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a b s t r a c t 

Stochastic fractional differential systems are important and useful in the mathematics, physics, and en- 

gineering fields. However, the determination of their probabilistic responses is difficult due to their non- 

Markovian property. The recently developed globally-evolving-based generalized density evolution equa- 

tion (GE-GDEE), which is a unified partial differential equation (PDE) governing the transient probability 

density function (PDF) of a generic path-continuous process, including non-Markovian ones, provides a 

feasible tool to solve this problem. In the paper, the GE-GDEE for multi-dimensional linear fractional dif- 

ferential systems subject to Gaussian white noise is established. In particular, it is proved that in the 

GE-GDEE corresponding to the state-quantities of interest, the intrinsic drift coefficient is a time-varying 

linear function, and can be analytically determined. In this sense, an alternative low-dimensional equiv- 

alent linear integer-order differential system with exact closed-form coefficients for the original high- 

dimensional linear fractional differential system can be constructed such that their transient PDFs are 

identical. Specifically, for a multi-dimensional linear fractional differential system, if only one or two 

quantities are of interest, GE-GDEE is only in one or two dimensions, and the surrogate system would be 

a one- or two-dimensional linear integer-order system. Several examples are studied to assess the merit 

of the proposed method. Though presently the closed-form intrinsic drift coefficient is only available for 

linear stochastic fractional differential systems, the findings in the present paper provide a remarkable 

demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional 

system itself is non-Markovian, and provide insights for the physical-mechanism-informed determination 

of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 
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Fractional derivatives have a long mathematical history. In re- 

ent decades, the fractional derivative has received increasing 

ttention due to its applicability in the fields of physics and 

ngineering [1–3] , such as hydraulics [4] , optimal control [5,6] , dy- 

amic stability [7] , and thermodynamics [8] , etc. Stochastic dy- 

amic systems endowed with fractional derivative element en- 

orced by random excitations have been investigated widely [9,10] . 

nalytical solution of one-dimensional linear stochastic fractional 

ifferential systems was given firstly in a Duhamel integral form 

y Agrawal [11] , and then was investigated for more cases [12–
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4] , while effective numerical solutions were developed for multi- 

imensional linear cases [15,16] . The difficulty of random vibra- 

ion of systems endowed with fractional derivative element is that 

he Markovian property is no longer applicable. Thus, there are 

any approximate techniques developed for nonlinear stochastic 

ractional differential systems, such as the equivalent linearization 

17–20] , Wiener path integral [21] , the harmonic wavelets [22–25] , 

he stochastic averaging [26] , and the stochastic perturbation [27] , 

tc. Recently, the globally-evolving-based generalized density evo- 

ution equation (GE-GDEE) was proposed as a unified partial differ- 

ntial equation (PDE) governing the transient probability density 

unction (PDF) of a generic path-continuous non-Markov process 

28] . In particular, even the problem is multi-dimensional, nonlin- 
ety of Theoretical and Applied Mechanics. This is an open access article under the 
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ar, and non-Markovian, the transient PDF of an arbitrary compo- 

ent of the system satisfies the GE-GDEE, a PDE in only one or 

wo dimensions, exactly. It was shown that the GE-GDEE exactly 

olds for multi-dimensional nonlinear stochastic fractional differ- 

ntial systems subject to Gaussian white noise [29] . Generally, the 

ntrinsic drift coefficient in the GE-GDEE must usually be deter- 

ined by some numerically techniques [30–32] , though analytical 

xpressions are available in a few special cases when the under- 

ying physics can be fully made use of, such as a class of energy-

quipartition autonomous systems [33] . The intrinsic drift coeffi- 

ient of GE-GDEE, as a physically driving factor of the evolution 

f the PDF, is a conditional expectation function of the drift co- 

fficient of the original multi-dimensional system. In this paper, 

 closed-form expression of the intrinsic drift coefficient of GE- 

DEE for multi-dimensional linear fractional differential systems 

ubject to Gaussian white noise is derived based on the linear- 

ty of fractional derivative element preserving Gaussian property of 

he systems. This implies that an exactly equivalent linear stochas- 

ic integer-order differential systems with analytical time-variant 

oefficients can be constructed. The investigation will provide a 

emarkable family of theoretically proved illustrations on the ex- 

stence and eligibility of GE-GDEE for the case that the original 

igh-dimensional system is itself essentially non-Markovian, and a 

emonstration of the physical-mechanism-informed determination 

f the intrinsic drift coefficient of fractional differential systems, 

nd provides insight for more complex nonlinear systems. 

Consider a stochastic process Y ( t ) governed by the one- 

imensional linear stochastic fractional differential equation 

 Y ( t ) = −
[
kY ( t ) + c D 

αY ( t ) 
]
d t + σW 

d W ( t ) , (1) 

here k and c are constants; σW 

is the intensity. Further, W ( t ) is 

 standard Wiener process defined by the properties [34] : 

1) W ( t ) ∼ N ( 0 , t ) , i.e., W ( t ) is Gaussian and satisfies 

(a) W ( 0 ) = 0 with probability one; 

(b) E [ W ( t ) ] = 0 , for t ≥ 0 ; 

(c) E 
[
W 

2 ( t ) 
]

= t , for t ≥ 0 ; 

2) W ( t ) − W ( τ ) ∼ N ( 0 , t − τ ) , for 0 < τ < t . 

erein, E ( ·) denotes the expectation operator, and D 

αY ( t ) is the 

-order fractional derivative of Y ( t ) , 0 < α < 1 . Next, adopt the

aputo fractional derivative definition [35] , 

 

αY ( t ) = 

1 

Γ ( 1 − α) 

∫ t 

0 
( t − τ ) 

−α ˙ Y ( τ ) d τ , (2) 

here Γ ( ·) is the Gamma function. The initial condition of Y ( t ) 
an be denoted as 

 ( 0 ) = y 0 . (3) 

Clearly, Y ( t ) governed by Eq. (1) is a path-continuous process of 

ith probability one which satisfied the Dynkin-Kinney condition 

1 

36,37] , but it is non-Markovian. In general, it is difficult to directly 

xpand Y ( t ) into a finite-dimensional Markov system exactly, be- 

ause the fractional derivative of Y ( t ) is dependent on all the infor- 

ation before the time instant as seen in Eq. (2) . However, using 

he GE-GDEE for generic path-continuous non-Markovian process 

28] , the transient PDF of Y ( t ) , denoted as p Y ( y, t ) , satisfies a one-

imensional PDE exactly, and the coefficients in the PDE can be 

chieved analytically. Specifically, following the GE-GDEE [28] , the 

E-GDEE for p Y ( y, t ) is 
1 The path-continuous condition was proved for Markov process by Dynkin 

36] in 1952 and Kinney [37] in 1953 independently. Further, it was generalized for 

eparable process by Dobrushin [38] . Hence, it was referred to as Dynkin-Kinney 

ondition [39] . However, in some literatures it is also called as Lindeberg’s condi- 

ion [40] . 

t

s

b

t

[

μ

2 
∂ p Y ( y, t ) 

∂t 
= −

∂ 
[
a ( eff) ( y, t ) p Y ( y, t ) 

]
∂y 

+ 

∂ 2 
[
b ( eff) ( y, t ) p Y ( y, t ) 

]
2 ∂y 2 

, 

(4) 

here the intrinsic drift and diffusion coefficients are defined as 

28] 
 

a ( eff) ( y, t ) = lim 

�t→ 0 

1 
�t 

E [ �Y ( t ) | Y ( t ) = y ] , 

b ( eff) ( y, t ) = lim 

�t→ 0 

1 
�t 

E 

{
[ �Y ( t ) ] 

2 | Y ( t ) = y 
}
, 

(5) 

ith �Y ( t ) = Y ( t + �t ) − Y ( t ) denoting the increment during 

ime interval [ t , t + �t ] . The intrinsic drift and diffusion coeffi- 

ients can also be called as effective drift and diffusion coefficients 

n the senses that they can be constructed analytically or numeri- 

ally. By substituting Eq. (1) into Eq. (5) , the second equation be- 

omes 

 

( eff) ( y, t ) = σ 2 
W 

, (6) 

hile the first equation yields 

 

( eff) ( y, t ) = −E 
[
kY ( t ) + c D 

αY ( t ) | Y ( t ) = y 
]

= −ky − c E 
[
D 

αY ( t ) | Y ( t ) = y 
]

= −ky − c 

�( 1 − α) 

∫ t 

0 
( t − τ ) 

−αE 
[

˙ Y ( τ ) | Y ( t ) = y 
]
d τ

= −ky − c 

�( 1 − α) 

∫ t 

0 
( t − τ ) 

−α d 

d τ
E [ Y ( τ ) | Y ( t ) = y ] d τ. (7) 

The analytical determination of the intrinsic drift coefficient in 

he GE-GDEE is a daunting task for generic nonlinear stochastic 

ractional differential systems [29] . However, for linear stochas- 

ic fractional differential systems, the closed-form expression of 

q. (7) can be investigated. To determine the intrinsic drift coeffi- 

ient in Eq. (7) , the Gaussian property and auto-covariance of Y ( t )
re reviewed firstly. Note that the solution of Eq. (1) with the ini- 

ial condition Eq. (3) can be expressed as [11,12,41] 

 ( t ) = σW 

∫ t 

0 

g ( t − τ ) d W ( τ ) + [ g ( t ) + cg 1 ( t ) ] y 0 , (8) 

here g ( ·) and g 1 ( ·) are fractional Green functions. They are given 

y Miller and Ross [42] , West et al. [43] 

 ( t ) = 

∞ ∑ 

j=0 

( −kt ) 
j 

j! 
ε( j ) 

1 −α, 1+ jα
(
−ct 1 −α

)
, (9) 

nd 

 1 ( t ) = 

∞ ∑ 

j=0 

( −kt ) 
j 
t 1 −α

j! 
ε( j ) 

1 −α, 2+ ( j−1 ) α

(
−ct 1 −α

)
, (10) 

espectively. In these equations, ε( j ) 
p,q ( ·) is the th-order derivative of 

he generalized Mittag-Leffler function, namely, 

( j ) 
p,q ( x ) = 

∞ ∑ 

l=0 

( j + l ) ! x l 

l ! Γ [ ( j + l ) p + q ] 
. (11) 

Equation (8) shows that the response solution of a linear frac- 

ional system is similar to that of a linear integer order system ex- 

ressed via a Duhamel integral [11] . That is, the fractional deriva- 

ive element does not break the linear superposition property of 

he system. This means that the response of a linear fractional 

ystem excited by Gaussian white noise is still Gaussian, and can 

e fully characterized by its first two order moments. According 

o Eq. (8) , the expectation and variance of Y ( t ) can be given as 

11,12,41] 

Y ( t ) = E [ Y ( t ) ] = [ g ( t ) + cg 1 ( t ) ] y 0 , (12) 
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nd 

2 
Y ( t ) = E 

{
[ Y ( t ) − μY ( t ) ] 

2 
}

= σ 2 
W 

∫ t 

0 

g 2 ( τ ) d τ , (13) 

espectively. Further, the auto-covariance function of Y ( t ) can be 

ritten as 

˜  Y ( t 1 , t 2 ) = E { [ Y ( t 1 ) − μY ( t 1 ) ] [ Y ( t 2 ) − μY ( t 2 ) ] } 
= σ 2 

W 

∫ t 1 

0 

g ( ̃  τ ) g ( t 2 − t 1 + ˜ τ ) d ̃  τ , for t 1 ≤ t 2 . (14) 

or two different instants τ and t , Y ( τ ) and Y ( t ) are two depen- 

ent Gaussian variables. Thus, 

 [ Y ( τ ) | Y ( t ) = y ] = μY ( τ ) + 

[ y − μY ( t ) ] ̃  ς Y ( τ, t ) 

σ 2 
Y ( t ) 

= μY ( τ ) + 

σ 2 
W 

[ y − μY ( t ) ] 

σ 2 
Y ( t ) 

∫ τ

0 

g ( ̃  τ ) g ( t − τ + ˜ τ ) d ̃  τ . (15) 

he derivation of Eq. (15) with respect to τ leads to 

d 

d τ
E [ Y ( τ ) | Y ( t ) = y ] 

= ˙ μY ( τ ) + 

σ 2 
W 

[ y − μY ( t ) ] 

σ 2 
Y ( t ) 

[
g ( τ ) g ( t ) −

∫ τ

0 

g ( ̃  τ ) ̇ g ( t − τ + ˜ τ ) d ̃  τ

]
. 

(16) 

ubstituting Eq. (16) into Eq. (7) yields 

 

( eff) ( y, t ) = −k ( eff) ( t ) y + f ( eff) ( t ) , (17) 

n which 

 

( eff) ( t ) = k + 

cr ( t ) 

Γ ( 1 − α) σ 2 
Y ( t ) 

, (18) 

nd 

f ( eff) ( t ) = 

c 

Γ ( 1 − α) 

[
r ( t ) 

σ 2 
Y ( t ) 

μY ( t ) − m ( t ) 

]
. (19) 

In Eqs. (18) and (19) , the functions m ( t ) and r ( t ) are given by 

 ( t ) = y 0 

∫ t 

0 
( t − τ ) 

−α
[ ̇ g ( τ ) + c ̇ g 1 ( τ ) ] d τ , (20) 

nd 

 ( t ) = σ 2 
W 

∫ t 

0 
( t − τ ) 

−α

[
g ( t ) g ( τ ) −

∫ τ

0 

g ( ̃  τ ) ̇ g ( t − τ + ˜ τ ) d ̃  τ

]
d τ , 

(21) 

espectively; μY ( t ) and σ 2 
Y ( t ) are the expectation and variance of 

 ( t ) given by Eqs. (12) and (13) , respectively; ˙ g ( ·) and ˙ g 1 ( ·) are the 

erivative of g ( ·) and g 1 ( ·) given by Eqs. (9) and (10) , respectively, 

.e., 

˙ 
 ( t ) = −

∞ ∑ 

j=0 

( −kt ) 
j 

j! 

[ 
kε( j+1 ) 

1 −α, 1+ ( j+1 ) α

(
−ct 1 −α

)
+ ( 1 − α) ct −αε( j+1 ) 

1 −α, 1+ jα
(
−ct 1 −α

)] 
, (22) 

nd 

˙ 
 1 ( t ) = 

∞ ∑ 

j=0 

( −kt ) 
j 
t −α

j! 

[ 
( j + 1 − α) ε( j ) 

1 −α, 2+ ( j−1 ) α

(
−ct 1 −α

)
−( 1 − α) ct 1 −αε( j+1 ) 

1 −α, 2+ ( j−1 ) α

(
−ct 1 −α

)] 
. (23) 

ote that once the analytical form of the intrinsic drift coefficient 

f GE-GDEE is obtained, a one-dimensional Markov diffusion pro- 

ess ˜ Y ( t ) can be constructed to satisfy the following It ̂ o stochastic 

ifferential equation (SDE): 

 ̃

 Y ( t ) = a ( eff) 
[

˜ Y ( t ) , t 
]
d t + σW 

d W ( t ) (24) 
3 
ith the same initial condition 

˜ Y ( 0 ) = y 0 as that of Y ( t ) , where 

 

( eff) ( ·) is given by Eq. (17) as a linear function with respect to 
˜ 
 . Clearly, since the GE-GDEEs corresponding to Y ( t ) and 

˜ Y ( t ) are 

dentical, the transient PDFs of the two processes are identical. Fur- 

her, the transition probability density (TPD) of ˜ Y ( t ) during two 

ifferent instants t ′ < t , denoted as p ˜ Y 

(
y, t 
∣∣y ′ , t ′ ), satisfies the fol- 

owing Fokker-Planck equation 

∂ p ˜ Y 

(
y, t | y ′ , t ′ )
∂t 

= −
∂ 
[
a ( eff) ( y, t ) p ˜ Y 

(
y, t | y ′ , t ′ )]

∂y 
+ 

σ 2 
W 

2 

∂ 2 p ˜ Y 

(
y, t | y ′ , t ′ )
∂y 2 

, 

(25) 

hich is in the same form of PDE as the GE-GDEE (4). The differ- 

nce is that Eq. (4) is applicable to one-dimensional transient PDF 

f both the non-Markov process Y ( t ) and Markov process ˜ Y ( t ) ; 

hereas Eq. (25) is only applicable to the TPD between any two 

nstants of the Markov diffusion process ˜ Y ( t ) . However, the one- 

imensional transient PDF of ˜ Y ( t ) , which can be considered as the 

PD under the given initial condition, can also be determined via 

q. (25) . 

Consider a single-degree-of-freedom (SDOF) linear oscillator en- 

owed with fractional derivative elements subject to Gaussian 

hite noise. Its equation of motion reads 

¨
 ( t ) + c D 

αX ( t ) + kX ( t ) = ξ ( t ) , (26) 

here X ( t ) and Ẍ ( t ) are the displacement and acceleration, re- 

pectively; k and c are constants. Further, D 

αX ( t ) is the -order frac- 

ional derivative of defined by Eq. (2) , 0 < α < 1 ; ξ ( t ) is a Gaus-

ian white noise process with intensity σW 

, i.e., 

E [ ξ ( t ) ] = 0 , 

E [ ξ ( t ) ξ ( t + τ ) ] = σ 2 
W 

δ( τ ) , 
(27) 

n which δ( ·) is Dirac delta function. The initial condition of 

q. (26) is prescribed by 

X ( 0 ) = x 0 , 
˙ X ( 0 ) = v 0 . 

(28) 

y denoting V ( t ) = 

˙ X ( t ) , Eq. (26) can be rewritten as the two- 

imensional linear stochastic fractional differential equations 

d X ( t ) = V ( t ) d t, 

d V ( t ) = −
[
c D 

αX ( t ) + kX ( t ) 
]
d t + σW 

d W ( t ) . 
(29) 

learly, X ( t ) and V ( t ) governed by Eq. (29) are path-continuous 

rocesses but non-Markovian. Hence, in accordance with the GE- 

DEE for generic path-continuous non-Markovian process [28] , the 

ransient joint PDF of ( X ( t ) , V ( t ) ) T , denoted as p XV ( x, v , t ) , satisfies 

 two-dimensional PDE exactly, and the coefficients in the PDE can 

e achieved analytically. To this end, using the unified formalism 

f the GE-GDEE [28] , the GE-GDEE for p XV ( x, v , t ) is 

∂ p XV ( x, v , t ) 
∂t 

= −
∂ 
[ 

a ( 
eff) 

X ( x, v , t ) p XV ( x, v , t ) 
] 

∂x 

−
∂ 
[ 

a ( 
eff) 

V ( x, v , t ) p XV ( x, v , t ) 
] 

∂v 
+ 

1 

2 

∂ 2 
[ 

b ( 
eff) 

XX ( x, v , t ) p XV ( x, v , t ) 
] 

∂x 2 

+ 

∂ 2 
[ 

b ( 
eff) 

XV ( x, v , t ) p XV ( x, v , t ) 
] 

∂ x∂ v 

+ 

1 

∂ 2 
[ 

b ( 
eff) 

VV ( x, v , t ) p XV ( x, v , t ) 
] 

2 
, (30)
2 ∂v 
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here the intrinsic drift and diffusion coefficients are defined as 

28] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a ( 
eff) 

X ( x, v , t ) = lim 

�t→ 0 

1 

�t 
E [ �X ( t ) | X ( t ) = x ; V ( t ) = v ] , 

a ( 
eff) 

V ( x, v , t ) = lim 

�t→ 0 

1 

�t 
E [ �V ( t ) | X ( t ) = x ; V ( t ) = v ] , 

b ( 
eff) 

XX ( x, v , t ) = lim 

�t→ 0 

1 

�t 
E 

{
[ �X ( t ) ] 

2 | X ( t ) = x ; V ( t ) = v 
}
, 

b ( 
eff) 

XV ( x, v , t ) = lim 

�t→ 0 

1 

�t 
E [ �X ( t ) �V ( t ) | X ( t ) = x ; V ( t ) = v ] , 

b ( 
eff) 

VV ( x, v , t ) = lim 

�t→ 0 

1 

�t 
E 

{
[ �V ( t ) ] 

2 | X ( t ) = x ; V ( t ) = v 
}
, 

(31) 

ith �X ( t ) = X ( t + �t ) − X ( t ) and �V ( t ) = V ( t + �t ) − V ( t ) be- 

ng the increments during time interval [ t , t + �t ] . By substituting 

q. (29) into Eq. (31) , the equations, except the second one, be- 

ome 

 

( eff) 
X ( x, v , t ) = v , b ( 

eff) 
XX ( x, v , t ) = 0 , 

 

( eff) 
XV ( x, v , t ) = 0 , b ( 

eff) 
VV ( x, v , t ) = σ 2 

W 

, 

(32) 

hile the second equation yields 

 

( eff) 
V ( x, v , t ) = −E 

[
kX ( t ) + c D 

αX ( t ) | X ( t ) = x ; V ( t ) = v 
]

= −kx − c E 

[
D 

αX ( t ) | X ( t ) = x ; V ( t ) = v 
]

= −kx − c 

�( 1 − α) 

∫ t 

0 
( t − τ ) 

−αE [ V ( τ ) | X ( t ) = x ; V ( t ) = v ] d τ

(33

he closed-form expression of Eq. (33) will be investigated later. 

ote that the solutions of Eq. (26) (or Eq. (29) ) with the initial

ondition (28) can be expressed as [11,12,41] 

 ( t ) = σW 

∫ t 

0 

ˆ g ( t − τ ) d W ( τ ) + x 0 ̂  g 1 ( t ) + v 0 ̂  g ( t ) , (34) 

nd 

 ( t ) = σW 

∫ t 

0 

˙ ˆ g ( t − τ ) d W ( τ ) + x 0 ̇ ˆ g 1 ( t ) + v 0 ̇ ˆ g ( t ) , (35) 

here ˆ g ( ·) and ˆ g 1 ( ·) are fractional Green functions expressed as 

42,43] 

ˆ 
 ( t ) = 

∞ ∑ 

j=0 

( −k ) 
j 
t 2 j+1 

j! 
ε( j ) 

2 −α, 2+ jα
(
−ct 2 −α

)
, (36) 

nd 

ˆ  1 ( t ) = 

∞ ∑ 

j=0 

( −k ) 
j 
t 2 j 

j! 

[ 
ε( j ) 

2 −α, 1+ jα
(
−ct 2 −α

)
+ ct 2 −αε( j ) 

2 −α, 3+ ( j−1 ) α

(
−ct 2 −α

)] 
,

(37) 

espectively; ε( j ) 
p,q ( ·) is the jth-order derivative of the general- 

zed Mittag-Leffler function given by Eq. (11) . Clearly, the re- 

ponses X ( t ) and V ( t ) are Gaussian, and the expectation vector 

nd variance matrix of ( X ( t ) , V ( t ) ) T can be given according to 

qs. (34) and (35) as 

( t ) = 

(
μX ( t ) 
μV ( t ) 

)
= E 

[(
X ( t ) 
V ( t ) 

)]
= 

(
x 0 ̂  g 1 ( t ) + v 0 ̂  g ( t ) 

x 0 ̇ ˆ g 1 ( t ) + v 0 ̇ ˆ g ( t ) 

)
, (38) 

nd 

( t ) = 

(
σ 2 

X ( t ) ς XV ( t ) 
ς XV ( t ) σ 2 

V ( t ) 

)
= E 

[(
X ( t ) − μX ( t ) 
V ( t ) − μV ( t ) 

)(
X ( t ) − μX ( t ) 
V ( t ) − μV ( t ) 

)T 
]

= 

(
σ 2 

W 

∫ t 
0 

ˆ g 2 ( τ ) d τ σ 2 
W 

∫ t 
0 

ˆ g ( τ ) ̇ ˆ g ( τ ) d τ

σ 2 
∫ t 

ˆ g ( τ ) ̇ ˆ g ( τ ) d τ σ 2 
∫ t ˙ ˆ g 

2 
( τ ) d τ

)
, 
W 0 W 0 

4 
(39) 

espectively. Further, the auto-/cross-covariance function of X ( t ) 
nd V ( t ) can be written as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜ ς XX ( t 1 , t 2 ) = E { [ X ( t 1 ) − μX ( t 1 ) ] [ X ( t 2 ) − μX ( t 2 ) ] } 
= σ 2 

W 

∫ t 1 

0 

ˆ g ( ̃  τ ) ̂ g ( t 2 − t 1 + ˜ τ ) d ̃  τ , 

˜ ς XV ( t 1 , t 2 ) = E { [ X ( t 1 ) − μX ( t 1 ) ] [ V ( t 2 ) − μV ( t 2 ) ] } 
= σ 2 

W 

∫ t 1 

0 

ˆ g ( ̃  τ ) ̇ ˆ g ( t 2 − t 1 + ˜ τ ) d ̃  τ , 

˜ ς VV ( t 1 , t 2 ) = E { [ V ( t 1 ) − μV ( t 1 ) ] [ V ( t 2 ) − μV ( t 2 ) ] } 
= σ 2 

W 

∫ t 1 

0 

˙ ˆ g ( ̃  τ ) ̇ ˆ g ( t 2 − t 1 + ˜ τ ) d ̃  τ , for t 1 ≤ t 2 . 

(40) 

or different time instants τ and t , X ( t ) , V ( τ ) and V ( t ) are three

ependent Gaussian variables. Thus, there is 

 [ V ( τ ) | X ( t ) = x ; V ( t ) = v ] = 

V ( τ ) + 

(
˜ ς V X ( τ, t ) 
˜ ς V V ( τ, t ) 

)T 

�−1 ( t ) 

(
x − μX ( t ) 
v − μV ( t ) 

)
. 

(41) 

ubstituting Eq. (41) into Eq. (33) yields 

 

( eff) 
V ( x, v , t ) = −

[
k + k ( eff) ( t ) 

]
x − c ( eff) ( t ) v − f ( eff) ( t ) , (42) 

n which 

 

 

 

(
k ( eff) ( t ) , c ( eff) ( t ) 

)
= 

c 

Γ ( 1 − α) 
r T ( t ) �−1 ( t ) , 

f ( eff) ( t ) = 

c 

Γ ( 1 − α) 

[
m ( t ) − r T ( t ) �−1 ( t ) μ( t ) 

]
. 

(43) 

n Eq. (43) , μ( t ) and �( t ) are the expectation vector, and the co- 

ariance matrix of ( X ( t ) , V ( t ) ) T given by Eqs. (38) and (39) , re- 

pectively; 

 ( t ) = 

∫ t 

0 
( t − τ ) 

−α
[ x 0 ̇ g 1 ( τ ) + v 0 ̇ g ( τ ) ] d τ , (44) 

nd 

 ( t ) = 

(
r 1 ( t ) 
r 2 ( t ) 

)
= 

(
σ 2 

W 

∫ t 
0 ( t − τ ) 

−α ∫ τ
0 

˙ g ( ̃  τ ) g ( t − τ + ˜ τ ) d ̃  τd τ

σ 2 
W 

∫ t 
0 ( t − τ ) 

−α ∫ τ
0 

˙ g ( ̃  τ ) ̇ g ( t − τ + ˜ τ ) d ̃  τd τ

)
, 

(45) 

here ˙ g ( ·) and ˙ g 1 ( ·) are the derivative of g ( ·) and g 1 ( ·) given by 

qs. (36) and (37) , respectively. Finally, one can rewrite the GE- 

DEE (30) as 

∂ p XV ( x, v , t ) 
∂t 

= −v 
∂ p XV ( x, v , t ) 

∂x 
−

∂ 
[ 

a ( 
eff) 

V ( x, v , t ) p XV ( x, v , t ) 
] 

∂v 
 

σ 2 
W 

2 

∂ 2 p XV ( x, v , t ) 
∂v 2 

, 

(46) 

here the closed-form intrinsic drift coefficient a ( 
eff) 

V ( x, v , t ) is 

iven by Eq. (42) . Note that an equivalent SDOF linear integer-order 

scillator can be constructed. It is governed by the following equa- 

ion of motion 

¨̃
 

 ( t ) + c ( eff) ( t ) ̇ ˜ X ( t ) + 

[
k + k ( eff) ( t ) 

]
˜ X ( t ) = ξ ( t ) − f ( eff) ( t ) , (47) 

ith the same initial condition 

˜ X ( 0 ) = x 0 and 

˙ ˜ X ( 0 ) = v 0 as 

q. (28) , where ˜ X ( t ) , ˙ ˜ X ( t ) , and 

¨̃
 X ( t ) are the displacement, veloc- 

ty, and acceleration responses, respectively; k ( eff) ( t ) , c ( eff) ( t ) , and 

f ( eff) ( t ) are given by Eq. (43) analytically. Clearly, transient joint 

DFs of 
(
X ( t ) , ˙ X ( t ) 

)T 
and 

(
˜ X ( t ) , ˙ ˜ X ( t ) 

)T 

are identical. The joint TPD 

f 

(
˜ X ( t ) , ˙ ˜ X ( t ) 

)T 

during two different instants t ′ < t , denoted as 
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Fig. 1. Linear factor of the intrinsic drift coefficient in Example #1. 
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˜ X ̇ ˜ X 

(
x, v , t 

∣∣x ′ , v ′ , t ′ ), satisfies the Fokker-Planck equation 

∂ p ˜ X ̃ V 

(
x, v , t| x ’ , v ’ , t ’ )

∂t 
= −v 

∂ p ˜ X ̃ V 

(
x, v , t| x ’ , v ’ , t ’ )

∂x 

−
∂ 
[ 

a ( 
eff) 

V ( x, v , t ) p ˜ X ̃ V 

(
x, v , t| x ’ , v ’ , t ’ )] 

∂v 

+ 

σ 2 
W 

2 

∂ 2 p ˜ X ̃ V 

(
x, v , t| x ’ , v ’ , t ’ )
∂v 2 

, (48) 

hich has the same form of PDE as GE-GDEE (46) . 

The preceding approach can be extended to multi-dimensional 

ases. Specifically, without loss of generality, consider an n - 

imensional process vector Y ( t ) = ( Y 1 ( t ) , · · · , Y n ( t ) ) 
T governed by 

he n -dimensional linear stochastic fractional differential equa- 

ions 

 Y ( t ) = −
[
C D 

αY ( t ) + K Y ( t ) 
]
d t + L d W ( t ) , (49) 

here C = 

[
c i j 

]
n ×n 

and K = 

[
k i j 

]
n ×n 

are n × n constant matri- 

es; L = 

[
l i j 

]
n ×r 

is an n × r constant matrix, r ≤ n ; D 

αY ( t ) = 

D 

αY 1 ( t ) , · · · , D 

αY n ( t ) 
)T 

is the fractional derivative of Y ( t ) of order 

, 0 < α < 1 ; W ( t ) = ( W 1 ( t ) , · · · , W r ( t ) ) 
T are an r -dimensional 

tandard Wiener process vector, i.e., W ( t ) ∼ N ( 0 r , I r t ) , where 0 r 
enotes an r × r matrix containing all elements as zeros and I r de- 

otes r × r identity matrix, and 

 

[
W ( t ) W 

T ( t + τ ) 
]

= I r t, for τ ≥ 0 . (50) 

he initial condition of Y ( t ) is prescribed as 

 ( 0 ) = y 0 . (51) 

n general, the order of fractional derivative can be different for 

ifferent dimensions of Y ( t ) . However, to elucidate the basic con- 

ept clearly, an identical value of is employed herein for all com- 

onents of Y ( t ) . Note that even though in Eq. (49) α is consid- 

red within the range of ( 0 , 1 ) , systems with the order of fractional 

erivative larger than 1, and even larger than the greatest order of 

he integer-order derivative involved, can be transferred into the 

orm of Eq. (49) via dimension augmentation. For example, con- 

ider a one-dimensional system given by 

 

βX ( t ) + c ˙ X ( t ) + kX ( t ) = ξ ( t ) , (52) 

here 1 < β < 2 ; and are constant coefficients; ξ ( t ) de- 

otes a stationary Gaussian white noise with E [ ξ ( t ) ξ ( t + τ ) ] = 

2 
W 

δ( τ ) . Set Y ( t ) = [ Y 1 ( t ) , Y 2 ( t ) ] 
T = 

[ 
X ( t ) , D 

β−1 X ( t ) 

] T 
, and α = 

 − β . Then, the governing differential equation of the two- 

imensional stochastic process Y ( t ) can be cast as 

d Y 1 ( t ) 
d Y 2 ( t ) 

]
= 

[
D 

αY 2 ( t ) 
−c D 

αY 2 ( t ) − kY 1 ( t ) 

]
d t + 

[
0 

σW 

]
d W ( t ) . (53) 

f the transient PDF of one component of Y ( t ) , denoted as Y l ( t ) ,

 ≤ l ≤ n , is of interest, then according to the unified formalism of 

he GE-GDEE [28] , the GE-GDEE for p Y l ( y, t ) is 

∂ p Y l ( y, t ) 

∂t 
= −

∂ 
[
a ( eff) ( y, t ) p Y l ( y, t ) 

]
∂y 

+ 

1 

2 

∂ 2 
[
b ( eff) ( y, t ) p Y l ( y, t ) 

]
∂y 2 

, 

(54) 

here the intrinsic drift and diffusion coefficients are defined as 

28] 
5 
 

a ( eff) ( y, t ) = lim 

�t→ 0 

1 
�t 

E [ �Y l ( t ) | Y l ( t ) = y ] , 

b ( eff) ( y, t ) = lim 

�t→ 0 

1 
�t 

E 

{
[ �Y l ( t ) ] 

2 | Y l ( t ) = y 
}
, 

(55) 

here �Y l ( t ) = Y l ( t + �t ) − Y l ( t ) is the increment during time in- 

erval [ t , t + �t ] . By substituting the lth component of Eq. (49) , i.e., 

 Y l ( t ) = −
[
c ( l, ·) D 

αY ( t ) + k ( l, ·) Y ( t ) 
]
d t + l ( l, ·) d W ( t ) , (56) 

nto Eq. (55) , the second equation becomes 

 

( eff) ( y, t ) = l ( l, ·) l 
T 
( l, ·) = b ll , (57) 

hile the first equation yields 

a ( eff) ( y, t ) = −E 

[
c ( l, ·) D 

αY ( t ) + k ( l, ·) Y ( t ) | Y l ( t ) = y 
]

 −
n ∑ 

j=1 

{
c l j E 

[
D 

αY j ( t ) | Y l ( t ) = y 
]

+ k l j E 

[
Y j ( t ) | Y l ( t ) = y 

]}
. (58) 

here c ( l, ·) , k ( l, ·) , and l ( l, ·) are the lth row vectors of C , K , and

 , respectively. To obtain the closed-form expression of Eq. (58) , 

he Gaussian property and cross-covariance of Y ( t ) can be advo- 

ated. According to the property that the fractional derivative does 

ot break the linear property of the system [11] , Y ( t ) governed by 

q. (49) is still Gaussian. Denote the expectation vector and covari- 

nce matrix of Y ( t ) by 

( t ) = ( μ1 ( t ) , · · · , μn ( t ) ) 
T = E [ Y ( t ) ] , (59) 

nd 

( t ) = 

[
ς i j ( t ) 

]
n ×n 

= E 

{
[ Y ( t ) − μ( t ) ] [ Y ( t ) − μ( t ) ] 

T 
}
, (60) 

nd denote the cross-covariance matrix of Y ( t ) by 

˜ ( t 1 , t 2 ) = 

[
˜ ς i j ( t 1 , t 2 ) 

]
n ×n 

= E 

{
[ Y ( t 1 ) − μ( t 1 ) ] [ Y ( t 2 ) − μ( t 2 ) ] 

T 
}
. 

(61) 

hen the conditional expectation of multivariate Gaussian distribu- 

ions is 

 

[
Y j ( t ) | Y l ( t ) = y 

]
= μ j ( t ) + 

[ y − μl ( t ) ] ς l j ( t ) 

σ 2 
l 
( t ) 

, (62) 

nd 

 

[
D 

αY j ( t ) | Y l ( t ) = y 
]

= 

1 

�( 1 − α) 

∫ t 

0 
( t − τ ) 

−αE 
[

˙ Y j ( τ ) | Y l ( t ) = y 
]
d τ

= 

1 

�( 1 − α) 

∫ t 

0 
( t − τ ) 

−α d 

d τ
E 
[
Y j ( τ ) | Y l ( t ) = y 

]
d τ

= 

1 

�( 1 − α) 

∫ t 

0 
( t − τ ) 

−α d 

d τ

{
μ j ( τ ) + 

˜ ς jl ( τ, t ) [ y − μl ( t ) ] 

σ 2 
l 
( t ) 

}
d τ

= 

1 

�( 1 − α) 

∫ t 

0 
( t − τ ) 

−α ˙ μ j ( τ ) d τ + 

y − μl ( t ) 

σ 2 
l 
( t ) �( 1 − α) 

∫ t 

0 
( t − τ ) 

−α ∂ ̃  ς jl ( τ, t ) 

∂τ
d τ

= D 

αμ j ( t ) + 

y − μl ( t ) 

σ 2 ( t ) 
D 

α
1 ˜ ς jl ( t , t ) , (63) 
l 
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Fig. 2. Time histories of variance of Y ( t ) in Example #1. ( a ) Y ( t ) ; ( b ) Y ( t ) (log- 

coordinate). 
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Fig. 4. Linear factors of the intrinsic drift coefficient in Example #2. 

( ) [ ( )] ( )

w  

t

t

b

i

n

i

f

f  

a  

E

w  

b  

c

i

(

o

t

a

h

t

n

T

R

t

p  
here σ 2 
l ( t ) = ς ll ( t ) is the variance of Y l ( t ) , namely the ( l , l ) th el- 

ment of �( t ) ; D 

α
1 f ( ·, ·) is the αth order fractional partial deriva- 

ive of the function f ( ·, ·) with respect to the first argument [44] , 

 < α < 1 , namely, 

 

α
1 f ( x, y ) = 

1 

Γ ( 1 − α) 

∫ x 

0 
( x − ξ ) 

−α ∂ f ( ξ , y ) 

∂ξ
d ξ . (64) 

ubstituting Eqs. (62) and (63) into Eq. (58) yields 

 

( eff) ( y, t ) = −
n ∑ 

{
c lj 

[
D αμ j ( t ) + 

y − μl ( t ) 

σ 2 
l 
( t ) 

D α1 r jl ( t , t ) 

]
+ k lj 

{
μ j ( t ) + 

[ y − μl ( t ) ] ς lj ( t ) 

σ 2 
l 
( t ) 

}}
j=1 

= −c ( l, ·) 

[
D αμ( t ) + y − μl ( t ) 

σ 2 
l 
( t ) 

D α1 ̃  ς ( ·,l ) ( t , t ) 

]
− k ( l, ·) 

[
μ( t ) + y − μl ( t ) 

σ 2 
l 
( t ) 

ς ( ·,l ) ( t ) 

]
= − y −μl ( t ) 

σ2 
l ( t ) 

[ 
c ( l , ·) D 

α
1 

∼
ς ( ·, l ) ( t , t ) + k ( l , ·) ς ( ·, l ) ( t ) 

] 
−c ( l , ·) D 

αμ( t ) −k ( l , ·) μ( t ) . (65) 

here ς ( ·,l ) ( t ) is the lth column vector of �( t ) ; D 

α
1 ˜ ς ( ·,l ) ( t , t ) is 

he αth order fractional partial derivative of the lth column vec- 

ors of ˜ �( t 1 , t 2 ) with respect to t 1 at t 1 = t and t 2 = t . It can be

een that a ( eff) ( y, t ) is also a linear function of y . Note that a one-

imensional Markov diffusion process ˜ Y ( t ) can be constructed to 

atisfy the Itô SDE 

˜ 
 ( t ) = a ( eff) 

[
˜ Y ( t ) , t 

]
d t + 

√ 

b ll d W ( t ) , (66) 

ith the same initial condition 

˜ Y ( 0 ) = y 0 ,l as that of Y l ( t ) , where 

 

( eff) ( ·) is given by Eq. (54) as a linear function with respect to 

 . Clearly, the TPD of ˜ Y ( t ) during two different instants t ′ < t , de-

oted as p ˜ Y 

(
y, t 
∣∣y ′ , t ′ ), satisfies the Fokker-Planck equation 
Fig. 3. Transient PDFs of Y ( t ) 

6 
∂ p ˜ Y y, t | y ′ , t ′ 
∂t 

= −
∂ a ( eff) ( y, t ) p ˜ Y y, t | y ′ , t ′ 

∂y 
+ 

b ll 
2 

∂ 2 p ˜ Y y, t | y ′ , t ′ 
∂y 2 

, 

(67) 

hich is in the same form of PDE as GE-GDEE (54) . Clearly, the

ransient PDF of the Markov diffusion process ˜ Y ( t ) is identical to 

hat of the non-Markovian process Y l ( t ) . The preceding claim can 

e readily made when more than one component of Y ( t ) are of 

nterest. To illustrate this point, an example in which two compo- 

ents of a multi-dimensional system are of concern simultaneously 

s given in the next paragraph. 

Example #1: A one-dimensional linear stochastic fractional dif- 

erential system Consider the one-dimensional linear stochastic 

ractional differential Eq. (1) , where α = 0 . 5 , k = 1 , c = 1 , y 0 = 0 ,

nd σ 2 
W 

= 0 . 2 . The transient PDF of process Y ( t ) governed by

q. (1) satisfies GE-GDEE (4), and the intrinsic drift coefficient, 

hich is a linear function with respect to the state quantity y , can

e obtained by Eq. (17) . It can be seen that in Eq. (17) , the constant

oefficient f ( eff) ( t ) = 0 , and the linear coefficient k ( eff) ( t ) is shown 

n Fig. 1 . 

After obtaining the intrinsic drift coefficient, the GE-GDEE 

4) can be used, and the alternative linear system (24) can be 

btained. The analytical solution of the time-varying variance of 

he integer-order linear system subject to Gaussian white noise is 

vailable (See Appendix). Figure 2 shows a comparison of the time 

istories of the variance given by the analytical solution ( Eq. (13) ), 

he GE-GDEE scheme and the variance of system (24) , and a perti- 

ent Monte Carlo simulation (MCS) with 10 4 samples, respectively. 

he sample paths in MCS are obtained by a modified stochastic 

unge-Kutta algorithm [29] . Since the response PDF is Gaussian, 

he transient PDF solution of Y ( t ) can be readily obtained. A com- 

arison of the transient PDFs at t = 5 is shown in Fig. 3 . The con-
at t = 5 in Example #1. 
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Fig. 5. Variance and Covariance histories of X ( t ) and V ( t ) in Example #2. ( a ) Variance history of X ( t ) ; ( b ) Variance history of V ( t ) ;( c ) Covariance history of X ( t ) and V ( t ) . 
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istency of the results in Figs. 2 and 3 verifies the assertation in 

revious dicussuion. The minor inconsistency between the analyt- 

cal solution and the GE-GDEE results is primarily due to the nu- 

erical integration. 

Example #2 An SDOF linear fractional differential oscillator en- 

orced by Gaussian white noise Consider an SDOF linear fractional 

ifferential oscillator subject to Gaussian white noise. Its motion is 

escribe by Eq. (26) , with α = 0 . 1 , k = 2 , c = 1 , x 0 = 0 , v 0 = 0 , and
2 
W 

= 0 . 2 . The transient joint PDF of displacement and velocity, i.e., 

 ( t ) and V ( t ) , satisfies GE-GDEE (46) , and the intrinsic drift coeffi- 

ient, which is a linear function with respect to state quantity and, 

an be obtained by Eq. (42) . In Eq. (42) , the coefficient f ( eff) ( t ) = 0 ,

nd the linear factors k ( eff) ( t ) and c ( eff) ( t ) are shown in Fig. 4 . 

Then, by substituting the closed-form expression of the intrin- 

ic drift coefficient into GE-GDEE (46) and the alternative linear 

ystem (47) , the time histories of the response covariances and the 

ransient PDFs are obtained. The time histories of the covariances 

btained by the GE-GDEE scheme and the analytical solution by 

q. (39) are shown in Fig. 5 . The good agreement of the results in

ig. 5 confirms the conclusions drawn. 

Example #3 A multi-degree-of-freedom (MDOF) linear frac- 

ional differential oscillator subject to Gaussian white noise Con- 

ider a 12-DOF linear fractional differential oscillator subject to 

aussian white noise. Its equation of motion is 

¨
 ( t ) + ̃

 C ̇

 X ( t ) + ̃

 C βD 

βX ( t ) + 

˜ K X ( t ) = 

˜ L ξ ( t ) , (68) 
7 
here X ( t ) , ˙ X ( t ) , and Ẍ ( t ) are the displacement, velocity, and ac- 

eleration vectors, respectively; β = 0 . 6 ; and 

˜ 
 = 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 . 7902 −0 . 3804 

−0 . 3804 

. . . 
. . . 

. . . 0 . 7902 −0 . 3804 

−0 . 3804 0 . 4099 

⎞ ⎟ ⎟ ⎟ ⎠ 

, 

˜ 
 β = 

⎛ ⎜ ⎜ ⎜ ⎝ 

4 −2 

−2 

. . . 
. . . 

. . . 4 −2 

−2 2 

⎞ ⎟ ⎟ ⎟ ⎠ 

, ˜ K = 

⎛ ⎜ ⎜ ⎜ ⎝ 

4 −2 

−2 

. . . 
. . . 

. . . 4 −2 

−2 2 

⎞ ⎟ ⎟ ⎟ ⎠ 

. 

(69) 

˜ 
 = ( 1 , · · · , 1 ) T ; and ξ ( t ) is a one-dimensional white noise pro- 

ess with intensity σ 2 
W 

= 0 . 04 . The initial values of displacement 

nd velocity take x 0 = ( 0 , · · · , 0 ) T and v 0 = ( 0 , · · · , 0 ) T . Introduc- 

ng the velocity process vector V ( t ) = 

˙ X ( t ) and the state vector 

 ( t ) = 

(
X 

T ( t ) , V 

T ( t ) 
)T 

, Eq. (68) can be recast as the stochastic dif- 

erential Eq. (49) . Next consider the transient joint PDF of the dis- 

lacement and velocity of the lth DOF, denoted as p X l V l ( x, v , t ) , for 

rbitrary 1 ≤ l ≤ 12 . Following the derivation of previous dicussion, 

t is found that p X V ( x, v , t ) satisfies the following GE-GDEE 

l l 
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Fig. 6. Linear factors of the intrinsic drift coefficient in Example #3. 
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∂ p X l V l ( x, v , t ) 
∂t 

= −v 
∂ p X l V l ( x, v , t ) 

∂x 
−

∂ 
[ 

a ( 
eff) 

V ( x, v , t ) p X l V l ( x, v , t ) 
] 

∂v 

+ 

σ 2 
W 

2 

∂ 2 p X l V l ( x, v , t ) 
∂v 2 

, (70) 

here the intrinsic drift coefficient is 

 

( eff) 
V ( x, v , t ) = k ( eff) ( t ) x + c ( eff) ( t ) v , (71) 

n which the time-variant linear factors are given by 
Fig. 7. Transient PDFs of X l ( t ) and V l ( t ) at t = 15 in Example #3. ( a ) X l (

8

k ( eff) ( t ) , c ( eff) ( t ) 
)

= 

[
˜ c ( l, ·) 
(
ς V X l ( t ) , ς V V l ( t ) 

)
+ ˜ c β, ( l, ·) D 

β
1 

(
˜ ς XX l ( t , t ) , ˜ ς XV l ( t , t ) 

)
+ 

˜ k ( l, ·) 
(
ς XX l ( t ) , ς XV l ( t ) 

)]
�−1 

X l V l 
. (72) 

he symbol �X l V l 
denotes the 2 × 2 covariance matrix of X l ( t ) and 

 l ( t ) ; ς XX l 
( t ) , ς XV l 

( t ) , ς V X l 
( t ) , and ς V V l 

( t ) are the 12-dimensional 

ovariance column vectors of the corresponding quantities de- 

oted by their respective subscripts; ˜ ς XX l 
( t 1 , t 2 ) and ˜ ς XV l 

( t 1 , t 2 ) are 

he corresponding 12-dimensional cross-covariance column vec- 

ors; ˜ c ( l, ·) , ˜ c β, ( l, ·) , and 

˜ k ( l, ·) are the lth row vectors of ˜ C , ˜ C β , and 

˜ 
 , respectively. In this example, l = 1 . Note that it is quite cum-

ersome to analytically derive the covariance functions used in 

q. (72) . Hence, the linear coefficients k ( eff) ( t ) and c ( eff) ( t ) in the 

ntrinsic drift coefficient, given by Eq. (72) , are determined numeri- 

ally by a least-square algorithm based on the data from 200 sam- 

les via dynamical analyses of Eq. (26) . The identified results of 

 

( eff) ( t ) and c ( eff) ( t ) are shown in Fig. 6 . 

Then, substituting the closed-form expression of the intrin- 

ic drift coefficient in Eq. (71) with the identified linear factors 

nto GE-GDEE (70) , the transient PDF solutions of X l ( t ) and V l ( t )
an be captured. GE-GDEE (70) can be solved as a general two- 

imensional PDE, such as path integral solution (PIS) [31] . The 

ransient PDFs at t = 15 are shown in Fig. 7 . The covariance histo-

ies of X l ( t ) and V l ( t ) can also be obtained by relying on the tran- 

ient PDF solution, which is shown in Fig. 8 . Figures 7 and 8 also

omprise the MCS results of transient PDF solutions and variance 
 

t ) ; ( b ) X l ( t ) (log-coordinate); ( c ) V l ( t ) ; ( d ) V l ( t ) (log-coordinate). 
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Fig. 8. Variance and Covariance histories of X l ( t ) and V l ( t ) in Example #3. ( a ) Variance history of X l ( t ) ; ( b ) Variance history of V l ( t ) ; ( c ) Covariance history of X l ( t ) and 

V l ( t ) . 

h

s

d

b

t

r

t

t

o

s

f

b

l

h

b

s

a

t

d

c

o

s

l

r

S

G

s

o

d

p

e

n

f

t

v

G

e

t

s

n

D

a

q

D

e

istories, respectively, as comparison. The consistency of the re- 

ults in Figs. 7 and 8 supports the conclusions drawn in previous 

iscussion. 

It is also seen from Fig. 8 that the response statistics obtained 

y the GE-GDEE with intrinsic drift coefficient identified based on 

he data from 200 samples are quite more accurate than the MCS 

esults directly estimated from the 200 samples. This indicates that 

he GE-GDEE has much higher accuracy and efficiency when using 

he same number of deterministic analyses. The detailed discussion 

n this numerical superiority can be found in Refs. [28,31] . 

In the paper, an exact low-dimensional PDE governing the tran- 

ient PDF of any quantity of interest in a multi-dimensional linear 

ractional differential system subject to Gaussian white noise has 

een derived relying on the formalism of the GE-GDEE. The ana- 

ytical expression of the intrinsic drift coefficient in the GE-GDEE 

as been discussed. In this context, the following conclusions may 

e drawn. 

(1) If a process is governed by a one-dimensional linear 

tochastic fractional differential equation, or is a component of 

 vector process governed by a multi-dimensional linear stochas- 

ic fractional differential equation, its transient PDF satisfies a 

imension-reduced GE-GDEE with analytical intrinsic drift coeffi- 

ient. The intrinsic drift coefficient is a time-variant linear function 

f the process considered. 

(2) For multi-dimensional linear fractional differential systems 

ubject to Gaussian white noise, by estimating the inherently- 

inear intrinsic drift coefficient in the GE-GDEE, the stochastic 

esponse can be determined with high accuracy and efficiency. 

pecifically, the accuracy and robustness of the results of the GE- 
9 
DEE are much superior to that of the MCS based on the same 

ample data, and the accuracy of at least the order of magnitude 

f 10 -4 can be achieved in the tail of the PDF. 

Though the above investigation is limited to linear fractional 

ifferential systems subject to additive Gaussian white noise, it 

rovides a set of remarkable rigorously proved examples on the 

xistence and eligibility of GE-GDEE for the case that the origi- 

al high-dimensional system itself is non-Markovian, and an in- 

ormative demonstration for the physical-mechanism-informed de- 

ermination of the intrinsic drift coefficient of GE-GDEE, and pro- 

ides insights for tackling more complex nonlinear systems. The 

E-GDEE and intrinsic drift coefficient for linear fractional differ- 

ntial systems subject to other stochastic excitations, such as mul- 

iplicative noise, colored noise or Poisson white noise, are worth 

tudying in the future. Further, the ideas can be extended to the 

onlinear fractional differential systems. 
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ppendix 

Consider a n -dimensional linear integer-order differential sys- 

em subject to Gaussian white noise governed by the equation 

 Y ( t ) = A ( t ) Y ( t ) d t + L d W ( t ) , (A1) 

here A ( t ) is an n × n time-varying matrix; L is an n × r matrix; 

nd W ( t ) is an r -dimensional standard Wiener process vector, i.e., 

 ( t ) ∼ N ( 0 r , I r t ) , and E 
[
W ( t ) W 

T ( t + τ ) 
]

= I r t . The initial value of 

 ( t ) satisfies 

 ( 0 ) ∼ N ( μ0 , �0 ) . (A2) 

Then, the transient mean vector μ( t ) and covariance matrix 

( t ) of process Y ( t ) can be determined by the equation 

( t ) = E [ Y ( t ) ] = exp 

(∫ t 

0 

A ( τ ) d τ

)
μ0 , (A3) 

nd 

( t ) = E 

[
Y ( t ) Y 

T ( t ) 
]

− μ( t ) μT ( t ) 

= exp 

(∫ t 

0 

A ( τ ) d τ

)
�0 exp 

(∫ t 

0 

A 

T ( τ ) d τ

)
+ 

∫ t 

0 

exp 

(∫ t 

τ
A ( u ) d u 

)
LL T exp 

(∫ t 

τ
A 

T ( u ) d u 

)
d τ. (A4) 
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