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1. Introduction

The surface topography has a significant influence on the 
performance of a machined part within its life cycle. Functional 
properties such as resistance to wear and/or the fatigue life 
depend on the surface topography and subsurface properties 
such as hardness or residual stress. For this purpose, the 
designer specifies functional surfaces for a part, with the 
objective to meet set requirements regarding e. g. optics, 
sliding or sealing capacity. The specifications are generally set 
at the beginning of a product-development cycle and have a 
great impact on the resulting manufacturing costs. The surface 
topography in milling is determined by a number of factors 
including cutting tool and workpiece properties, machining 
parameters and cutting phenomena [1]. While the manufacturer 
cannot influence all of these factors, there remains the task of 
selecting appropriate process parameters, which is also referred 
to as the inverse problem in manufacturing [2]. This denotation 
describes the manufacturer specifying the target values for 
surface properties and then inversely deducing suitable values 
for the process parameters. 

CAM systems are widely used to aid manufacturing companies 
in planning of complex machining processes. Although these 
systems use advanced geometric calculations for tool path 
calculation, they only consider the workpiece and a simplified 

cutting tool geometry while ignoring all physical restrictions 
and effects during the machining process. Thus, it remains a 
task for all manufactures to choose their own process 
parameters in order to meet requirements regarding part 
quality. During the first putting into operation of a machining 
process companies often rely on expert knowledge and trial-
and-error strategies to choose appropriate process parameters. 
Here the most common strategy involves choosing 
conservative parameters, which however neither guarantee the 
desired surface quality nor maximize the material removal 
rate [1]. Given the increasing demand for customized products 
and small lot sizes, decreasing the time needed for putting a 
process into operation has become an increasingly relevant 
economic goal for manufacturers. In the scientific community,
extensive research has been conducted regarding the modelling 
of surface roughness in various machining processes. However,
manufacturing companies do not widely benefit from these 
results, as they are solemnly available within CAM systems [3]. 
Hence, the successful integration of models for parameter 
selection and tool path optimization within CAM would 
increase the practical applicability of these models and 
therefore increase their impact on the technological advances 
in manufacturing companies [4,5]. However, the availability of 
such models is often limited due to their specific scope of 
application. In this article, the authors strive to provide a model 
for end milling which can be parameterized using few 
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empirical datasets. These datasets are to be easily obtainable 
for manufacturers with standard equipment also utilized for 
quality control purposes.

1.1 Surface roughness modelling in machining

Available models to predict the surface topography can be 
categorized into physical, empirical and semi-empirical 
models. In milling, physical models describe the shape of the 
cutting tool and/or the trajectory of the individual cutting edges 
and solve these problems by means of either analytical or 
numerical approaches. Arizmendi et al. present an example for 
a physical model, where the surface topography generated by 
ball-end milling is described using equations for the cutting 
edge trajectories and converging them into 3D surfaces of the 
machined workpiece. By this, the authors were able to simulate 
the geometric shape of the surface topography while also 
considering the effect of tool run-out. Visually comparing 
measured and simulated surfaces, validated the model to 
predict the topography reasonably well [6]. Baek et al. 
presented a surface roughness model for face milling 
operations considering the run-out of individual inserts and the 
feedrate as input parameters. With the presented geometric 
model, it was possible to predict the trajectory for each 
individual cutting edge and determine the resulting surface 
profile as well as the corresponding value for Ra. The model 
was then used to heuristically maximize the feedrate while not 
exceeding a set roughness value [7]. Empirical models use data,
generated from an experimental set up where some factors are 
systematically varied while the change of value in specified 
responses is measured. Regression analysis is often employed 
in order to derive models from the data collected. Routara et al. 
used the response surface method (RSM) to evaluate the effect 
variation in process parameters, viz spindle speed, depth of cut 
and feedrate, and workpiece material had on the surface 
roughness in end milling. The accuracy of the prediction is 
confirmed to be also dependent on the actual roughness 
parameter observed; leading the authors to the hypothesis that 
adapting the modelling techniques according to the particular 
roughness parameter of concern might yield the best modelling 
results [8]. Semi-empirical models are a combination of the two 
approaches described above. The aim when combining the two 
approaches is to create a physical model, which is then 
modified using empirical data to describe the observed 
phenomenon with greater accuracy. For a ball-end milling 
process Denkena et al. combined the result of a material 
removal simulation with empirical measurements to depict the 
surface geometry and corresponding roughness parameters 
more accurately [9]. All of the above-mentioned models have 
their field of application. In order to choose the appropriate 
modelling technique, the user has to define clearly the purpose 
of the model. Depending on the resolution and complexity of 
the necessary calculation, physical approaches can require
large amounts of computation power and simulation time. 
Which can hence applicability of these models for optimization 
scenarios, where multiple simulation runs are necessary to find 
an acceptable solution. On the other hand, the empirical 
approach often yields an accurate and easy to use model for the 
observed case, but has limited validity beyond the experimental 

scope [10].

Fig. 1. Roughness parameters for machined surfaces [11]

Experimental models are generally adopted when the problem 
cannot be (easily) expressed analytically [1]. The combination 
of both modelling types into semi-empirical models is one 
possibility to merge the strength of both approaches into one: 
Maintaining a physical explicability while modifying the 
results to fit the empirically observed. This also potentially 
limits the amount of empirical data required to refine the 
model, as the majority of the effect should be explicable 
through the physical part of the model. Moreover, the 
combinations of these two modelling types yields a surface 
profile rather than only predicting values for certain roughness 
values. The profile itself is of interest as the roughness 
parameters only give an indication as to whether or not the 
surface topography is suitable to fulfil the functional 
requirement. Identical surface roughness values may be used to 
describe vastly different topographies as depicted in Fig. 1. 
While it is not possible to deduce a surface topography from 
given roughness parameters, it is possible to calculate any 
given roughness parameter from a simulated topography. 
Hence, making this approach more flexible while also allowing 
for a visual feedback regarding the geometric constitution of 
the surface. 

Although all model-types can potentially be integrated within 
a CAM-System, choosing semi-empirical models, which use 
the empirical data only to refine the roughness prediction, 
could allow these models to be adjusted by the user to fit their 
specific use-case. Therefore, a semi-empirical model is pursuit 
for surface roughness prediction within this paper. 

1.2 Surface generation in end milling

In end milling, the influence of the feed per tooth fz on surface 
roughness can be described analytically. The movement of the 
cutting edge’s tip during one revolution of the cutter follows a 
cycloidal trajectory. This kinematic leads to the fact that the 
material is not completely removed to the nominal dimension, 
but a residue remains. Leftover residual material is called 
kinematic or theoretical roughness and is shown in Fig. 2. The 
feed per tooth fz or respectively the feed velocity vf in 
combination with the rotations per minute n determine the 
theoretical roughness. The rotational speed n does not have any 
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impact on the theoretical roughness, as it only determines how 
fast the tool is removing the workpiece material, but not on 
which path. 

Fig. 2. Surface generation in end milling [12]

The theoretical surface that can also be described 
mathematically using the cutting edges trajectory, which refer
to the outermost point of the cutting edge. However, empirical 
studies show that the roughness actually measured is higher
than the theoretical roughness [9,13]. In addition to the process 
kinematics, there are other factors that influence the surface 
roughness, some of which are deterministic and some 
stochastic. Additional deterministic influences are e. g. run-out
errors or deviations of the cutting edge’s length of the milling 
cutter from the nominal geometry. Stochastic influences 
include inhomogeneity in the workpiece material, vibrations 
occurring in the process or the chipping of the cutting edge. In 
[9] it was shown that a superposition of the kinematic and 
stochastic influences in ball-nose milling leads to an increased 
roughness prediction quality, so that a higher agreement 
between measured and simulated roughness was achieved. A 
similar approach is adopted in this paper to model the surface 
roughness for end milling. 

2. Approach

The objective of the presented approach is to predict the surface 
topography for an end milling process for varying the cutting 
speed vc and the feed per tooth fz using a semi-empirical model.

Fig. 3. Steps for determination of stochastic surface roughness model

This model consists of two components: A physical model 
predicting the kinematic topography taking into consideration 
the cutting tool geometry, tooth length variation and run-out
errors and an empirical model predicting the stochastic 
deviations from the simulated profile. 

The steps to attaining the stochastic roughness model are 
shown in Fig. 3. First, the real tool geometry is optically 
measured determining the deviation in length of each cutting 
edge from the nominal diameter of the tool. This information is 
applied to adapt a virtual tool model. Using the adapted model, 
a material removal simulation is performed to create the 
kinematic surface topography. Apart from that, the real tool is 
also used to perform an experimental investigation varying the 
process parameters fz and vc systematically. The resulting 
surface topographies are evaluated and profiles are extracted. 
These profiles are then compared to the kinematic profile. 
When aggregating the differences between the real and the 
kinematic topography a mathematical distribution, which 
models the stochastic deviations, is obtained. The definition of 
both model parts are explained in more detail within the next 
two chapters. 

2.1 Physical model definition

Within the physical model, three effects are considered: the tool 
geometry, the run-out error and the variation in tooth length. 

Fig. 4. Influence of tool run-out and tooth length variation on surface 
topography
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The tool geometry itself is responsible for the theoretical 
surface roughness. If no other factors were influencing the 
surface generation, this would be the surface obtained after end 
milling. However, cutting tools often have a run-out error, 
which results from the combined run-out errors of the tool 
itself, its holder and the machine’s spindle. Another influence 
is a variation in tooth length that can occur within a multi-
toothed end mill because each individual tooth has a specific 
depth of cut. The effects and the resulting surface profiles were 
simulated using the material removal software IFW CutS [14]. 
The results for the influence of the different effects are shown 
in Fig. 4. Here, for visualization purposes the surface generated 
by each tooth is coloured differently, thus marking the finale 
surface generated by each tooth. It is noteworthy that with a 
tool run-out or a variation in length of the cutting tools’ teeth,
the length of a single tooth’s’ engagement and its depth of cut 
varies. This can also result in a surface profile, which is 
generated by only a few of the cutters’ teeth. In such a case, the 
surface generated from a tooth with a smaller depth of cut is
undercut from the subsequent tooth. These phenomenon’s 
therefore cause irregularities in the surface profile. 

With the goal of integrating the above-mentioned effects, a 3D 
CAD model of the tool is modified. For this purpose, the tips 
of the tools’ teeth are isolated, making them freely positionable 
as individual CAD objects. The real positions of the tools 
cutting edges were then measured using a Zoller Venturion pre-
setting and measuring machine. The teeth were shifted by a 
distance Δd in- or outwards along the radius of the tool. The 
process is visualized in Fig. 5. With this method the run-out of 
the tool-holder, tool and the variation of tooth length is 
measured as a superposed effect.

Fig. 5. Isolation and repositioning of cutting tool teeth 

2.2 Empirical model definition

To obtain a statistical distribution, which describes the 
deviation between the kinematic and the actual topography, 

milling experiments according to the process parameters in
Table 1 were conducted. The workpiece material 42CrMo4 
(1.7225, EN 10083-3) was used in the investigations. The 
experiments where performed on a DMG HSC 55 linear 
machine tool with a Heidenhain iTNC 530 control unit. A 
cemented carbide end mill with a diameter of 12 mm and z= 6 
teeth (Walter H3021138-12) was applied. The resulting surface 
topography was measured in feed direction with the optical 
surface measuring system TOOLinspect from Confovis, which 
can be utilized to digitize surfaces through focus variation. The 
digitized surface was then used to extract 10 profiles for each 
parameter combination. These profiles are the empirical 
database from with the statistical distribution is derived.

Table 1. Process matrix for the experiments
Feed/tooth fz [mm] Cutting speed vc [m/min]

Range of variations 0.24 – 0.4 80 – 220

Number of variations 3 4

Process parameters
Depth of cut [mm] 20

Width of cut [mm] 0.3

To compare the simulated and measured surface profiles they 
are first aligned in x- and z-direction, where x is the feed 
direction and z is the profile height, employing the method of 
least squares. An example for the simulated and measured 
profile before and after alignment is shown in Fig. 6. The tool 
used for the experiments had a run-out error of 10 µm, which 
is also visible in measured profile. 

Fig. 6. Simulated and measured profile before and after alignment
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Fig. 7. Data distribution for stochastical surface roughness

The differences in z-direction between the measured and 
simulated profile are then extracted point-by-point using the 
simulated profile as an origin. For each point in the simulated 
profile, the corresponding point with the same x-coordinate in 
the measured profile is found. If there is no point with the exact 
coordinate, linear interpolation between the two closest 
neighbouring points is used to determine the z-coordinate. 

This method is performed for all 10 profiles measured for each 
parameter combination. Afterwards the data is plotted in a 
probability density plot showing how often which deviation 
between simulated and measured profile occurs. Further the 
data is fitted with a gauss distribution as shown in Fig. 7. 

Fig. 8. Stochastical profile derived from probability distribution and resulting 
profile after combining kinematic and stochastic profile

Having derived a probability distribution P for the stochastical 
surface deviations, it can be used to superpose the kinematic 
surface profile. In order to perform the superposition a random 
value X is generated for every data point in the kinematic 

profile using P. X is then added to the corresponding point in 
the kinematic profile forming the resulting profile of the 
combined model. The process is shown in Fig. 8. The resulting 
profile can then be visually compared to the measured profile 
and the desired surface roughness values can be calculated. 

3. Results and discussion 

A single superpositioning of values from the probability 
distribution with the kinematic profile yields only one possible 
surface profile. Every repetition results in a slightly different 
surface profile due to the fact that the numbers from P are 
chosen randomly. This also causes the roughness values 
calculated using the superposed profile to scatter. One 
possibility to counter this problem, is to perform multiple 
superpositions until the change in the average roughness value 
∆𝑅̅𝑅 is below a threshold. 

∆𝑅𝑅𝑅𝑅̅̅̅̅ = ∑ 𝑅𝑅𝑅𝑅𝑖𝑖 ∙
1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1
−∑ 𝑅𝑅𝑅𝑅𝑖𝑖 ∙

1
𝑛𝑛+1

𝑛𝑛+1

𝑖𝑖=1
(1)

Equation (1) shows the calculation for ∆𝑅̅𝑅 exemplary using Ra 
and Fig. 9 shows the change in ∆𝑅𝑅𝑅𝑅̅̅̅̅ and ∆𝑅𝑅𝑅𝑅̅̅̅̅ depending on the 
number of iterations performed. In conclusion about 100 
iterations are required to reach a steady state for Ra and Rz 
where ∆𝑅̅𝑅 is below 0.01µm. However, the scattering causes a 
standard deviation of 2% for Ra and 6-8% for Rz. Rz scatters 
significantly more than Ra, because it is calculated using the 
minima and maxima of a profile, which are more prone to 
change between subsequent superpositionings.

Fig. 9. Change in average roughness values Ra and Rz for multiple 
superpositions of kinematic and stochastic surface profiles. 

In order to evaluate the accuracy of the developed semi-
empirical model the ratio between the simulated and measured 
Ra and Rz values is considered for the investigated process 
parameters vc and fz. Further, the accuracy of only the 
kinematic model compared to the accuracy of the combined 
model. Accuracy is understood as a measure of how close the 
simulated and measured roughness values coincide, a ratio of 1 
between the simulated and measured values describes a perfect 
match. The results for the models’ accuracy are shown in Fig.
10. A general observation for the results is that the kinematic 
roughness is always lower than the roughness values predicted 
from the combined model and also always below 1. This 
coincides with the ambition to model as many effects as 
possible using the kinematic model and bridging the gap to the 
measured profile by modelling the stochastic influences. It can 
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be observed that vc has only a slight influence on Ra and Rz. 

Fig. 10. Model accuracy for investigated process parameters

Regarding the kinematic simulation results lower vc yield a 
lower accuracy for both Ra and Rz. The process parameter vc 
has no influence on the kinematics of the process, however with 
higher vc the measured roughness decreases, hence increasing 
the accuracy of the kinematic model for higher vc. Therefore, 
this effect would have to be modelled in the empiric part of the 
model. For Ra the accuracy is very close to 1 for the combined 
model. For Rz the combined model yields results that are 
around 1.7, while the kinematic model alone results in a 0.7 
accuracy value. Further, the influence of fz is investigated, 
showing a higher influence on both roughness parameters than 
vc. For Ra the accuracy is increasing with an increase in fz. One 
explanation is that with a higher fz more of the surface 
roughness can be contributed for by the kinematic roughness 
alone, making other factors secondary. The accuracy for the 
kinematic model is between 0.5 and 0.8 and between 0.8 and 
1.2 for the combined model. However, for Rz the accuracy for 
only the kinematic model is between 0.6 and 0.75 while the 
accuracy of the combined model is between 1.6 and 1.9. In 
total, the combined model does prove to predict Ra values 
reasonably well while delivering much higher than expected 
values for Rz. A like cause is the higher sensibility of Rz to 
outliers which are likely created by the empiric model. Further 
investigations have to be made to adapt the kinematic model in 
order to better predict a sensitive parameter such as Rz. One 
field worth investigating in this regard is the strategy, which is 
applied in choosing numbers from the probability distribution. 
Neighbouring points in a measured profile are not independent 
from one another and large differences in consecutive profile 
points are unlikely. With the current superpositioning strategy 
it is possible to have values from opposing ends of the 
probability distribution added to consecutive points. This can 
lead to large height differences which in turn impact Rz. 
Including a maximal allowed height difference in two 
consecutive points might yield a better empirical model to 
predict Rz, as this could limit the number of peaks created in a 
profile. Further it seems plausible to assume this would limit 
the high frequency noise which the stochastic roughness adds 
to the kinematic profile and hence also result in a better fit.  

4. Conclusion and Outlook 

This paper presents a semi-empirical model for the prediction 
of surface topographies and surface roughness values in end 

milling. The kinematic model uses a material removal 
simulation to consider the kinematic characteristics of the 
milling process. The empirical part models the stochastic 
influences on the surface topography. By applying multiple 
superpositions of the kinematic and stochastic topography a 
steady state for the roughness values can be reached. Overall 
the prediction accuracy for the combined model is good for Ra. 
For Rz the combined model however does consistently values 
which are 60 to 90% higher than desired. The kinematic model 
alone provides more accurate results for Rz. While refining the 
model is still future work, it was shown that it is possible to 
create an empirical model with a relatively small number of 
experiments. Thus, also making it more feasible for 
CAD/CAM providers to integrate these models at lower costs 
due to the small database required. Hence increasing the 
availability of technological knowledge regarding the choice of 
appropriate surface parameters for manufacturers.  
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