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Adiabatic Ground States in Non-smooth
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Abstract. Ground states are a well-known class of Hadamard states in
smooth spacetimes. In this paper, we show that the ground state of the
Klein–Gordon field in a non-smooth ultrastatic spacetime is an adiabatic
state. The order of the state depends linearly on the regularity of the
metric. We obtain the result by combining a propagation of singulari-
ties result for non-smooth pseudodifferential operators, properties of the
causal propagator, and eigenvalue asymptotics for elliptic operators of
low regularity.

1. Introduction

In the smooth setting, the analysis of the singular structure of physical quan-
tum states goes back to Fulling, Narcowich and Wald [10]. Later on, Kay and
Wald further developed the notion of Hadamard states in globally hyperbolic
spacetimes possessing a one-parameter group of isometries with a bifurcate
Killing horizon [19]. Then in 1996, Radzikowski introduced a characterisation
of the singularity structure of these states in terms of the wavefront set [23].
This result was key to using microlocal tools for the construction of quantum
states as done by Junker [16], Junker and one of the authors [15], and Gérard
and Wrochna [11].

The analysis of quantum states in non-smooth spacetimes has two main
motivations. First, there are several models of physical phenomena that require
spacetime metrics with finite regularity. These include models of gravitational
collapse [1], astrophysical objects [22] and general relativistic fluids [3]. Second,
the well-posedness of Einstein’s equations, viewed as a system of hyperbolic
PDE requires spaces with finite regularity [20].
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In this paper, we focus on scalar fields φ that satisfy the Klein–Gordon
equation

(�g + m2)φ := gμν∇μ∇νφ + m2φ = 0 (1.1)
on a manifold M = R × Σ where Σ is a compact Cauchy hypersurface, gμν is
the inverse metric tensor of an ultrastatic metric, ∇μ is the covariant derivative
and m2 is a positive real number.

In a non-smooth spacetime the quantisation requires in a first instance
that the classical system be well-posed. Several results in this direction have
been obtained for different degrees of regularity in the time and space variables
[5]. Moreover, even when one has classical well-posedness, the quantisation
procedure is a significant further challenge. However, some progress has been
made for certain degrees of spacetime regularity. For example: Dereziński and
Siemssen showed the existence of classical and nonclassical propagators under
weak regularity assumptions [6,7]. Hörmann, Spreitzer, Vickers and one of
the authors gave the construction of quantisation functors that satisfy the
Haag-Kastler axioms in the C1,1 case [14]. In this paper we prove that the
ground state of the quantum linear scalar field is an adiabatic state and that
the adiabatic order is a linear function with respect to the metric regularity
(Theorem 4.17).

Outline of the paper. In Sect. 2, we show the algebraic quantisation of fields
satisfying Eq.(1.1) in spacetimes of finite regularity. We give details about the
construction of the algebra of observables and precise definitions of the states
considered. In Sect. 3, we state the main definitions and theorems regarding
non-smooth pseudodifferential operators. In Sect. 4, we focus on ultra-static
spacetimes and show that the ground state is an adiabatic state.

2. Quantum Field Theory in Non-smooth Spacetimes

The quantisation of the linear scalar field is a procedure to change the math-
ematical structure of the theory. On the one hand in the classical theory, the
states are represented by vectors in a symplectic space, (V,Ξ), and the clas-
sical observables are defined as smooth functionals on (V,Ξ). On the other
hand, in the framework of algebraic quantisation, the quantum observables of
the theory are represented as the elements of a unique up to ∗-isomorphism
C∗-algebra which satisfies the canonical commutation relations (CCR) and
the quantum states, ω, are given by certain positive linear functionals on the
C∗-algebra [2,30]. Below we give details of the quantisation procedure.

2.1. Observables

For a classical system with equations of motion given by Eq. (1.1) in a globally
hyperbolic spacetime (M, g) of regularity C1,1, it was shown that the space
(V,Ξ) is given by V = H1

comp(M)/ker G and Ξ([f ], [g]) = ([f ], G[g])L2
R
(M)

where H1
comp(M) denotes compactly supported functions in the Sobolev space

H1(M) and ker G is the kernel of the causal propagator [14]. In fact, this
symplectic space is symplectically isomorphic to the classical phase space (Γ, σ)
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given by the space Γ := H2
comp(Σ) ⊕ H1

comp(Σ) of real-valued initial data with
compact support and the symplectic bilinear form

σ(F1, F2) =
∫

Σ

[q1p2 − q2p1]dv

with Fi := (qi, pi) ∈ Γ, i = 1, 2 and dv the induced volume form on Σ.
Moreover, to the symplectic space (V,Ξ) one can associate a C∗-algebra

A = A[V,Ξ] that satisfies the CCR, known as the Weyl algebra. It is generated
by the elements W ([f ]), [f ] ∈ V , that satisfy

W ([f ])∗ = W ([f ])−1 = W ([−f ])

W ([f1])W ([f2]) = e− i
2Ξ([f1],[f2])W ([f1 + f2])

for all [f ], [f1], [f2] ∈ V (see e.g. [2,14]).
As (V,Ξ) and (Γ, σ) are isomorphic as symplectic spaces, one can con-

struct a C∗-algebra, B = B[Γ, σ], using the map β : A → B given by β (W ([f ])) :=
W ((ρt

0Gf, ρt
1Gf)) where ρt

0φ := φ|Σt
, ρt

1φ := ∂φ
∂t |Σt

. The algebra B is ∗-
isomorphic to the Weyl algebra A described above. Each of these algebras
represents the quantum observables of the theory.

Moreover, one can localise this construction to suitable subsets of M
following the approach of local quantum physics. In fact, one can do these local
constructions in a functorial way and the functors satisfy the Haag-Kastler
axioms (see [14, Theorem 6.12]).

2.2. States

The quantum states as defined above need to be further restricted in order to
be physically relevant. A candidate for physical quantum states, ω, is quasifree
states that satisfy the microlocal spectrum condition.

To be precise, given a real scalar product μ : Γ × Γ → R satisfying

|σ(F1, F2)|2 ≤ μ(F1, F1)μ(F2, F2) (2.1)

for all F1, F2 ∈ Γ, there exists a quasifree state ωμ acting on the algebra B as-
sociated with μ given by ωμ(W (F )) = e− 1

2μ(F,F ). Moreover, one can determine
the (“symplectically smeared”) two-point function of ωμ by

λ(F1, F2) = μ(F1, F2) +
i

2
σ(F1, F2) (2.2)

for F1, F2 ∈ Γ. The Wightman two-point function ω
(2)
μ associated with the

state ωμ, is given by

ω(2)
μ (f1, f2) = λ

((
ρ0Gf1

ρ1Gf1

)
,

(
ρ0Gf2

ρ1Gf2

))
(2.3)

for f1, f2 ∈ H1
comp(M). By restricting the two point function ω

(2)
μ to D(M) ⊗

D(M) one obtains a bidistribution in M × M .



2932 Y. Sanchez Sanchez and E. Schrohe Ann. Henri Poincaré

To define the microlocal spectrum condition, we use the inverse of the
spacetime metric g−1 := (gμν)n

μ,ν=0 in order to introduce the sets

C =
{
(x̃, ξ̃, ỹ, η̃)∈T ∗(M×M)\0; gμν(x̃)ξ̃μξ̃ν=gμν(ỹ)η̃μη̃ν=0, (x̃, ξ̃) ∼ (ỹ, η̃)

}
C+ =

{
(x̃, ξ̃, ỹ, η̃) ∈ C; ξ̃0 ≥ 0, η̃0 ≥ 0

}
, (2.4)

where (x̃, ξ̃) ∼ (ỹ, η̃) means that ξ̃, η̃ are cotangent to the null geodesic γ at x̃
resp. ỹ and parallel transports of each other along γ.

Using the above sets one can define the microlocal spectrum condition
which goes back to Radzikowski [23]:

Definition 2.1. A quasifree state ωH on the algebra of observables satisfies the
microlocal spectrum condition if its two point function ω

(2)
H is a distribution

in D′(M × M) and satisfies the following wavefront set condition

WF ′(ω(2)
H ) = C+,

where WF ′(ω(2)
H ) := {(x̃, η̃; ỹ,−η̃) ∈ T ∗(M × M); (x̃, η̃; ỹ, η̃) ∈ WF (ω2 H)}.

These states are called Hadamard states and include ground states in
smooth spacetimes [9–11,16,24].

A larger class of states called adiabatic states of order N characterised
in terms of their Sobolev-wavefront set has been obtained by Junker and one
of the authors [15]. These states are the natural generalisation of Hadamard
states suitable for spacetimes with limited regularity.

Definition 2.2. A quasifree state ωN on the algebra of observables is called an
adiabatic state of order N ∈ R if its two-point function ω

(2)
N is a bidistribution

that satisfies the following Hs-wavefront set condition for all s ≤ N + 3
2

WF ′s(ω(2)
N ) ⊂ C+,

where WF s is a refinement of the notion of the wavefront set in terms
of Sobolev spaces. To be precise, a distribution u is microlocally in Hs at
(x0, ξ0) ∈ T ∗M\0 if there exist a conic neighbourhood Γ of ξ0 and a smooth
function ϕ ∈ D(M) with ϕ(x0) �= 0 such that∫

Γ

〈ξ〉2s|F(ϕu)(ξ)|2dnξ < ∞.

Otherwise we say that (x0, ξ0) lies in the s-wave front set WF s(u).
If u is microlocally in Hs in an open conic subset Γ ⊂ T ∗M\0 we write

u ∈ Hs
mcl(Γ).

3. Pseudodifferential Operators with Non-smooth Symbols

3.1. Symbol Classes

Let {ψj ; j = 0, 1, . . .} be a Littlewood-Paley partition of unity on R
n, i.e. a

partition of unity 1 =
∑∞

j=0 ψj , where ψ0 ≡ 1 for |ξ| ≤ 1 and ψ0 ≡ 0 for |ξ| ≥ 2
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and ψj(ξ) = ψ0(2−jξ) − ψ0(21−jξ). The support of ψj , j ≥ 1, then lies in an
annulus around the origin of interior radius 2j−1 and exterior radius 21+j .

Definition 3.1. (a) For τ ∈ (0,∞), the Hölder space Cτ (Rn) is the set of all
functions f with

‖f‖Cτ :=
∑

|α|≤[τ ]

‖∂α
x f‖L∞(Rn) +

∑
|α|=[τ ]

sup
x�=y

|∂α
x f(x) − ∂α

x f(y)|
|x − y|τ−[τ ]

< ∞. (3.1)

(b) For τ ∈ R the Zygmund space Cτ
∗ (Rn) consists of all functions f with

‖f‖Cτ∗ = sup
j

2jτ‖ψj(D)f‖L∞ < ∞. (3.2)

Here ψj(D) is the Fourier multiplier with symbol ψj , i.e. ψj(D)u =
F−1ψjFu, where (Fu)(ξ) = (2π)−n/2

∫
e−ixξu(x) dnx is the Fourier trans-

form.
We have the following relations Cτ = Cτ

∗ if τ /∈ Z and Cτ ⊂ Cτ
∗ if τ ∈ N.

We next introduce symbol classes of finite Hölder or Zygmund regularity,
following Taylor [27]. We use the notation 〈ξ〉 := (1 + |ξ|2) 1

2 , ξ ∈ R
n.

Definition 3.2. Let p(x, ξ) : R2n → R be a continuous function, smooth with
respect to ξ.
(a) Let 0 ≤ δ < 1. A symbol p(x, ξ) belongs to Cτ

∗ Sm
1,δ if for all α

‖Dα
ξ p(x, ξ)‖Cτ∗ ≤ Cα〈ξ〉m−|α|+τδ and |Dα

ξ p(x, ξ)| ≤ Cα〈ξ〉m−|α|.

(b) We obtain the symbol class CτSm
1,δ for τ > 0 by requiring that for all α

‖Dα
ξ p(x, ξ)‖Cs ≤ Cα〈ξ〉m−|α|+sδ, 0 ≤ s ≤ τ, and |Dα

ξ p(x, ξ)| ≤ Cα〈ξ〉m−|α|.

(c) A symbol p(x, ξ) is in CτSm
cl provided p(x, ξ) ∈ CτSm

1,0 and p(x, ξ) has a
classical expansion

p(x, ξ) ∼
∑
j≥0

pm−j(x, ξ)

in terms pm−j homogeneous of degree m − j in ξ for |ξ| ≥ 1, in the sense
that the difference between p(x, ξ) and the sum over 0 ≤ j < N belongs
to CτSm−N

1,0 .

3.2. Characteristic Set and Pseudodifferential Operators

Let p ∈ CτSm
1,δ, τ > 0, with δ < 1. Suppose that there is a conic neigh-

bourhood Γ of (x0, ξ0) and constants c, C > 0 such that |p(x, ξ)| ≥ c|ξ|m for
(x, ξ) ∈ Γ, |ξ| ≥ C. Then (x0, ξ0) is called non-characteristic. If p is classical
and has the homogeneous principal symbol pm, the condition is equivalent to
pm(x0, ξ0) �= 0. The complement of the set of non-characteristic points is the
set of characteristic points denoted by Char(p).

The pseudodifferential operator p(x,Dx) with the symbol p(x, ξ) ∈ Cτ

Sm
1,δ is given by

p(x,Dx)u = (2π)−n/2

∫
Rn

eix·ξp(x, ξ)(Fu)(ξ)dnξ, u ∈ S(Rn). (3.3)
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It extends to continuous maps

p(x,Dx) : Hs+m(Rn) → Hs(Rn), −τ(1 − δ) < s < τ. (3.4)

3.3. Symbol Smoothing

Given p(x, ξ) ∈ CτSm
1,δ and γ ∈ (δ, 1) let

p#(x, ξ) =
∞∑

j=0

Jεj
p(x, ξ)ψj(ξ). (3.5)

Here Jε is the smoothing operator given by (Jεf)(x) = (φ(εD)f)(x) with
φ ∈ C∞

0 (Rn), φ(ξ) = 1 for |ξ| ≤ 1, and we take εj = 2−jγ .
Letting pb(x, ξ) = p(x, ξ) − p#(x, ξ) we obtain the decomposition

p(x, ξ) = p#(x, ξ) + pb(x, ξ), (3.6)

where p#(x, ξ) ∈ Sm
1,γ and pb(x, ξ) ∈ CτS

m−τ(γ−δ)
1,γ .

If p ∈ CτSm
1,0, then we additionally have pb ∈ Cτ−tSm−tγ

1,0 with τ − t > 0
by [27, Proposition 1.3.B]. Furthermore, we have better estimates, see [27,
Proposition 1.3.D]:

Dβ
xp#(x, ξ) ∈

{
Sm

1,γ , |β| ≤ τ and
S

m+γ(|β|−τ)
1,γ , |β| > τ

. (3.7)

4. Ground States in Ultrastatic Spacetimes

Let M = R × Σ, where Σ is a 3-dimensional compact manifold and the
Lorentzian metric g := (gμν)3μ,ν=0 is of the form

ds2 = dt2 − hij(x)dxidxj , (4.1)

where hij(x) are the components of a time independent Riemannian metric of
Hölder regularity Cτ (when τ ∈ N we will consider the Zygmund spaces Cτ

∗ ,
introduced in Definition 3.1). As usual, the tensor (gμν) in (1.1) is the inverse
to (gμν).

Moreover, the vector field ∂t induces a one-parameter group of isometries
τt : M → M, t ∈ R, such that τt(Σto

) = Σto+t.
This group induces a one-parameter group of automorphisms in the C∗-

algebras as follows. Define T (t) : Γto
→ Γto+t by

T (t)F̃to
:= F̃to+t,

where Γs is the initial data at Σs, F̃s := (ρs
0φ, ρs

1φ) and φ ∈ ker (�g + m2).
Since the symplectic form σ is invariant under the action of T (t) and

since T (t)T (s) = T (t + s) t, s ∈ R, T is a one-parameter group of symplec-
tic transformations (also called Bogoliubov transformations), it gives rise to
a group of automorphisms α̃(t), t ∈ R, (Bogoliubov automorphisms) on the
algebra B via

α̃(t)W (F ) = W (T (t)F ).
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In this case, there exists a preferred class of states on A, namely those invariant
under α(t) = α̃(t) ◦ β with β as defined in Section 2.1. A quasifree state ωμ

will be invariant under this symmetry if and only if

μ(T (t)F1, T (t)F2) = μ(F1, F2) ∀t ∈ R ∀F1, F2 ∈ Γ.

The specification of μ is equivalent to the specification of a one-particle
structure as established by the following theorem of Kay and Wald [19, Propo-
sition 3.1]:

Theorem 4.1. Let ωμ be a quasifree state on B[Γ, σ]. Then there exists a one-
particle Hilbert space structure, i.e. a Hilbert space H and a real-linear map
k : Γ → H such that
(i) kΓ + ikΓ is dense in H,
(ii) μ(F1, F2) = Re〈kF1, kF2〉H ∀F1, F2 ∈ Γ,
(iii) σ(F1, F2) = 2Im〈kF1, kF2〉H ∀F1, F2 ∈ Γ. The pair (k,H) is uniquely

determined up to unitary equivalence. Moreover, ωμ is pure if and only if
k(Γ) is dense.

Remark 4.2. Notice that the specification of a Hilbert space H together with a
real-linear map k : Γ → H such that kΓ+ikΓ is dense in H and 2Im〈kF1, kF2〉H
= σ(F1, F2) gives rise via Eq.(2.2) to a real scalar product μ satisfying Eq.(2.1).

Moreover, the automorphism group α̃(t) can be unitarily implemented
in the one-particle Hilbert space structure (k,H) of an invariant state ωμ,
i.e. there exists a unitary group U(t), t ∈ R, on H satisfying

U(t)k = kT (t)
U(t)U(s) = U(t + s). (4.2)

If U(t) is strongly continuous it takes the form U(t) = e−iHt for some
self-adjoint operator H on H.
We define now the notion of ground states following Kay [18]:

Definition 4.3. Let the phase space (Γ, σ, T (t)) be given. A quasifree ground
state is a quasifree state over B[Γ, σ] with one-particle Hilbert space structure
(k,H) and a strongly continuous unitary group U(t) = e−iHt (satisfying (4.2))
such that H is a positive operator (the “one-particle Hamiltonian”).

In the ultrastatic case we define the ground state, ωG by the one-particle
Hilbert space structure (kG,HG)

kG : Γ → HG := L2
C(Σt0)

F = (q, p) �→ 1√
2

(
A1/4q − iA−1/4p

)
, (4.3)

where A := −Δh + m2 and t0 ∈ R (invariance under time translations makes
any choice of t ∈ R equivalent to any other) and the strongly continuous

unitary group is given by U(t) := eiA
1
2 t.

The Wightman two-point function of ωG is:
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ω
(2)
G (h1, h2) = λG

((
ρt
0Gh1

ρt
1Gh1

)
,

(
ρt
0Gh2

ρt
1Gh2

))
, (4.4)

for h1, h2 ∈ D(M).
Moreover using Eq. 2.3, Eq. (4.3) and Theorem 4.1 the “symplectically

smeared two-point function” λG is given on the initial data Fi =
(

qi

pi

)
∈ Γ by

Eq.(2.2),

λG(F1, F2) = 〈kGF1, kGF2〉L2
C
(Σ)

=
1
2

〈
A1/4q1 − iA−1/4p1, A

1/4q2 − iA−1/4p2

〉
L2

C
(Σ)

=
1
2

〈
(A1/2q1 − ip1), A−1/2

(
A1/2q2 − ip2

)〉
L2

C
(Σ)

, (4.5)

since A is selfadjoint. Combining (4.4) and (4.5) we obtain

ω
(2)
G (h1, h2) =

1
2

〈(
A1/2ρt

0 − iρt
1

)
Gh1, A

−1/2
(
A1/2ρt

o − iρt
1

)
Gh2

〉
L2

C
(Σt)

.

(4.6)

The two-point function, ω
(2)
G , of the ground state, ωG, is the Schwartz

kernel of the operator eiA
1
2 (t−s)A− 1

2 .
Explicitly, for u, v ∈ D(M) we have

ω
(2)
G (u, v) =

∫
M

(
eiA

1
2 (t−s)A− 1

2 u

)
(s, y)v(s, y)dsdy,

which gives the singular integral kernel representation

ω
(2)
G (t, x; s, y) =

∑
j

λ−1
j eiλj(t−s)φj(x)φj(y). (4.7)

where {φj , j = 1, 2, . . .} is an orthonormal basis of eigenfunctions of L2(Σ)
associated with the eigenvalues λ2

j of the operator m2 − Δh.
The ground state in a smooth ultrastatic space-time is a Hadamard state

[10,11,16,24]. In the following section we will show that, in the non-smooth
case, the ground state is an adiabatic state.

4.1. Microlocal Analysis for Bisolutions of the Klein–Gordon Operator

We write local coordinates on R × Σ in the form

x̃ = (t, x), ỹ = (s, y) (4.8)

and the associated covariables as

ξ̃ = (ξ0, ξ), η̃ = (η0, η). (4.9)

Using the notation above and in (4.1), we have:
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Remark 4.4. The Klein–Gordon operator on M is given by

Pφ = (�g + m2)φ = ∂ttφ − Δhφ + m2φ. (4.10)

It has the symbol P (x̃, ξ̃) = (−ξ2
0 + hijξiξj) + i 1√

h
∂xi(hij

√
h)ξj + m2. For a

metric of regularity Cτ , the symbol P (x̃, ξ̃) belongs to Cτ−1S2
cl and

Char(P ) = {(t, x, ξ0, ξ) ∈ T ∗M\ {0};−ξ2
0 + hijξiξj = 0}.

In the sequel we shall apply the Klein–Gordon operator to functions and
distributions on M ×M , say with variables ((t, x), (s, y)) in the notation (4.8).
In order to make clear whether P acts on the first set of variables (t, x) or
on the second set (s, y) we will write P(t,x) and P(s,y), respectively. Using the
coordinates in Eqs.(4.8) and (4.9), the associated symbols P(t,x)(x̃, ξ̃, ỹ, η̃) and
P(s,y)(x̃, ξ̃, ỹ, η̃) formally depend on the full set of (co-)variables (x̃, ξ̃, ỹ, η̃),
however, only the (co-)variables associated with either (t, x) or (s, y) show
up:

P(t,x)(x̃, ξ̃, ỹ, η̃) = (−ξ02
+ hij(x)ξiξj)︸ ︷︷ ︸

p2(x̃,ξ̃,ỹ,η̃)

+ i
1√
h

∂xi(hij
√

h(x))ξj

︸ ︷︷ ︸
p1(x̃,ξ̃,ỹ,η̃)

+ m2︸︷︷︸
p0(x̃,ξ̃,ỹ,η̃)

.

P(s,y)(x̃, ξ̃, ỹ, η̃) = (−η0
2 + hij(x)ηiηj) + i 1√

h
∂yi(hij

√
h(y))ηj + m2.

In particular,

Char(P(t,x)) = (Char(P ) × T ∗M) ∪ {(x̃, ξ̃, ỹ, η̃) ∈ T ∗(M × M)\{0}, ξ̃ = 0}
Char(P(s,y)) = (T ∗M × Char(P )) ∪ {(x̃, ξ̃, ỹ, η̃) ∈ T ∗(M × M)\{0}, η̃ = 0}.

(4.11)

Now we will state a microelliptic estimate tailored for bisolutions of the
Klein–Gordon operator

Theorem 4.5. Let the metric g be of class Cτ , τ > 1, 0 ≤ σ < τ − 1 and v ∈
H2+σ−τ+ε

loc (M ×M) for some ε > 0 with P(t,x)(x̃, ỹ, D)v = P(s,y)(x̃, ỹ, D)v = 0.
Then

WF σ+2(v) ⊂ Char(P(t,x)) ∩ Char(P(s,y)).

The proof can be found in [26, Theorem 3.4].

Remark 4.6. To obtain Theorem 4.5 we smooth each of the non-smooth sym-
bols (the principal symbol and the sub-leading term) separately to obtain
the remainder pb

2 + pb
1 for pb

2 ∈ CτS2−τδ
1,δ and pb

1 ∈ Cτ−1S
1−(τ−1)δ
1,δ . Apply-

ing the symbol smoothing directly to P(t,x) ∈ Cτ−1S2
1,0 would leave us with

P b
(t,x) ∈ Cτ−1S

2−(τ−1)δ
1,δ .

Furthermore, the main results on the microlocal propagation of singu-
larities in the non-smooth setting that we will apply can be found in [27,
Proposition 6.1.D] or [28, Proposition 11.4]. In particular, the theorem below
holds for spacetime metrics belonging to the space C2

∗ [28, p.215].
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Theorem 4.7. Let u ∈ D′(M ×M) solve P(t,x)u = f . Let γ be an integral curve
of the Hamiltonian vector field Hp2 with p2 the principal symbol of P(t,x). If
for some s ∈ R, f ∈ Hs

mcl(Γ) and P b
(t,x)u ∈ Hs

mcl(Γ) where γ ⊂ Γ with Γ a
conical neighbourhood and u ∈ Hs+1

mcl (γ(0)) then u ∈ Hs+1
mcl (γ).

Remark 4.8. If u ∈ H2+s−τδ
loc (M × M), then P b

(t,x)u ∈ Hs
loc(M × M) for −(1 −

δ)(τ − 1) ≤ s ≤ τ − 1, see Remark 4.6.

4.2. The Microlocal Spectrum Condition

Now we will show that the Wightman two-point function of the ground state
described above satisfies Definition 2.2. We will assume throughout this section
that the metric is of regularity Cτ with τ > 2.

Let {φj ⊗φk; j, k = 1, 2, . . .} be an orthonormal basis of L2(Σ)⊗L2(Σ) as-
sociated with the eigenfunctions {φj} and the eigenvalues {λ2

j} of the operator
m2 − Δh. Then, for u ∈ L2(M × M) we have the representation

u(t, s, x, y) =
∑
j,k

ujk(t, s)φj(x)φk(y) with ujk = 〈u, φj ⊗ φk〉 ∈ L2(R2).

(4.12)

Moreover, we have the following generalisation for u ∈ H2θ(M × M)
shown in [26, Proposition 4.1, Corollary 4.4]

Theorem 4.9. For −1 ≤ θ ≤ 1

H2θ(R2 × Σ2) =

⎧⎨
⎩u ∈ S ′(R2 × Σ2);

∑
j,k

∫
R2

(|ξ0|2 + |η0|2 + λ2
j + λ2

k)2θ

× |Fujk(ξ0, η0)|2dξ0dη0 < ∞

⎫⎬
⎭ ,

with ujk = 〈u, φj ⊗ φk〉 ∈ S ′(R2).

The previous theorem allows us to establish the local Sobolev regularity
of the two-point function.

Theorem 4.10. ω
(2)
G ∈ H

− 1
2−ε

loc (M × M) for every ε > 0

Proof. Let ψ ∈ D(M ×M). Without loss of generality assume that ψ = ψ(s, t).
We will show that ψω

(2)
G ∈ H− 1

2−ε(M × M).
According to Eq. (4.7) and Theorem 4.9

‖ψω
(2)
G ‖2

H− 1
2 −ε(M×M)

(4.13)

=
∑
j=k

∫
R2

(|ξ0|2 + |η0|2 + λ2
j + λ2

k)− 1
2−ε

∣∣∣F(t,s)→(ξ0,η0)

(ψ(t, s)
λj

eiλj(t−s)
)
(ξ0, η0)

∣∣∣2dξ0dη0. (4.14)
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We have by direct computation that∣∣∣F(t,s)→(ξ0,η0)

(ψ(t, s)
λj

eiλj(t−s)
)
(ξ0, η0)

∣∣∣2

=
1
λ2

j

|F(ψ)(ξ0 − λj , η0 + λj)|2 .

(4.15)

Taking into account that ‖ψ‖L2(R2) = ‖F(ψ)‖L2(R2) < ∞ we have (with
constants possibly changing from line to line)

‖ψω
(2)
G ‖

H− 1
2 −ε(M×M)

=
∑
j=k

∫
R2

(|ξ0|2 + |η0|2 + λ2
j + λ2

k)− 1
2−ε

∣∣∣F(t,s)→(ξ0,η0)

(ψ(t, s)
λj

eiλj(t−s)
)
(ξ0, η0)

∣∣∣2dξ0dη0

≤
∞∑

j=1

∫
R2

(λ2
j + λ2

j )
− 1

2−ε 1
λ2

j

|F(ψ)(ξ0 − λj , η0 + λj)|2 dξ0dη0

≤ C

∞∑
j=1

(λ2
j + λ2

j )
− 1

2−ε

λ2
j

≤ C

∞∑
j=1

1
λ3+2ε

j

.

From Weyl’s law for non-smooth metrics [31, Theorem 1.1] we obtain the
estimate j

2
3 ≤ Cλ2

j for a suitable constant C which gives

‖ψω
(2)
G ‖2

H− 1
2 −ε(M×M)

≤
∞∑

j=1

C

λ3+2ε
j

≤
∞∑

j=1

C ′

j1+ 2ε
3

< ∞

for a suitable constant C ′. �

It will be useful to consider the following bidistribution:

Corollary 4.11. Let ωA ∈ D′(M × M) be the bidistribution given by

ωA(u ⊗ v) := −
∫

M×M

∑
j

λ−2
j eiλj(t−s)φj(x)φj(y)

√
h(y)

√
h(x)

×u(t, x)v(s, y)dsdydtdx

Then,

ωA ∈ H
1
2−ε

loc (M × M) for every ε > 0. (4.16)

Proof. Direct computation shows that for ψ as in the previous proof and s ≥ 0
we have
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‖ψωA‖Hs(M×M)

=
∞∑

j=1

∫
R2

(|ξ0|2 + |η0|2 + λ2
j + λ2

j )
s

×
∣∣∣F(t,s)→(ξ0,η0)

(ψ(t, s)
λ2

j

e−iλj(t−s)
)
(ξ0, η0)

∣∣∣2dξ0dη0

=
∞∑

j=1

∫
R2

(|ξ0|2 + |η0|2 + λ2
j + λ2

j )
s
∣∣∣F

( ψ

λ2
j

)
(ξ0 − λj , η0 + λj)

∣∣∣2dξ0dη0

=
∞∑

j=1

∫
R2

(|ξ0 − λj |2 + |η0 + λj |2 + λ2
j + λ2

j )
s
∣∣∣F

( ψ

λ2
j

)
(ξ0, η0)

∣∣∣2dξ0dη0

≤
∞∑

j=1

∫
R2

(2|ξ0|2 + 2|η0|2 + 3λ2
j + 3λ2

j )
s
∣∣∣F

( ψ

λ2
j

)
(ξ0, η0)

∣∣∣2dξ0dη0

≤ C
∞∑

j=1

(1 + λ2
j )

s

λ4
j

∫
R2

(1 + |ξ0|2 + |η0|2)s
∣∣∣F

(
ψ

)
(ξ0, η0)

∣∣∣2dξ0dη0

≤ C

∞∑
j=1

(1 + λ2
j )

s

λ4
j

|ψ|2Hs(R2)

≤ C

j0∑
j=1

(1 + λ2
j )

s

λ4
j

+ C
∞∑

j=j0

(λ2
j )

s

λ4
j

,

where we have chosen j0 large enough such that λj0 > 1.
According to Weyl’s law for non-smooth metrics [31, Theorem 1.1] we

have the estimate j
2
3 ≤ Cλ2

j for a suitable constant C. This gives for s = 1
2 − ε

‖ψωA‖2

H
1
2 −ε(M×M)

≤ C +
∑

j

C

λ3+2ε
j

≤ C +
∑

j

C

j1+ 2ε
3

< ∞ (4.17)

for a suitable constant C. �

Remark 4.12. Notice that i∂tωA = ω
(2)
G .

Lemma 4.13. For any ε̃ > 0

WF− 1
2−ε̃+τ (ω(2)

G ) ⊂ Char(P ) × Char(P ). (4.18)

Proof. Since ω
(2)
G satisfies (∂t + ∂s)ω

(2)
G = 0 we conclude that for all l ∈ R

WF l(ω(2)
G ) ⊂ WF (ω(2)

G ) ⊂ Char(∂t + ∂s)
= {(x̃, ξ0, ξ, ỹ, η0, η) ∈ T ∗(M × M)\{0}; ξ0 + η0 = 0},

(4.19)

where the second inclusion follows from the standard theory of pseudodiffer-
ential operators.
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Now we have P(t,x)(x̃, ỹ, D)ωA = P(s,y)(x̃, ỹ, D)ωA = 0. Choose ε < ε̃/2.

Since ωA ∈ H
1
2− ε

2
loc (M × M) = H

( 1
2−ε)+ ε

2
loc (M × M), an application of Theorem

4.5 with σ = − 3
2 + τ − ε < τ − 1 shows that

WF
1
2+τ−ε̃(ωA) ⊂Char(P(t,x)) ∩ Char(P(s,y));

here we assume without loss of generality that ε is so small that − 3
2 +τ −ε ≥ 0.

Equation (4.11) implies that

WF
1
2−ε̃+τ (ωA) ⊂(Char(P ) × Char(P ))

∪ ({(x̃, ξ̃, ỹ, η̃) ∈ T ∗(M × M)\{0}; ξ̃ = 0, (ỹ, η̃) ∈ Char(P )}
∪ {(x̃, ξ̃, ỹ, η̃) ∈ T ∗(M × M)\{0}; (x̃, ξ̃) ∈ Char(P ), η̃ = 0}.

If η̃ = 0, then η0 = 0, and ξ0 = 0 by Eq. (4.19). Since Char P = {(x̃, ξ̃); (ξ0)2 =
hij(x)ξiξj} we then have ξ̃ = 0. Together with the corresponding argument for
the case ξ̃ = 0 this shows that

WF
1
2−ε̃+τ (ωA) ⊂ Char(P ) × Char(P ); (4.20)

otherwise 0 ∈ T ∗(M × M) would be in WF
1
2−ε̃+τ (ωA).

Since WF− 1
2−ε̃+τ (i∂tωA) ⊂ WF

1
2−ε̃+τ (ωA) by [15, Proposition B.3], we

have

WF− 1
2−ε̃+τ (ω(2)

G ) = WF− 1
2−ε̃+τ (i∂tωA) ⊂ WF

1
2−ε̃+τ (ωA)

⊂ (Char(P ) × Char(P )).

�

Theorem 4.14. For all s ∈ R, WF s(ω(2)
G ) ⊂ {(x̃, ξ̃, ỹ, η̃) ∈ T ∗(M × M); ξ̃0 >

0}.

Proof. We define F : R + i ]0, δ[ ⊂ C → D′(Σ × M) for δ > 0 by

〈F (z), ψ1(s)ψ2(x)ψ3(y)〉 =
∫

M

∑
j

λ−1
j eizλj e−isλj

(∫
Σ

ψ2(x)φj(x)dx

)

×φj(y)ψ1(s)ψ3(y)dyds. (4.21)

Notice that ∂zF : R + i]0, δ[⊂ C → D′(Σ × M) is given by

〈∂zF (z), ψ1(s)ψ2(x)ψ3(y)〉 = i

∫
M

∑
j

eizλj e−isλj

(∫
Σ

ψ2(x)φj(x)dx

)

φj(y)ψ1(s)ψ3(y)dyds (4.22)
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and therefore F is a holomorphic function with values in D′(Σ × M), see [17,
Theorem 10.11]. Moreover, for ϕ(t) ∈ D(R) we have

|〈〈F (t + iε), ψ1(s)ψ2(x)ψ3(y)〉, ϕ(t)〉| (4.23)

=

∣∣∣∣∣
∫
R

∫
M

∑
j

λ−1
j ei(t+iε)λj e−isλj

(∫
Σ

ψ2(x)φj(x)dx

)
φj(y)ψ1(s)ψ3(y)dydsϕ(t)dt

∣∣∣∣∣
(4.24)

=

∣∣∣∣∣∣∣∣

∫
R

∫
R

∑
j

λ−1
j ei(t+iε)λj e−isλj (ψ2, φj)L2(Σ)(ψ3, φj)L2(Σ)ψ1(s)ϕ(t)︸ ︷︷ ︸

hε(s,t,j)

dsdt

∣∣∣∣∣∣∣∣
.

(4.25)

Now let g(s, t, j) := |(ψ2, φj)L2(Σ)(ψ3, φj)L2(Σ)| · |ψ1(s)ϕ(t)|, then

|hε(s, t, j)| ≤ g(s, t, j). (4.26)

Moreover,

∑
j

(ψ2, φj)L2(Σ)(ψ3, φj)L2(Σ) =
∫

Σ

ψ2(w)ψ3(w)
√

h(w)dw. (4.27)

This implies the sequence is unconditionally convergent and therefore
absolutely convergent.

Hence, g(s, t, j) ∈ L1(dt × ds × μ), where μ is the counting measure on
N.

Using dominated convergence in Eq. (4.30) and Parseval’s Identity in Eq.
(4.31) we obtain for εn → 0+

lim
ε→0+

〈〈F (t + iε), ψ1(s)ψ2(x)ψ3(y)〉, ϕ(t)〉 (4.28)

= lim
n→∞

∫
R

∫
M

∑
j

λ−1
j ei(t+iεn)λj e−isλj

(∫
Σ

ψ2(x)φj(x)dx

)

× φj(y)ψ1(s)ψ3(y)dydsϕ(t)dt (4.29)

=
∫
R

∫
R

∑
j

lim
n→∞ λ−1

j ei(t+iεn)λj e−isλj

(∫
Σ

ψ3(y)φj(y)dy

)(∫
Σ

ψ2(x)φj(x)dx

)

× ψ1(s)dsϕ(t)dt (4.30)

=
∫
R

∫
M

∑
j

λ−1
j eitλj e−isλj

(∫
Σ

ψ2(x)φj(x)dx

)
φj(y)ψ1(s)ψ3(y)dydsϕ(t)dt

(4.31)

= ω
(2)
G (ϕψ1ψ2ψ3). (4.32)

Therefore limε→0+〈F (t+iε), ·〉 = ω
(2)
G ∈ D′(M×M). Applying [12, Propo-

sition 7.5] we obtain
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WF s(ω(2)
G ) ⊂ WF (ω(2)

G ) ⊂ {(x̃, ξ̃, ỹ, η̃) ∈ T ∗(M × M); ξ0 > 0} (4.33)

which gives
∑3

μ=0 g0μξμ = ξ0 > 0. �

Lemma 4.15. Let (x̃, ỹ) ∈ M ×M be such that x̃ and ỹ are not causally related,
i.e. x̃ /∈ J(ỹ). Then (x̃, ξ̃, ỹ, η̃) /∈ WF− 1

2−ε+τ (ω(2)
G ) for every ε > 0.

Proof. From Eq. (4.19), Lemma 4.13 and Theorem 4.14 we conclude that

WF− 1
2−ε+τ (ω(2)

G ) ⊂ N+ × N−, (4.34)
where N± := {(t, x, ξ0, ξ) ∈ Char(P );±ξ0 > 0}

Now consider the restriction ω
(2)
G |Q := ω

(2)
G : D(M × M)|Q → C, where

the set Q is defined as the set of pairs of causally separated points (x̃, ỹ) ∈
M × M .

Notice that ω
(2)
G = ω+ + iKG, where ω+ is the Schwartz kernel of A− 1

2

cos(A
1
2 (t − s)) and KG is the causal propagator, which is the Schwartz kernel

of A− 1
2 sin(A

1
2 (t − s)). Since KG|Q = 0 by [26, Lemma 5.1] we have ω

(2)
G |Q =

ω+|Q.
Also, the “flip” map ρ(x̃, ỹ) = (ỹ, x̃) is a diffeomorphism of Q and we

have ρ∗ω+ = ω+. Moreover, using the covariance of the Sobolev wavefront set
under diffeomorphisms (see Appendix 5.1), we have

WF− 1
2−ε+τ (ω+|Q) = WF− 1

2−ε+τ (ρ∗ω+|Q) = ρ∗WF− 1
2−ε+τ (ω+|Q). (4.35)

Moreover, ρ∗(N+ × N−) = N− × N+ which implies

WF− 1
2−ε+τ (ω(2)

G |Q) ⊂ (N+ × N−) ∩ (N− × N+) = ∅. (4.36)
�

Lemma 4.16. If (x̃, ξ̃, x̃, η̃) ∈ WF− 3
2−ε̃+τ (ω(2)

G ) for some ε̃ > 0, then η̃ = −ξ̃.

Proof. Note that WF− 3
2−ε̃+τ (ω(2)

G ) ⊂ WF− 3
2−ε+τ (ω(2)

G ) for 0 < ε < ε̃, so that
we may possibly decrease ε̃. Suppose η̃ and ξ̃ are linearly independent, i.e.
η̃ �= λξ̃ for λ ∈ R. By Lemma 4.13, (x̃, ξ̃, x̃, η̃) ∈ Char(P ) × Char(P ).

Now we choose a Cauchy hypersurface Σt0 = {t0} × Σ such that the null
geodesic with initial data (x̃, ξ̃) and the null geodesic with initial data (x̃, η̃)
intersect it. These points of intersections are unique by global hyperbolicity
(see [4,21,25] for low regularity definitions). Moreover, using the condition
η̃ �= λξ̃, we can choose Σt0 such that these points are distinct. We denote these
points by (t0, x0), (t0, y0). Clearly, these points are not causally related.

Notice that ωA satisfies P(t,x)ωA = 0. Given any ε > 0 we can achieve
P b

(t,x)ωA ∈ H− 3
2−ε+τ by fixing δ in Remark 4.6 close to 1. Taking ε small,

this allows us to choose s = − 3
2 − ε + τ with 0 < s < τ − 1 in Theorem

4.7. This propagation of singularities result applied to the distribution ωA

and the operator P(t,x) guarantees that if (x̃, ξ̃, x̃, η̃) ∈ WF− 3
2−ε+τ (ω(2)

G ) ⊂
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WF− 1
2−ε+τ (ωA) then the full null bicharacteristic is contained in the wavefront

set i.e. (γ(x̃, ξ̃), (x̃, η̃)) ∈ WF− 1
2−ε+τ (ωA), where γ(x̃, ξ̃) is the null bicharac-

teristic with initial data (x̃, ξ̃). Similarly, using the operator P(s,y), we obtain
(γ(x̃, ξ̃), γ(x̃, η̃)) ∈ WF− 1

2−ε+τ (ωA), where γ(x̃, η̃) is the null bicharacteristic
with initial data (x̃, η̃).

Now we show that (γ(x̃, ξ̃), γ(x̃, η̃)) ∈ WF− 1
2−ε+τ (ω(2)

G ).
By Theorem 6.1.1’ from [8] we have

WF− 1
2−ε+τ (ωA)\WF− 1

2−ε+τ (ω(2)
G ) = WF− 1

2−ε+τ (ωA)\WF− 1
2−ε+τ (i∂tωA)

⊂ Char(i∂t). (4.37)

However, using Eq.(4.20) and that (∂t +∂s)ωA = 0, we have the inclusion

WF− 1
2−ε+τ (ωA) ⊂ WF

1
2−ε+τ (ωA) ⊂ (Char(P ) × Char(P )) ∩ Char(∂t + ∂s).

(4.38)

Since (Char(P ) × Char(P )) ∩ Char(∂t + ∂s) ∩ Char(i∂t) = ∅, taking the
intersection between Eq.(4.37) and Eq.(4.38), we obtain that the left hand side
of Eq.(4.37) must be empty. Therefore,

WF− 1
2−ε+τ (ωA) ⊂ WF− 1

2−ε+τ (ω(2)
G ). (4.39)

Hence, (γ(x̃, ξ̃), γ(x̃, η̃)) ∈ WF− 1
2−ε+τ (ω(2)

G ). In particular (t0, x0, ξ̃, t0, y0, η̃) ∈
WF− 1

2−ε+τ (ω(2)
G )). However, this is a contradiction to Lemma 4.15. Therefore,

η̃ = λξ̃ for some λ ∈ R. Using Eq.(4.19) we have ξ0 = −η0 which gives λ = −1,
i.e. η̃ = −ξ̃. �

We have used the distribution ωA, because a direct application of Theo-
rem 4.5 for ω

(2)
G is not possible, since for δ close to 1, σ cannot take the value

− 1
2 .

Now we state the main result

Theorem 4.17. WF ′− 3
2−ε+τ (ω(2)

G ) ⊂ C+ for every ε > 0 and C+ as in Eq.(2.4).

Proof. Let (x̃, ξ̃, ỹ,−η̃) ∈ WF− 3
2−ε+τ (ω(2)

G )⊂ WF− 1
2−ε+τ (ωA), where the in-

clusion follows from [15, Proposition B.3] since ω
(2)
G = i∂tωA. The propaga-

tion of singularities result (Theorem 4.7) implies that (γ(x̃, ξ̃), γ(ỹ,−η̃)) ∈
WF− 1

2−ε+τ (ωA), where γ(x̃, ξ̃) is the null bicharacteristic with initial data
(x̃, ξ̃) and γ(ỹ,−η̃) is the null bicharacteristic with initial data (ỹ,−η̃). Hence,
by Eq.(4.39), we have (γ(x̃, ξ̃), γ(ỹ,−η̃)) ∈ WF− 1

2−ε+τ (ω(2)
G ).

Now we choose a Cauchy surface Σt1 = {t1} × Σ and suppose that
(t1, x1, ξ̃1, t1, x2, ξ̃2) ∈ (γ(x̃, ξ̃), γ(ỹ,−η̃)) ∩ (Σ2

t1). By Lemmas 4.15 and 4.16,
(t1, x1, ξ̃1), (t1, x2, ξ̃2) ∈ Char(P ), x1 = x2, and ξ̃2 = −ξ̃1.

Next we define a curve γ̃ : (−∞,∞) → M as follows. First, we shift the
parametrisation λ in the definition of the null bicharacteristics so that

γ(x̃, ξ̃)(t1) = (t1, x1, ξ̃1) γ(ỹ,−η̃)(t1) = (t1, x1,−ξ̃1).
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Then, we denote by Π : T ∗M → M the canonical projection and define two
curves in M by

γ1(λ) := Π(γ(x̃, ξ̃)(λ)) γ2(λ) := Π(γ(ỹ,−η̃)(λ)).

Notice that we have γ1(t1) = (t1, x1), γ̇1(t1) = g−1(ξ̃1, ·) and γ2(t1) =
(t1, x1), γ̇2(t1) = g−1(−ξ̃1, ·). Moreover, we can assume that x̃ = γ1(a) and
ỹ = γ2(b) for suitable a, b ∈ R with a < t1 < b.

Finally, let

γ̃(λ) =

{
γ1(λ) λ ∈ (−∞, t1]
−γ2(λ) λ ∈ (t1,∞)

(4.40)

where −γ2 denotes the curve with opposite orientation.
Then γ̃(a) = x̃, γ̃(b) = ỹ; moreover g(·, ˙̃γ)|Tx̃M = ξ̃, g(·, ˙̃γ)|TỹM = η̃ and

therefore, γ̃ is a null geodesic between x̃ and ỹ with cotangent vectors ξ̃ at x̃
and η̃ at ỹ, i.e. (x̃, ξ̃, ỹ,−η̃) ∈ C ′ := {(x̃, ξ̃, ỹ,−η̃); (x̃, ξ; ỹ, η̃) ∈ C}. This shows

WF− 3
2−ε+τ (ω(2)

G ) ⊂ C ′ (4.41)

Using the definition of WF l′(u):={(x̃, η̃; ỹ,−η̃)∈T ∗(M × M); (x̃, ξ̃; ỹ, η̃)
∈ WF l(u)} and Theorem 4.14 gives the result. �

Remark 4.18. For a C1,1 metric the same arguments as used in [26, Theorem
7.1] apply and therefore in that scenario we have for every ε > 0

WF
1
2−ε(ω(2)

G ) ⊂ C ′+.
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5. Appendix

5.1. Covariance of the Sobolev Wavefront Set under Diffeomorphisms

The following is a variant of Theorem [13, Theorem 8.2.4] adapted to the
Hs-wave front set.

Lemma 5.1. Let ϕ : M → M be a C∞ diffeomorphism and u ∈ D′(M). Then

WF s(ϕ∗u) = ϕ∗WF s(u), s ∈ R. (5.1)

Proof. Let (x, ξ) /∈ ϕ∗WF s(u) which by definition implies (ϕ(x),t ∂ϕ(x)−1ξ) /∈
WF s(u). By [8, p. 202], we can write u = u1 + u2 where u1 ∈ Hs

loc and
(ϕ(x),t ∂ϕ(x)−1ξ) /∈ WF (u2). By the covariance of the Sobolev spaces in com-
pact sets [29, Chapter 4, Section 2] we have ϕ∗u1 ∈ Hs

loc and by the covariance
under diffeomorphism of the wavefront set (x, ξ) /∈ WF (ϕ∗u2) = ϕ∗WF (u2).
Putting this together gives (x, ξ) /∈ WF s(ϕ∗u), i.e. WF s(ϕ∗u) ⊂ ϕ∗WF s(u).
Applying this relation to ϕ−1 we conversely see that

ϕ∗WF s(u) = ϕ∗WF s(ϕ−1∗ϕ∗u) ⊂ ϕ∗ϕ−1∗WF s(ϕ∗u) = WF s(ϕ∗u).

This completes the argument. �
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[13] Hörmander, L.: The analysis of linear partial differential operators. I. Classics
in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier
analysis, Reprint of the second edition (1990)
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