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A B S T R A C T

We present a detailed overview of the physics of two-color soliton molecules in nonlinear
waveguides, i.e. bound states of localized optical pulses which are held together due to an
incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses,
which leads to a stable propagation of the pulse compound, is enabled by the nonlinear
Kerr effect. Special attention is paid to the description of the binding mechanism in terms
of attractive potential wells, induced by the refractive index changes of the subpulses, exerted
on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics
meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak
trapped pulse, for which trapped states of low intensity are determined by a Schrödinger-
type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating
that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like
trapping-to-escape transition. We further demonstrate that if both constituent pulses are of
similar amplitude, molecule-like bound-states are formed. We show that 𝑧-periodic amplitude
variations permit a coupling of these pulse compound to dispersive waves, resulting in the
resonant emission of Kushi-comb-like multi-frequency radiation.

. Introduction

The confinement of two – and possibly more – quasi co-propagating optical pulses has been discussed in terms of various
ropagation settings since the 80’s of the last century, with early accounts discussing the self-confinement of multimode optical
ulses in glass fibers [1], nonlinear pairing of light and dark optical solitons [2,3], and stability of solitons with different polarization
omponents in birefringent fibers [4]. A very paradigmatic instance of self-confinement is supported by the standard nonlinear
chrödinger equation (NSE) [5,6]. In the integrable case, it features localized field pulses given by solitary waves [7]. When
onsidering two or more quasi group-velocity matched pulses, their incoherent, cross-phase modulation (XPM) induced mutual
nteraction co-determines their dynamics [1–4,8–11]. For instance, in nonlinear waveguides with a single zero-dispersion point,

soliton induces a strong refractive index barrier that cannot be surpassed by quasi group-velocity matched waves located in a
omain of normal dispersion [12], resulting in their mutual repulsion. The underlying interaction process is enabled by a general
ave reflection mechanism originally reported in fluid dynamics [13]. In optics this process is referred to as push-broom effect [14],
ptical event horizon [15,16], or temporal reflection [17]. This interaction mechanism allows for a strong and efficient control
f light pulses [18–20], and has been shown to appear naturally during the supercontinuum generation process [21–23]. When
onsidering waveguides that support group-velocity matched propagation of pulses in separate domains of anomalous dispersion,
heir mutual interaction is expressed in a different way: the aforementioned XPM induces attractive potentials that hold the pulses
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together, enabling two-color soliton molecules through an incoherent binding mechanism [24]; the resulting pulse compound
consists of two subpulses at vastly different center frequencies. Putting emphasis on the frequency-domain representation of these
pulse compounds lead to observe that a soliton can in fact act as a localized trapping potential with a discrete level spectrum [24]. Let
us emphasize that in order to achieve a strong attractive interaction between the subpulses of such pulse compounds, group-velocity
matching is crucial [25]. In terms of a modified NSE with added fourth-order dispersion, these objects where identified as parts of
a large family of generalized dispersion Kerr solitons that can be characterized using the concept of a meta-envelope [26]. Such
pulses were recently verified experimentally in mode-locked laser cavities [27–29]. In a complementary approach to the multi-scales
analysis presented in Ref. [26], modeling both subpulses in terms of coupled NSEs allowed to derive a special class of two-color
soliton pairs and their meta-envelopes in closed form [30]. Let us note that the concept of soliton molecules has meanwhile been
extended to pulse compounds with three frequency centers [31], and recently also to a number of 𝐽 equally spaced frequency
components [27,32]. Further, two-color soliton microcomb states with similar structure where also observed in the framework of
the Lugiato–Lefever equation [33,34]. The underlying scheme is much more general and requires quasi group-velocity matching
between different optical pulses. This can be achieved in different settings, and can, e.g., already been found in an early work of
Hasegawa [1], where a strong incoherent XPM interaction between different components of a multimode optical pulse has been
considered. At this point, we would also like to emphasize that these pulse compounds are different from usual soliton molecules,
which can be realized by dispersion engineering in the framework of a standard NSE [35], characterized by two pulses separated
by a fixed temporal delay and stabilized by a phase relation between both pulses [36].

Here, we review the rich dynamical behavior of two-color pulse compounds, which consist of two group-velocity matched
subpulses in distinct domains of anomalous dispersion, with frequency loci separated by a vast frequency gap. First, we will
demonstrate paradigmatic propagation scenarios that demonstrate photonic meta-atoms, arising in the limiting case where the
pulse compounds consist of an intense trapping pulse, given by a soliton, and a weak trapped pulse. Then, we will address the
case where both subpulses have similar amplitudes, so that their mutual XPM induced confining action results in the formation
of a narrow two-color soliton molecule. Finally, we show that non-stationary dynamics of the subpulses results in the emission of
resonant radiation, and we show how the location of the newly generated frequencies depends on the 𝑧-periodic amplitude and
width variations of the oscillating soliton molecule.

The article is organized as follows. In Section 2 we discuss the propagation model used for our theoretical investigations of two-
color meta-atoms and soliton molecules, and detail the numerical methods employed for their simulation and analysis. In Section 3
we demonstrate the ability of solitons to act as attractive potential wells that can host trapped states, and probe the stability of
the resulting photonic meta-atoms with respect to a group-velocity mismatch between the trapping soliton and the trapped state.
In Section 4 we derive a simplified model that yields simultaneous solutions for the subpulses that make up a two-color soliton
molecule and show that these solutions entail the two-color soliton pairs derived in Ref. [30]. We perturb these pulse compounds
by increasing their initial amplitude, which results in periodic amplitude and width oscillations, and triggers the generation of
resonant multi-frequency radiation with a complex structure that can be precisely predicted theoretically. Section 5 concludes with
a summary.

2. Model and methods

Propagation model. In order to study the propagation dynamics of nonlinear photonic meta-atoms and two-color soliton molecules,
we consider a modified nonlinear Schrödinger equation (NSE) of the form

𝑖𝜕𝑧𝐴 =
(

𝛽2
2
𝜕2𝑡 −

𝛽4
24

𝜕4𝑡

)

𝐴 − 𝛾|𝐴|2𝐴, (1)

describing the single-mode propagation of a complex-valued field 𝐴 ≡ 𝐴(𝑧, 𝑡), on a periodic temporal domain of extent 𝑇 for the
boundary condition 𝐴(𝑧,−𝑇 ∕2) = 𝐴(𝑧, 𝑇 ∕2). The linear part of Eq. (1) includes higher orders of dispersion, with 𝛽2 > 0 (in units
f fs2∕μm) a positive-valued group-velocity dispersion coefficient, and 𝛽4 < 0 (fs4∕μm) a negative-valued fourth-order dispersion
oefficient. The nonlinear part of Eq. (1) includes a positive-valued scalar nonlinear coefficient 𝛾 (W−1∕μ𝑚). Considering the discrete
et of angular frequency detunings 𝛺 ∈ 2𝜋

𝑇 Z, the transform-pair

𝐴𝛺(𝑧) = 𝖥[𝐴(𝑧, 𝑡)] ≡ 1
𝑇 ∫

𝑇 ∕2

−𝑇 ∕2
𝐴(𝑧, 𝑡) 𝑒𝑖𝛺𝑡 d𝑡, (2a)

𝐴(𝑧, 𝑡) = 𝖥−1[𝐴𝛺(𝑧)] ≡
∑

𝛺
𝐴𝛺(𝑧) 𝑒−𝑖𝛺𝑡, (2b)

pecifies a Fourier transform [Eq. (2a)], and the corresponding inverse [Eq. (2b)], relating the field envelope 𝐴(𝑧, 𝑡) to the spectral
nvelope 𝐴𝛺(𝑧).

ropagation constant. Using the identity 𝜕𝑛𝑡 𝑒
−𝑖𝛺𝑡 = (−𝑖𝛺)𝑛 𝑒−𝑖𝛺𝑡 of the spectral derivative,1 the frequency-domain representation of

the propagation constant is given by the polynomial expression

𝛽(𝛺) =
𝛽2
2
𝛺2 +

𝛽4
24

𝛺4. (3a)

1 Let us note that the ‘‘-’’-sign in the bracket on the right-hand-side of the preceding identity reflects the sign-choice of the plane-wave basis in Eqs. (2). This
as to be taken into account when using scientific computing tools such as, e.g., Python’s scipy package [37,38], where readily available routines for spectral
2

erivative exist that implement a different sign-choice for the pair of Fourier-transforms.
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The frequency-dependent inverse group-velocity of a mode at detuning 𝛺 reads

𝛽1(𝛺) ≡ 𝜕𝛺𝛽(𝛺) = 𝛽2𝛺 +
𝛽4
6
𝛺3, (3b)

with group-velocity (GV) 𝑣𝑔(𝛺) = 1∕𝛽1(𝛺), and the group-velocity dispersion (GVD) is given by

𝛽2(𝛺) ≡ 𝜕2𝛺𝛽(𝛺) = 𝛽2 +
𝛽4
2
𝛺2. (3c)

ubsequently, we use the parameter values 𝛽2 = 1 fs2∕μm, and 𝛽4 = −1 fs4∕μm, resulting in the model dispersion characteristics
hown in Fig. 1. For the nonlinear coefficient in Eq. (1) we use 𝛾 = 1 W−1∕μ𝑚. As evident from Fig. 1(c), the GVD profile
q. (3c) has a concave downward shape with two zero-dispersion points, defined by the condition 𝛽2(𝛺)

!
= 0, located at 𝛺Z1,Z2 =

√

2𝛽2∕|𝛽4| = ∓
√

2 rad∕fs. It exhibits anomalous dispersion for 𝛺 < 𝛺Z1 as well as for 𝛺 > 𝛺Z2. The interjacent frequency
ange 𝛺Z1 < 𝛺 < 𝛺Z2 exhibits normal dispersion. Inspecting the inverse group velocity shown in Fig. 1(b), it can be seen
hat two frequencies are GV matched to 𝛺 = 0. Due to the symmetry of the propagation constant, these are given by the pair
1 = −𝛺2 = −

√

6𝛽2∕|𝛽4| ≈ −2.828 rad∕fs, uniquely characterized by 𝛽(𝛺1) = 𝛽(𝛺2) and indicated by the open and filled circles in
Fig. 1. In fact, for the considered propagation constant, GV matching of three distinct modes can be realized as long as the frequency
loci in AD1 and AD2 lie within the range of frequencies shaded in red in Fig. 1(b). Let us note that the type of GV matching for two
optical pulses at vastly different center frequencies, supported by the propagation constant Eq. (3a), is methodologically different
from the type of GV matching that supports quasi co-propagation of different modes with similar frequencies [1]. Nevertheless, both
allow for quasi co-propagation of optical pulses under different circumstances, supporting similar XPM induced propagation effects.
In our case, quasi group-velocity matched propagation of optical pulses across a vast frequency gap is possible, enabled by a tailored
propagation constant with multiple zero-dispersion points. Further, the considered mechanism of GV matching differs from that in
Ref. [39], wherein two pulses at the same central frequency but different polarization states were assumed to be launched in the
anomalous dispersion regime of a hollow-core photonic crystal fiber filled with a noble gas. The mathematical structure of Eq. (1)
and the above choice of parameters yields a very basic setting supporting the stable propagation of nonlinear photonic meta-atoms
and two-color soliton molecules. In fact, the two-parameter GVD curve shown in Fig. 1(c) is a simplified model of the dispersion
considered earlier in Ref. [24], wherein two-color soliton molecules were first demonstrated, and is similar to the setting considered
in Ref. [26], wherein generalized dispersion Kerr solitons were described comprehensively. However, let us note that the phenomena
reported below are not limited to the particular choice of the above parameters and persist even in the presence of perturbations
such as pulse self-steepening [25,30], which can be accounted for by replacing 𝛾 → 𝛾(𝛺) in the nonlinear part of Eq. (1), and –
with some reservation – a self-frequency shift caused by the Raman effect [31].

Propagation algorithm. For our pulse propagation simulations in terms of Eq. (1), we employ the ‘‘Conservation quantity error’’
method (CQE) [40,41]. It maintains an adaptive 𝑧-propagation stepsize ℎ, and uses a conservation law of the underlying propagation
equation to guide stepsize selection. Specifically, we here use the relative error

𝛿𝐸 (𝑧) =
|𝐸(𝑧 + ℎ) − 𝐸(𝑧)|

𝐸(𝑧)
, (4)

where 𝐸 is the total energy, conserved by Eq. (1). Employing Parseval’s identity for Eqs. (2) [42,43], the total energy in the time
and frequency domains is given by

𝐸(𝑧) = ∫

𝑇 ∕2

−𝑇 ∕2
|𝐴(𝑧, 𝑡)|2 d𝑡 = 𝑇

∑

𝛺
|𝐴𝛺(𝑧)|

2, (5)

with instantaneous power |𝐴(𝑧, 𝑡)|2 (W = J∕s), and power spectrum |𝐴𝛺(𝑧)|
2 (W). The CQE method is designed to keep the relative

error 𝛿𝐸 within the goal error range (0.1 𝛿G, 𝛿G), for a preset local goal error 𝛿G (throughout our numerical experiments we set
𝛿G = 10−10). This is accomplished by decreasing the stepsize ℎ when necessary while increasing ℎ when possible. To advance the
field from position 𝑧 to 𝑧 + ℎ, the CQE uses the ‘‘Fourth-order Runge–Kutta in the interaction picture’’ (RK4IP) method [44]. The
ability of the algorithm to increase or decrease the stepsize is most valuable when the propagation of an initial condition results in a
rapid change of the pulse intensities over short propagation distances. Nevertheless, if one is willing to accept an increased running
time resulting from an integration scheme with fixed stepsize, usual split-step Fourier methods [43,45,46] will work similarly well.

Spectrograms. To assess the time–frequency interrelations within the field 𝐴(𝑧, 𝑡) at a selected propagation distance 𝑧, we use the
spectrogram [47–49]

𝑃𝑆 (𝑡, 𝛺; 𝑧) = 1
2𝜋

|

|

|

|

|

∫

𝑇 ∕2

−𝑇 ∕2
𝐴(𝑧, 𝑡′)ℎ(𝑡′ − 𝑡)𝑒−𝑖𝛺𝑡′ d𝑡′

|

|

|

|

|

2

. (6)

To localize the field in time, we use a hyperbolic-secant window function ℎ(𝑥) = sech(𝑥∕𝜎) with width parameter 𝜎.

Incoherently coupled pulse pairs. To facilitate a simplified description of two-color pulse compounds in the form

−𝑖𝛺1𝑡 −𝑖𝛺2𝑡
3

𝐴(𝑧, 𝑡) = 𝐴1(𝑧, 𝑡) 𝑒 + 𝐴2(𝑧, 𝑡) 𝑒 , (7)
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Fig. 1. Details of the frequency-dependent propagation constant supporting nonlinear-photonic meta-atoms and two-color soliton molecules. (a) Propagation
onstant, (b) inverse group velocity, and, (c) group-velocity dispersion. In (c), AD1 and AD2 label two distinct domains of anomalous dispersion, separated by
n extended domain of normal dispersion (labeled ND). In (a–c), the domain of normal dispersion is shaded gray. Zero-dispersion points are labeled 𝛺Z1 and

𝛺Z2. In (b), the frequency range shaded in red allows for group-velocity matching of two modes with loci in AD1 and AD2. Open circle (labeled 𝛺1) and filled
circle (labeled 𝛺2) indicate such a pair of group-velocity matched frequencies. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

in which two quasi group-velocity-matched subpulses 𝐴1 ≡ 𝐴1(𝑧, 𝑡) and 𝐴2 ≡ 𝐴2(𝑧, 𝑡) exist at the frequency gap 𝛺gap = |𝛺2 −𝛺1|, it
s convenient to consider the two coupled nonlinear Schrödinger equations (CNSEs) [6,10,11]

𝑖𝜕𝑧 𝐴1 + 𝛽′0 𝐴1 − 𝑖𝛽′1𝜕𝑡 𝐴1 −
𝛽′2
2
𝜕2𝑡 𝐴1 + 𝛾 ′

(

|𝐴1|
2 + 2|𝐴2|

2)𝐴1 = 0, (8a)

𝑖𝜕𝑧 𝐴2 + 𝛽′′0 𝐴2 − 𝑖𝛽′′1 𝜕𝑡 𝐴2 −
𝛽′′2
2
𝜕2𝑡 𝐴2 + 𝛾 ′′

(

|𝐴2|
2 + 2|𝐴1|

2)𝐴2 = 0. (8b)

he parameters in Eqs. (8) are related to Eqs. (3) through 𝛽′0 = 𝛽(𝛺1), 𝛽′′0 = 𝛽(𝛺2), 𝛽′1 = 𝛽1(𝛺1), 𝛽′′1 = 𝛽1(𝛺2), 𝛽′2 = 𝛽2(𝛺1), 𝛽′′2 = 𝛽2(𝛺2),
nd, 𝛾 ′ = 𝛾 ′′ = 𝛾. The mismatch of inverse GV for both subpulses is given by 𝛥𝛽1 ≡ |𝛽′′1 − 𝛽′1|. For specific choices of the detunings 𝛺1
nd 𝛺2, exact GV matching, signaled by 𝛥𝛽1 = 0, can be achieved. In contrast to Eq. (1), the incoherently coupled Eqs. (8) neglect
igher-orders of dispersion within their linear parts, as well as rapidly varying four-wave-mixing terms within their nonlinear parts.
he mutual interaction of both subpulses is taken into account via XPM. As evident from Eq. (8a), pulse 𝐴1 can be viewed as
eing exposed to a total potential field of the form 𝑉1 ≡ 𝛾 ′(|𝐴1|

2 + 2|𝐴2|
2), entailing the effects of SPM and XPM. Likewise, 𝐴2 is

xposed to the potential field 𝑉2 ≡ 𝛾 ′′(|𝐴2|
2 +2|𝐴1|

2). As we will show in Section 3, 4, the potential fields 𝑉1 and 𝑉2 yield attractive
otentials that enable the mutual trapping of both subpulses. Subsequently we take 𝛺1 and 𝛺2 as indicated in Fig. 1, so that the
bove parameters are given by 𝛽′0 = 𝛽′′0 = 1.33 μm−1, 𝛽′1 = 𝛽′′1 = 0, 𝛽′2 = 𝛽′′2 = −2 fs2∕μm, and, 𝛾 ′ = 𝛾 ′′ = 1 W−1∕μ𝑚. For a more general
escription of simultaneous solutions in the form of Eq. (7), we will continue to refer to the nonlinear coefficients in Eqs. (8) as
′ [Eq. (8a)] and 𝛾 ′′ [Eq. (8b)]. In addition, the scalar factors 𝛽′0 = 𝛽′′0 ≡ 𝛽0 can be removed by a common linear transformation
1,2 → 𝐴1,2𝑒𝑖𝛽0𝑧, which does not affect the 𝑧-propagation dynamics of the interacting pulses.

Let us note that, in general, higher-orders of dispersion within a modified NSE can cause a solitary wave to shed resonant
adiation [50], and can result in a modification of its group-velocity [50,51]. These types of perturbations are neglected by Eqs. (8),
hich can be justified in the limit where the subpulse separation 𝛺gap is large and their spectra are sufficiently narrow. Moreover, in

ase of a frequency dependent coefficient function 𝛾(𝛺), 𝛾 ′ = 𝛾(𝛺1) and 𝛾 ′′ = 𝛾(𝛺2) in Eqs. (8). Let us point out that, in the presence
f a linear variation of 𝛾, a solitary wave exhibits a further modification of its group-velocity [52], an effect neglected by Eqs. (8).
t is important to bear these perturbation effects in mind when comparing results based on Eqs. (8) to numerical simulations in
erms of the full model Eq. (1).

We can relate the above trapping mechanism for two-color pulse compounds to the mechanism enabling the self-confinement
f a multimode optical pulses in a multimode fiber, discussed by Hasegawa as early as 1980 [1]. Therein, Hasegawa considered
propagation equation of the nonlinear Schrödinger type for a multimodal pulse, where the nonlinear change of the refractive
4

ndex, felt by an individual mode, depends on the total intensity of the multimodal pulse. This results in coupled equations for the
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different modes, wherein an individual mode perceives the intensity of the total pulse as a potential field. If the considered mode is
subject to anomalous dispersion, the potential is attractive. Based on the expectation that if the velocity mismatch between a given
mode and the potential is smaller than the escape velocity, the potential has the ability to trap the mode, he derived a condition for
self-confinement of the multimode pulse. While the results in Ref. [1] are valid for multimodal optical pulses composed of possibly
many modes, the simplified modeling approach given by Eqs. (8) considers only two subpulses. Meanwhile, an extension of the
above approach to pulse compounds with three and more subpulses has been accomplished [31,53].

Given the ansatz for two-color pulse compounds in the form of Eq. (7), initial conditions 𝐴0(𝑡) ≡ 𝐴(𝑧 = 0, 𝑡) that specify
nonlinear photonic meta-atoms and two-color soliton molecules in terms of the subpulses 𝐴1 and 𝐴2 are different in some respects
nd are discussed separately in Section 3, and Section 4. Subsequently, we demonstrate the self-consistent 𝑧-propagation dynamics
f these pulse compound, originally reported in Refs. [24,26,30,54,55], as well as their breakup in response to sufficiently large
V mismatches between both subpulses, originally reported in Ref. [25], in terms of numerical simulations governed by the full
odel Eq. (1). These numerical results demonstrate several theoretical findings reported by Hasegawa [1], applied to the concept

f two-color pulse compounds.
In passing, let us stress that coupled equations of the form of Eqs. (8) comprise a much-used theoretical instrument for studying

utually bound solitons [3,56–62].

. Nonlinear-photonics meta-atoms

escription of stationary trapped states. Subsequently we look for stationary solutions in the form of Eq. (7) under the additional
onstraint max(|𝐴2|) ≪ max(|𝐴1|). This allow to decouple Eqs. (8) and enables direct optical analogues of quantum mechanical
ound-states [24,54,63]. Therefore, we assume the resulting two-color pulse compounds to consist of a strong trapping pulse,
iven by a solitary wave (S) at detuning 𝛺S ≡ 𝛺1, and a weak trapped pulse (TR) at detuning 𝛺TR ≡ 𝛺2. For the solitary wave part
f the total pulse we neglect the XPM contribution in the nonlinear part of Eq. (8a) and assume

𝐴1(𝑧, 𝑡) = 𝑈S(𝑡) 𝑒𝑖𝜅
′𝑧, with 𝑈S(𝑡) =

√

𝑃0 sech
(

𝑡
𝑡0

)

, (9)

wherein 𝑃0 = |𝛽′2|∕(𝛾
′𝑡20), and 𝜅′ = 𝛽0 + 𝛾 ′𝑃0∕2. Neglecting the SPM contribution in the nonlinear part of Eq. (8b) and making the

ansatz

𝐴2(𝑧, 𝑡) = 𝜙(𝑡) 𝑒𝑖𝜅
′′𝑧, (10)

the envelope 𝜙(𝑡) of a weak stationary trapped state is determined by the Schrödinger type eigenvalue problem
(

−
|𝛽′′2 |
2

d2

d𝑡2
+ 𝑉𝑆 (𝑡)

)

𝜙𝑛(𝑡) = 𝜅𝑛 𝜙𝑛(𝑡). (11)

Therein, the solitary wave enters as a stationary attractive potential well 𝑉S(𝑡) = −2𝛾 ′′𝑃0 sech
2(𝑡∕𝑡0). Hence, as pointed out above

and discussed in the context of multimode optical pulses in glass fibers in Ref. [1], a weak pulse can be attracted by the intensity
of the entire pulse if it exists in a domain of anomalous dispersion. Due to 𝛽′′2 < 0, this condition is met in the considered case. In
analogy to the sech2-potential in one-dimensional quantum scattering theory we may equivalently write the solitary-wave induced
potential as [63]

𝑉S(𝑡) = −𝜈 (𝜈 + 1)
|𝛽′′2 |

2𝑡20
sech2

(

𝑡
𝑡0

)

, with 𝜈 = −1
2
+

(

1
4
+ 4

|

|

|

|

|

𝛾 ′′

𝛾 ′
𝛽′2
𝛽′′2

|

|

|

|

|

)1∕2

. (12)

oreover, due to the particular shape of the trapping potential, the eigenvalue problem Eq. (11) can even be solved exactly [63,64].
he number of trapped states of the potential in Eq. (12) is given by 𝑁TR = ⌊𝜈⌋ + 1, where ⌊𝜈⌋ is the integer part of the strength-

parameter 𝜈. From the analogy to the quantum mechanical scattering problem [64], the real-valued wavenumber eigenvalues can
directly be stated as

𝜅𝑛 = −
|𝛽′′2 |

2𝑡20
(𝜈 − 𝑛)2, for 𝑛 = 0,… , ⌊𝜈⌋. (13)

For a given value of 𝑛, they are related to Eq. (10) through 𝜅′′ = 𝛽0 − 𝜅𝑛. To each eigenvalue corresponds an eigenfunction 𝜙𝑛
with 𝑛 zeros, specifying the (𝑛+ 1)th fundamental solution of the eigenvalue problem Eq. (11). These solutions constitute the weak
trapped states of the potential 𝑉S. Referring to the Gaussian hypergeometric function as 2𝐹1 [65], and abbreviating 𝑎𝑛 = 1

2 (1 + 𝑛)
and 𝑏𝑛 =

1
2 (2𝜈 + 1 − 𝑛), they can be stated in closed form as [64]

𝜙𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

cosh𝜈+1
(

𝑡
𝑡0

)

2𝐹1

[

𝑎𝑛, 𝑏𝑛;
1
2 ; − sinh2

(

𝑡
𝑡0

)]

, for even 𝑛,

cosh𝜈+1
(

𝑡
𝑡0

)

sinh
(

𝑡
𝑡0

)

2𝐹1

[

𝑎𝑛 +
1
2 , 𝑏𝑛 +

1
2 ;

3
2 ; − sinh2

(

𝑡
𝑡0

)]

, for odd 𝑛.
(14)

Let us note that, as evident from the potential strength parameter 𝜈 in Eq. (12), the number 𝑁TR of trapped states is uniquely defined
by the four parameters 𝛽′2, 𝛽

′′
2 , 𝛾 ′, and 𝛾 ′′. It is not affected by the duration 𝑡0 of the trapping potential, which, according to Eq. (13),
5

codetermines the value of the wavenumber eigenvalue of a fundamental solution.
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Fig. 2. Solitary-wave induced potential well exhibiting two trapped states. (a) Trapping potential 𝑉S, wavenumber eigenvalues 𝜅𝑛, and squared magnitude |𝜙𝑛|
2

of trapped state eigenfunctions for 𝑛 = 0, 1. (b) Dispersion profile 𝐷TS(𝛺) in the vicinity of the trapped state center frequency 𝛺TS, (c) Time-domain propagation
dynamics of the soliton and its lowest lying trapped state for 𝑛 = 0. The propagation distance is scaled by the soliton period 𝑧0 = (𝜋∕2)(𝑡20∕𝛽

′
2) ≈ 50 μm. (d)

Corresponding spectrum. The inverse Fourier transform of the part of the spectrum enclosed by the box (labeled A) in (d) is shown in the box (labeled A) in (c),
providing a filtered view of the trapped state while leaving out the soliton part of the total pulse. (e) Spectrogram of the total pulse at 𝑧∕𝑧0 = 45 for 𝜎 = 8 fs.
(f,g,h) Same as (c,d,e) for the trapped state with 𝑛 = 1. (i,j,k) Same as (c,d,e) for a superposition of both trapped states. Movies of the propagation dynamics
are provided as supplementary material under Ref. [66].

Analogy to quantum mechanics. The eigenvalue problem Eq. (11) suggests an analogy to quantum mechanics, wherein a fundamental
solution 𝜙𝑛 represents the wavefunction of a fictitious particle of mass 𝑚 = |𝛽′′2 |

−1, confined to a localized, sech2-shaped trapping
potential 𝑉S. The discrete variable 𝑛 = 0,… , ⌊𝜈⌋ resembles a principal quantum number that labels solutions with distinct
wavenumbers, and the number of trapped state 𝑁TR is similar to an atomic number. Consequently, a bare soliton, with none of
its trapped states occupied, resembles the nucleus of an one-dimensional atom. By this analogy, a soliton along with its trapped
states represents a nonlinear-photonics meta-atom.

3.1. Stable propagation of trapped states

Subsequently, we discuss the propagation dynamics of a nonlinear-photonics meta-atom with the ability to host two trapped
states. More precisely, we consider an example for 𝛺S = −2.828 rad∕fs and 𝑡0 = 8 fs, with 𝛺TR = 2.828 rad∕fs and 𝜈 ≈ 1.566.
The resulting trapping potential and both its trapped states are shown in Fig. 2(a). In this case, the wavenumber eigenvalues are
(𝜅0, 𝜅1) = (−0.0382,−0.0050) μm−1, and the corresponding fundamental solutions take the simple form

𝜙0(𝑡) = sech𝜈
(

𝑡
𝑡0

)

, and, (15a)

𝜙1(𝑡) = sech𝜈−1
(

𝑡
𝑡0

)

tanh
(

𝑡
𝑡0

)

. (15b)

As evident in Fig. 2(b), in the vicinity of 𝛺TR and due to 𝜅′′ > 0 [Eq. (10)], a finite wavenumber-gap separates each trapped state from
linear waves bound to the dispersion curve 𝐷TR(𝛺) ≡ 𝛽(𝛺)−𝛽(𝛺TR)−𝛽1(𝛺TR)(𝛺−𝛺TR) < 0. Therefore, we expect that trapped states
composed by Eqs. (15) propagate in a stable manner. For the lowest lying trapped state, having order 𝑛 = 0, this is demonstrated in
6
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Figs. 2(c,d). These figures summarize pulse propagation simulations in terms of the modified NSE (1), using an initial condition of
the form of Eq. (7) with 𝐴1 as in Eq. (9), and 𝐴2 as in Eq. (10) with 𝜙(𝑡) =

√

10−7𝑃0 𝜙0(𝑡). In the time-domain propagation dynamics,
hown in Fig. 2(c), a small drift of the soliton, caused by higher orders of dispersion at 𝛺S [see Fig. 1], is accounted for by shifting

to a moving frame of reference with time coordinate 𝜏 = 𝑡−𝛽1𝑧 and 𝛽1 = 0.00637 fs∕μm. In Fig. 2(d), the vast frequency gap between
he soliton and the trapped state is clearly visible. By means of an inverse Fourier transform of the frequency components belonging
o the trapped state [box labeled A in Fig. 2(d)], an unhindered ‘‘filtered view’’ of the time-domain propagation dynamics of the
rapped state is possible [box labeled A in Fig. 2(c)]. A spectrogram, providing a time–frequency view of the field at 𝑧∕𝑧0 = 45,
s shown in Fig. 2(d). The stable propagation of a trapped state with 𝑛 = 1 for 𝜙(𝑡) =

√

10−7𝑃0 𝜙1(𝑡), is detailed in Figs. 2(f–h).
Finally, the simultaneous propagation of a superposition of both trapped states in the form 𝜙(𝑡) =

√

10−7𝑃0 [𝜙0(𝑡) + 5𝜙1(𝑡)] is shown
n Figs. 2(i–k). The 𝑧-periodicity of the beating pattern visible in the time-domain propagation dynamics in Fig. 2(i), is a result of
he different wavenumber eigenvalues of the trapped states, and is determined by 𝑧p = 2𝜋∕|𝜅1 − 𝜅0| ≈ 189 μm (𝑧p∕𝑧0 ≈ 3.8). Thus,
he coherent superposition of trapped states exhibits Rabi-type oscillations, similar to bound state dependent revival times in the
uantum recurrence of wave packets [67,68].

Let us note that, bearing in mind that the number of bound states 𝑁TR is determined by the potential strength parameter 𝜈
n Eq. (12), a setup with a different number of bound states can be obtained as well. This is possible by fixing 𝛺S at some other
easible value, resulting in a different group-velocity matched detuning 𝛺TR, implying different values of the parameters 𝛽′2, 𝛽

′′
2 , 𝛾 ′,

nd 𝛾 ′′. For example, keeping 𝑡0 = 8 fs but choosing 𝛺S = −2.75 rad∕fs yields 𝜈 ≈ 3.1, resulting in a potential well with the ability to
ost 𝑁TR = 4 trapped states. In such a case, however, phase-matched transfer of energy from the trapped states to dispersive waves
ithin the domain of normal dispersion can be efficient [69].

.2. Trapping-to-escape transition caused by a group-velocity mismatch

In the context of multimodal pulses in glass fibers in Ref. [1], the attraction of a wave packet by a potential well, created by the
otal pulse, was illustrated in terms of the kinetic equations of a fictitious particle associated with the wave packet. From a classical
echanics point of view, in order to ensure trapping of the wave packet by the total pulse, the velocity mismatch between the
article and the potential needs to be smaller than the escape velocity of the potential. Based on this view, and for a given velocity
ismatch, the critical value of the total pulse intensity, required to achieve self-confinement, was determined [1]. In the presented
ork, pulse propagation simulations, such as those reported in Fig. 2, comprise a complementary approach to study the considered
PM induced attraction effect. Specifically, by keeping the detuning of the soliton fixed at 𝛺S = 𝛺1, but shifting the detuning of

he trapped pulse to 𝛺TR = 𝛺2 + 𝛥𝛺, we can enforce a group-velocity mismatch between both pulses and probe the stability of
he meta-atom. For 𝛥𝛺 > 0 it is 𝛽1(𝛺S) > 𝛽1(𝛺TR), see Fig. 1(b). Thus, in a reference frame in which the soliton is stationary, the

trapped state will initially have the propensity to move towards smaller times. This is demonstrated in Figs. 3(a,b) for the center
frequency shift 𝛥𝛺 = 0.05 rad∕fs. To assess the fraction of energy of the trapped state that is retained within the soliton induced
otential well, we consider the quantity

𝑒TR(𝑧) ≡
𝐸TR(𝑧)
𝐸TR(0)

, with 𝐸TR(𝑧) = ∫

10 𝑡0

−10 𝑡0
|𝜙(𝑧, 𝜏)|2 d𝜏. (16)

As evident from Fig. 3(e), at 𝛥𝛺 = 0.05 rad∕fs, the trapped state is kept almost entirely within the well, i.e. 𝑒TR ≈ 1. In contrast, at
𝛥𝛺 = 0.25 rad∕fs, a major share of the trapped pulse escapes the well during the initial propagation stage [ Figs. 1(c,d)], indicated
by the small value 𝑒TR ≈ 0.3 [ Fig. 3(e)]. Let us note that, when viewing the considered pulse compounds as meta-atoms, the
quantity 1 − 𝑒TR(𝑧) specifies the fraction of trapped energy that is radiated away, resembling an ionization probability for quantum
mechanical atoms. A parameter study, detailing the dependence of 𝑒TR as function of the center frequency shift 𝛥𝛺 is summarized
in Fig. 3(f). The transition from trapping to escape can be supplemented by an entirely classical picture similar as in Ref. [1]: from
a classical point of view we might expect that a particle, initially located at the center of the well, remains confined to the well if its
‘‘classical’’ kinetic energy 𝑇kin = 1

2𝑚𝛥𝛽
2
1 = 1

2 |𝛽
′′
2 |

−1 [𝛽1(𝛺S) − 𝛽1(𝛺TR)
]2 does not exceed the well depth 𝑉0 = 2𝛾 ′′𝑃0. As evident from

Fig. 3, the findings based on this classical picture complement the results obtained in terms of direct simulations of the modified
NSE (1) very well. The above results clearly demonstrate the limits of stability of nonlinear photonics meta-atoms with respect to a
group-velocity mismatch between the trapping soliton and the trapped state. These findings are consistent with our previous results
on the break-up dynamics of two-color pulse compounds [25].

4. Two-color soliton molecules

Seeding of tightly bound two-color pulse compounds. When considering initial conditions of the form of Eq. (7), with 𝐴1 a fundamental
nonlinear Schrödinger soliton as in Eq. (9), and 𝐴2 a trapped state as in Eq. (10) with 𝜙(𝑡) = 𝑟

√

𝑃0 𝜙0(𝑡), the XPM contribution of the
weak trapped pulse onto the trapping soliton can be heightened by increasing the parameter 𝑟. This is demonstrated in Figs. 4(a–
c), where pulse propagation simulations in terms of the modified NSE (1) are shown for different values of 𝑟, significantly larger
than those considered in the preceding section. Especially for larger values of 𝑟 [ Figs. 4(b,c)], the intensity exhibits the following
dynamics: the mutual confining action of XPM results in a contraction of both subpulses, prompting the formation of a narrow
localized pulse compound. A similar effect has previously been suggested by Hasegawa for multimode optical pulses in glass fibers
in Ref. [1], where he writes ‘‘[. . . ] as many modes are trapped, the peak intensity of the packet increases quite analogously to
a gravitational instability, resulting in a further contraction of the packet.’’ (Ref. [1], p. 417). The results shown in Figs. 4(a–c)
7
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Fig. 3. Characterization of the transition from trapping to escape. (a) Time-domain propagation dynamics of the soliton and its lowest lying trapped state (𝑛 = 0)
shifted from 𝛺TS to 𝛺TS +𝛥𝛺 for 𝛥𝛺 = 0.05 (rad∕fs). (b) Corresponding spectrum. The inverse Fourier transform of the part of the spectrum enclosed by the box
(labeled A) in (b) is shown in the box (labeled A) in (a). This provides a filtered view of the trapped state with the benefit of leaving out the soliton part of
the total pulse. (c,d) Same as (a,b) for 𝛥𝛺 = 0.25 (rad∕fs). (e) Fraction of trapped energy as function of the propagation distance. (f) Fraction of trapped energy
as function of the trapped state center frequency shift. Secondary ordinate shows the potential depth (𝑉0) as well as the kinetic energy 𝑇kin of the fictitious
classical particle. Parameter range in which the particle cannot escape the well is shaded gray. Movies of the propagation dynamics shown in (a–d) are provided
as supplementary material under Ref. [66].

Fig. 4. Transition from trapping to tightly bound, molecule-like two-color pulse compounds. (a) Time-domain propagation dynamics arising from an initial
condition with 𝜙(𝑡) =

√

0.1𝑃0 𝜙0(𝑡) (see text). (b) Same as (a) for 𝜙(𝑡) =
√

0.5𝑃0 𝜙0(𝑡). (c) Same as (a) for 𝜙(𝑡) =
√

𝑃0 𝜙0(𝑡). (d-f) Solutions of the coupled ODEs (18),
fitted to functions of the form 𝑈𝑚 = 𝑈0,𝑚sech

𝜈𝑚 (𝑡∕𝑡𝑚), for 𝑚 = 1, 2. (d) Scaled pulse amplitudes 𝑢𝑛 = 𝑈0,𝑚∕
√

𝑃0, (e) pulse durations 𝑡𝑛, and, (f) pulse shape exponents
𝜈𝑚, 𝑚 = 1, 2. In (d), �̃�2 indicates the peak amplitude of a fundamental NSE soliton with wavenumber 𝜅2. Vertical dashed lines in (d-f) mark 𝜅S = 0.0156 μm−1.

demonstrate this effect in the context of two-color pulse compounds in nonlinear fibers or waveguides with two zero-dispersion
points. Let us note that, for 𝑟 ≈ 1, initial conditions as pointed out above directly generate tightly bound, mutually confined two-
color pulse compounds. They are accompanied by radiation, emanating from the localized state upon propagation, and can exhibit
internal dynamics reminiscent molecular vibrations [24,25,31,70]. However, such a seeding procedure generates two-color pulse
compounds in a largely uncontrolled manner.
8
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Simultaneous solutions of the coupled equations. We can surpass the above seeding approach by directly searching for simultaneous
solitary-wave solutions of the coupled nonlinear Eqs. (8) beyond the linear limit discussed in Section 3. Substituting an ansatz for
two subpulses, labeled 𝑚 = 1, 2, in the form of

𝐴𝑚(𝑧, 𝑡) = 𝑈𝑚(𝑡) 𝑒𝑖(𝛽0+𝜅𝑚)𝑧, with 𝑚 = 1, 2 (17)

into Eqs. (8), yields two coupled ordinary differential equations (ODEs) of second order

�̈�1 −
2
𝛽′2

[

𝛾 ′
(

|𝑈1|
2 + 2|𝑈2|

2) − 𝜅1
]

𝑈1 = 0, (18a)

�̈�2 −
2
𝛽′′2

[

𝛾 ′′
(

|𝑈2|
2 + 2|𝑈1|

2) − 𝜅2
]

𝑈2 = 0, (18b)

for two real-valued envelopes 𝑈𝑚 ≡ 𝑈𝑚(𝑡), 𝑚 = 1, 2, with dots denoting derivatives with respect to time. Under suitable
conditions, solitary-wave solutions for the coupled nonlinear Eqs. (18) can be specified analytically [30,60,71–73]. Approximate
solutions based on parameterized trial functions can be found, e.g., in terms of a variational approach [74]. In order to obtain
simultaneous solutions 𝑈1(𝑡), and 𝑈2(𝑡) under more general conditions, Eqs. (18) need to be solved numerically. This can be achieved,
e.g., by spectral renormalization methods [75–78], shooting methods [8,9], squared operator methods [79], conjugate gradient
methods [80,81], 𝑧-propagation adapted imaginary-time evolution methods [82,83], or Newton-type methods [84]. Here, in order
to solve for simultaneous solutions of the ODEs (18), we employ a Newton method that is based on a boundary value Runge–Kutta
algorithm [85]. So as to systematically obtain solutions 𝑈1(𝑡) and 𝑈2(𝑡), we keep five of the six parameters that enter Eqs. (18)
fixed. Therefore we set 𝛽′2, 𝛽

′′
2 , 𝛾 ′, and 𝛾 ′′ to the values considered throughout the preceding section, and preset the wavenumber

𝜅1 = |𝛽′2|(2𝑡
2
0)

−1 ≈ 0.0156 μm−1 of a fundamental nonlinear Schrödinger soliton with 𝑡0 = 8 fs in Eq. (18a). We then sweep the
emaining parameter 𝜅2 over the wavenumber range (0.002, 0.05) μm−1, enclosing the value of 𝜅1. We start the parameter sweep at
2 = 0.05 μm−1, which vastly exceeds the wavenumber eigenvalue of the lowest lying trapped state solution at 0.0382 μm−1. Above
his value, we expect 𝑈2 to vanish, and 𝑈1 to yield a fundamental soliton 𝑈1(𝑡) =

√

𝑃0 sech(𝑡∕𝑡0) with 𝑃0 = |𝛽′2|(𝛾
′ 𝑡20)

−1. We set
nitial trial functions for 𝑈1 and 𝑈2 with parity similar to the soliton and the lowest lying trapped state, and continue the obtained
olutions to smaller values of 𝜅2. The results of this parameter sweep are summarized in Figs. 4(d–f). We find that all solutions can
e parameterized in the form 𝑈𝑚(𝑡) = 𝑈0,𝑚 sech𝜈𝑚 (𝑡∕𝑡𝑚), with pulse peak amplitudes 𝑈0,𝑚 [ Fig. 4(d)], pulse durations 𝑡𝑚 [ Fig. 4(e)],
nd pulse shape exponents 𝜈𝑚 [ Fig. 4(f)], for 𝑚 = 1, 2. In agreement with the results reported in Section 3.1, we find that a weak
onzero solution 𝑈2 with 𝑡2 = 8 fs and 𝜈2 ≈ 1.55 originates at 𝜅2 ≈ 0.038 μm−1. For 𝜅2 < 0.038 μm−1, the peak amplitude of the

subpulse 𝑚 = 1 continuously decreases while that for 𝑚 = 2 increases. Below 𝜅2 ≈ 0.007 μm−1, subpulse 𝑈1 vanishes and 𝑈2 describes
a fundamental soliton with pulse shape parameter 𝜈2 = 1 and wavenumber 𝜅2. To facilitate intuition, we included the amplitude of
a free soliton with wavenumber 𝜅2, i.e. peak amplitude �̃�0,2 =

√

2𝜅2∕𝛾 ′′, in Fig. 4(d). Let us note that the intermediate parameter
ange 0.007 μm−1 < 𝜅2 < 0.038 μm−1 bears tightly coupled pulse compounds, characterized by subpulse amplitudes with similar peak
eights, see Fig. 4(d).

.1. Two-color soliton pairs

Upon closely assessing the results shown in Figs. 4(d–f), we find that at 𝜅2 = 0.0156 μm−1, a pair of matching solutions with
plain hyperbolic-secant shape 𝑈𝑚(𝑡) = 𝑈0,𝑚 sech(𝑡∕𝑡0), 𝑚 = 1, 2, is attained. This can be traced back to the uniformity of Eqs. (18a)
and (18b) for the considered set of parameters. Formally, by assuming 𝜅 ≡ 𝜅1 = 𝜅2 and 𝑈 ≡ 𝑈1 = 𝑈2, both equations take the form
of a standard NSE with modified parameters

−
𝛽′2
2

d2

d𝑡2
𝑈 (𝑡) + 3𝛾 ′|𝑈 (𝑡)|2𝑈 (𝑡) = 𝜅𝑈 (𝑡), (19)

where, for convenience only, we used the parameters of Eq. (18a). The real-valued pulse envelope 𝑈 should therefore be identified by
the peak intensity 𝑃0 = |𝛽′2|(3𝛾

′𝑡20)
−1, and thus 𝑢1 = 𝑢2 =

√

1∕3 ≈ 0.57 in Fig. 4(d). Hence, at 𝜅2 = 0.0156 μm−1, both subpulses resemble
true two-color soliton pairs: the pulse envelopes 𝑈1 and 𝑈2 both specify a fundamental NSE soliton; for each pulse, its binding partner
modifies the nonlinear coefficient of the underlying NSE through XPM, helping the pulse sustain its shape. Consequently, both pulses
can only persist conjointly as a bonding unit. This special case is consistent with a description of two-color pulse compounds in terms
of incoherently coupled pulses [30]. By considering the ansatz Eq. (7), we can plug in the obtained pulse envelopes for 𝑈1 and 𝑈2
and resubstitute the parameters that define the propagation constant in Section 2 to obtain

𝐴(𝑧, 𝑡) = 𝐹 (𝑧, 𝑡) cos
⎛

⎜

⎜

⎝

√

6𝛽2
|𝛽4|

𝑡
⎞

⎟

⎟

⎠

𝑒−𝑖𝛽0𝑧, with 𝐹 (𝑧, 𝑡) =

√

8𝛽2
3𝛾𝑡20

sech
(

𝑡
𝑡0

)

𝑒𝑖𝜅𝑧, and 𝜅 =
𝛽2
𝑡20
. (20)

Let us note that 𝐹 is equivalent to the fundamental meta-soliton obtained in Ref. [26], which becomes evident when substituting
𝜖 = 𝑡−10 [3𝛽2∕(2|𝛽4|)]−1∕2 and 𝜇0𝜖2 = 𝛽2∕𝑡20. This fundamental meta-soliton was first formulated by Tam et al., when studying stationary
solutions for the modified NSE (1) by putting emphasis on the time-domain representation of the field in terms of a multi-scales
analysis [26]. This unveiled a large superfamily of solitons, now referred to as generalized dispersion Kerr solitons. We would like
to point out that within the presented approach, i.e. by putting emphasis on the frequency-domain representation of two-color pulse
9

compounds, the fundamental meta-soliton is derived with great ease. Furthermore, both approaches complement each other very



Optik 280 (2023) 170772O. Melchert et al.
Fig. 5. Resonant radiation of two-color soliton molecules. (a,b) Stationary propagation of a soliton molecule with subpulse loci at 𝛺1 = −𝛺2 = 2.828 rad∕fs. (a)
Time-domain propagation dynamics. The inset shows a close-up view of |𝐴(𝑧, 𝜏)|2∕max(|𝐴(0, 𝜏)|2) in the range 𝜏 = −20…20 fs and 𝑧∕𝑧0 = 2…10. (b) Corresponding
spectrum. (c,d) Same as (a,b) for soliton molecule order 𝑁 = 1.8. Horizontal dashed line in (d) indicates 𝑧∕𝑧0 = 29.2. (e) Dispersion profile and graphical solution
of the resonance conditions Eqs. (22) for 𝑧-oscillation periods of order 𝑚 = −10…1. (f) Spectrum at 𝑧∕𝑧0 = 29.2. (g–l) Same as (a–f) for a soliton molecule with
subpulse loci at 𝛺1 = −2.674 rad∕fs and 𝛺2 = 2.134 rad∕fs. In (i,j) the soliton molecule order is 𝑁 = 1.6. Horizontal dashed line in (j) indicates 𝑧∕𝑧0 = 28.6. The
time-domain propagation dynamics is shown in a moving frame of reference where 𝜏 = 𝑡− 𝛽1𝑧. In (a), (c) 𝛽1 = 0 fs∕μm. In (g), (i) 𝛽1 = 0.509 rad∕fs. Propagation
distance is scaled by 𝑧0 = 32 μm. Movies of the propagation dynamics shown in (a–d) and (g–j) are provided as supplementary material under Ref. [66].

well. Further, the above two-color soliton pairs resemble vector solitons studied in the context of birefringent optical fibers [61,86–
90]. The stationary propagation of the two-color soliton pair defined by Eq. (20) in terms of the modified NSE (1) is demonstrated
in Figs. 5(a,b). The inset in Fig. 5(a) provides a close-up view onto the localized pulse, indicating interference fringes with period
𝛥𝑡 ≈

√

|𝛽4|∕(6𝛽2𝜋2) ≈ 1.3 fs that are due to the cosine in Eq. (20). These interference fringes appear stationary since the propagation
scenario exhibits the symmetry 𝛽(𝛺1) = 𝛽(𝛺2) and 𝜅1 = 𝜅2. A spectrogram of the propagation scenario at 𝑧∕𝑧0 = 29.17 is shown
in Fig. 6(a). A small amount of residual radiation can be seen to lie right on the curve 𝛽1(𝛺)𝑧, given by the short-dashed line in
Fig. 6(a). It was emitted by the pulse compound during the initial propagation stage and is caused by the presence of higher orders
of dispersion at the individual subpulse loci, which were neglected in the simplified description leading to Eqs. (20).

4.2. Kushi-comb-like multi-frequency radiation

Previously, it was shown that 𝑧-periodic amplitude and width oscillations of two-color soliton molecules can be excited in a
systematic manner by increasing their initial peak amplitude by some factor 𝑁 according to 𝐹 (𝑧, 𝑡) ← 𝑁𝐹 (𝑧, 𝑡) [26,55]. In analogy to
usual nonlinear Schrödinger solitons, values 𝑁 > 1 define higher order metasolitons. Recently, we have performed a comprehensive
analysis of the amplitude oscillations of such higher order metasolitons, indicating that with increasing 𝑁 , the number of spatial
10
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Fourier-modes needed to characterize their peak-intensity variation, increases [55]. In other words, with increasing strength of
perturbation of a soliton molecule, its dynamics changes from harmonic to nonlinear oscillations.

Degenerate multi-frequency radiation. To demonstrate amplitude and width oscillations, we show the propagation dynamics of a
symmetric soliton molecule of order 𝑁 = 1.8, based on the two-color soliton pair (20), in Figs. 5(c,d). As can be seen from the
ime-domain dynamics in Fig. 5(c), the localized pulse exhibits periodic amplitude and width variations [close-up view in Fig. 5(c)],
nd emits radiation along either direction along the coordinate 𝑡 in a symmetric fashion. Quite similar dynamics where obtained
sing the seeding approach in Figs. 4(b,c). The oscillation of the soliton molecule is also clearly visible in the spectrum shown in
ig. 5(d). As evident from Fig. 5(f), at 𝑧∕𝑧0 ≈ 29.17 it exhibits comb-like bands of frequencies in the vicinity of the subpulse loci 𝛺1
nd 𝛺2. The location of these newly generated frequencies can be understood by extending existing approaches for the derivation
f resonance conditions [91–95] to two-color pulse compounds [55,70]. Below, we summarize these resonance conditions, which
here obtained by assuming a dynamically evolving pulse compound of the form [70]

𝑈𝑚(𝑧, 𝑡) =
∑

𝓁

𝐶𝑚𝓁(𝑡) exp
[

𝑖
(

𝜅𝑚 +𝐾𝓁
)

𝑧
]

, with 𝑚 ∈ (1, 2), 𝓁 ∈ Z. (21)

n Eq. (21), 𝐶𝑚𝓁 are expansions coefficients, and 𝜅𝑚 indicate wavenumbers that govern the 𝑧-propagation of each subpulse. The
avenumbers of the higher harmonics of the 𝑧-oscillation period are 𝐾𝓁 = 2𝜋𝓁∕𝛬, with 𝛬 referring to the 𝑧-oscillation wavelength
f the pulse compound and 𝓁 labeling the corresponding order. Based on this ansatz, the resonance conditions

𝐷𝑚(𝛺𝑅𝑅) − 𝜅𝑚 = 𝐾𝓁 , with 𝑚 ∈ (1, 2), 𝓁 ∈ Z, and (22a)

𝐷𝑚(𝛺𝑅𝑅) − 2𝜅𝑚 + 𝜅𝑚′ = 𝐾𝓁 , with 𝑚,𝑚′ ∈ (1, 2), 𝑚 ≠ 𝑚′, 𝓁 ∈ Z, (22b)

ith dispersion profiles 𝐷𝑚(𝛺) ≡ 𝛽(𝛺) − 𝛽(𝛺𝑚) − 𝛽1(𝛺)(𝛺 − 𝛺𝑚) for 𝑚 = 1, 2, can be derived [70]. In Eqs. (22), 𝛺𝑅𝑅 specifies
those frequencies at which resonant radiation (RR) is excited. While Eq. (22a) defines resonance conditions for the generation of
Cherenkov radiation by each subpulse, Eq. (22b) defines additional resonance conditions indicative of four-wave mixing (FWM)
processes involving both subpulses.

For the considered soliton molecule of order 𝑁 = 1.8, we find 𝛬 ≈ 63 μm ≈ 2𝑧0 [with 𝑧0 = 32 μm, see Fig. 5(d)]. In this case, the
aforementioned symmetry 𝜅1 = 𝜅2 renders Eqs. (22a) and (22b) degenerate. As evident from the graphical solution of Eqs. (22) in
Fig. 5(e), the resonance conditions predict the newly generated frequencies in Fig. 5(f) very well. A spectrogram of the propagation
scenario at 𝑧∕𝑧0 = 29.17 is shown in Fig. 6(b). Therein, the multi-peaked spectral bands, at which the oscillating soliton molecule
heds radiation, are reminiscent of the shape of traditional Japanese Kushi combs.

on-degenerate multi-frequency radiation. Let us note that, due to the wide variety of two-color pulse compounds with different
ubstructure, their emission spectra manifest in various forms. For example, considering a pair of group-velocity matched detunings
ifferent from the one considered above, the degeneracy among Eqs. (22) can be lifted. Subsequently we take 𝛺1 = −2.674 rad∕fs

and 𝛺2 = 2.134 rad∕fs, for which 𝛽′1 = 0.514 fs∕μm, 𝛽′′1 = 0.514 fs∕μm, 𝛽′2 = −2.576 fs2∕μm, and, 𝛽′′2 = −1.278 fs2∕μm. In terms of the
oupled ODEs (18) we then determine a pair of simultaneous solutions which specify the initial condition

𝐴0(𝑡) = 𝑈0,1 sech
𝜈1
(

𝑡
𝑡1

)

𝑒−𝑖𝛺1𝑡 + 𝑈0,2 sech
𝜈2
(

𝑡
𝑡2

)

𝑒−𝑖𝛺2𝑡, (23)

with parameters 𝑈0,1 = 0.050
√

W, 𝑈0,2 = 0.141
√

W, 𝑡1 = 7.207 fs, 𝑡2 = 7.271 fs, 𝜈1 = 0.901, and 𝜈2 = 1.022. The stationary propagation
f this soliton molecule with non-identical subpulses is shown in Fig. 4(g,h). As a consequence of the broken subpulse-symmetry,
he interference fringes that characterize the pulse compound are not stationary any more [close-up view in Fig. 5(g)]. The fact
hat the pulse compound remains localized, despite its envelope exhibiting a non-stationary profile, might be the reason why no
uch objects could be found using a time-domain based Newton conjugate-gradient method [26]. Next, we increase the order of
his soliton molecule to 𝑁 = 1.6, resulting in the propagation dynamics with 𝑧-oscillation period 𝛬 ≈ 106 μm ≈ 3.3𝑧0 shown in
igs. 5(i,j). In this case, a pronounced multi-peaked spectral band of frequencies within the domain of normal dispersion is excited
see Figs. 5(j,l)]. These newly generated frequencies can be linked to multi-frequency Cherenkov radiation emitted by the subpulse
t 𝛺2, as can be seen from the graphical solution of the resonance conditions (22a), shown in Fig. 5(k). Let us note that similar
oupling phenomena of localized states to the continuum have earlier been observed for solitons in periodic dispersion profiles [93],
scillating bound solitons in twin-core fibers [94], and dissipative solitons in nonlinear microring resonators [95]. A further band
f frequencies, excited in the vicinity of 𝛺 ≈ 3.5 rad∕fs can be attributed to FWM-resonances described by Eq. (22b). A spectrogram
f the propagation scenario at 𝑧∕𝑧0 = 28.6 is shown in Fig. 6(c), unveiling that the resonant radiation emanates from the oscillating
oliton molecule in a pulse-wise fashion.

. Summary and conclusions

In summary, we have discussed several aspects of the 𝑧-propagation of two-color pulse compounds in a modified NSE
ith positive group-velocity dispersion coefficient and negative fourth-order dispersion coefficient. Therefore, we considered the

nteraction dynamics of two pulses in distinct domains of anomalous dispersion, group-velocity matched despite a large frequency
ap.

We have demonstrated that their mutual confining action can manifest itself in different forms, depending on the relative strength
11

f SPM and XPM felt by each pulse. In the limiting case where the resulting bound states consist of a strong trapping pulse, given
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Fig. 6. Spectrograms of selected soliton molecules. (a) Two-color soliton pair of Figs. 5(a,b) at 𝑧∕𝑧0 = 29.17, computed using 𝜎 = 30 fs in Eq. (6). (b) Oscillating,
symmetric soliton molecule of Figs. 5(c,d) at 𝑧∕𝑧0 = 29.17 for 𝜎 = 30 fs, showing many narrowly spaced resonances reminiscent of the shape of traditional Japanese
Kushi combs. (c) Oscillating, non-symmetric soliton molecule of Figs. 5(i,j) at 𝑧∕𝑧0 = 28.6 for 𝜎 = 20 fs. The pulse-wise emission of radiation, synchronized with
the periodic amplitude and width variations of the pulse compound, is clearly visible. In (a-c), the short-dashed line shows 𝛽1(𝛺) 𝑧, indicating the delimiting
temporal position of a mode at detuning 𝛺, emitted at 𝑧 = 0. Movies of the propagation dynamics are provided as supplementary material under Ref. [66].

by a soliton, and a weak trapped pulse, we have shown that optical analogues of quantum mechanical bound states can be realized
that are determined by a Schrödinger-type eigenvalue problem [24]. The resulting photonic meta-atoms even support Rabi-type
oscillations of its trapped states, similar to the recurrence dynamics of wave packets in quantum wells [67]. We further probed the
limits of stability of these meta-atoms by imposing a group-velocity mismatch between the trapping soliton and the trapped pulse.
With increasing strength of perturbation, parts of the trapped state escapes the soliton, similar in effect to the ionization of quantum
mechanical atoms. These findings complement our earlier results on the break-up dynamics of two-color pulse compounds [95].

For the more general case where the mutual confining action between the pulses is dominated by XPM, we have discussed a
simplified modeling approach, allowing to determine simultaneous solutions for the bound pair of pulses. The resulting solutions
feature the above meta-atoms as limiting cases when the disparity of the subpulse amplitudes is large. Further, by exploiting
symmetries of the underlying propagation model, a special class of solutions, forming true two-color soliton pairs [30], was
characterized in closed form. This special class of solutions, referred to as generalized dispersion Kerr solitons, has also been derived
in Ref. [26]. We have presented numerical results demonstrating the complex propagation dynamics of such pulse compounds,
which we here referred to as two-color soliton molecules. Specifically, we have shown that soliton molecules exhibit highly robust
vibrational characteristics, a behavior that is difficult to achieve in a conservative NSE system. These non-stationary, 𝑧-periodic
dynamics of the subpulses triggers the emission of resonant radiation. The location of the resulting multi-peaked spectral bands can
be precisely predicted by means of phase-matching conditions [55,70]. Due to the manifold of soliton molecules with different
substructure, their emission spectra manifest in various complex forms. Most notably, if the oscillating soliton molecule consists of
a pair of identical subpulses, inherent symmetries lead to degeneracies in the resonance spectrum, causing their spectrogram trace
to resemble the shape of Japanese Kushi combs. Additional perturbations lift existing degeneracies and result in more complex
emission spectra which are characterized by distinct spectral bands that can be separately linked to resonant Cherenkov radiation
and additional four-wave mixing processes. The occurrence of such multi-frequency radiation, especially in the degenerate form,
comprises a fundamental phenomenon in nonlinear waveguides with multiple zero-dispersion points and sheds light onto the
puzzling propagation dynamics of two-frequency pulse compounds, resembling the generation of radiation by vibrating molecules.

Finally, let us note that we recently extended the range of systems in which such two-color pulse compounds are expected
to exist. Therefore, we considered waveguides with a single zero-dispersion point and frequency dependent nonlinearity with a
zero-nonlinearity point [96,97]. In such waveguides, soliton dynamics in a domain of normal dispersion can be achieved by a
negative nonlinearity [98,99]. In the corresponding description of pulse compounds in terms of the simplified model (8), having
𝛽′2 < 0 and 𝛽′′2 > 0 then requires 𝛾 ′ > 0 and 𝛾 ′′ < 0, and the potential well in the eigenproblem corresponding to Eq. (11) is
ensured by 𝛾 ′′ < 0 [54]. We studied the above binding mechanism for incoherently coupled two-color pulse compounds in such
waveguides, demonstrating meta-atoms and molecule-like bound states of pulses that persist in the presence of the Raman effect
[31,54], allowing to understand the complex propagation dynamics observed in a recent study on higher-order soliton evolution in
a photonic crystal fiber with one zero-dispersion point and frequency dependent nonlinearity [100].
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