

. (7.1)

This is our setup for the rest of the paper.

7.2 Quotient for the periodmap

Assume N � P . We have constructed the quotient Mumford–Tate domain pN : D →
D/N in Proposition 5.1. For the arithmetic group �P/N := �P/(�P ∩ N (Q)), we
then have a map [pN ] : �P\D → �P/N \(D/N ). Composing with [�] : S → �P\D,
we obtain

[�/N ] : S → �P/N \(D/N ). (7.2)

Proposition 5.1 says that D/N is a Mumford–Tate domain in the classifying space of
some mixed Hodge structures. Thus [�/N ] is again a period map.

Let us summarize the notations involving this operation of taking quotient in the
following diagram:

D pN

u

D/N

u/N

S
[�]

[�/N ]
�P\D [pN ]

�P/N \(D/N )

(7.3)

7.3 Bi-algebraic system

Recall thatM is a semi-algebraic open subset in some algebraic varietyM∨ over C.
So D is a semi-algebraic open subset in some algebraic variety D∨ over C.

Definition 7.1 (i) A subset of D is said to be irreducible algebraic if it is a complex
analytic irreducible component of U ∩ D, with U an algebraic subvariety of D∨.

(ii) An irreducible algebraic subset W ofD is said to be bi-algebraic if [�]−1(u(W ))

is algebraic.

By [3, Cor. 6.7], every weak Mumford–Tate domain is bi-algebraic.
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7.4 Logarithmic Ax

In this subsection, we prove a particular case of Theorem 1.1. RetainZ as in Theorem
1.1 and the notations in and above (7.3). As discussed before, we haveZ ⊆ �∩(S×˜S).

Theorem 7.2 There is a smallest weak Mumford–Tate domain in D, denoted by ˜Sws,
which contains ˜S. Moreover,

(i) ZZar ⊆ S × ˜Sws.
(ii) Theorem 1.1 holds if uS(Z) = S.

In the proof, we will see that ˜Sws is an N (R)+(W−1 ∩ N )(C)-orbit, where N is the
connected algebraic monodromy group of (V, W•,F•) → S.

Proof Let N be the connected algebraic monodromy group of (V, W•,F•) → S.
Then N � P by Theorem 3.4. Thus N (R)+(W−1 ∩ N )(C)̃s is a weak Mumford–Tate
domain, for any s̃ ∈ ˜S.

As N �P , we have the quotient periodmap [�/N ] : S → �S/N \(D/N ) constructed
in (7.2). Note that [�/N ] gives rise to a newVMHS over S, whose connected algebraic
monodromy group is trivial. So [�/N ](S) is a point by [8, Thm. 7.12]. Thus using the
notations in (7.3), we have that pN (˜S) is a point. So ˜S ⊆ N (R)+(W−1 ∩ N )(C)̃s for
any s̃ ∈ ˜S.

In particular N (R)+(W−1 ∩ N )(C)̃s is independent of the choice of s̃ ∈ ˜S.
Let us start by proving part (ii). In the course of this proof, we will also show the

existence of ˜Sws.
Assume uS(Z) = S. Since Z ⊆ S × ˜S, the following is true: For each s ∈ S, there

exists s̃ ∈ ˜S such that (s, s̃) ∈ Z.
The group P(R)+W−1(C) acts on S × D via its action on the second factor. Let

ρ : π1(S, s) → GL(V ) be the monodromy representation. Then Im(ρ) is a subgroup
of �P . By construction of ˜S, we have Im(ρ)(s, s̃) ⊆ Z for any (s, s̃) ∈ Z. Taking
Zariski closures of both sides and recalling that N = (Im(ρ)Zar)◦, we have {s} ×
N (R)+(W−1 ∩ N )(C)̃s ⊆ ZZar. As this holds true for each s ∈ S, we then have
S × N (R)+(W−1 ∩ N )(C)̃s ⊆ ZZar.

To sum it up, we have Z ⊆ S × ˜S ⊆ S × N (R)+(W−1 ∩ N )(C)̃s ⊆ ZZar. By
taking Zariski closures, we have ZZar = S × N (R)+(W−1 ∩ N )(C)̃s and ˜SZar =
N (R)+(W−1 ∩ N )(C)̃s.

By definition, N (R)+(W−1 ∩ N )(C)̃s is a weak Mumford–Tate domain. More-
over if W is a weak Mumford–Tate domain which contains ˜S, then W contains
˜SZar = N (R)+(W−1 ∩ N )(C)̃s because W is algebraic. So N (R)+(W−1 ∩ N )(C)̃s
is the smallest weak Mumford–Tate domain which contains ˜S. Thus ˜Sws exists and is
precisely N (R)+(W−1 ∩ N )(C)̃s. Now part (ii) is established.

Now part (i) is immediately true because Z ⊆ S × ˜S and S × ˜Sws is algebraic. ��
Remark 7.3 If we assume S = uS(Z)Zar, then˜Sws is the smallest weakMumford–Tate
domain which contains pD(Z). Indeed, we have pD(Z) ⊆ ˜Sws by Theorem 7.2.(i). So
it suffices to prove the following statement: for any W a weak Mumford–Tate domain
in D which contains pD(Z), we have ˜Sws ⊆ W . This is true: u(W ) ⊇ u(pD(Z)) =
[�](uS(Z)), so [�]−1(u(W )) ⊇ uS(Z), so [�]−1(u(W )) ⊇ S because [�]−1(u(W ))
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is algebraic (by [3, Cor. 6.7]) and S = uS(Z)Zar. Therefore ˜Sws ⊆ W and hence we
are done.

8 Dévissage and Preparation

In this section, we do some preparations. Recall the setup (7.1)

S × D ⊇ �
pD|�

uS

D
u

S
[�]

�P\D

.

Lemma 8.1 If Theorem 1.1 holds true under the following two additional assumptions:

(i) S = uS(Z)Zar.
(ii) Z is a complex analytic irreducible component of ZZar ∩ �.

then it holds true in full generality.

Proof LetZ be as in Theorem 1.1. Notice thatZZar ⊆ uS(Z)Zar×D. The assumptions
and the conclusion of Theorem 1.1 do not change if we replace S by uS(Z)Zar. So we
may assume S = uS(Z)Zar.

LetZ′ be a complex analytic irreducible component ofZZar ∩�which containsZ.
Note thatZ ⊆ Z′ ⊆ ZZar. Thus by taking the Zariski closures, we obtainZ′Zar = ZZar.

Thus pD(Z′Zar) = pD(ZZar), for the projection pD : S × D → D. So for the
algebraic structure on D defined by Definition 7.1, we have pD(Z′)Zar = pD(Z)Zar

because the projection pD is algebraic. But each weak Mumford–Tate domain is
algebraic. So

pD(Z′) ⊆ pD(Z′)Zar = pD(Z)Zar ⊆ pD(Z)ws = ˜Sws,

where the last equality follows from Remark 7.3. But pD(Z) ⊆ pD(Z′) because
Z ⊆ Z′. So every weak Mumford–Tate domain containing pD(Z′) must also contain
pD(Z), and thus contains˜Sws by Remark 7.3. Combined with the inclusion above, we
get that˜Sws is also the smallest weak Mumford–Tate domain which contains pD(Z′).
So

dimZ′Zar − dimZ′ ≥ dim pD(Z′)ws �⇒ dimZZar − dimZ ≥ dim pD(Z)ws

as dimZ ≤ dimZ′ and pD(Z)ws = pD(Z′)ws = ˜Sws. Replacing Z by Z′, it is thus
enough to prove Theorem 1.1 assuming furthermore (ii). ��

Thus our main theorem is reduced to the following theorem, which we will prove
in the rest of the paper.

Theorem 8.2 Theorem 1.1 holds true under the additionnal assumption that Z is a
complex analytic irreducible component of ZZar ∩ � and S = uS(Z)Zar.

The rest of the paper is devoted to prove Theorem 8.2.
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9 Bigness of the Q-stabilizer

Recall our setup

S × D ⊇ �
pD|�

uS

D
u

S
[�]

�P\D

. (9.1)

We consider a subset Z of � satisfying the following properties: (i) Z is a complex
analytic irreducible component of ZZar ∩ �; (ii) S = uS(Z)Zar.

Let HZZar be the Q-stabilizer of ZZar, namely

HZZar =
(

StabP(R)(ZZar) ∩ �P

)Zar,◦ =
(

{γ ∈ �P : γZZar = ZZar}Zar
)◦

. (9.2)

In this section, we prove the following case of Theorem 8.2:

Proposition 9.1 Theorem 8.2 holds true under the additional assumption HZZar is the
trivial group.

9.1 Auxiliary set

Our proof of Proposition 9.1 heavily uses o-minimality. We are able to work in this
framework thanks to the following theorem proved by the second-named author,
Bakker, Brunebarbe, and Tsimerman. In the pure case this theorem is the main result
of [4].

Theorem 9.2 [3, Prop. 3.13 and Thm. 4.4] Let r : D → DR be the retraction defined in
(6.4), and identify DR with D0 ×∏

1≤k≤m(W−k/W−k−1)(R) under the real-algebraic
isomorphism defined in (6.6).

There exist an Ralg-definable subset F0 of D0 and a real number M > 0 such that

FR := F0 ×
∏

1≤k≤m

(−M, M)dim(W−k/W−(k+1))(R), (9.3)

which is a Ralg-definable subset of DR, satisfies the following properties:

(i) u|r−1(FR) is surjective;
(ii) [�] is Ran,exp-definable for the Ralg-structure on �P\D defined by r−1(FR).

The following auxiliary set is important for the proof of Ax–Schanuel.

� := {g ∈ P(R) : dim(g−1ZZar ∩ (S × F) ∩ �) = dimZ}, (9.4)

with F = r−1(FR). It is clear that � is definable in Ran,exp, and

{γ ∈ �P : γ (S × F) ∩ Z �= ∅} ⊆ �.
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Denote for simplicity by ˜Z = pD(Z), then

pD (γ (S × F) ∩ Z) = pD(p−1
D (γF) ∩ Z) = γF ∩ ˜Z .

Thus for any γ ∈ �P , we have

γ (S × F) ∩ Z �= ∅ ⇔ γF ∩ ˜Z �= ∅.

Therefore

{γ ∈ �P : γF ∩ ˜Z �= ∅} ⊆ �. (9.5)

Theorem 9.3 Assume dim ˜Z > 0. Then there exist constants ε > 0, cε > 0 and a
sequence of real numbers {Ti }i∈N with Ti → ∞ such that

#{γ ∈ � ∩ �P : H(γ ) ≤ Ti } ≥ cεT ε
i . (9.6)

9.2 Proof of Proposition 9.1 assuming Theorem 9.3

If dim ˜Z = 0, then dim ˜Zws = 0 and hence Theorem 8.2 clearly holds true. So we
assume dim ˜Z > 0.

We prove Proposition 9.1 by (downward) induction on dimZZar. The starting point
for this induction is when ZZar = S × ˜Sws (see Theorem 7.2). In this case, under the
assumptions of Theorem 8.2 we haveZ = S ×�P\D˜Sws, and so dimZ = dim S. Thus
Theorem 8.2 holds true in this case.

Let cε > 0, ε > 0 and {Ti } be as in Theorem 9.3. Then by the Pila–Wilkie counting
theorem [29, 3.6], for each Ti there exists a connected semi-algebraic curve Ci ⊆ �

which contains ≥ cεT ε
i points in �P of height at most Ti . For Ti � 1 we have

cεT ε
i ≥ 2.
Fix c0 ∈ Ci ∩ �P . Set C := c−1

0 · Ci . Then C is a semi-algebraic curve which
contains ≥ cεT ε

i in �P .
For each c′ ∈ Ci ⊆ �, we have dim(c′−1ZZar ∩ �) = dimZ by definition of �

from (9.4). But c0� = � since c0 ∈ �P . So we have

dim(c−1ZZar ∩ �) = dimZ for all c ∈ C . (9.7)

Notice thatZZar ⊆ C−1ZZar. Moroever since C is a semi-algebraic curve, we have
dim(C−1ZZar)Zar ≤ dimZZar + 1.

We have the following alternative:

(i) dim(C−1ZZar)Zar = dimZZar;
(ii) dim(C−1ZZar)Zar = dimZZar + 1.

Assume we are in case (i). Then C ⊆ StabP(R)(ZZar). Hence #(StabP(R)(ZZar) ∩
�P ) ≥ C ∩�P ≥ cεT ε

i for each i . Letting Ti → ∞, we get #(StabP(R)(ZZar)∩�) =
∞. Hence dim HZZar > 0. This contradicts the triviality of HZZar .
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Thus we are in case (ii). Then there exists c ∈ C such that ZZar �= c−1ZZar.
Thus Z � c−1ZZar; otherwise taking the Zariski closures we get ZZar ⊆ c−1ZZar,
hence ZZar = c−1ZZar by comparing dimensions, contradicting the choice of c. Thus
c−1ZZar ∩� varies with c ∈ C . Therefore by (9.7), an irreducible componentZ′ ⊇ Z
of (C−1ZZar)Zar ∩ � which has dimension ≥ dimZ + 1.

We claim thatZ′Zar = (C−1ZZar)Zar. Indeed, otherwiseZ′Zar = ZZar by dimension
comparisons. But then the assumption of Theorem 8.2 says that Z is a component of
ZZar ∩ � = Z′Zar ∩ �. Hence Z′ ⊆ Z. This contradicts dimZ′ ≥ dimZ + 1.

So we can apply the induction hypothesis to Z′ and obtain

dimZ′Zar − dimZ′ ≥ dim pD(Z′)ws.

But the left hand side ≤ dimZZar − dimZ and the right hand side is ≥ dim pD(Z)ws.
Hence Theorem 8.2 holds true for Z.

We are done.

9.3 Preparation of the proof of Theorem 9.3

Wewill proveTheorem9.3, ormore precisely (9.6), in the rest of this section. The proof
is long. It will be divided in several steps for readers’ convenience. In this subsection,
we fix some notations.

The proof of (9.6) uses the fibered structure of D and the discussion on its real
points, both explained in Sect. 6. We start by recollecting basic knowledge on both
aspects.

Recall the sequence of normal subgroups

0 = W−(m+1) ⊆ W−m ⊆ · · · W−1 = Ru(P)

of P from (B.1), and the quotient Mumford–Tate domains pk : D → Dk :=
D/W−k−1, for each k ∈ {0, . . . , m}, from (6.1). Notice that pm is the identity map on
D.

Let r : D → DR be the P(R)+-equivariant retraction of the inclusionDR ⊆ D from
(6.4). Applying (6.5) successively to pk,k−1 : Dk+1 → Dk (defined in the diagram
(6.2)), we obtain the following commutative diagram

D pm,m−1

r

Dm−1
pm−1,m−2

rm−1

Dm−2
pm−2,m−3

rm−2

· · · p2,1 D1
p1,0

r1

D0

r0

DR Dm−1,R Dm−2,R · · · D1,R D0,R

(9.8)

with each rk a (P/W−k−1)(R)+-equivariant retraction of Dk,R ⊆ Dk . Recall that D0
is a Mumford–Tate domain in a classifying space of pure Hodge structures, and r0 is
the identity map. There is a metric on D0; see [6, beginning of Sect. 2.1].

In the proof, we often need to project subsets of D to different levels and consider
the real points. So it is convenient to fix the following notations.
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Notation 9.4 For each k ∈ {0, 1, · · · , m},
• For any subset A ⊆ D, denote by Ak := pk(A) ⊆ Dk . As convention Am = A.
• For any subset A ⊆ D, denote by AR := r(A) ⊆ DR, and Ak,R = rk(Ak) ⊆ Dk,R.

Let F = r−1(FR) where FR ⊆ DR is given by Theorem 9.2, or more precisely by
(9.3).

Before moving on, let us sketch how (9.6) is proved when m = 0, namely when
D = D0 and P = P/W−1 is a reductive group. In this case,˜Z = ˜Z0,which has positive
dimension by assumption. For each real number T > 0, take B0(T ) ⊆ D0 to be the
ball centered at a fixed point of radius log T in D0. Let ˜Z0(T ) be a complex analytic
irreducible component of ˜Z ∩ B0(T ). The following estimate is a direct corollary of
Thm. 1.2 and Thm. 4.2 of Bakker–Tsimerman [6]: There exist constants c0, ε0 > 0,
independent of T , such that

#{γ ∈ �P : γF ∩ ˜Z0(T ) �= ∅, H(γ ) ≤ T } ≥ c0T ε0 .

See also [7, Prop. 6.3] for the statement of this estimate. By (9.5), the set on the left
hand side is a subset of #{γ ∈ � ∩ �P : H(γ ) ≤ T }. This yields (9.6).

For a general m, we need to generalize this idea. A first thing to do is to find
an appropriate generalization of B0(T ) for D. To achieve this, we make use of the
retractions rk’s (with rm = r ) and the following product structure on DR (6.6) (and
the truncated version given by Proposition 6.2.(ii) for each k ∈ {0, 1, · · · , m})

Dk,R � D0,R × (W−1/W−2)(R) × (W−2/W−3)(R) × · · · × (W−k/W−k−1)(R).

(9.9)

Now we are ready to give the generalization of the B0(T ) above. For each k ∈
{0, 1, · · · , m} and each real number T > 0, define the following subset Bk(T ) ⊆ Dk

as follows.

• Let B0(T ) = B0(T ) ⊆ D0 be the ball of radius log T centered at a fixed point in
˜Z0.

• For each k ≥ 1, let Bk(T ) the |·|-ball centered at 0 of radiusT in (W−k/W−k−1)(R),
i.e. Bk(T ) = {w ∈ (W−k/W−k−1)(R) : |w| < T }. Define Bk(T ) =
r−1

k (
∏k

i=0 Bi (T )). In particular, pk+1,k(Bk+1(T )) = Bk(T ), and Bk(T )R =
∏k

i=0 Bi (T ).

Next, we need to generalize the set ˜Z0(T ). For each k ≥ 0:

• Let ˜Zk(T ) be a complex analytic irreducible component of ˜Zk ∩ Bk(T ) ⊆ Dk .
• We may choose such ˜Zk(T )’s that pk+1,k(˜Zk+1(T )) ⊆ ˜Zk(T ) for all k.2

2 Notice that ˜Zk ∩Bk (T ) = pk (˜Z) ∩Bk (T ) = pk (˜Z ∩ p−1
k (Bk (T ))). Thus ˜Zk (T ) equals pk (˜Zk (T )) for

some complex analytic irreducible component ˜Zk (T ) of ˜Z ∩ p−1
k (Bk (T )). By definition ofBk (T ), we have

p−1
k+1(Bk+1(T )) ⊆ p−1

k (Bk (T )) for each k. Thus the ˜Zk (T )’s can be chosen such that ˜Zk+1(T ) ⊆ ˜Zk (T )

for each k. For these choices, we then have pk+1,k (˜Zk+1(T )) ⊆ ˜Zk (T ).
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Finally for the purpose of lifting, we need to introduce the following sets, which
generalize the set ˜Z(T ) from [19, proof of Thm. 5.2] (which handles the case where
m = 1). Let k0 be such that dim ˜Zk0 > 0, smallest for this property. For each k ∈
{k0 + 1, · · · , m} and each real number T > 0 (the diagram (9.10) below, with k
replaced by k − 1, is helpful to keep track of the notation):

• Let ˜Z(k, T ) := ˜Zk ∩ p−1
k,k−1(

˜Zk−1(T )) ⊆ Dk , and ˜Z(k, T )+ be a complex analytic

irreducible component of ˜Z(k, T ).
• Similar to the ˜Zk(T )’s, we may choose such ˜Z(k, T )+’s that pk+1,k(˜Z(k +
1, T )+) ⊆ ˜Z(k, T )+ for all k.

Notice that by definition, we have pk,k−1(˜Z(k, T )) = ˜Zk−1∩˜Zk−1(T ) = ˜Zk−1(T ) ⊆
˜Zk−1 ∩ Bk−1(T ).

9.4 Sketch of the strategy of the proof of Theorem 9.3

For simplicity, we use the same notation pk to denote the projection P → P/W−k−1
and the projection D → Dk . In the proof we need to work with many subscripts, and
the following diagram is helpful to keep track of them.

˜Z(k + 1, T ) ⊆ Dk+1
pk+1,k

rk+1

Dk

rk

˜Z(k + 1, T )R ⊆ Dk+1,R � Dk,R × (W−k−1/W−k−2)(R)
pk+1,k |Dk+1,R

Dk,R

(9.10)

where the real-algebraic isomorphism Dk+1,R � Dk,R × (W−k−1/W−k−2)(R) is
from (9.9). Notice that ˜Z(k + 1, T )R is a component of ˜Zk+1,R

⋂

(
∏k

i=0 Bi (T ) ×
(W−k−1/W−k−2)(R)), and that ˜Zk(T )R is a component of ˜Zk,R

⋂ ∏k
i=0 Bi (T ).

Suppose dim ˜Z0 = dim p0(˜Z) > 0. By the results of Bakker and Tsimerman as
explained above, we find #{γ0 ∈ p0(�P ) : γ0F0∩˜Z0(T ) �= ∅, H(γ0) ≤ T } ≥ c0T ε0 .
Consider the diagram (9.10) with k = 0. We wish to lift at least polynomially many
such γ0’s to elements in p1(�P ) of height at most T with the following property:
each such lift γ1 ∈ p1(�P ) satisfies γ1F1 ∩ ˜Z(1, T ) �= ∅, or equivalently γ1r1(F1) ∩
r1(˜Z(1, T )) �= ∅ (since F1 = r−1

1 (F1,R) by definition of F). This last condition,
expressed with Notation 9.4, becomes γ1F1,R ∩ ˜Z(1, T )R �= ∅. The intersection is
taken in D1,R � D0 × (W−1/W−2)(R). If the desired lifting can be realized, then
we do similar liftings to p2(�P ), etc., under we obtain at least polynomially many
elements γ in pm(�P ) = �P of height at most T such that γFR ∩ ˜Z(T )R �= ∅.

At this stage, we can explain why the second bullet point in the constructions of
the ˜Z(k, T )’s is needed: in the lifting process, we need that ˜Z(k + 1, T )R is mapped
into ˜Z(k, T )R under pk+1,k .

There is a problem in the procedure described above, namely it is possible that ˜Z0
is a point. In this case, we need to work with the smallest k0 such that dim ˜Zk0 > 0,
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which serves as the base step of the lifting process. Thus we need to introduce the set
˜Zk0(T ), which is a complex analytic irreducible component of ˜Zk0 ∩Bk0(T ). We need
to find at least polynomially many elements γk0 ∈ pk0(�P ) of height at most T such
that γk0Fk0,R ∩ ˜Zk0(T )R �= ∅. Whereas this is guaranteed by the result of Bakker and
Tsimerman when k0 = 0, it is not known when k0 ≥ 1. We will prove this result in
Sect. 9.5, or more precisely Proposition 9.5.(ii).

Once we have established the base step, we need to realize the lifting. In view of
(9.10), in order to realize the lifting process from k to k + 1, we need to compare the
growth of ˜Z(k + 1, T )R ⊆ Dk+1,R in the vertical direction (W−k−1/W−k−2)(R) with
its growth in the horizontal direction Dk,R. This lifting process is done in Sect. 9.8.
As in [19, proof of Thm. 5.2], we will divide into the two cases where ˜Z(k + 1, T )R
grows “faster” in the vertical direction (W−k−1/W−k−2)(R) (Lemma 9.11) and where
˜Z(k + 1, T )R grows “faster” in the horizontal direction Dk,R (the rest of Sect. 9.8).

9.5 Proof of Theorem 9.3: the base step

Themain goal of this subsection is to prove the base step for the lifting process, namely
Proposition 9.5. At the end of this subsection we also state the result for the lifting
process (Proposition 9.10) and explain how it implies Theorem 9.3. The proof of the
lifting process will be executed in the next subsection.

Let k0 ∈ {0, · · · , m} be such that dim ˜Zk0 > 0, smallest for this property. For
simplicity, we introduce the following notation. For each real number T ≥ 0, let

k0(T ) := {g ∈ (W−k0/W−k0−1)(R) : gFk0 ∩ ˜Zk0(T ) �= ∅}
= {g ∈ (W−k0/W−k0−1)(R) : gFk0,R ∩ ˜Zk0(T )R �= ∅}. (9.11)

Here the second equality holds true since Fk0 = r−1
k0

(Fk0,R).
We also denote by �−k0/−k0−1 = (�P ∩ W−k0(Q))/(�P ∩ W−k0−1(Q)); it is a

subgroup of P/W−k0−1 and acts on Dk0 = D/W−k0−1.

Proposition 9.5 There exist constants ck0 , εk0 > 0 such that

#{γ−k0/−k0−1∈k0(T ) ∩ �−k0/−k0−1 : H(γ−k0/−k0−1)≤T }≥ck0T εk0 for all T �1.

Proof of Proposition 9.5 If k0 = 0, this is proved in [6]. We refer to [7, Prop. 6.3] for
a precise statement.

From now on, assume k0 ≥ 1. We use (9.10) with k = k0 − 1. Now ˜Zk0−1 = h is a
point inDk0−1. Thus ˜Zk0 ⊆ p−1

k0,k0−1(h). Notice that rk0(p−1
k0,k0−1(h)) can be identified

with (W−k0/W−k0−1)(R).

Lemma 9.6 Recall M > 0 the real number in the definition of FR from Theorem 9.2.
Denote for simplicity F′

k0
= (−M, M)dim(W−k0/W−k0−1)(R) ⊆ (W−k0/W−k0−1)(R).

Then any γ−k0/−k0−1 ∈ k0(T ) ∩ �−k0/−k0−1 satisfies H(γ−k0/−k0−1) ≤ T + M.

Proof of Lemma 9.6 We have ˜Zk0,R = rk0(
˜Zk0) ⊆ rk0(p−1

k0,k0−1(h)) = (W−k0/

W−k0−1)(R). Recall the definition Bk0(T ) = r−1
k0

(
∏k0

i=0 Bi (T )). So
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k0(T ) ∩ �−k0/−k0−1 = {γ−k0/−k0−1 ∈ �−k0/−k0−1 :
(

γ−k0/−k0−1 + F′
k0

) ∩ ˜Zk0(T )R �= ∅}. (9.12)

Hence each γ−k0/−k0−1 ∈ k0(T ) ∩ �−k0/−k0−1 satisfies
(

γ−k0/−k0−1 + F′
k0

)

∩
Bk0(T )R �= ∅. We are done. ��

Now we are ready to finish the proof of Proposition 9.5.
Consider {γ−k0/−k0−1 ∈ �−k0/−k0−1 : (γ−k0/−k0−1 +F′

k0
)∩ ˜Zk0,R �= ∅}. We claim

that it is infinite. Indeed, assume otherwise, then ˜Zk0,R is contained in a bounded subset
of (W−k0/W−k0−1)(R). But p−1

k0,k0−1(h) � (W−k0/W−k0−1)(C)/F0
h
(W−k0/W−k0−1)C

by part (ii) of Lemma 6.1, and the composite (ϕk0 is the natural projection)

(W−k0/W−k0−1)(C)
ϕk0−−→ (W−k0/W−k0−1)(C)/F0

h
(W−k0/W−k0−1)C = p−1

k0,k0−1(h)

rk0−→ (W−k0/W−k0−1)(R) (9.13)

is, up to an automorphism of (W−k0/W−k0−1)(R) sending bounded sets to bounded
sets, the projection to the real part.3 So ϕ−1

k0
(˜Zk0) ⊆ ϕ−1

k0
(r−1

k0
(˜Zk0,R)) is contained in

a set whose real part is bounded. But ϕ−1
k0

(˜Zk0) is complex analytic, so ϕ−1
k0

(˜Zk0) is a

point, and so is ˜Zk0 . This contradicts dim ˜Zk0 > 0.
Next we claim that ˜Zk0(T )R passes through the boundary of Bk0(T ). Assume

otherwise, then ˜Zk0,R\˜Zk0(T )R and ˜Zk0(T )R are disjoint. But ˜Zk0,R is connected
since ˜Zk0 is irreducible. So we must have ˜Zk0,R = ˜Zk0(T )R. Hence ˜Zk0,R is contained
in a bounded subset of (W−k0/W−k0−1)(R). This yields a contradiction by the same
argument in the previous paragraph.

Note that F′
k0

is a fundamental set for the action of �−k0/−k0−1 on the Euclidean
space (W−k0/W−k0−1)(R). The claims in the previous two paragraphs together imme-
diately imply that

#{γ−k0/−k0−1 ∈ �−k0/−k0−1 : (γ−k0/−k0−1 + F′
k0) ∩ ˜Zk0(T )R �= ∅} ≥ T

for all T � 1. Now the conclusion follows from Lemma 9.6 with ck0 = 1/2 and
εk0 = 1. ��

Remark 9.7 The proof of Proposition 9.5 is the only place in the proof of Theorem 9.3
where we use the complex structure ofD. More precisely, the complex structure ofD
is used only in the citation of [6] (if k0 = 0) and in the paragraph involving (9.13) (if
k0 ≥ 1).

3 Recall that rk0 is the retraction given by the sl2-splitting. If rk0 is replaced by the retraction induced by
the Deligne δ-splitting, then this composite is precisely the projection to the real part. But the sl2-splitting
is defined by universal Lie polynomials in the Hodge components of the Deligne δ-splitting, so this claim
holds true.
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9.6 A preliminary lifting process

Let k ≥ 0. For simplicity denote by W0 := P . The following diagram is useful to
keep track of the notations.

(P/W−k−2,Dk+1)
pk+1,k

rk+1

(P/W−k−1,Dk)

rk

Dk+1,R � Dk,R × (W−k−1/W−k−2)(R)

λk+1

pk+1,k |Dk+1,R Dk,R

(W−k−1/W−k−2)(R)

(9.14)

where the real-algebraic isomorphismDk+1,R � Dk,R×(W−k−1/W−k−2)(R) is from
(9.9), and λk+1 is the natural projection.

Consider the isomorphism of Q-varieties given by (B.6) P/W−k−2 � G ×
(W−1/W−2) × · · · × (W−k−1/W−k−2). It induces

P/W−k−2 � P/W−k−1 × W−k−1/−k−2. (9.15)

The group (P/W−k−2)(R)+ acts on Dk+1,R = (D/W−k−2)R. Write

�0/−k−2 = �P/(�P ∩ W−k−2(Q)).

Lemma 9.8 There exists a constant βk > 0 with the following property. Consider the
Euclidean norm | · | on (W−k−1/W−k−2)(R). Then for any γ0/−k−2 ∈ �0/−k−2, the
set λk+1(γ0/−k−2Fk+1,R) is contained in a | · |-ball of radius ≤ βk H(γ0/−k−1)

k in
(W−k−1/W−k−2)(R). Here, γ0/−k−1 ∈ �0/−k−1 is the projection of γ0/−k−2 under
the natural projection P/W−k−2 → P/W−k−1.

Moreover, if we denote by (γ0/−k−1, γ−k−1/−k−2) the image of γ0/−k−2 under the
isomorphism (9.15), then the | · |-ball mentioned above can be taken to be centered at
γ−k−1/−k−2.

Before proving Lemma 9.8, let us see an application.

Lemma 9.9 There exist constants αk > 0 and α′
k > 0 satisfying the following property.

If γ0/−k−1 ∈ �0/−k−1 satisfies γ0/−k−1Fk,R ∩ ∏k
i=0 Bi (T ) �= ∅, then H(γ0/−k−1) ≤

α′
k T αk .

Proof of Lemma 9.9 We prove this lemma by upward induction on k ≥ 0. The base
step is k = 0, which is precisely [6, Thm. 4.2].

Use the notation from (9.14).
Assume Lemma 9.9 holds true for k, namely H(γ0/−k−1) ≤ α′

k T αk for each

γ0/−k−1 ∈ �0/−k−1 with γ0/−k−1Fk,R ∩ ∏k
i=0 Bi (T ) �= ∅. We wish to prove the

property for k + 1.
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Let γ0/−k−2 ∈ �0/−k−2 be such that γ0/−k−2Fk+1,R ∩ ∏k+1
i=0 Bi (T ) �= ∅. Denote

by (γ0/−k−1, γ−k−1/−k−2) the image of γ0/−k−2 under the isomorphism (9.15). In
particular, γ0/−k−1 is the image of γ0/−k−2 under the projection pk+1,k : P/W−k−2 →
P/W−k−1.

Applying pk+1,k to both sides of γ0/−k−2Fk+1,R ∩ ∏k+1
i=0 Bi (T ) �= ∅, we obtain

that γ0/−k−1Fk,R ∩ ∏k
i=0 Bi (T ) �= ∅. Thus by induction hypothesis, we have

H(γ0/−k−1) ≤ α′
k T αk .

Next, applying λk+1 to both sides of γ0/−k−2Fk+1,R ∩ ∏k+1
i=0 Bi (T ) �= ∅, we then

have

λk+1(γ0/−k−2Fk+1,R) ∩ Bk+1(T ) �= ∅. (9.16)

ByLemma9.8,λk+1(γ0/−k−2Fk+1,R) is contained in a |·|-ball of radiusβk H(γ0/−k−1)
k

centered at γ−k−1/−k−2. But H(γ0/−k−1) ≤ α′
k T αk . Therefore the following two

| · |-balls in the Euclidean space (W−k−1/W−k−2)(R) intersect: the one of radius
T centered at 0, and the one of radius βkα

′k
k T kαk centered at γ−k−1/−k−2. So

H(γ−k−1/−k−2) ≤ T + βkα
′k
k T kαk .

Thus the proposition holds true with α′
k+1 := 1+ βkα

′k
k and αk+1 = max{1, kαk}.

��

We end this subsection with:

Proof of Lemma 9.8 Let γ0/−k−2 ∈ �0/−k−2. Use the notation as in the lemma,
namely γ0/−k−2 �→ (γ0/−k−1, γ−k−1/−k−2) under the isomorphism of Q-varieties
P/W−k−2 � P/W−k−1 × (W−k−1/W−k−2) (9.15).

Next, consider the isomorphism of Q-varieties induced by (B.6)

P/W−k−2 � G × (W−1/W−2) × · · · × (W−k−1/W−k−2),

and suppose γ0/−k−2 �→ (γ0/−1, γ−1/−2, . . . , γ−k−1/−k−2) under this isomorphism.
Then H(γ0/−k−2) = max{H(γ0/−1), . . . , H(γ−k−1/−k−2)}.

On the other hand, for the real-algebraic morphism induced by (9.9)

Dk+1,R � D0 × (W−1/W−2)(R) × · · ·
×(W−k−1/W−k−2)(R) × (W−k−1/W−k−2)(R),

we have defined, in (9.3), Fk+1,R to be the inverse image of F0 × F′
1 × · · · × F′

k+1,
where M is a fixed real number and

F′
i = (−M, M)dim(W−i /W−i−1)(R) ⊆ (W−i/W−i−1)(R).

The formula for the action of the group (P/W−k−2)(R)+ on Dk+1,R is given by
Proposition 6.2, or more precisely (6.7). Thus
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λk+1(γ0/−k−2Fk+1,R)

= {γ−k−1/−k−2 + γ0/−1 x̃ + calbk+1(γ0/−k−1, γ0/−1 x̃ ′) :
x̃ ∈ F′

k+1, x̃ ′ ∈ F0 × F′
1 × · · · × F′

k}
= γ−k−1/−k−2 + γ0/−1 · F′

k+1

+ calbk+1(γ0/−k−1, γ0/−1F0 × γ0/−1F
′
1 × · · · × γ0/−1F

′
k), (9.17)

where calbk+1 is a polynomial of degree at most k. Notice that M , F0 and the F′
i ’s are

fixed, and that H(γ0/−1) ≤ H(γ0/−k−1). So

|γ0/−1 · F′
k+1 + calbk+1(γ0/−k−1, γ0/−1(F0 × F′

1 × · · ·F′
k))|

� H(γ0/−1) + H(γ0/−k−1)
k � H(γ0/−k−1)

k .

Therefore, by (9.17), λk+1(γ0/−k−2Fk+1,R) is contained in the | · |-ball of radius
� H(γ0/−k−1)

k centered at γ−k−1/−k−2. Hence we are done. ��

9.7 Setup and final conclusion of the lifting process

For each k ∈ {k0, . . . , m} and each real number T ≥ 0:

• Let �−k0/−k−1 = (�P ∩ W−k0(Q))/(�P ∩ W−k−1(Q)). Then �−k0/−k−1 acts on
Dk = D/W−k−1.

• If furthermore k ≥ k0 + 1, then set

k(T ) = {g ∈ (W−k0/W−k−1)(R) : gFk ∩ ˜Z(k, T ) �= ∅}
= {g ∈ (W−k0/W−k−1)(R) : gFk,R ∩ ˜Z(k, T )R �= ∅} ⊆ (P/W−k−1)(R),

where the second equality follows from the construction Fk = r−1
k (Fk,R).

Notice that the above definition of k(T ) for k ≥ k0 +1 differs in an essential way
from the definition for k0(T ) given in (9.11), because for k0(T ) we intersect with
˜Zk0(T ) while in case k ≥ k0 + 1 the intersection is with ˜Z(k, T )R (which is larger
than ˜Zk(T )R). This seemingly strange convention will make the induction step of the
proof of Proposition 9.10 much cleaner.

Now we are ready to state the desired lifting proposition.

Proposition 9.10 For each k ≥ k0, there exist constants ck, εk > 0, and a sequence
{Ti ∈ R}i∈N with Ti → ∞, such that

#{γ−k0/−k−1 ∈ k(Ti ) ∩ �−k0/−k−1 : H(γ−k0/−k−1) ≤ Ti } ≥ ck T εk
i .

Let us finish the proof of Theorem 9.3 assuming this proposition.

Proof of Theorem 9.3 assuming Proposition 9.10 Apply Proposition 9.10 to k = m. As
W−(m+1) = 0, the conclusion of the proposition becomes: there exist constants c =
cm, ε = εm > 0 and a sequence {Ti ∈ R}i∈N with Ti → ∞, such that

#{γ ∈ �−k : H(γ ) ≤ Ti , γF ∩ ˜Z(m, Ti ) �= ∅} ≥ cT ε
i .
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But �−k0 ⊆ �P and ˜Z(m, Ti ) ⊆ ˜Z , and so

#{γ ∈ �P : H(γ ) ≤ Ti , γF ∩ ˜Z �= ∅} ≥ cT ε
i .

Thus we can conclude by (9.5). ��

9.8 Proof of Proposition 9.10

We prove in this subsection Proposition 9.10 with a lifting process. The following
diagram helps to keep track of the lifting, with k ≥ k0:

k+1(T )

⊆

pk+1,k (k+1(T ))

⊆

˜Z(k + 1, T ) ⊆ (P/W−k−2 ,Dk+1)
pk+1,k

rk

(P/W−k−1 ,Dk )

rk−1

Fk , Bk (T )

⊂

˜Z(k + 1, T )R ⊆ Dk+1,R � Dk,R × (W−k−1/W−k−2)(R)

λk+1

pk+1,k |DR Dk,R Fk,R,
∏k

i=0 Bi (T ).

⊂

(W−k−1/W−k−2)(R)

(9.18)

where the vertical inclusions are inclusions in the R-points of the underlying groups,
and the horizontal inclusions are inclusions in the underlying spaces.

We start with the following observation:

pk+1,k(k+1(T )) ⊆ {g ∈ (W−k/W−k−1)(R) : gFk,R ∩
k

∏

i=0

Bi (T ) �= ∅}. (9.19)

Indeed, take g ∈ pk+1,k(k+1(T )). Then g = pk+1,k(g′) for some g′ ∈ k+1(T ).
Thus g′Fk+1,R ∩ ˜Z(k + 1, T )R �= ∅. Applying pk+1,k to both sides, we get gFk,R ∩
pk+1,k(˜Z(k+1, T )R) �= ∅. But pk+1,k(˜Z(k+1, T )R) = pk+1,k(rk+1(˜Z(k+1, T )) =
rk(pk+1,k(˜Z(k + 1, T ))) ⊆ rk(˜Zk ∩ Bk(T )) ⊆ rk(Bk(T )) = ∏k

i=0 Bi (T ). Hence we
get (9.19).

For each αk from Lemma 9.9, let us fix a number δk such that

δk > (k + 1)αk . (9.20)

Now we proceed to the proof. We start with the following lemma, which handles
the case where the vertical direction of ˜Z(k + 1, Ti ) grows faster than the horizontal
direction.

Lemma 9.11 Assume there exists k ≥ k0 such that

|λk+1(˜Z(k + 1, T )R)| > T δk for all T � 1. (9.21)
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Then there exist constants ck+1 > 0 and εk+1 > 0, both independent of T , such that

#{γ−k0/−k−2 ∈ k+1(T ) ∩ �−k0/−k−2 : H(γ−k0/−k−2) ≤ T } ≥ ck+1T εk+1 .

(9.22)

Proof of Lemma 9.11 Use the notation from (9.18). By definition (9.3), we have
Fk+1,R = Fk,R × (−M, M)dim(W−k−1/W−k−2)(R) for some fixed real number M > 0.

Take γ−k0/−k−2 ∈ k+1(T ) ∩ �−k0/−k−2. Write (γ−k0/−k−1, γ−k−1/−k−2) for
the image of γ−k0/−k−2 under the isomorphism (9.15) P/W−k−2 � P/W−k−1 ×
W−k−1/−k−2. Then γ−k0/−k−1 = pk+1,k(γ−k0/−k−2) for the group morphism
pk+1,k : P/W−k−2 → P/W−k−1. Thus H(γ−k0/−k−1) ≤ α′

k T αk by (9.19) and
Lemma 9.9.

We temporarily work in the Euclidean space (W−k−1/W−k−2)(R). Our hypothesis
(9.21) says that λk+1(˜Z(k + 1, Ti )R) reaches the boundary of the | · |-ball of radius
T δk

i centered at 0.
We claim that λk+1(˜Z(k + 1, Ti )

+
R
) also reaches the boundary of the | · |-ball of

radius T δk
i centered at 0 (which by our notation is Bk+1(T

δk
i )). Assume otherwise, then

λk+1(˜Zk+1,R)\Bk+1(T
δk

i ) and λk+1(˜Z(k + 1, Ti )
+
R
) are disjoint. But λk+1(˜Zk+1,R) is

connected because ˜Z is irreducible. So we must have λk+1(˜Zk+1,R) = λk+1(˜Z(k +
1, Ti )

+
R
). By definition, we have ˜Z(k+1, T )R ⊆ ˜Zk+1,R. Thus λk+1(˜Z(k+1, Ti )

+
R
) =

λk+1(˜Zk+1,R) ⊇ λk+1(˜Z(k + 1, T )R) ⊇ λk+1(˜Z(k + 1, Ti )
+
R
), and hence every

inclusion is an equality. Now we are done by the assumption (9.21).
On the other hand byLemma9.8, the subsetλk+1(γ−k0/−k−2Fk+1,R∩˜Z(k+1, Ti )R)

is contained in a | · |-ball of radius � H(γ−k0/−k−1)
k+1 � T (k+1)αk

i centered at
γ−k−1/−k−2.

Since (W−k−1/W−k−2)(R) is Euclidean and δk > (k + 1)αk and that λk+1(˜Z(k +
1, Ti )

+
R
) is connected, the previous two paragraphs together imply

#{γ−k−1/−k−2 ∈�−k−1/−k−2 : H(γ−k−1/−k−2) ≤ T δk , (γ−k0/−k−1, γ−k−1/−k−2) ∈ k(T )

for some γ−k0/−k−1 ∈ pk+1,k(k+1(T )) ∩ �−k0/−k−1} � T δk−(k+1)αk

for all T � 1. As each γ−k0/−k−1 ∈ pk+1,k(k+1(T )) ∩ �−k0/−k−1 satisfies
H(γ−k0/−k−1) ≤ α′

k T αk by (9.19) and Lemma 9.9, the counting above yields, for
all T � 1,

#{(γ−k0/−k−1, γ−k−1/−k−2) ∈ k(T ) ∩ �−k0/−k−2 :H(γ−k−1/−k−2) ≤ T δk ,

H(γ−k0/−k−2) ≤ α′
k T αk } � T δk−(k+1)αk .

But the only assumption on δk is δk > (k + 1)αk . Hence we have proved (9.22) by
choosing appropriately ck+1 and εk+1. We are done. ��

The next lemma is useful for the lifting in the case where the horizontal direction
of ˜Z(k + 1, Ti ) grows faster than the vertical direction.

Lemma 9.12 Let k ≥ k0. Assume there exists a sequence {Ti ∈ R}, with Ti → ∞,
such that
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|λk+1(˜Z(k + 1, Ti )R)| ≤ T δk
i . (9.23)

Then H(γ−k0/−k−2) � T δk
i for each γ−k0/−k−2 ∈ k+1(Ti ) ∩ �−k0/−k−2.

Proof Use the notation from (9.18).
Take γ−k0/−k−2 ∈ k+1(Ti ) ∩ �−k0/−k−2. Write (γ−k0/−k−1, γ−k−1/−k−2) for

the image of γ−k0/−k−2 under the isomorphism (9.15) P/W−k−2 � P/W−k−1 ×
W−k−1/−k−2. Then γ−k0/−k−1 ∈ pk+1,k(k+1(Ti )) for the group morphism
pk+1,k : P/W−k−2 → P/W−k−1. Thus H(γ−k0/−k−1) ≤ α′

k T αk
i by (9.19) and

Lemma 9.9.
There exists a point z̃k+1 ∈ γ−k0/−k−2Fk+1,R ∩ ˜Z(k + 1, Ti )R. Write z̃k+1,k =

λk+1(̃zk+1).
Now that z̃k+1,k is a point in λk+1(γ−k0/−k−2Fk+1,R), which by Lemma 9.8 is

contained in a | · |-ball of radius ≤ βk H(γ−k0/−k−1)
k+1 ≤ βkα

′k
k T (k+1)αk

i centered
at γ−k−1/−k−2. On the other hand z̃k+1,k is a point in λk+1(˜Z(k + 1, Ti )R). So the

assumption (9.23) yields |̃zk+1,k | ≤ T δk
i . Write β ′

k := βkα
′k
k . This says that in the

Euclidean space, the following two | · |-balls intersect: the one of radius T δk
i centered

at 0, and the one of radius β ′
k T (k+1)αk

i centered at γ−k−1/−k−2. Thus we must have

H(γ−k−1/−k−2) ≤ T δk
i +β ′

k T (k+1)αk
i , which furthermore≤ (1+β ′

k)T
δk

i by assumption
on δk .

Therefore H(γ−k0/−k−2) ≤ max{H(γ−k0/−k−1), H(γ−k−1/−k−2)} � T δk
i . ��

With these preparations, we are ready to prove Proposition 9.10.

Proof of Proposition 9.10 We prove Proposition 9.10 by induction on k ≥ k0.
The base step is k = k0. Recall that in this case, k0(T ) is defined in a different

way than the other k(T )’s (with k ≥ k0 + 1). Indeed

k0(T ) := {g ∈ (W−k0/W−k0−1)(R) : gFk0,R ∩ ˜Zk0(T )R �= ∅}. (9.24)

The conclusion for the base step follows immediately from Proposition 9.5, which
says: There exist constants ck0 , εk0 > 0 such that

#{γ−k0/−k0−1 ∈ k0(T ) ∩ �−k0/−k0−1 : H(γ−k0/−k0−1) ≤ T } ≥ ck0T εk0 . (9.25)

Assume Proposition 9.10 is proved for k ≥ k0, i.e. there exist constants ck, εk > 0,
and a sequence {Ti ∈ R}i∈N with Ti → ∞, such that

#{γ−k0/−k−1 ∈ k(Ti ) ∩ �−k0/−k−1 : H(γ−k0/−k−1) ≤ Ti } ≥ ck T εk
i . (9.26)

We wish to prove for k + 1, i.e. up to replacing {Ti ∈ R} by a subsequence, find
constants ck+1, εk+1 > 0 such that

#{γ−k0/−k−2 ∈ k+1(Ti ) ∩ �−k0/−k−2 : H(γ−k0/−k−2) ≤ Ti } ≥ ck+1T εk+1
i .

(9.27)
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We have two alternatives:

(i) Either |λk+1(˜Z(k + 1, T )R)| > T δk for all T � 1,
(ii) or |λk+1(˜Z(k + 1, Ti )R)| ≤ T δk

i for some sequence {Ti ∈ R} with Ti → ∞.

For case (i), the conclusion follows from Lemma 9.11. So from now on, assume that
we are in case (ii).

By Lemma 9.12 we have H(γ−k0/−k−2) � T δk
i for each γ−k0/−k−2 ∈ k+1(Ti ) ∩

�−k0/−k−2. Thus, to establish (9.27), it suffices to show that #(k+1(Ti )∩�−k0/−k−2)

is at least polynomial in Ti .
Notice that

˜Z(k + 1, Ti )R =
⋃

γ−k0/−k−2∈k+1(Ti )∩�−k0/−k−2

γ−k0/−k−2Fk+1,R ∩ ˜Z(k + 1, Ti )R.

Applying pk+1,k |Dk+1,R to both sides, we obtain

pk+1,k(˜Z(k + 1, Ti )R) ⊆
⋃

γ−k0/−k−2∈k+1(Ti )∩�−k0/−k−2

γ−k0/−k−1Fk,R.

Thus pk+1,k(˜Z(k +1, Ti )R) hits≤ #(k+1(Ti )∩�−k0/−k−2) fundamental sets which
are �−k0/−k−1-translates of Fk,R.

On the other hand, we claim that ˜Zk(Ti )R hits at least polynomially fundamental
sets which are �−k0/−k−1-translates of Fk,R. To show this, we need to divide into two
cases: when k = k0 or k ≥ k0+1.When k = k0, this follows immediately from (9.25)
and the definition of k0(Ti ) (9.24). It remains to prove the claim for k ≥ k0 + 1.
In this case, if γ−k0/−k−1 ∈ k(Ti ) ∩ �−k0/−k−1 with H(γ−k0/−k−1) ≤ Ti , then
λk(γ−k0/−k−1Fk,R) is contained in a | · |-ball of radius � T k

i centered at 0 by Lemma
9.8 (applied with k replaced by k −1). Thus γ−k0/−k−1Fk,R∩˜Zk(T k

i )R �= ∅. So (9.26)
yields the claim with Ti replaced by T k

i .
By choice of ˜Z(k +1, Ti ) and ˜Zk(Ti ), we have that pk+1,k(˜Z(k +1, T )) = ˜Zk(T );

see the end of Sect. 9.3 (or right above Sect. 9.4). Thus pk+1,k(˜Z(k + 1, T )R) =
˜Zk(T )R. Hence the previous two paragraphs imply that #(k+1(Ti ) ∩ �−k0/−k−2) is
at least polynomial in Ti . Hence we are done. ��

10 Normality of the Q-stabilizer: Part 1

Let N be the connected algebraic monodromy group of the admissible VMHS
(VZ, W•,F•) on S. Then N � P by Theorem 3.4.

The goal of this section is to prove the following normality result.

Proposition 10.1 HZZar � N.

123



The Ax–Schanuel conjecture for variations…

10.1 Family associated withZ

Let H be the component of the Hilbert scheme of S × D∨ which contains [ZZar], the
point representing ZZar. Then H is proper. Consider the (modified) universal family

B = {(x, m̃, [B]) ∈ (S × D) × H : (x, m̃) ∈ B}.

The projection

ψ : B → S × D (10.1)

is a proper map since H is proper.
Define

Z = {(˜δ, [B]) ∈ (� × H) ∩ B : dim
˜δ(� ∩ B) ≥ dimZ}.

Then Z is a closed complex analytic subset of B. So ψ(Z) is closed complex analytic
in S × D as ψ is proper. Note that ψ(Z) ⊆ �.

Let us summarize the notations in the following diagram.

B

ψ

Z⊇

ψ |Z

S × D �⊇
uS

D
u

S
[�]

�P\D

Recall that the arithmetic group �P acts on S ×D by its action on the second factor.
We claim that �Pψ(Z) = ψ(Z). Indeed, this action of �P on S ×D induces an action
of �P on B by

γ (x, m̃, [B]) = (x, γ m̃, [γB]). (10.2)

Thus �P� = � implies �P Z = Z. But ψ is �P -invariant. So �Pψ(Z) = ψ(Z).
As the map uS : � → S is �P -invariant (for the trivial action of �P on S), we have

that T := uS(ψ(Z)) is closed complex analytic in S.

Proposition 10.2 T is an algebraic subvariety of S.

Proof By definable Chow ([31, Thm. 4.5] or [27, Thm. 2.2]), it suffices to prove that
T is definable in Ran,exp. In the rest of the proof, when we say “definable” we mean
definable in Ran,exp.

Let FR and F = r−1(FR) be as in Theorem 9.2.
Note that uS is the restriction of the natural projection pS : S × D → S to �. So

T = uS(ψ(Z)) = pS(ψ(Z)) = pS(ψ(Z) ∩ (S × F)). Thus it suffices to prove that
ψ(Z) ∩ (S × F) is definable.
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Butψ(Z)∩(S×F) = ψ(Z∩(S×F×H)). So it suffices to prove that Z∩(S×F×H)

is definable.
By property (ii) of Theorem 9.2, the periodmap [�] is definable if we endow�P\D

with the definable structure given by u|F. So

� ∩ (S × F) = {(x, m̃) ∈ S × F : u(m̃) = [�](x)}

is a definable subset of S × D. So

(

(

� ∩ (S × F)
) × H

)

∩ B

is a definable subset of S × D × H. So

Z ∩ (S × F × H) = {(˜δ, [B])
∈

(

(

� ∩ (S × F)
) × H

)

∩ B : dim
˜δ(� ∩ (S × F) ∩ B) ≥ dimZ}

is definable. Hence we are done. ��

10.2 Monodromy

Proof of Proposition 10.1 Recall that �P Z = Z. So �P\Z is a complex analytic space.
The proper map ψ (10.1) induces

ψ : �P\Z → �P\ψ(Z) = uS(ψ(Z)) = T ,

which is surjective and proper.
We have Z = ψ(Z × [ZZar]) ⊆ ψ(Z). Applying uS to both sides, we get

uS(Z) ⊆ T .

Recall the assumption S = uS(Z)Zar. So taking the Zariski closures of both sides, we
get T = S by Proposition 10.2.

Let Z0 be an irreducible component of Z which contains Z × [ZZar]. By abuse of
notation, we use �P\Z0 to denote the image of Z0 under the map Z → �P\Z. Then
ψ(�P\Z0) = S because T = S is irreducible.

Thus ψ induces a map ψ∗ : π1(�P\Z0) → π1(S), and so a subgroup �0 of N (Q).
We have then �0Z0 = Z0. But Im(ψ∗) has finite index in π1(S) (since ψ is proper),
so �Zar

0 = N .
Next denote by θ : B ⊆ (S ×D)×H → H the restriction of the natural projection.

Let F = θ−1(θ(Z0)) = {(x, m̃, [B]) : [B] ∈ θ(Z0), (x, m̃) ∈ B}. Then F ⊆ B is
the family of algebraic varieties parametrized by θ(Z0) ⊆ H, with the fiber over each
[B] ∈ θ(Z0) being B. Then we have

�0F ⊆ F
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for the action of �P on B defined by (10.2). Thus every γ ∈ �0 sends a very general
fiber of F to a very general fiber of F.

Define

�F = {γ ∈ �P : γB ⊆ B, for all [B] ∈ θ(Z0)}.

Then for a very general [B] ∈ θ(Z0), we have

Stab�P (B) = �F. (10.3)

By construction of F, without loss of generality we may assume that ZZar is a very
general fiber of F. The conclusion of the last paragraph implies that any γ ∈ �0
sends ZZar to a very general fiber of F. By taking the stabilizers of the two fibers in
consideration, we get �F = γ�Fγ −1 for all γ ∈ �0. By taking the Zariski closures,
we get

(�Zar
F )◦ � N .

On the other hand (10.3) implies (�Zar
F )◦ = HZZar . Hence we are done. ��

11 Normality of the Q-stabilizer: Part 2

In this section, we finish the proof of the following proposition.

Proposition 11.1 HZZar � P.

For simplicity we write H for HZZar . By Theorem 3.4 and Proposition 10.1, we
have H � N � P .

Recall W−1 = Ru(P). Fix a suitable Levi decomposition P = W−1 � G. In order
to prove H � P , it suffices to establish the following two assertions.

(i) W−1 ∩ H is a normal subgroup of P;
(ii) H/(W−1 ∩ H), as a subgroup of G, acts trivially on W−1/(W−1 ∩ H).

Assume that (i) holds true. Then N/(W−1∩ N ) acts trivially on W−1/(W−1∩ N ) since
N � P , and H/(W−1 ∩ H) acts trivially on (W−1 ∩ N )/(W−1 ∩ H) since H � N .
But H/(W−1 ∩ H) is a subgroup of N/(W−1 ∩ N ). So part (ii) is established.

Now it remains to prove part (i). We will finish this in the rest of this section.
Recall the set � defined in (9.4)

� = {g ∈ P(R) : dim(g−1ZZar ∩ (S × F) ∩ �) = dimZ},
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where F is defined as follows; see Theorem 9.2.

D r DR � D0 × ∏

1≤k≤m(W−k/W−k−1)(R)

F = r−1(FR)

⊆

FR := F0 × ∏

1≤k≤m(−M, M)dim(W−k/W−(k+1))(R).

⊆

(11.1)

Recall p0 : (P,D) → (G,D0). Denote by �G := p0(�P ).
Let γ0 ∈ p0(�) ∩ �G ⊇ {γ0 ∈ �G : γ0F0 ∩ ˜Z0 �= ∅}, and let ˜Z |+

γ0F0
be a complex

analytic irreducible component of ˜Z |γ0F0 := ˜Z ∩ p−1
0 (γ0F0).

Write �−1 := W−1(Q)∩�P . The quotientD → D0 induces �−1\D → D0. Write
(�−1\D)|γ0F0 ⊆ �−1\D for the inverse image of γ0F0.

Lemma 11.2 For the map u : D → �−1\D, the set u(˜Z |+
γ0F0

) is closed in
(�−1\D)|γ0F0 in the usual topology.

Proof Fix a Levi decomposition P = W−1 � G.
Define the following set

�′ := {w ∈ W−1(R) :
(

(w−1, γ −1
0 )ZZar ∩ (S × F) ∩ �

)

= dimZ} ⊆ W−1(R).

Then �′ ∩ �P ⊇ {γ−1 ∈ �−1 : (γ−1, γ0)F ∩ ˜Z |+
γ0F0

�= ∅}, and (�′, γ −1
0 ) ⊆ �.

Denote by �−1,H := H(Q) ∩ �−1.
Denote by

λ : DR � D0 ×
∏

1≤k≤m

(W−k/W−k−1)(R) →
∏

1≤k≤m

(W−k/W−k−1)(R)

the natural projection. For each γ−1 ∈ �−1, write γ−k the image of γ−1 under the
quotient W−1 → W−k (with k ≤ m). We say that γ−1 has reduced multi-height
≤ (T1, . . . , Tm−1) if H(γ−k) ≤ Tk for each k ∈ {1, . . . , m−1}. Now if γ−1 ∈ �−1 has
reduced multi-height at most (T 1/

∏m
i=2 i , . . . , T 1/(m−1)m, T 1/m), then λ((γ−1, γ0)F)

is contained in a |·|-ball of radius� T by applying Lemma 9.8 iteratively (the constant
involved may depend on γ0).

Suppose that {γ−1 ∈ �−1 : (γ−1, γ0)F ∩ ˜Z |+
γ0F0

�= ∅} is not contained in a finite

union of �−1,H -cosets. Because ˜Z |+
γ0F0

is connected and
∏

1≤k≤m(W−k/W−k−1)(R)

is Euclidean, we get for free (when T � 1) that it contains ≥ T elements
γ−1 ∈ �−1 \ �−1,H with the following property: the reduced multi-height of γ−1

is ≤ (T 1/
∏m

i=2 i , . . . , T 1/(m−1)m, T 1/m) and H(γ−m) � T . Notice that each such γ−1
has height � T . Hence by Pila–Wilkie, there exist constants c, ε > 0 with the fol-
lowing property: for each T � 1, �′ contains a semi-algebraic block B ′ which is not
in any coset of (W−1 ∩ H)(R) and which contains ≥ cT ε elements in �−1 outside
�−1,H of height at most T . Recall our assumption that every positive diemensional
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semi-algebraic block in � is contained in a left coset of StabP(R)(ZZar). In partic-
ular, (B ′, γ −1

0 ) ⊆ (γ−1, γ
−1
0 ) · StabP(R)(ZZar) for some γ−1 ∈ B ′ ∩ �−1. Hence

(γ −1
−1 · (γ0B ′), 1) ⊆ StabP(R)(ZZar). So

(γ −1
−1 · (γ0B ′) ∩ �−1, 1) ⊆ StabP(R)(ZZar) ∩ � ⊆ H(Q).

By letting T → ∞ and varying B ′ accordingly, we see that this inclusion cannot hold
true because B ′ ⊆ W−1(R) is not contained in any coset of (W−1 ∩ H)(R).

Therefore {γ−1 ∈ �−1 : (γ−1, γ0)F∩ ˜Z |+
γ0F0

�= ∅} is contained in a finite union of
�−1,H -cosets. Hence we are done. ��

From now on we work with the usual topology. Now ˜Z |+
γ0F0

is an open subset

of ˜Z because γ0F0 is open in D0. In particular, there exists γ0 ∈ �G such that
dim ˜Z |+

γ0F0
= dim ˜Z . Let Y be the closure of u(˜Z |+

γ0F0
) in �−1\D. Then Lemma

11.2 yields Y ◦ ⊆ u(˜Z |+
γ0F0

) ⊆ Y , where Y ◦ is the interior of Y . Let ˜Z ′ be a complex

analytic irreducible component of u−1(Y ) which contains ˜Z |+
γ0F0

. Then ˜Z ′ ⊆ ˜Z and

dim ˜Z |+
γ0F0

≤ dim ˜Z ′ ≤ dim ˜Z . Therefore dim ˜Z ′ = dim ˜Z .

By analytic continuation, we then have (˜Z ′)Zar = ˜ZZar. Moreover, an irreducible
component of (S × ˜Z ′) ∩ �, which we denote by Z′, satisfies (Z′)Zar = ZZar.

Set

�′ := Im
(

π1(u(˜Z ′)) → π1(�−1\D) = �−1
) ⊆ �−1.

Then�′ stabilizes˜Z ′. So it also stabilizesZ′, and hence (�′)Zar(R) stabilizes (Z′)Zar =
ZZar. Thus (�′)Zar ⊆ H because H is the Q-stabilizer of ZZar.

By logarithmic Ax Theorem 7.2 and its remark, (˜Z ′)Zar = ˜ZZar is contained
in an N (R)+(W−1 ∩ N )(C)-orbit in D. Call this orbit DN . For each k ≥ 1,
let W−k,N := W−k ∩ N . Then the top row of (11.1) induces DN

r−→ DN ,R �
DN ,0 × ∏m

i=1(W−k,N /W−k−1,N )(R).
Denote by �−k,N := �P ∩ W−k,N , and by �−k/−k−1,N := �−k,N /�−k−1,N . Then

we have the following diagram

DN
r

u

DN ,R � DN ,0 × ∏m
i=1(W−k,N /W−k−1,N )(R)

uR

�−1,N \DN �−1,N \DN ,R � DN ,0 × ∏m
i=1 �−k/−k−1,N \(W−k,N /W−k−1,N )(R)

and ˜Z ′ ⊆ DN .
Since W−1 ∩ H � N (because W−1 ∩ H = Ru(H)), we can take the quotient

of DN ,R by (W−1 ∩ H)(R) and get a real manifold. Call this quotient q. Denote by
W−k,N/H := W−k,N /(W−k ∩ H), and by �−k/−k−1,N/H the image of �−k,N under
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the quotient W−k,N → W−k,N/H → W−k,N/H /W−k−1,N/H . Then the diagram above
expands to (notice ˜Z ′ ⊆ DN )

DN
u

r

�−1,N \DN

DN ,R � DN ,0 × ∏m
i=1(W−k,N /W−k−1,N )(R)

q

uR
�−1,N \DN ,R � DN ,0 × ∏m

i=1 �−k/−k−1,N \(W−k,N /W−k−1,N )(R)

[q]

q(DN ) � DN ,0 × ∏m
i=1(W−k,N/H /W−k−1,N/H )(R)

λN/H

DN ,0 × ∏m
i=1 �−k/−k−1,N/H \(W−k,N/H /W−k−1,N/H )(R)

[λN/H ]

∏m
i=1(W−k,N/H /W−k−1,N/H )(R)

uW ,R
∏m

i=1 �−k/−k−1,N/H \(W−k,N/H /W−k−1,N/H )(R).

Since �′ ⊆ H , we have that [λN/H ] ◦ [q] ◦ uR(r(˜Z ′)) is simply connected. But
λN/H ◦ q ◦ r(˜Z ′) is connected. So it is contained in a fundamental domain of uW ,R,
and hence is bounded. So λN/H ◦ q ◦ r(˜Z ′) is a point because ˜Z ′ is complex analytic.

Recall thatZ′ ⊆ � and ˜Z ′ is the projection ofZ′ toD. Thus the previous paragraph
implies that for z̃0 ∈ p0(˜Z ′) ⊆ D0, the fiber of (˜Z ′)Zar over z̃0 is contained in an
(W−1 ∩ H)(C)-orbit. Since H(R)(W−1 ∩ H)(C) stabilizes ˜ZZar = (˜Z ′)Zar, this fiber
is indeed an (W−1 ∩ H)(C)-orbit. Call this fiber ˜X ′. We may furthermore assume that
z̃0 is Hodge generic in D0.

As W−1 ∩ H is a Q-group, the set u(˜X ′) is closed in �\D under the usual topol-
ogy. It is a definable subset, and hence [�]−1(u(˜X ′)) is a definable complex analytic
subvariety of S; see Theorem 9.2. So [�]−1(u(˜X ′)) is algebraic by definable Chow.
Its connected algebraic monodromy group is W−1 ∩ H . Hence W−1 ∩ H is normal in
P by André Theorem 3.4.

12 End of the proof

In this section, we prove Theorem 8.2, which finishes the proof of Theorem 1.1.
Let Z as in Theorem 8.2. If dim HZZar = 0 then we are done by Proposition 9.1.

Thus we may assume dim HZZar > 0. For simplicity we write H := HZZar .
Proposition 11.1 says that H � P . Thus we can take the quotient D/H and obtain

D pH

u

D/H

u/H

S
[�]

[�/H ]
�P\D [pH ]

�P/H \(D/H)

. (12.1)

We can apply Proposition 9.1 to the new period map [�/H ] : S → �P/H \(D/H) and

Z/H := (idS, pH )(Z) ⊆ S ×�P/H \(D/H) (D/H).
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But H = HZZar is the Q-stabilizer ofZZar, so the Q-stabilizer ofZZar
/H must be 1. Thus

Proposition 9.1 implies

dimZZar
/H − dimZ/H ≥ dim pD/H (Z/H )ws, (12.2)

where pD/H : S × D/H → D/H is the natural projection.
Let Ru(H) be the unipotent radical of H . As H(R)+Ru(H)(C)ZZar = ZZar, we

have (for any s̃ ∈ ˜S)

dimZZar = dimZZar
/H + dim H(R)+Ru(H)(C)̃s (12.3)

and

dim pD(Z)ws = dim pD/H (Z/H )ws + dim H(R)+Ru(H)(C)̃s. (12.4)

By (12.2), (12.3) and (12.4), we then have

dimZZar − dimZ/H ≥ dim pD(Z)ws. (12.5)

So it remains to prove dimZ = dimZ/H . Hence it remains to prove that each fiber of

(idS, pH ) : S ×�P\D D → S ×�P/H \(D/H) (D/H)

is at most a countable set. This is true: Suppose (s1, x̃1) and (s2, x̃2) are in the same
fiber, then s1 = s2. But any point (s, x̃) ∈ S ×�P\D D satisfies [�](s) = u(̃x). So we
have u(̃x1) = u(̃x2), and hence x̃1 ∈ �P x̃2. So each fiber of the map (idS, pH ) above
is contained in a �P -orbit, and thus is at most a countable set.
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Appendix A: Basic knowledge onMumford–Tate domains

A.1: Some fundamental properties of Mumford–Tate domains

The goal of this subsection is to prove Proposition 2.6 and Corollary 2.8.
Let V be a finite-dimensionalQ-vector space, and letM be the classifying space of

Q-mixed Hodge structures constructed in Sect. 2.2. We have seen that M is a homo-
geneous space under PM(R)+WM−1 (C) for the Q-algebraic group PM constructed in
(2.3) and WM−1 = Ru(PM).

Let h ∈ M. Recall that the adjoint Hodge structure on Lie PM defined by h has
weight ≤ 0 by part (iii) of Proposition 2.3. The following lemma is a rephrase of [28,
Thm. 3.13].

Lemma A.1 The tangent space ThM can be canonically identified with

⊕

r<0, r+s≤0

(Lie PM
C

)r ,s =
⊕

r<0

(Lie PM
C

)r ,s .

With this lemma, we are ready to prove Proposition 2.6.

Proof of Proposition 2.6 Let D = P(R)+W−1(C)h be a Mumford–Tate domain con-
tained inM, where P = MT(h) and W−1 = Ru(P).

BecauseD andM are homogeneous spaces, to prove thatD is a complex subman-
ifold ofM it suffices to prove that ThD is a complex subspace of ThM.

Lie P is a sub-Hodge structure of Lie PM for the adjoint Hodge structure on
Lie PM induced by h. So F0 Lie PC = F0 Lie PM

C
∩ Lie PC. By Lemma A.1, the

complex structure on ThM is given by

Lie PM
C

/F0 Lie PM
C

=
⊕

r<0

(Lie PM
C

)r ,s .

Thus ThD = Lie PC/
(

F0 Lie PM
C

∩ Lie PC

) = Lie PC/F0 Lie PC is a complex sub-
space of ThM. Thuswe can conclude thatD is a complex submanifold ofM.Moreover
we have shown that

ThD =
⊕

r<0

(Lie PC)r ,s . (A.1)

The proof for weak Mumford–Tate domains is the similar. The only new input is
to prove that Lie N is a sub-Hodge structure of Lie PM for the normal subgroup N of
P := MT(h) from Definition 2.5.(2). This is true because the adjoint action of P on
Lie P leaves Lie N stable (since N � P), and the adjoint action Ad : P → GL(Lie P)

is precisely the restriction of AdM : PM → GL(Lie PM) restricted to P (which
leaves Lie P stable). ��

Next we turn to the Mumford–Tate group MT(h). For m, n ∈ Z≥0, denote by
T m,n V := V ⊗m ⊗ (V ∨)⊗n . Then h induces a Q-mixed Hodge structure on T m,n V ,
whose weight filtration we denote by W• and Hodge filtration we denote by F•.
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The elements of (T m,n VC)0,0 ∩ T m,n V = F0(T m,n VC)∩ W0(T m,n V ), with m and
n running over all non-negative integers, are called the Hodge tensors for h. Denote
by Hdgh the set of all Hodge tensors for h.

The following result is proved by André [2, Lem. 2.(a)], with pure case by Deligne.

Lemma A.2 We have

(i) Any element in some T m,n V fixed by MT(h)(Q) is a Hodge tensor for h;
(ii) MT(h) = ZGL(V )(Hdgh).

By dimension reasons, Lemma A.2.(ii) has the following consequence.

Corollary A.3 There exists a finite set I ⊆ Hdgh such that MT(h) = ZGL(V )(I).

Now we are ready to characterize Mumford–Tate domains contained in M as
irreducible components of Hodge loci.

Definition A.4 For each h ∈ M, the Hodge locus at h is defined as

HL(h) = {h′ ∈ M : Hdgh ⊆ Hdgh′ }. (A.2)

Lemma A.5 We have

(i) HL(h) = {h′ ∈ M : MT(h′) < MT(h)}.
(ii) HL(h) = {h′ ∈ M : I ⊆ Hdgh′ } where I is the finite set from Corollary A.3.

Proof (i) The inclusion⊆ is clear by Lemma A.2.(ii). Conversely suppose MT(h′) <

MT(h). Then any t ∈ Hdgh is fixed by MT(h) by Lemma A.2.(ii), and so is also
fixed by MT(h′), and thus is a Hodge tensor for h′ by Lemma A.2.(i). Therefore
Hdgh ⊆ Hdgh′ .

(ii) We first prove the inclusion ⊆. Let h′ ∈ HL(h). By Corollary A.3 and (i), each
t ∈ I is fixed byMT(h′)(Q), and hence is a Hodge tensor for h′ by LemmaA.2.(i).
So I ⊆ Hdgh′ . This proves the desired inclusion.
Conversely suppose that h′ ∈ M satisfies J ⊆ Hdgh′ . Then ZGL(V )(Hdgh′) ⊆
ZGL(V )(I). Thus MT(h′) < MT(h) by Lemma A.2.(ii) and Corollary A.3. So
h′ ∈ HL(h) by part (i) of the current lemma. This proves the inclusion ⊇. Now
we are done.

��
By Lemma A.5.(ii), HL(h) is the complex analytic subvariety of M which

parametrizes Q-mixed Hodge structures (satisfying the properties (1)-(3) in Sect. 2.2)
together with the Hodge tensors in the finite set I.

Proposition A.6 Let h ∈ M, with P = MT(h) and W−1 = Ru(P). Then
P(R)+W−1(C)h is the complex analytic irreducible component of HL(h) passing
through h.

Proof The proof is simply [10, Prop. 17.1.2] adapted to the mixed case. For complete-
ness we include it here.
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Denote by D = P(R)+W−1(C)h. Each h′ ∈ D equals g · h for some g ∈
P(R)+W−1(C), and hence the homomorphism h′ : SC → GL(VC) factors through
g PCg−1 = PC. Thus MT(h′) < P . So Lemma A.5.(i) implies h′ ∈ HL(h) for each
h′ ∈ D. Therefore

D ⊆ HL(h). (A.3)

Next we study Th(HL(h)) ⊆ ThM = ⊕

r<0(Lie PM
C

)r ,s ; see Lemma A.1 for the last
equality. By (A.3) and (A.1), to prove the proposition it suffices to prove

Th(HL(h)) ⊆
⊕

r<0

(Lie PC)r ,s . (A.4)

Indeed the action of PM on T m,n V induces an action of ThM on T m,n V in the
following way: ξ · t = d

du (euξ · t)|u=0, for ξ ∈ ThM = ⊕

r<0(Lie PM
C

)r ,s and
t ∈ T m,n V . Then for any vector ξ ∈ ThM = ⊕

r<0(Lie PM
C

)r ,s , we have

ξ ∈ Th(HL(h)) ⇔ ξ · t ∈ Hdgh for each t ∈ Hdgh . (A.5)

Now take ξ ∈ Th(HL(h)). Suppose t ∈ T := T m,n V is a Hodge tensor, namely
t ∈ F0TC ∩ W0T ⊆ T 0,0

C
.4 Then (A.5) implies ξ · t ∈ F0TC ∩ W0T ⊆ T 0,0

C
. On the

other hand ξ ∈ ⊕

r<0(Lie PM
C

)r ,s . Write ξ = ∑

r<0 ξ r ,s . Then ξ · t = ∑

r<0 ξ r ,s · t ∈
⊕

r<0 T r ,s
C

. Thus ξ · t ∈ T 0,0 ∩ ⊕

r<0 T r ,s
C

= 0. In summary

ξ ∈ Th(HL(h)) ⇒ ξ · t = 0 for each t ∈ Hdgh . (A.6)

But part (ii) of LemmaA.2 implies that {ξ ∈ Lie PM
C

: ξ · t = 0 for each t ∈ Hdgh} ⊆
Lie PC with P = MT(h). Thus Th(HL(h)) ⊆ Lie PC. So

Th(HL(h)) ⊆ Lie PC ∩ ⊕r>0(Lie PM
C

)r ,s = ⊕r>0(Lie PC)r ,s .

This is precisely (A.4). Hence we are done. ��
Now by Proposition A.6 and Lemma A.5.(ii), the Mumford–Tate domains con-

tained in M are precisely the complex irreducible components of the moduli spaces
parametrizingQ-mixedHodge structures (satisfying the properties (1)-(3) in Sect. 2.2)
together with a finite number of Hodge tensors.

Proof of Lemma 2.7 This is an immediate consequence of the moduli interpretation of
Mumford–Tate domains above. ��

Another application is as follows.

Corollary A.7 There are at most countably many Mumford–Tate domains in M.

4 Here the notation T 0,0
C

means the (0, 0)-constituent for the bi-grading of T given by Proposition 2.2.
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Proof We have the moduli interpretation of Mumford–Tate domains above. On the
other hand, every complex analytic variety has at most countably many irreducible
components, and by definition there are countably many Hodge tensors. Hence there
are at most countably many Mumford–Tate domains contained inM. ��

This allows to prove a stronger version of Corollary 2.8.

Lemma A.8 LetZ be a complex analytic irreducible subvariety ofM. Let P = MT(Z)

be the generic Mumford–Tate group of Z. Then Zsp, the smallest Mumford–Tate
domain which contains Z, is precisely P(R)+W−1(C)h for some h ∈ Z, where
W−1 = Ru(P).

Proof Denote byZo the set of Hodge generic points inZ. ThenZo is the complement
of the union of countably many proper complex analytic irreducible subvarieties of
Z. In particular, Zo is irreducible since Z is.

It is clearly true that Zo ⊆ ⋃

h∈Zo P(R)+W−1(C)h. Each member in the union
is by definition a Mumford–Tate domain, and hence the union is at most a countable
union by Corollary A.7. Moreover two P(R)+W−1(C)-orbits either coincide or are
disjoint. So Zo is contained in a countable disjoint union of some P(R)+W−1(C)-
orbits. But Zo is irreducible, so it is contained some member in the union. Thus
Zo ⊆ P(R)+W−1(C)h for some h ∈ Zo. But then Z ⊆ P(R)+W−1(C)h. Hence we
are done. ��

Now we are ready to prove Lemma 2.10.

Proof of Lemma 2.10 By assumption D = P(R)+W−1(C)h. From now on we fix
h′ ∈ D Hodge generic, namely MT(h′) = MT(D).

By Lemma A.8 we have

P(R)+W−1(C)h′ = D ⊆ MT(D)(R)+Ru(MT(D))(C)h′. (A.7)

Let us prove MT(D) < P . Indeed, each point h′ ∈ D is of the form g · h for some
g ∈ P(R)+W−1(C). The homomorphism h′ = g · h : SC → GL(VC) factors through
gh(SC)g−1 ⊆ g PCg−1 = PC. Hence MT(h′) < P for all h′ ∈ D. So MT(D) < P .

Next we show that MT(D) is normal in P . Indeed for any g ∈ P(Q), we have

MT(D) ⊇ MT(g · h′) = gMT(h′)g−1 = gMT(D)g−1.

By comparing dimensions, we have MT(D) = gMT(D)g−1. By letting g run over
elements in P(Q), we get MT(D) � P . In particular Ru(MT(D)) = W−1 ∩ MT(D).

This implies

MT(D)(R)+Ru(MT(D))(C)h′ ⊆ P(R)+W−1(C)h′. (A.8)

Thus D = MT(h′)(R)+Ru(MT(h′))(C)h′ by (A.7) and (A.8). So D is a Mumford–
Tate domain. ��
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Appendix B: Underlying group

Let D be a Mumford–Tate domain in some classifying space M with P = MT(D).
Each h ∈ D defines an adjoint Hodge structure on Lie P . Write W• for the weight
filtration. By property (iii) of Proposition 2.3 W• does not depend on the choice of
h ∈ D and satisfies W0(Lie P) = Lie P and W−1 = Ru(P).

The weight filtration 0 = W−m−1(Lie P) ⊆ W−m(Lie P) ⊆ · · · ⊆ W−1(Lie P)

defines a sequence of connected subgroups

0 = W−(m+1) ⊆ W−m ⊆ · · · ⊆ W−1 (B.1)

of P . Each W−k , k ∈ {1, . . . , m}, is a normal unipotent subgroup of P .
Write as before G = P/W−1 the reductive part of P . We wish to reconstruct P

from G and the W−k’s.
Let us start with the unipotent radical W−1.

Lemma B.1 (a) For each k ∈ {1, . . . , m}, W−k/W−(k+1) is a vector group.
(b) There is an isomorphism of Q-algebraic varieties

W−1 → (W−1/W−2) × · · · × (W−(m−1)/W−m) × W−m

w �→ (w1, · · · , wm−1, wm) .
(B.2)

Proof We first prove (a). For each k ∈ {1, . . . , m}, the algebraic group W−k/W−(k+1)
is unipotent since W−k is unipotent. On the other hand [Lie W−k,Lie W−k] ⊆ W−2k

by reason of weight, and W−2k ⊆ W−(k+1) as k ≥ 1. Thus Lie W−k/W−(k+1) is a
commutative Lie algebra, hence W−k/W−(k+1) is an abelian algebraic group. Finally
the algebraic group W−k/W−(k+1) is a vector group as it is abelian and unipotent.

We now turn to the description of the isomorphism (B.2). As W−1 is unipotent, the
exponential map exp : Lie W−1 → W−1 is an isomorphism of Q-algebraic varieties.

Fix an isomorphism of Q-vector spaces Lie W−1 � ⊕m
j=1 Lie W− j/W−( j+1). As

part (a) provides a canonical identificationofQ-algebraic varietiesLie W−k/W−(k+1) =
W−k/W−(k+1) between a vector group and its Lie algebra, we get the desired the iso-
morphism (B.2) by

W−1
exp←−−∼ Lie W−1 =

m
⊕

j=1

Lie(W− j/W−( j+1)) =
m

∏

j=1

W− j/W−( j+1).

��
Notice that this isomorphism (B.2) is not canonical. In this paper, we fix such an

isomorphism once and for all.
Next we give the formula for the group law on W−1 under this identification given

by (B.2).

Definition B.2 For k ∈ {1, · · · , m} we define the k-truncation wk ∈ W−1/W−k−1 �
∏k

j=1 W− j/W−( j+1) of an elementw ∈ W−1 as follows. Ifw = (w1, · · · , wm−1, wm)

under the identification (B.2), then wk = (w1, · · · , wk).
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Lemma B.3 For each k ≥ 2, there exists a polynomial map

calbk : W−1/W−k−1 × W−1/W−k−1 → W−k/W−k−1

of degree at most k − 1 and constant term 0 such that for any w,w′ ∈ W−1, their
product is given under the identification (B.2) by

w · w′ = (w1 + w′
1, w2 + w′

2 + calb2(w1,w′
1), . . . ,

wm + w′
m + calbm(wm−1,w′

m−1)). (B.3)

Proof Let w = (w1, . . . , wm) and w′ = (w′
1, . . . , w

′
m) under (B.2). The Baker–

Campbell–Hausdorff formula gives:

w · w′ = exp

(

(w1, . . . , wm) + (w′
1, . . . , w

′
m) + 1

2
[(w1, . . . , wm), (w′

1, . . . , w
′
m)] + . . .

)

, (B.4)

where all operations in the exponential are taken in Lie W−1, and the sum is finite as
Lie W−1 is nilpotent. Noticing that

[W−k/W−(k+1), W−k′/W−(k′+1)] ⊆ W−(k+k′)/W−(k+k′+1),

one can rewrite (B.4) as

w · w′ = exp
(

(w1 + w′
1, w2 + w′

2 + calb2(w1,w′
1), . . . , wm

+w′
m + calbm(wm−1,w′

m−1))
)

,

with polynomials calbk for each k ≥ 2 as required by the lemma. ��
The next lemma explains how G = P/W−1 acts on W−1 = Ru(P) under the

identification (B.2).

Lemma B.4 For each k ≥ 1, W−k/W−(k+1) is a G-module. Moreover this G-module
structure is induced by the action of G on W−1.

As a consequence, for each g0 ∈ G and w = (w1, . . . , wm) ∈ W−1 under (B.2),
we have

g0 · w = (g0w1, . . . , g0wm). (B.5)

Proof As GrW•
0 (Lie P) = Lie G and W−k(Lie P) = Lie W−k for each k ≥ 1, we have

[Lie G,Lie W−k] ⊆ Lie W−k . Hence the action of G on W−1 preserves W−k for each
k ≥ 1, and hence furthermore induces an action on W−k/W−(k+1) which is aQ-vector
space. This concludes the lemma. ��

We are now ready to state the result to reconstruct P from G and the W−k’s. First
let us fix a Levi decomposition P = W−1 � G.
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Proposition B.5 The fixed Levi decomposition P = W−1 � G and the fixed isomor-
phism (B.2) together induce an isomorphism as algebraic varieties defined over Q

P � G × (W−1/W−2) × · · · (W−(m−1)/W−m) × W−m . (B.6)

The group law on the right hand side of (B.6) is given as follows. Let
(g0, w1, . . . , wm) and (g′

0, w
′
1, . . . , w

′
m) be two elements in P under the identification

(B.6). Denote by w = (w1, . . . , wm) and w′ = (w′
1, . . . , w

′
m). Then

(g0,w) · (g′
0,w

′) = (g0g′
0, w1 + g0w

′
1, w2 + g0w

′
2 + calb2(w1, g0w

′
1), . . . , wm

+g0w
′
m + calbm(wm−1, g0w′

m−1)) (B.7)

where calb2, . . . , calbm are the Q-polynomials from Lemma B.3, wk (resp. w′
k) is the

k-th truncation as in Lemma B.3, and g0w′
k = (g0w′

1, . . . , g0w′
k) for each k ≥ 1.

Proof (B.6) follows directly from the fixed Levi decomposition and (B.2).
To prove (B.7), first note that (g0,w) = (1,w)·(g0, 0) for P = W−1�G. Similarly

(g′
0,w

′) = (1,w′) · (g′
0, 0). So

(g0,w) · (g′
0,w

′) = (1,w) · (

(g0, 0) · (1,w′)
) · (g′

0, 0)

= (1,w) · (g0, g0 · w′) · (g′
0, 0)

= (1,w) · (

(1, g0 · w′) · (g0, 0)
) · (g′

0, 0)

= (1, w1, . . . , wm) · (1, g0w
′
1, . . . , g0w

′
m) · (g0, 0) · (g′

0, 0) by (B.5)

= (1, w1 + g0w
′
1, w2 + g0w

′
2 + calb2(w1, g0w

′
1), . . . ,

wm + g0w
′
m + calbm(wm1 , g0w′

m−1)) · (g0g′
0, 0) by (B.3)

= (g0g′
0, w1 + g0w

′
1, w2 + g0w

′
2 + calb2(w1, g0w

′
1), . . . ,

wm + g0w
′
m + calbm(wm1 , g0w′

m−1)).

��
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