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Abstract. We review some recents developments of the algebraic structures and spectral
properties of non-Hermitian deformations of Calogero models. The behavior of such extensions
is illustrated by the As trigonometric and the Ds angular Calogero models. Features like
intertwining operators and conserved charges are discussed in terms of Dunkl operators. Hidden
symmetries coming from the so-called algebraic integrability for integral values of the coupling
are addressed together with a physical regularization of their action on the states by virtue of
a PT-symmetry deformation.

1. Introduction

Calogero models, also known as Calogero-Moser—Sutherland models, represent one of the best
examples of many-particle integrable models and find applications in a wide range of areas in
physics and mathematics. Introduced first by Calogero for pairwise inverse-square interactions
with three and n particles [1], it was then generalized to different type of potentials. The rational
potential can be extended to a trigonometric, a hyperbolic [2] or an elliptic one. Moreover, all
mentioned cases can be formulated for any finite Coxeter group [3| 4], enabling a large class of
many-particle integrable models. There is a vast literature on this topic; for an overview in the
subject and many of the applications, see for instance [3|, 4} [5, 6], [7]. In recent decades, the familiy
of Calogero systems has been studied under the light of non-Hermitian Hamiltonians 8], 9} [10].
Non-Hermitian extensions include a wide range of integrable systems, see for instance [I1], and
realizations in nature due to the application of integrable non-linear equations in optics [12]. In
this work, we focus in two particular features of Calogero models: P7T-symmetric deformations
and the algebraic structure related with conserved quantities and intertwining operators. Both
topics are briefly reviewed here.
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The first non-Hermitian extensions of Calogero models were done back in 2000 by Znojil and
Tater, performing imaginary shifts on the coordinates in two- and three-particle systems [13].
In the same year Basu—Mallick and Kundu proposed an extension of the rational A, _; Calogero
model inspired by long-range interaction with explicit momentum dependence [14]. Despite their
model not being Hermitian, the energy eigenvalues are real and bounded from below. This idea
was extended later in the P7T-symmetric regime to other models [I5], see also [16}, 17, [18]. A next
step further was done by Fring in [19], studying the extensions in [14] 15 (17, [I§] from a generic
perspective including all Coxeter groups beyond the rational case, towards the trigonometric,
hyperbolic and elliptic models. As a result, the rational non-Hermitian deformations turned out
to remain integrable, but all other cases require compensating terms to keep integrability. Until
now, the most elegant way to introduce non-hermiticity is enlarging the Coxeter root systems
[20, 2I]. Ways to generically construct complex root systems were developed in a series of pa-
pers by Fring and Smith [22] 23] 24]. Other results for Calogero models in the non-Hermitian
realm include, analysis of complex domains [25], quasi exactly solvable approaches [26], complex
extensions of the coupling constants [27], random matrix theories [28 29], spectral singularities
[30], isospectral and supersymmetric deformations [31} 32]. More recently, P7T-symmetric defor-
mations of Calogero models have been used to construct invisible and reflectionless potentials by
means of complex Darboux transformations related with the Korteweg—de Vries integrable hi-
erarchy [33] playing a role in conformal and supersymmetric theories [34], 35, 36]. The quantum
behavior of Calogero systems from a Hamiltonian formulation considering balanced gain and
loss was studied in [37, 38], for a recent review see [39]. The idea of introducing non-Hermiticity
was also studied from the point of view of spectral degeneracies, conserved quantities and in-
tertwining operators [40, 41]. The objective of this brief review is to discuss the main results of
these works and the future prospects for the topic.

Intertwining operators for Calogero models were introduced in the 1990s [42], 43] connecting
the Liouville integrals at different coupling values. They play a crucial role when the couplings
take integer values, allowing one to obtain Liouville eigenstates from the free theory but also to
build up algebraically independent conserved quantities, on top of the Liouville integrals and be-
yond superintegrability. In this regime the models are known to be algebraically or analytically
integrable. All those features can be adressed by means of Dunkl operators [44], see also [45] 46].
These integrals were treated as conserved quantities in formal sense since they commute with
the Liouville integrals. In the rational case, they generate supersymmetric algebras [47, [48].
However, the action of the additional charges is not well defined, mapping physical states to
non-physical ones. We show that this can be remedied by means of a PT-regularization. In
fact, the idea of healing the action of the additional conserved charges is not new and has been
studied in one dimensional cases [49, [50] but also in regularizing degenerate soliton solutions of
the Korteweg—de Vries equation [51].

This paper is organized as follows. In Section 2 we summarize the main features of the
trigonometric Calogero—Sutherland model for the As root system. Both conserved quantities
and intertwining operators are presented together with their algebra and their action on the
energy eigenstates. Then we introduce PT-symmetry in a simple way in order to discuss the
spectral degeneration and the physical restoration of a nonlinear conserved charge. A similar
approach is given in Section 3 but for the angular Calogero model associated with the Ds root
system. The last section is devoted to conclusions and open problems.
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2. PT-symmetry in Calogero—Sutherland models

The quantum Calogero—Sutherland Hamiltonian [2] was introduced as a toy model in nuclear
physics due to the type of short-range interaction in comparison with the rational version. We
consider three interacting particles with coordinates z; € R/27Z, i = 1,2, 3, on a circle governed
by the As Coxeter root system and the Hamiltonian

Hes(g :—*Za%rz g ; (1)

SlH

where ¢ is a coupling parameter. As we shall see below this coupling parameter plays an
important role in relation with degeneracy and conserved quantities in the non-Hermitian case.
The spectral and algebraic properties of the system can be studied by different methods, in
the present discussion we focus on the approaches given in [52, 53], 54}, 55]. In particular, we will
use the Dunkl operator approach, which in this model takes the form

Di(g) = 0;—g Z cot(z;—x5) S4j (2)
#4)

where s;; permutes the coordinates z; and x;. This method is particularly useful for a number
of reasons, including the construction of

e all conserved quantities by means of Weyl-invariant polynomials in the D; operators,
e intertwining operators by means of Weyl-anti-invariant polynomials in the D; operators,

e the energy eigenstates in terms of the Jack polynomials in an algebraic manner.

These features will be briefly revisited below. For the Ay root system described by , the
conserved quantities are constructed by means of the Newton sums

Im(g) =res[Di"(9) + D3'(9) + D5*(9)] » m=1,2,3, (3)

but we have only three independent integrals. The notation “res” stands for the restriction to
completely symmetric functions, which removes all permutation operators. The selection the
charges is not unique, any other permutation-invariant polynomial in the Dunkl operators will
also provide an integral of motion. Instead, the following basis is considered,

Ci(g) =Ti(g), Co=1I(g9)—8¢g>=—2Hcs(g), Cs(g)=Is(9) — L(9)12(g) (4)

which besides satisfying [Ci(g),C;(g)] = 0 provide the simplest intertwining relations. The
intertwining operators are constructed by the restriction of any permutation anti-symmetric
polynomial. The simplest one has differential order three,

M(g) = %res (Di2(g9)D23(g9)Ds1(g) + D2s(g)Ds1(g9)Di2(g) + D31(g9)Di2(g)Das(g)) . (5)

where we denote D;;(g) = D;(g)—D;(g). Further higher-order intertwining operators from anti-
symmetric polynomials may be constructed following the same recipe. In the current case only
one intertwiner is needed for a complete algebraic description. However, as we shall see in the
next section, sometimes higher-order ones are required. The explicit expressions of conserved
quantities (4]) and intertwiners (j5)) are given in [41]. With the basis , the intertwining relations
take the standard form

M(g) Ce(g9) = Ce(g+1)M(g) . (6)
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As a consequence of the above relation, the action of intertwining operators will not change the
energy on the wavefunctions. In fact, @ is nothing else than the shape-invariant feature studied
in the context of supersymmetric quantum mechanics. The presence of shape-invariance and the
construction of the spectrum have been studied in Calogero models [56, [57] but using first order
interwiners of a different nature. The energy spectrum of the stationary Schrédinger equation

HCS( )\:[17(1511)712 - Enl n2 7(7,1)17,2 ) (7)
depends quadratically on two quantum numbers, ny and ns,
Enyna(9) = (n1 4 29)° + 5(m1 — 2n9)?, (8)

obeying the relation ny > ny > 0 [41l 63]. The wavefunctions

2i
\I/%gl)mz — ¢ 3 (n1+n2)(x1+x2+23) AgPr(Ll)nz ($1,$2,$3) (9)

are given in terms of the Vandermonde determinant A = [],_.sin(x;—x;) and the so-called Jack

9)

polynomials PT(Lth, which are homogeneous polynomials of degree nq 4+ no in the x; coordinates
and symmetric under permutations. They can be constructed analytically in terms of deformed
Dunkl operators. For more details of their construction and properties, see [53],/41] and references
therein. The action of the intertwining operators on the wavefunctions reads

i<j

1
M(g) U9, = na(ni+g)(mi—na) W@y (10)
M)W, = (n1+3g—1)(n1—nat+29—1)(np+2g- 1)WY (11)

where M(1—g) = M*(g). As the action on the intertwining operators on the wavefunctions does
not change the energy values @, the shifting on the g parameter in is compensated with
modifications in the quantum numbers ny and ny. The conserved quantities action on the
states take the form

Cig )‘1’55’),”2 0, (12)
Ca(g) P9, = 2[(n1+29)* + L (1 —2n2)?] 09 | (13)
C3(9) 0D, = —8i(n1—2n2)(2n1 —no+3g) (1 +n2+39) T . (14)

In the second relation, is used into the definition of C in coherence with the changes in
. The degeneration due to ny — ny—ns flips the overall sign of the action of C3 in , and
therefore these two degenerate energy states can be distinguished by this integral of motion.

Issues on the algebraic integrability and the symmetry restoration by PT deformations

The idea of revisiting the non-Hermiticity in the Calogero—Sutherland model is inspired
mainly by three problems.

(i) In the Hermitian case discussed above, the ground state of is given by

)

3
\I'gg()) = Hsing(wi—xj) ., with  Ego(g) = 4g° . (15)

It is clear what \I/(()()) vanishes when the coordinate values coincide, those regions correspond
to the Weyl- alcove walls defining also the singularities of the interacting potential .

given by the As structure. Because of the power dependence, when g < 0 the ground

state and more generically the wave-functions \If%ql),m become non-physical due to the non-

normalizability resulting from such singularities.
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(ii) The Calogero—Sutherland Hamiltonian displays a naive but relevant symmetry changing
the coupling constant parameter according to g <> 1—g. This symmetry suggests that states
of two different values can be considered simultaneously within a single unique Hilbert
space. However, because of the previous point, states containing negative powers of g will
be non-physical making this symmetry meaningless.

(iii) The cases when g € N are special. In this situation the Calogero—Sutherland model is
called “algebraically integrable”. This feature appears by a combination of the symmetry
g > 1—g and the intertwining operator M(g). As the action of a single interwiner shifts
the coupling constant by unity, for integer values of the coupling, we can step from 1 — g to
g and vice versa by iteration of the process. In other words, we can build a chain of 2g—1
consecutive interwiners in the form

Qg) = M(g—1)M(g—2)--- M(2—g)M(1—g) (16)
which acting on the Hamiltonian and using the invariance under g <+ 1—g, gives
Q(9)H(g) = H(1-9)Q(g) = H(9)Q(9) - (17)

In this way the operator Q(g) turns out to be an extra conserved quantity. However, because
of the previous arguments for g > 1, the action of Q(g) will transform physical states into
non-physical ones, and the reverse for g < 0.

We can tackle all these points at the same time by introducing P7T-symmetry into the system.
Among the different approaches one may follow [13| [19] 20} 22 23| 24], 41], here we will use the
simplest one by shifting the coordinates by an imaginary amount,

Ty — xp+ie, £=1,2,3. (18)
In this way the consider both P and 7 operators in a standard way,
P (z1,x9,23) — (—x1,—x2,—23), and T :ir —i. (19)

In order to find a complete regularization of the system we must turn on all three parameters €.
Figure [1| shows how the absolute value of the potential looks when the complex regularization
is introduced.

35

Figure 1. 3D sliced density plots the absolute value of the potential term in . (Left) The
pure real potential with all ¢, = 0. The boundaries of the Weyl alcoves appear as white lines.
(Center) The same plot but with €5 = 0.2 turned on. The potential still displays some singular
regions. (Right) When all parameters are turned on €; = 2,2 = —0.5 and €3 = 0.2, the potential
is regularized. Note the change of the scale in comparison with other plots.



PTSeminar2020 IOP Publishing
Journal of Physics: Conference Series 2038(2021) 012007  doi:10.1088/1742-6596/2038/1/012007

Once the potential does no longer display singularities we are able to use the symmetry
g < 1—g and join the states from both sides considering g > % The enhancement of energy
degeneracy becomes apparent when we write the energy in the weight space notation

Em,m (g) = ()‘1 - 29)2 + )‘% . (20)

Here we identify
(A1, A2) = (—n1, %(m—%z)) ; (21)

and the condition n; > ng > 0 is translated into \; < —v/3|X|. Thus, in the A-space the set of
all allowed states form a § wedge, as can be seen in Figure |2l Considering a circle centered at

(29,0) of radius Ry = \/En, n,(9g), all the states lying on the circle will share the same energies.

For instance, the states with Mo, i.e. \117(191)7”2 and \Ilflgl)ml_nz, belong to those cases. On top
of that, after PT regularization and because of the symmetry g <> 1—g, we can also take into
account the states on the circle centered at 2(1—g, 0) of same radius. Albeit the cases with g > 0

are rarely degenerated, the cases when g < 0 display a high degeneracy, up to order 12.

Figure 2. In the weight space, the states are represented as black dots and circles correspond
to fixed “energy shells”. (Left) Solid and dashed lines stand for energies E = % and F = 1§—8
while blue and red colors stand for g=1 and g=0 respectively. (Right) Same energy shells as
before but blue and red colors correspond to g=3 and g=—2 respectively.

As we mentioned above, the case g € Z is peculiar, and the degeneracy related with g <> 1—g
is also reflected by an extra conserved charge (Q(g), which has always odd differential order
3(2g—1). If we define that states with g>0 and g<0 have certain parity, for instance even and
odd respectively, then the operator Q(g) is of odd nature, in the sense that it maps those sets
of states into each other. The explicit action on the states @ takes the form

1—
QY oWl s (22)

and we note that both states belong to the same Hilbert space due to g <+ 1—g. In fact, Q(g)
does not change the Liouville eigenvalues because it commutes with all charges,

[Q(9), Ce(9)] =0, €=1,2,3. (23)

The idea of making well-defined the action of an odd type of conserved charge is not new and
has been studied in one-dimensional cases in the past [49, 50]. The notion of Q(g) as an odd
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integral, allows one to build different types of hidden supersymmetry structures without fermion
degrees of freedom [58, 59]. In Calogero models we can choose as a grading operator any of the
permutations s;; due to {Q(g),s;;} = 0, and therefore Q(g) may be treated as a supercharge.
This notion of algebraic structures was studied in detail for the rational Hermitian Calogero
model [47], see also [48]. It is natural to wonder whether the operators Q(g) are completely
independent of the Liouville integrals. After shifting the coupling from ¢ to g + 1 by the action
of M(g), one may shift it back to g by applying M(1—g) = M1(g). Therefore the combination
MT(g)M(g) should commutes with the Hamiltonian. We can verify this by virtue of

MT(g)M(g) = R(g) = 18C2 +8C5C5 —3C5 +3C2C% — CLC1 +CY —6¢%(3C, — C? +8¢%)? | (24)

which is nothing else than a polynomial in the conserved charges. We can elucidate the meaning
of Q(g) by taking its square,

Q*(g) = M(g—1)--- M(3—g)M (2—g) M (1—g) M (9—1)M (g—2)M (g—3) - - - M (1—g)
= M(g—1)--- M(3—g)M(2—g)M'(g—1) M (g—1)M (g—2)M (g—3) - -- M (1—g)
= M(g—1)---M(3—g)M(2—g)R(g—1)M(9—2)M (g—3) - - - M(1—g)
=M(g—1)--- M(3—g)M(2—g)M(9—2)R(9—2)M (9—3) - - - M(1—g) (25)
= M(g—1)--- M(3—g) (R(g—2))* M(g—3) --- M(1—g)

= M(g—1)M(1—g) (R(1—9))* "% = (R(1—9))* " = (M'(g)M(g))*" .

So using the relation we identify Q?(g) as a higher-order polynomial in the conserved
charges. Thus Q(g) is not a standard supercharge but a nonlinear supercharge in a wider sense,
see [47]. We finish this section presenting in Fig. |3| a plot of the different degeneracies for the
low values of g.

ok = - - - - - W deg=1
—_ — —_ —_ —_ —_ W deg =2
W deg =14
W deg=6
30 W deg =38
W deg =12

20 |-

10 -

g

Figure 3. Energy spectrum and degeneracies for the As model at integer coupling g € Z.
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3. PT-symmetry in angular Calogero models

In this section we review a different kind of many-particle system and its non-Hermitian
extension. The n-particle Calogero model with rational interaction potential displays a
conformal symmetry, which enables the superintegrability of the system [60, [61]. Alternatively,
the system may be interpreted as a conformal particle living in R™ and being subject to an
external potential. It is possible to separate the radial and the angular part of the Hamiltonian
which defines an angular Calogero model living on the hypersphere S"~!. One may naively
guess that the angular system is simpler than the original one but, despite the fact the angular
model is still superintegrable, the converse is true. This is why the angular Calogero models
have been studied recently at the classical and quantum level [40, 62} [63] (64 65 (66}, [67], but also
regarding some of their algebraic structures [68, 69, [70]. In order to illustrate the main features
of these models, we focus on the D3 angular version. A more detailed discussion of the following
ideas is given in [40, [67]. The Hamiltonian in this case includes the angular momentum as a
kinetic term and a tetrahexahedral potential,

1< 3 a2 a?
(3
H(g) = ~5 Z($iaj_1’j8i)2 +2g(g—1) (a7 +a3+a3) Z m ) (26)
1<j 1<j t J

and is also invariant under g +» 1—g. Figure [4] shows the potential and the tessellation of the
sphere in 24 isosceles triangles defined by the Weyl chambers.

‘125
\100

Figure 4. Density plots of the potential term in before and after the PT regularization,
see below. (Left) In the Hermitian case, ¢; = €3 = 0, the plot is scaled by a composition
of a term logologolog. The Weyl walls are represented by the white lines. (Center) Absolute
value of the potential in the non-Hermitian case with ¢; = 2.5 and €2 = 0, where some singular
lines remain present. (Right) Absolute value of the complete regularized potential for e; = 2.1
and €5 = 1.5.

200

150

100

50

In the same spirit of the previous section, we focus the discussion on the Dunkl operator
approach. The analogues of involve the angular momenta instead of the linear ones and take
the form

_ _ T3 __r3 z2+T3 T2—T3 Y 2
L1 = 1203—1302 +9<x1_x2512 1172512 2o—as 23-1-:,;#903823-1-223 x1531+$3+x1531> , (27)

_ o T __x1 T z3tm T3—T1 7. z3 z3
Lo = x301—1103 + ¢ (m_m $23 = s 9B T p 3t st oL st o 812) , (28)

_ T T oy 1+ T1—T oy
L3 = 1100—1201 + g (z3_2x1 31— gty 931~ m e S12t pr e St o s ses + 523) , (29)

0.07

0.06

0.05
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where from now on we omit the explicit dependence on ¢ in the operators unless necessary.
As the dynamics is governed here by the D3 Coxeter group, besides the permutations s;; we
introduce the reflections s;; given by

S12 ¢ (21,22, 23) = (—x2, —21, +23) , (30)
S31 ¢ (21,2, 23) = (—x3,+x2, —21) , (31)
So3 ¢ (21, %2, x3) > (421, —x3, —22) . (32)

which together generate Weyl group S4. Now, with the angular Dunkl operators we are able to
construct

e all conserved quantities by means of Weyl-invariant polynomials in the £; operators.

e intertwining operators by means of Weyl-anti-invariant polynomials in the £; operators.

e the energy eigenstates in terms of harmonic polynomials.

One possible choice to build up the conserved charges is
Jp = res(ﬁlf + L5+ ﬁlg) for k=246, (33)

where Jy = —2 H(g)+6g(6g+1) is the shifted Hamiltonian. The higher-order integrals commute
with the Hamiltonian, [Jo, J;] = 0 for £ = 4,6, but, in contrast with the previous case [Jy, Jg]
is different from zero so it is not a Liouville system. For the sake of simplicity, we are using
Cartesian coordinates to describe the Dunkl operators and the wavefunctions. Nevertheless,
the Hamiltonian is two-dimensional and can be expressed completely in terms of a polar
and an azimuthal angle [40, [67]. As we have three (2 x 2—1) integrals of motion, the system is
superintegrable. The conserved quantities J; and Jg have differential order greater than two,
hence the two-dimensional system is not separable [71]. The peculiarity of the angular model is
revealed by the specific form of the Ji algebra. The non-vanishing commutator reads

[Js, Ju) = 12MJ Mg + 24(3+49)JsJo — 12(3429)J7 — 48(1429)JuJ3 + 12(1429)J5  (34)
+ lower-order terms . (35)

It cannot be expressed only in terms of the J; basis integrals and depends explicitly on two
interwining operators, defined next. In the trigonometric case, only one intertwining operator
was required to completely describe the algebraic structure. Here we need two intertwiners of
differential order three and six respectively,

M3 = %res (ﬁlﬁgﬁg 4+ L1L3Lo 4+ LoL3 Ly + LoL1 L3+ L3L1Lo + £3£2£1) , (36)

They intertwine the Hamiltonian in the standard way,
M(g9)H(g) = H(g9+1)Ms(g) , (38)

but the generic intertwining relations for the two charges take a more complicated form in
comparison to @,

M(9)Je(g) = Y _vi (9) Je(g+1) Mu(g) , (39)

s
where in the sum of the right-hand side could appear more than one interwiner. The functions
’ygéel (g) are polynomials in g, see [67]. We briefly review the energy spectrum for the angular

model ,
H(g) v, = E, v, . (40)
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The energy depends on a combination of two quantum numbers /3 and #4,
Ey=1q(qg+1) and q = 69+ = 69+ 303+40, . (41)

The allowed values ¢3,¢4 = 0,1, 2... lead to degeneracies firstly for £ and secondly due to the fact
Ey is quadratic in £. The energy eigenfunctions can be written as

\I/éz?& = ($1+$2+1‘3)_q/2Agh§Z?£4 (x) , (42)

where the Vandermonde determinant takes the form A = J[,_; (:Bzz—fcjz) The hg,)&; (z) are
homogenous polynomials of degree ¢ = 3¢5 + 44 in the z; coordinates. They can be constructed
in terms of Dunkl operators and are invariant under the action of the Sy group. For more details
of their construction and specific examples, see [40), [67]. So far, there are no closed formulas for
the action of the conserved quantities Jy, Jg or the intertwiners M3 and Mg. Still, the latter act

on the wavefunctions (42)) according to

. +1
Ms(g)‘l’g?& x Yy MZ,zf(Q)‘I’g,ﬁ) , =36 (43)
v=1—6

where the p’s are some polynomials in g. As the wavefunctions contain AY, for g < 0 we
find singularities at the vanishing locus of the Vandermonde determinant, forcing g > 0 for a
physical spectrum. The degeneracy for the allowed energy levels in this case can be computed
exactly and reads

deg(E) = | (44)

iJ . 0 for ¢=1,2,5 mod 12
12 1 for ¢ =-else mod 12

PT -symmetry reqularization, once again.

The set of ideas coming from points (i), (ii) and (iii) in Section [2| also applies to the angular
model . It is possible to remove all singularities by a P7T-symmetric deformation. This is
achieved by introducing spherical coordinates as follows,

T sin(f+ieq ) cos(p+iea)
xo | =7 | sin(f+ier) sin(op+ies) | . (45)
x3 cos(f+ie)

The PT-operator can be chosen as P : (6,¢) — (—6,—¢), which means
P (x1,29,23) — (—x1,29,23), and T :ir— —i. (46)

The Hamiltonian clearly is invariant under the combined action. In order to remove both
potential and wave-function singularities both parameters ¢; and es must be turned on, see
Figure [l Because of the regularization there now exist physical states for g < 0, and we must
combine them with the tower of states at 1 — ¢ > 0. In this way the degeneracy heavily
increases (for large values of the energy) giving as a result

f = 4 11 d 12
g1 + 0 for ¢g+69g=0,3,4,7,8,11 mo if g<6g—6
1 for g+69g=1,2,56,9,10 mod 12

0 f =1,2,5 mod 6
L%J + or 4 14,0 0O if ¢>6g—6.
1 for ¢=0,3,4 mod 6

deg(Ey) = (47)

In Fig. | we present the distribution of allowed states and degeneracies for low values of the
energy.
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Figure 5. Energy spectrum and degeneracies for the D3 model at integer coupling g € Z.

Like the Calogero—Sutherland model, the angular one becomes analytically integrable for
integer values of the coupling constant g. However, because we have two different intertwining
operators we have more ways to construct the additional odd charges

Q(g9) = Mi(g—1)M.(9=2) - -- M(2—g) M. (1—g) (48)

where M, stands for using in every step either M3 or Mg. The odd nature of these conserved
charges can understood from the relations

M:,TM3 x 2J6—3J4J2+J§’ + lower-order terms ,
MMy oc —12J2+12{Js, Ja}Jo— 8 JsJ3+2J3 — 142 24604 J5 — 2JS (49)

+lower-order terms ,

which tell us that Q2(g) is a polynomial in the conserved even charges. For example, in the case
of g =2 we have

( %)3)2 = (2J6—3J4Jo+J3)% + lower-order terms . (50)
4. Outlook and open problems

In this review we addressed non-Hermitian extensions of the trigonometric and angular Calogero
models under the scope of integrability. Both systems exhibit a set of conserved charges,
intertwining operators and -for integer couplings- a higher-order aditional odd integral of motion
Q(g). The latter flips the coupling g <> 1—g of the states, which means to transform physical
states into singular ones. Introducing a P7 -symmetric deformation as a regularization removes
all singularities of potentials and wavefunctions. In this way the conserved charges Q(g) acquire a
physical nature. Taking into account the symmetry g <> 1—g, the spectral degeneracy is radically
increased by the deformation. There are further results we have not presented here which are
more involved but not less interesting. These features have been studied for the Calogero—
Sutherland model G2 model describing the so-called Calogero-Marchioro-Wolfes problem [72].
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This is a non-simply-laced case, so there are two couplings associated to the short and long roots
of the corresponding Coxeter group, which translates to a richer structure with different types
of conserved quantities [41]. Regarding the angular model, the BCs, A??’ and Hj systems have
also been studied in a similar way [40]. Analogous investigations for the hyperbolic or elliptic
Calogero interactions are still missing. Further deformations of Calogero models may also be
considered [73]. For a Hamiltonian discussed there, can be arranged to

3
1 m(m—1) 1-m 1-m
Hp=-2) 07+ + + : 51
b 2~ b osin?(zp—a0)  sin®(xy—iv/mas)  sin?(xo—iy/ma3) (51)

which displays two extra conserved charges. Trigonometric and elliptic deformations of such
systems were also studied, see [74] and references therein.
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