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Abstract

Over the past few decades, the occurrence and intensity of geological hazards, such as
landslides, have substantially risen due to various factors, including global climate change,
seismic events, rapid urbanization and other anthropogenic activities. Landslide disasters
pose a significant risk in both urban and rural areas, resulting in fatalities, infrastructure
damages, and economic losses. Nevertheless, conventional ground-based monitoring tech-
niques are often costly, time-consuming, and require considerable resources. Moreover,
some landslide incidents occur in remote or hazardous locations, making ground-based
observation and field investigation challenging or even impossible.
Fortunately, the advancements in spaceborne remote sensing technology have led to

the availability of large-scale and high-quality imagery, which can be utilized for various
landslide-related applications, including identification, monitoring, analysis, and predic-
tion. This efficient and cost-effective technology allows for remote monitoring and as-
sessment of landslide risks and can significantly contribute to disaster management and
mitigation efforts. Consequently, spaceborne remote sensing techniques have become vi-
tal for geohazard management in many countries, benefiting society by providing reliable
downstream services. However, substantial effort is required to ensure that such benefits
are provided.
For establishing long-term data archives and reliable analyses, it is essential to maintain

consistent and continued use of multi-sensor spaceborne remote sensing techniques. This
will enable a more thorough understanding of the physical mechanisms responsible for slope
instabilities, leading to better decision-making and development of effective mitigation
strategies. Ultimately, this can reduce the impact of landslide hazards on the general
public. The present dissertation contributes to this effort from the following perspectives:

• To obtain a comprehensive understanding of spaceborne remote sensing techniques
for landslide monitoring, we integrated multi-sensor methods to monitor the en-
tire life cycle of landslide dynamics. We aimed to comprehend the landslide evolu-
tion under complex cascading events by utilizing various spaceborne remote sensing
techniques, e.g., the precursory deformation before catastrophic failure, co-failure
procedures, and post-failure evolution of slope instability.

• To address the discrepancies between spaceborne optical and radar imagery, we
present a methodology that models four-dimensional (4D) post-failure landslide kine-
matics using a decaying mathematical model. This approach enables us to represent
the stress relaxation for the landslide body dynamics after failure. By employing this
methodology, we can overcome the weaknesses of the individual sensor in spaceborne
optical and radar imaging.

• We assessed the effectiveness of a newly designed small dihedral corner reflector for
landslide monitoring. The reflector is compatible with both ascending and descend-
ing satellite orbits, while it is also suitable for applications with both high-resolution
and medium-resolution satellite imagery. Furthermore, although its echoes are not
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as strong as those of conventional reflectors, the cost of the newly designed reflectors
is reduced, with more manageable installation and maintenance. To overcome this
limitation, we propose a specific selection strategy based on a probability model to
identify the reflectors in satellite images.
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Zusammenfassung

In den letzten Jahrzehnten hat das Auftreten und die Intensität geologischer Gefahren
wie Erdrutsche aufgrund verschiedener Faktoren erheblich zugenommen. Dazu zählen
unter anderem der globale Klimawandel, seismische Ereignisse, die schnelle Urbanisierung
und andere menschliche Aktivitäten. Erdrutsche stellen sowohl in städtischen als auch in
ländlichen Gebieten ein erhebliches Risiko dar, da sie zu Todesfällen, Schäden an der In-
frastruktur und wirtschaftlichen Verlusten führen können. Herkömmliche bodengestützte
Überwachungsverfahren sind oft kostspielig, zeitaufwändig und erfordern beträchtliche
Ressourcen. Darüber hinaus treten einige Erdrutsche an abgelegenen oder gefährlichen
Orten auf, wo eine bodengestützte Überwachung und Untersuchung vor Ort schwierig
oder sogar unmöglich ist.
Glücklicherweise haben Fortschritte in der weltraumgestützten Fernerkundungstech-

nologie dazu geführt, dass großflächige und qualitativ hochwertige Bilder zur Verfügung
stehen, die für verschiedene Anwendungen im Zusammenhang mit Erdrutschen genutzt
werden können, wie z.B. Identifizierung, Überwachung, Analyse und Vorhersage. Diese ef-
fiziente und kostengünstige Technologie ermöglicht die Fernüberwachung und -bewertung
des Erdrutschrisikos und kann einen wichtigen Beitrag zum Katastrophenmanagement und
zur Schadensbegrenzung leisten. Weltraumgestützte Fernerkundungstechniken sind daher
in vielen Ländern unerlässlich geworden, um das Risiko von Erdrutschen zu managen und
durch Bereitstellung von zuverlässigen nachgelagerten Diensten der Gesellschaft zugute zu
kommen. Allerdings erfordert die Erbringung dieser Dienste erhebliche Anstrengungen,
um sicherzustellen, dass sie zuverlässig sind.
Für die Einrichtung von langfristigen Datenarchiven und zuverlässigen Analysen sind

konsequente und kontinuierliche Multisensor-Fernerkundungstechniken unerlässlich. Dies
wird zu einem besseren Verständnis der physikalischen Mechanismen führen, die zur Han-
ginstabilität beitragen und zu besseren Entscheidungen und effektiven Sanierungsrichtlin-
ien führen. Letztendlich könnte dies die Auswirkungen von Erdrutschen auf die
Öffentlichkeit verringern. Die vorliegende Dissertation trägt in folgender Weise zu diesen
Arbeiten bei:

• Um ein umfassendes Verständnis der weltraumgestützten Fernerkundungstechniken
zur Überwachung von Erdrutschen zu erlangen, haben wir Multisensormethoden in-
tegriert, um den gesamten Prozess der Erdrutschdynamik zu überwachen. Unser Ziel
war es, die Entwicklung von Erdrutschen bei komplexen Kaskadenereignissen durch
den Einsatz verschiedener weltraumgestützter Fernerkundungstechniken zu verste-
hen, zum Beispiel die Vorverformung vor dem katastrophalen Ausfall, die Vorgänge
bei einem Mitausfall und die Entwicklung der Hanginstabilität nach einem Ausfall.

• Um die Diskrepanzen zwischen optischen und radarbasierten Fernerkundungstech-
niken im Weltraum zu überwinden, stellen wir eine Methode vor, die die vierdimen-
sionale (4D) Kinematik von Erdrutschen nach dem Ausfall mithilfe eines abklingen-
den mathematischen Modells beschreibt. Dieser Ansatz ermöglicht es uns, die Span-
nungsrelaxation für die Dynamik des Erdrutschkörpers nach dem Bruch darzustellen.

vii



Durch den Einsatz dieser Methode können wir die Schwächen der einzelnen Sensoren
bei der optischen und radargestützten Bildgebung im Weltraum überwinden.

• Wir bewerteten die Wirksamkeit eines neu entwickelten kleinen dihedralen Eckreflek-
tors für die Überwachung von Erdrutschen. Der Reflektor ist mit auf- und absteigen-
den Satellitenumlaufbahnen kompatibel und eignet sich für Anwendungen mit hoch-
und mittelauflösenden Satellitenbildern. Außerdem sind seine Echos zwar nicht so
stark wie die herkömmlicher Reflektoren, aber die Kosten für die neu entwickel-
ten Reflektoren sind geringer und ihre Installation und Wartung ist einfacher. Um
diese Einschränkung zu überwinden, schlagen wir eine spezielle Auswahlstrategie
vor, die auf einem Wahrscheinlichkeitsmodell zur Identifizierung der Reflektoren in
Satellitenbildern basiert.
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1 Introduction

Landslides represent one of the most prevalent forms of geological disasters all over the
world. They often manifest as sudden failures that cause the rapid downslope movement
of soil, rocks, and fluids (Lacroix et al., 2020). Unstable slopes can pose a grave threat
when they lose their stability, resulting in widespread destruction and catastrophic conse-
quences such as fatalities, damage to critical infrastructure, disruption of agriculture, and
significant economic losses.

Therefore, it is essential to monitor the evolution of slope instabilities, which can some-
times be challenging since their mechanism is often complicated, e.g., some of them move
rapidly, while others can start with creeping motions, but experience sudden acceleration
triggered by heavy precipitation, floods, or seismic activity, culminating in catastrophic
failure or avalanche (Lacroix et al., 2020; Debella-Gilo and Kääb, 2011). Just taking
China as an example, thousands of landslide disasters occur every year, causing hundreds
of fatalities and billions of RMB in direct economic losses (NBSC, 2018). The recent ones,
such as the 2017 Mao Xian landslide, the 2018 Baige landslide, and the 2020 Aniangzhai
landslide, have caused significant damages and losses, receiving widespread attention from
worldwide scholars (Habumugisha et al., 2022; Zhao et al., 2021; Zhang et al., 2019a,b;
Intrieri et al., 2018; Fan et al., 2017). Moreover, increased urbanization and anthropogenic
activities have made landslides occur more frequently. Especially when landslides coincide
or are in close proximity to other catastrophic events, such as dam failure, the impact of
slope failure would be significantly magnified. An example is that in 1963, a massive mass
slid into the newly built Vajont reservoir in northern Italy, creating a huge wave that broke
through the dam and killed approximately 2,000 people (Genevois and Ghirotti, 2005).

We need to improve our understanding for monitoring of landslide hazards regard-
ing cascading events in order to establish effective early warning systems (EWSs) and
achieve an overall reduction and mitigation of their inherent risks. Moreover, analyzing
the potential impact of anthropogenic activities on the local geological environment and
susceptibility to natural hazards, as well as the cascading events and their triggers, are
particularly useful for controlling or predicting such events. Therefore, the methods of
landslide monitoring should meet at least the following requirements: adequate area cov-
erage and temporal sampling capability, adequate measurement accuracy concerning the
speed of various processes, and cost-effective (Xia et al., 2022b).

In this regard, ground-based methods with field measurements are essential for de-
tecting, studying and understanding complex processes of landslides, such as leveling,
extensometry, and continuous Global Navigation Satellite System (GNSS). However, for
landslide monitoring, such methods are time-consuming, expensive, and challenging to es-
tablish and implement in mountainous and remote areas. In contrast, spaceborne optical
and radar remote sensing techniques have the potential to significantly enhance landslide
monitoring by fulfilling the mentioned requirements. Over the past few decades, satellite
remote sensing has been exploited extensively and effectively in monitoring and assessing
ground instabilities, providing accurate displacement measurements over large regions, and
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can be comprehensively integrated into a multidisciplinary disaster risk reduction (DRR)
framework and the investigation of cascading events.

In optical remote sensing, pixel offset tracking (POT) techniques utilizing the nor-
malized cross-correlation (NCC) algorithms have been widely implemented due to their
simplicity and reliability in assessing slope instabilities. Optical satellite imagery has be-
come increasingly accessible in recent years and is easily understood and managed by
non-experts. However, several factors, such as measurement precision, alignment error
between relevant image pairs, and different interpolation factors, can significantly impact
the accuracy of the deformation maps derived through the NCC. It is also challenging to
acquire cloud-free images during catastrophic failures as sliding occurs more frequently
in mountainous regions and during the rainy seasons. Hence, optical remote sensing has
both strengths and weaknesses when monitoring landslides.

Alternatively, synthetic aperture radar (SAR) and interferometric SAR (InSAR) offer
new opportunities to systematically identify and monitor landslide disasters on a regional
or even continental scale, which can be implemented regardless of sunlight or weather con-
ditions. The growing accessibility of SAR data and the advanced Multi-temporal InSAR
(MT-InSAR) techniques have been exploited and developed to address the limitations of
traditional InSAR techniques. MT-InSAR approaches, e.g., persistent scatterer interfer-
ometry (PSI) and small baseline subset (SBAS) techniques, involve searching a stack of
SAR data to locate persistent scatterers (PSs) or distributed scatterers (DSs) and con-
necting their interferometric phase over time to track the displacement history of each
pixel (Hooper et al., 2007, 2004; Ferretti et al., 2001). In order to minimize errors and
extract accurate displacement time series, MT-InSAR methods also exploited temporal
and spatial filtering or external information as supplement (Hooper et al., 2012). Over
the past few decades, a significantly growing number of spaceborne SAR missions have
already been implemented with sensors of various wavelengths, orbits and repeat cycles,
and different temporal and spatial resolutions. However, SAR sensors still have some lim-
itations when monitoring slope instability, e.g., they are more sensitive to displacement in
line-of-sight (LOS) directions. Therefore, new methods are needed to efficiently deal with
the various processes of ground motion and extract essential information from multivariate
time series analysis.

1.1 Research Objectives

This thesis comprehensively exploits spaceborne remote sensing geodetic measurements
to improve the understanding of landslide hazards. The research is conducted from three
main perspectives. The first perspective is monitoring, which involves precise measure-
ments of landslide deformation at a specific location, providing insights into the slope
kinematics and the evolution of the entire life cycle of landslide process. The second
perspective is the experiment, which involves examining ground auxiliaries for remote
sensing measurements, i.e., newly designed artificial corner reflectors (CRs) are evaluated
for their efficacy in remote sensing measurements. The third perspective is modeling,
which integrates multi-sensor spaceborne remote sensing imagery to characterize land-
slide’s four-dimensional (4D) deformation dynamics. For the three perspectives, the 2020
catastrophic failure of a deep-seated Aniangzhai landslide in Danba County, Southwest
China, is comprehensively exploited and analyzed.
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The first perspective of this study involves monitoring and measuring the precursory
and co-failure displacements of the Aniangzhai landslide. The studies employ optical and
SAR remote sensing techniques to derive slope displacement from various remote sens-
ing datasets and further establish the relationship between landslides and the underlying
driving mechanisms.
The second perspective of this study involves the experimentation and examination of

the newly designed dihedral corner reflectors (DCRs) in SAR remote sensing. First of
all, a general selection strategy is proposed to identify the new DCRs in different SAR
images based on the various properties and power variations in pixels that arise from
their installation. Then, the performance and efficacy of these reflectors are evaluated and
compared using both high-resolution and medium-resolution satellite imagery to measure
slope instability.
The third perspective of this study involves integrating and modeling satellite optical

and SAR remote sensing techniques using the time series decomposition method and a
mathematical relaxation model. We propose a framework that allows for the assessment
of complete 4D spatiotemporal patterns of post-failure slope evolution. This framework
leverages the advantages of both optical and SAR sensors to overcome and mitigate their
unique limitations. Specifically, the feature extraction technique identifies relevant features
from optical and SAR images, while the relaxation model facilitates the spatiotemporal
modeling of slope instability.
This thesis discusses several challenges in landslide monitoring using spaceborne remote

sensing techniques and the solutions to tackle them. One major challenge is the various
types of landslides and observation restrictions from satellite remote sensing sensors. The
methodology for combining and integrating different sensors for monitoring complicated
processes is assessed in this thesis. Furthermore, the effectiveness and performances of aux-
iliary for spaceborne remote sensing are investigated to be suitable for densely vegetated
slopes. Other significant challenges are interpreting the InSAR time series, particularly
with different time series of triggering factors. The time series decomposition analysis can
contribute to a better understanding and systematic analyze landslide kinematics and the
related triggering factors during cascading events. In summary, this thesis addresses the
main research question as follows:

1. Question: What is the most important role of spaceborne remote sensing technology
in identifying, monitoring, predicting and managing landslide hazards? What are the
advantages of spaceborne remote sensing compared to other geodetic methodologies?

2. Question: What is the performance of spaceborne remote sensing techniques in mon-
itoring slope instability caused by different triggering factors and procedures? How
can these triggers be integrated into landslide analysis for the causality, mechanism
and anticipation during the complex cascading event?

3. Question: What is the difference between spaceborne optical and SAR remote sens-
ing sensors in monitoring local and regional scale slope instability? What are their
advantages and limitations? To what extent can they be integrated to address and
highlight the deformation at different scales?

4. Question: How and to what extent can landslide monitoring be improved using
auxiliaries like artificial corner reflectors? What is the better strategy for designing
the reflectors and selection in imagery?
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1.2 Outline and Structure of Thesis

Chapter 1 gives a short introduction to this thesis, including the research objectives,
research perspectives, and research questions; the outline and structure of this thesis are
also introduced.

Chapter 2 presents a brief overview of the landslide hazards, including landslide types,
distributions, implications and measurements, as well as slow-moving landslide. This
chapter also explicates landslide remote sensing and various landslide remote sensing tech-
niques, including the fundamental principles of optical remote sensing utilizing the NCC
method, SAR imaging geometry, and InSAR processing flow. It also provides insight into
the various phase components and errors associated with InSAR. This chapter further
outlines the advanced MT-InSAR and Corner Reflector InSAR (CR-InSAR) approaches
employed in this thesis.

Chapter 3 provides the methodological contribution of this thesis in landslide remote
sensing using satellite imagery, including the challenges and motivations in landslide mon-
itoring, mapping and prediction. Our proposed methodologies and frameworks involve
analytically-based modeling to improve the interpretation of time series of remote sensing
observations, the identification strategy of small-scale CR-like objectives using a proba-
bility model, and a framework to model 4D post-failure instability dynamics integrating
spaceborne optical and SAR imagery.

In Chapter 4, cm-scale precursory displacement of a localized catastrophic failure in
Aniangzhai, Southwest China, is estimated using different MT-InSAR analyses. This
study indicates that the landslide was active long before the catastrophic failure in June
2020. Furthermore, this study demonstrates the potential of spaceborne optical and SAR
remote sensing data for a comprehensive analysis of an ancient landslide that has been
destabilized and reactivated as a result of a series of complex cascading events. This
chapter has been published in Landslides (Xia et al., 2022b).

In Chapter 5, the performance of a newly designed small DCR for monitoring post-failure
creep has been investigated and evaluated. Both high-resolution TerraSAR-X (TSX) data
and medium-resolution Sentinel-1 (S1) SAR images are exploited and compared. At the
same time, we propose a strategy aiming to identify new DCRs in various SAR images
through a probability test by taking different properties and power variations present in
pixels resulting from their installation. This strategy can be adopted as a general selection
approach for detecting artificial CRs and similar CR-like objects. This chapter has been
published in IEEE Geoscience and Remote Sensing Letters (Xia et al., 2022a).

Chapter 6 introduces a proposed framework integrating satellite optical and SAR re-
mote sensing techniques. Feature extraction methods using independent component anal-
ysis (ICA) and a mathematical relaxation model can help to find common deformation
components and to assess the complete 4D spatiotemporal patterns of post-failure slope
evolution. With our proposed methodology, the constraints of individual remote sensing
sensors are mitigated and overcome in monitoring complicated landslide dynamics. This
chapter has been published in ISPRS Journal of Photogrammetry and Remote Sensing
(Xia et al., 2023).

In the end, Chapter 7 serves as the conclusion of this dissertation and provides insight
into potential future research directions about satellite-based landslide remote sensing
based on this thesis.
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1.2 Outline and Structure of Thesis

The presented thesis is a cumulative dissertation, wherein Chapters 4–6 comprise in-
dividual research studies previously published in peer-reviewed scientific journals in their
original form, with adjustments made for formatting and referencing. It should be noted
that Chapters 4–6 are based on research studies that were led by the author of this thesis.
The references for these studies are compiled at the end of the thesis.
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2 Theoretical Background

2.1 Introduction

This chapter outlines the basics of landslide hazards, landslide remote sensing, spaceborne
optical and SAR imagery.

• Section 2.2 introduces the landslide hazard, landslide glossary, various landslide
types, landslide distribution worldwide, landslide implication, the conventional mea-
surement to mitigate the landslide hazard, and slow-moving landslide.

• Section 2.3 explains the landslide remote sensing, application categories, and vari-
ous remote sensing techniques for landslide monitoring, especially the airborne and
spaceborne remote sensing techniques for landslide monitoring and mapping. Some
applications are introduced as well, such as detecting and mapping landslides for
early warning or deriving landslide inventories.

• Section 2.4 begins with an overview of the evolution of satellite-based optical remote
sensing techniques, followed by a detailed explanation of the POT method, which
utilizes NCC algorithms to detect and measure land surface deformation accurately.

• Section 2.5 introduces spaceborne SAR imaging, including different acquisition
modes, potential image distortions, and a summary of the various SAR satellite
missions historically and currently in operation. Then the workflow of conventional
differential InSAR (DInSAR) is explained to measure surface displacement. The po-
tential errors, sensitivity of InSAR measurements, and advanced MT-InSAR tech-
niques are also explained. Lastly, numerous applications of SAR remote sensing
techniques in landslide monitoring are introduced.

2.2 Glance at Landslide Hazards

2.2.1 Overview

As concentrations of greenhouse gases continue to rise, the effects of climate change,
specifically global warming, will intensify and increase the frequency and magnitude of
geological hazards, such as landslide hazards (Gariano and Guzzetti, 2016). Furthermore,
as the world’s population grows, non-renewable resources are depleted, the environment
experiences degradation, and human expansion encroaches on more habitats, people will
be increasingly exposed to geological hazards (Petley, 2012).

Among these geological hazards, landslides have a profound impact on various regions
and populations as they are one of the most common and most destructive hazards. The
term “landslide” is commonly used in geological hazard investigations to describe the
downward and outward movement of materials, such as rock, earth, artificial fill, or a
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Figure 2.1: Terminology of landslide glossary (Source: adapted by Cooper et al. (2007)).

combination of these (Guzzetti et al., 2012). Various factors can trigger landslides, in-
cluding heavy precipitation, earthquakes, snowmelt, volcanic eruptions, disturbances in
vegetation cover (e.g., wildfires and logging), terrain damage (e.g., reservoir storage and
road construction), ground shaking, and human activities such as deforestation and con-
struction. Figure 2.1 demonstrates the terminology often used for landslides.

2.2.2 Landslide Types

Landslides encompass a range of complexities and diverse types, spanning from creeping
movements that progress at a rate of millimeters per year, to catastrophic failures that
occur at speeds of several meters per second (Lacroix et al., 2020). Consequently, there
are different ways to classify landslide hazards. As revealed by analysis conducted by
Reichenbach et al. (2018) of approximately 400 landslide-related articles, landslides could
be grouped into three general classes, as demonstrated in Figure 2.2.

2.2.2.1 Type of Movement

Based on landslide movements, landslides could be categorized into the following basic
types (Highland et al., 2008), which are revealed in Figure 2.3 and Figure 2.4:

• Fall: The falling process is initiated by separating soil, rock, or both, from a steep
slope where minimal or no shear displacement occurs. Subsequently, the loose ma-
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Figure 2.2: The diagram features three rings, each representing different types of landslides, which
comes from statistical analysis of 383 landslide-related articles (Source: Reichenbach
et al. (2018)). The left ring depicts eight classes of landslide movements, while the
center ring displays four classes of landslide materials. The right ring shows two
classes of estimated landslide depth, as described in the studied literature database.
In all three rings, NC denotes non-classified.

terial descends primarily by either falling, bouncing, or rolling. A typical example
is rockfall.

• Topple: The process of a topple occurs when a mass rotates out of a slope around
an axis or point below the center of gravity of the displaced mass. The force driving
the topple is sometimes the weight of the material uphill from the displaced mass,
while other times, it is due to water or ice present in the cracks of the mass. Topples
can involve either rock debris or earth materials. They can also be complex and
composite.

• Slide: The process of a slide refers to the downward movement of soil or mass
on surfaces of rupture or relatively thin zones of intense shear strain. The initial
movement does not occur uniformly over the entire rupture surface. Instead, it
starts in a localized area of failure and then expands to displace a larger volume of
material. Typical examples are rotational landslide (the mass rotates parallel to the
slope contour axis) and translational landslide (the mass moves outward/downward
on a flat surface with minimal rotation or backward tilt).

• Spread: The cohesive soil or rock mass spread process can occur due to its exten-
sion and subsequent subsidence into the softer underlying material. The flow and
extrusion of the softer material may cause this. Liquefaction can also contribute
to the spread. Typical examples are block spreads, liquefaction spreads, or lateral
spreads.

• Flow: The flow process refers to a continuous movement throughout space. It is
characterized by short-lived shear surfaces, which are closely spaced and typically
not preserved over time. The component velocities within the displacing mass of a
flow are similar to those observed in a viscous liquid. The transition from sliding
to flowing is often gradual and depends on water content, mobility, and movement
evolution. Examples are debris flows, lahars (volcanic debris flows), and earth flows.
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Figure 2.3: Landslide types according to different movements (Source: adapted by Hungr et al.
(2014) and Cruden and Varnes (1996)).

Figure 2.4: Examples of landslide types revealed by photos according to different movements,
i.e., (a) fall, (b) topple, (c) slide, (d) spread, and (e) flow (Source: adapted by Regmi
et al. (2014), Hungr et al. (2014), and Michoud et al. (2012)).

2.2.2.2 Material Classification

Based on landslide materials, landslides could be categorized into the following classes
(Causes, 2001):

• Rock: Rock refers to any type of consolidated geological material, such as solid
bedrock or large boulders.
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• Earth: Earth refers to any unconsolidated soil or regolith. This can include sand,
silt, clay, and gravel.

• Debris: Debris refers to a mixture of rock and earth materials and any other ma-
terials present in the landslide, such as vegetation, buildings, or other debris.

Regarding landslide classification, the distinction between rock, earth, and debris is im-
portant because it can help determine the cause of the landslide, the potential impact
on infrastructure and communities, and the appropriate mitigation strategies. For ex-
ample, rock falls may be more common in mountainous regions with steep slopes, while
earth slides may be more common in areas with softer, more easily erodible soils. Debris
flows, on the other hand, are typically associated with heavy rainfall or other forms of in-
tense precipitation, and can be particularly destructive due to the high volume of material
involved.

2.2.2.3 Landslide Depth

Based on landslide depth, landslides could be categorized into the following classes (Duman
et al., 2005):

• Shallow: A shallow landslide (depth<5m) is a sort of landslide that appears in the
upper layer of the soil or weathered rock. It is generally triggered by rainfall or
other external factors and is typically characterized by a small movement area. The
slope failure occurs at a depth less than or equal to the soil layer’s thickness or the
weathered rock’s depth.

• Deep-seated: A deep-seated landslide (depth>5m) involves a much larger volume
of soil or rock and extends to much greater depths. It typically occurs in areas with
complex geology, such as distinct rock layers or fault zones. Deep-seated landslides
are generally triggered by internal factors such as changes in groundwater levels or
the weathering and erosion of the underlying rock. These landslides can be slow-
moving, persistent, and may continue for years or even decades.

2.2.3 Landslide Distribution

The occurrence of landslides exhibits a distinct spatial variability (Figure 2.5), with re-
gions of heightened incidence observed in Asia, Turkey, Iran, the European Alps, Central
America, the Caribbean islands, South America, and East Africa (Froude and Petley,
2018). Notably, the highest number of landslides are concentrated in Asia, accounting
for 75% of the actual events. Remarkably, the Himalayan Arc, states across southeastern
China, India, and neighboring countries such as Laos, Bangladesh, Myanmar, and south-
wards on islands comprising Indonesia and the Philippines, report substantial landslides
(Froude and Petley, 2018).

2.2.4 Landslide Implications and Measurements

Landslides have severe implications for human life, property, and infrastructure. In areas
where landslides are prevalent, there are increased risks of injuries, fatalities, and property
loss. In 1963, a striking illustration of the devastating force of landslides was witnessed
as an enormous mass, comprising 270 million cubic meters, plunged into the newly built
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Figure 2.5: The count and distribution of fatal landslides that were not triggered by seismic
activity between 2004 and 2016, categorized by different countries (Source: adapted
by Froude and Petley (2018)).

Vajont Reservoir in northern Italy. This incident produced an immense wave that breached
the dam, causing the loss of approximately 2,000 lives (Genevois and Ghirotti, 2005). As
another example, the recent landslide that occurred in the province of Guizhou, China,
resulted in the death of 14 people and the relocation of over 1000 residents (Chen et al.,
2022). Numerous landslide disasters, amounting to thousands, transpire each year, leading
to hundreds of fatalities and direct economic losses in the billions of RMB within China
(NBSC, 2018). Similarly, in the United States, landslides cause billions of dollars in
damages yearly, with California reporting the highest number of landslides in the country
(Causes, 2001).

The impacts of landslides are not limited to human life and property. They also have
environmental implications, such as soil erosion, degradation of ecosystems, and alteration
of natural drainage systems (Montanarella, 2007). Landslides can lead to the loss of veg-
etation cover and soil nutrients, affecting the productivity of land and causing a decline
in agricultural yields (Zuazo and Pleguezuelo, 2009; Smyth and Royle, 2000). Moreover,
landslides can lead to the contamination of water resources, as debris and sediments can
clog rivers, streams, and other water bodies, disrupting aquatic ecosystems, and contam-
inating drinking water (Hancock, 2002).

To mitigate the impacts of landslides, it is essential to understand the underlying causes
and risk factors associated with landslides. Researchers have identified several factors that
contribute to the occurrence of landslides, such as the geological and physical characteris-
tics of slopes, land-use changes, and climatic conditions. Therefore, managing landslides
involves a combination of preventive and response measures. Preventive measures include
land-use planning, slope stabilization, and the implementation of EWSs to alert residents
of imminent landslides (Lacasse et al., 2009). Response measures include search and rescue
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operations, emergency shelter, and providing relief supplies and medical assistance (Twigg
and Mosel, 2017).

In addition, technological advancements have been instrumental in predicting and as-
sessing the risks of landslides. The technical means must meet specific requirements for
effective EWSs and monitoring of landslide disasters. These include adequate regional cov-
erage and temporal sampling capacity, precise measuring accuracy related to the speed of
the monitored processes, and cost-effectiveness (Xia et al., 2022b). However, implement-
ing ground-based methods, like continuous GNSS, for landslide monitoring in mountainous
and remote areas can sometimes be challenging (Akbarimehr et al., 2013). Instead, space-
borne remote sensing holds great promise for driving innovation in the detection, moni-
toring, and assessment of landslide hazards on a large scale. Integrating these techniques
into a multidisciplinary DRR framework can be immensely valuable.

2.2.5 Slow-moving Landslide

The term “slow-moving landslide” describes various landslides, at velocities ranging from
several mm/year to 100 m/year (from very slow to intermediate rates), including those
that flow, creep, topple, and slide (Lacroix et al., 2020; Hungr et al., 2014). Slow-moving
landslides occur worldwide, often in areas with weak mechanical properties, clay and rock
formations, and high seasonal precipitation. These landslides exhibit non-uniform spatial
and temporal movement and are often deep-seated with complex subsurface hydrological
systems (Krzeminska et al., 2013; Simoni et al., 2013; Coe et al., 2009).

The roles of slow-moving landslides are listed as follows:

• Slow-moving landslides play an essential role in controlling the evolution of mountain
landscapes, causing significant erosion (Simoni et al., 2013; Mackey and Roering,
2011).

• While these slow-moving landslides rarely claim lives (Mansour et al., 2011), they
can cause significant damage to the lives of local communities by damaging human
infrastructure and agriculture, as shown in Figure 2.6. Therefore, local communities
must adapt to coexist with landslides or relocate to new areas.

• Sometimes slow-moving landslides can result in catastrophic failure, accelerating
rapidly, and transforming into fast-moving landslides, with rocks, soil, and liquids
moving at speeds approaching tens of meters per second, causing numerous casualties
and property losses.

Although it is difficult to monitor catastrophic landslides in real-time, non-catastrophic
slow-moving landslides, provide an excellent opportunity to study landslide processes,
which can move downhill for several months or even longer for decades (Palmer, 2017).
The continuous and long-term movement of slow-moving landslides provides a unique
opportunity to study the process and mechanism of landslides. However, constraining the
mechanisms that control slope failure remains challenging.

Lacroix et al. (2020) believes that utilizing remote sensing data for retrospective analysis
of numerous case studies can provide a more reasonable understanding of the physical
aspects of landslide damage processes. Moreover, creeping ground movement is often
identified as a precursor deformation signal before catastrophic landslides (Carlà et al.,
2019; Handwerger et al., 2019; Federico et al., 2012; Hendron Jr and Patton, 1985).
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Figure 2.6: (a) Example for one of the largest slow-moving landslides in China, i.e., the Huang-
tupo landslide, with annual displacement rates of around 10–20 mm/year. (b) Ex-
amples of the potential damages for the slow-moving Huangtupo landslides. Note
that north arrows approximately indicate the downhill direction. (Source: adapted
by Wang et al. (2018) and Tomás et al. (2014).)

2.3 Landslide Remote Sensing

2.3.1 Overview

Landslide remote sensing refers to detecting, monitoring and assessing landslides and
their associated environmental factors using remote sensing techniques (Mantovani et al.,
1996), such as spaceborne and airborne remote sensing. Through remote sensing, large-
scale, high-resolution surface information and various datasets, such as topography and
landforms, can be obtained, providing essential support for landslide research and response.
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Remote sensing techniques offer a robust approach for investigating landslides, with
applications typically classified into three categories (Scaioni et al., 2014). While the dis-
tinctions between them may be unclear at times, their boundaries can often be ambiguous:

• The first category involves techniques for identifying landslides, such as mapping
past or present slope failures.

• The second category involves techniques for landslide monitoring, encompassing
ground deformation measurements and analyzing changes over time, such as varia-
tions in land use or vegetation cover.

• The third category encompasses methods for analyzing and predicting landslide haz-
ards.

There are various techniques to identify landslides, including ground-based and remote
sensing techniques, e.g., leveling, GNSS, photogrammetry, three-dimensional (3D) laser
scanners, radar, and so on. Various sensors can be installed on spaceborne or airborne
platforms, such as satellites, drones, helicopters, or stationary installations before the
landslide. Moreover, landslide remote sensing have significantly advanced in recent years,
enabling the estimation of surface displacements.

On the other hand, monitoring landslide movement helps people better understand
evolution process of unstable slopes, the evolution of their morphological features over
time, and how external forces such as precipitation and groundwater level changes control
landslide movement (Hu et al., 2019), which play a crucial role in landslide hazards pre-
vention and control. Moreover, precisely measuring a landslide’s geometry and mechanical
characteristics relies on accurately determining the surface displacement field parameter
(Delacourt et al., 2007). Displacement time series of landslides can also provide vital
information for early landslide warning (Intrieri et al., 2018).

Scholars must select the appropriate combination of techniques and data to achieve
the study’s objectives and account for the landslide’s distinctive characteristics. These
techniques vary in resolution, accuracy, coverage surface, and revisit times. Unmanned
aerial vehicles (UAVs), cameras, and light detection and ranging (LIDAR) are examples
of adaptable platforms and sensors that provide highly accurate 3D data with a high
resolution, suitable for accurate scientific and operational applications (Delacourt et al.,
2007). However, they are unsuitable for large-scale monitoring and mapping in mountain-
ous areas. In mountainous areas, scientific investigations typically employ radar satellite
data processed via differential interferometry or advanced interferometry methods due
to application constraints (Wasowski and Bovenga, 2014). Alternatively, optical satellite
and aerial imagery can provide high-resolution data with detailed features for scientific
research, although it is susceptible to atmospheric conditions. In general, landslide remote
sensing methodologies have considerably improved the ability to quantify surface displace-
ment fields of landslides, which has enhanced our comprehension of their geometry and
mechanical properties.

2.3.2 Airborne Remote Sensing

Airborne imagery captured by cameras can be employed for scientific and hazard as-
sessment of landslides, although the quality of the image archive depends on the specific
landslide cases (Lissak et al., 2020). Furthermore, processing such images requires suitable
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atmospheric and lighting conditions. Data acquired under poor conditions can only be
used for qualitative analysis if a digital elevation model (DEM) is available. In contrast,
photogrammetry laser scanning is a highly versatile technique that allows for observing
landslide velocities over varying ranges (Kenner et al., 2014). However, due to the limited
viewing angle, mosaicking of data is necessary to cover a significant surface area (Kenner
et al., 2014). In addition, global interpretation of mass movement data is difficult due
to the high spatial resolution of the technique, which necessitates further development in
data processing (Delacourt et al., 2007).
Aerial imagery offers a highly advantageous data archive with a resolution of close to

one meter (Fritz et al., 2013; Delacourt et al., 2007). For instance, the French territory has
an aerial photograph archive from successive surveys dating back to 1937 under the re-
sponsibility of the French National Institute of Geographic and Forest Information (IGN)
(Delacourt et al., 2007). In such cases, even with images characterized by low radiometric
dynamics, georeferenced DEMs can be created with a resolution of one meter and relative
accuracy better than one meter. The corresponding orthophoto is also constructed with
a resolution of one meter, enabling the estimation of a 3D displacement field with accu-
racy at the meter level, even in the worst-case scenario. Besides, numerous prior studies
have utilized POT techniques to obtain the horizontal ground displacement of landslides
(Lucieer et al., 2014; Delacourt et al., 2004; Kääb, 2002). However, the main limitation of
this method is its low temporal resolution, with specialized missions being an expensive
solution to improve it.

2.3.3 Spaceborne Remote Sensing

Spaceborne optical remote sensing has emerged as a valuable tool for landslide monitor-
ing, offering a means of capturing detailed imagery and data regularly and over large
areas. Studies have investigated spaceborne optical remote sensing for landslide moni-
toring, demonstrating its effectiveness in detecting and mapping landslide occurrences,
characterizing the features of landslide events, and monitoring the evolution of landslides
over time (Casagli et al., 2017; Frodella et al., 2017). Such imagery can detect changes in
land surface features, such as slope, vegetation cover, and topography, that may indicate
the occurrence of landslides. In addition, scholars have used spaceborne optical remote
sensing to assess the susceptibility of different regions to landslides based on factors such as
terrain characteristics, geology, and rainfall patterns (Shahabi and Hashim, 2015; Pradhan,
2010). This approach can provide valuable information for land-use planning and hazard
mitigation efforts, such as identifying areas that require slope stabilization measures or
evacuation plans.
Over the past few decades, scholars have used spaceborne optical imagery to map land-

slides in remote and inaccessible areas, where traditional ground-based monitoring meth-
ods are challenging to implement (Ji et al., 2020; Amatya et al., 2019; Casagli et al., 2017;
Lissak et al., 2020; Casagli et al., 2017; Frodella et al., 2017; Scaioni et al., 2014). Due
to the simplicity and reliability, an increasing number of studies have adopted the POT
techniques to monitor landslide disasters, exploiting the spaceborne optical imagery. For
instance, horizontal deformation can be obtained using the NCC to evaluate the kinematic
properties of landslides (Provost et al., 2022; Dille et al., 2021; Xiong et al., 2020; Stumpf
et al., 2017; Debella-Gilo and Kääb, 2011; Delacourt et al., 2009; Leprince et al., 2008;
Delacourt et al., 2004; Kääb, 2002). Moreover, automated and semi-automated approaches
utilizing time series of multi-sensor spaceborne optical images have already been developed

16



2.4 Spaceborne Optical Imagery

to create multi-temporal inventories by identifying landslide areas based on variation in
vegetation cover (Yang et al., 2019; Behling et al., 2016). Besides, the applicability of
the NCC method has been extensively examined by researchers such as Debella-Gilo and
Kääb (2011) and Delacourt et al. (2004). Their studies have assessed the method’s sensi-
tivities to various factors, including inherent image noise, errors induced by rotation and
shear between image pairs, and inaccuracies in image orthorectification. Despite these
challenges, optical imagery can still effectively monitor substantial movements.

On the other hand, SAR and InSAR techniques, a microwave remote sensing technique
that offers another opportunity to monitor subtle deformations at a large scale, have played
an increasingly important role in landslide identification. InSAR can provide a unique
perspective for landslide research by its ability to acquire spatial and temporal surface
deformation with high accuracy and derive historical deformation using archived data (Liu
et al., 2020). In addition, the interpretation and modeling of landslide mechanisms can
provide insight into the landslide damage process and essential references for preventing
and controlling similar landslide cases (Hu et al., 2020; Handwerger et al., 2019).

Over the past few decades, InSAR techniques have been widely applied to support the
systematic identifying and monitoring of unstable slopes over extensive and regional-scale
regions, as well as the exploitation of early warning of landslide hazards (Festa et al., 2022;
Garg et al., 2022; Hu et al., 2022; Zhou et al., 2022b; Tomás et al., 2019; Motagh et al.,
2017, 2013; Bianchini et al., 2013; Herrera et al., 2013; Colesanti and Wasowski, 2006).
The C-band S1 satellite has provided a substantial increase in the number of available
images since its launch in 2014, which has led to a growing interest among academics in
utilizing InSAR for monitoring slope instability dynamics (Festa et al., 2022; Dai et al.,
2020; Dini et al., 2020; Tomás et al., 2019; Intrieri et al., 2018; Dai et al., 2016; Barra
et al., 2016; Feng et al., 2015). Meanwhile, the development of the high-resolution X-band
TSX mission and COSMO-Skymed (CSK) mission have made InSAR techniques even
more reliable and promising in low coherence areas (Xia et al., 2022a; Di Martire et al.,
2018; Singleton et al., 2014; Bovenga et al., 2014; Motagh et al., 2013). Moreover, L-band
SAR sensors contain better penetration capability and reveal improved performance in
monitoring the landslides over densely vegetated regions (Schlögel et al., 2015; Zhao et al.,
2012). Besides, advanced MT-InSAR methods offer new opportunities to better evaluate
subtle changes in landslide creep rates with centimeter to millimeter level precision in
response to external triggering factors (Zhou et al., 2022a; Hu et al., 2020; Teshebaeva
et al., 2015; Tomás et al., 2016, 2014; Motagh et al., 2013).

2.4 Spaceborne Optical Imagery

2.4.1 Overview

Satellite-based optical remote sensing has significantly developed since the first Earth
observation satellite, Landsat-1, was launched in 1972 (Maul and Gordon, 1975). Initially,
remote sensing was limited to data collection in visible and near-infrared bands. However,
technological advancements in sensor design and calibration have led to the development
of sensors that can collect data in multiple spectral bands, including the electromagnetic
spectrum’s thermal infrared and microwave.

The development of satellite optical remote sensing techniques has resulted in improved
spatial and spectral resolution and increased temporal coverage of the available data. The
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launch of high-resolution optical sensors such as QuickBird, WorldView, Planetscope and
Pleiades has enabled the capture of fine-scale details on the Earth’s surface. In addition,
the development of multi-spectral and hyper-spectral sensors has enabled the identification
of materials and features based on spectral signatures.

With the development of big data and cloud computing, spaceborne optical remote
sensing data can now be processed and analyzed more efficiently. This has led to a wide
range of applications, including determining land use and mapping land cover, crop moni-
toring, pollution detection, disaster management, and urban planning (Zhou et al., 2022c,
2021; Mahdianpari et al., 2018; Joshi et al., 2016; Inglada et al., 2015; Hall et al., 2002).
The evolution of spaceborne optical remote sensing techniques has generally renewed our
understanding of the Earth’s surface and its processes.

2.4.2 Pixel Offset Tracking (POT)

POT technique utilizing the NCC algorithm has gained widespread use in the field of
optical remote sensing for monitoring horizontal displacement due to its simplicity and
reliability (Paul et al., 2015; Debella-Gilo and Kääb, 2011; Delacourt et al., 2004). In
addition, correlation methods are popular for determining offsets because they can achieve
sub-pixel accuracy, particularly when the displacement field can be locally estimated by
a smoothly varying translation spanning multiple pixels (Hu et al., 2014; Yoo and Han,
2009; Michel et al., 1999). The NCC algorithm is customized to calculate both the line
and column offsets, considering any disparities in brightness and contrast between two
images through its normalization component (Yoo and Han, 2009).
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Search window
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Figure 2.7: Schematic of pixel offset tracking techniques using the normalized cross-correlation
algorithms showing the investigated pixel for the reference and search images (Source:
adapted by Debella-Gilo and Kääb (2011)). The corresponding coordinate system is
pixel coordinate.
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For NCC processing, the spaceborne optical images are acquired before and after the
event, i.e., the reference and search images, as revealed in Figure 2.7. In order to find
the reference template f(x,y) within the search image, the maximum NCC coefficient ρ is
searched between the reference template and all possible values within the search window
as follows:

ρ(x, y) =
Σx,y(f(x, y)− f)(t(x− u, y − v)− t)√

Σx,y(f(x, y)− f)2Σx,y(t(x− u, y − v)− t)2
(2.1)

where variables u and v indicate the offsets in the x and y directions, respectively. The
intensity values of a subset area from the reference image are denoted by f(x,y) with the
corresponding area of the same size in the search image represented by t(x-u, y-v). The
mean values of intensity for the reference template and search window are represented by
f and t, respectively.

The horizontal displacement between the center pixel in the reference image and the
highest correlated matching point in the search image is determined by the Euclidean
distance and given by the magnitude d(x,y). Therefore, we can express the standard
deviation σ of POT as the error in estimating pixel offset, measured in pixel units. This
can be demonstrated through the following equation (Hu et al., 2014):

σ =
1√
2

√
3

2N

√
1− ρ2

πρ
(2.2)

where N is the number of samples in the estimation window, ρ is the maximum NCC
coefficient.
The selection of parameters for NCC window size and sampling frequency requires

careful consideration concerning the scale of deformation features and pixel size of optical
images:

• The search template must be sufficient to maximize the signal-to-noise ratio (SNR)
while minimizing the spatial velocity gradient, while the search window should be
large enough to include the farthest moving distance while minimizing processing
time (Singleton et al., 2014).

• Increasing the number of samples in the reference template and achieving a high
cross-correlation value close to one can improve the accuracy of NCC, with precision
in the offset fields approaching one-tenth of a pixel size (Hu et al., 2013; Hanssen,
2005).

• Limitations in the accuracy of NCC have been investigated, with sensitivity to noise
in images and displacement greater than the mean registration error being significant
factors (De Blasio, 2011; Delacourt et al., 2004).

• It is essential to maintain surface properties of the reference template unchanged,
except for positional shifts, to ensure accurate cross-correlation and minimize po-
tential limitations that could result in spurious offset measurements and reduced
precision (Singleton et al., 2014).

Finally, it is worth noting that the POT method can only determine the horizontal
deformation, specifically the displacements in the east-west (E-W) and north-south (N-S)
directions, while exploiting spaceborne optical imagery is unable to produce information
regarding vertical displacements.
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2.5 Spaceborne Radar Imagery

2.5.1 Synthetic Aperture Radar (SAR) Basic

2.5.1.1 SAR Geometry

SAR is an imaging system that utilizes electromagnetic waves in the microwave range.
SAR sensor functions by emitting microwave signals from its antenna towards the Earth’s
surface at an off-nadir angle called the slant range. These signals interact with the surface,
and a proportion of them are reflected towards the satellite, where the onboard sensor
records them. As the satellite progresses along its flight path, it continues illuminating
and capturing new areas of the Earth’s surface, ultimately creating a comprehensive SAR
image (Figure 2.8). As illustrated in the schematic, the SAR system utilizes a side-looking
configuration to prevent any ambiguity from echoes that may return from the opposite
side of the satellite’s flight path. The timing of the echoes that return from the surface is
directly related to the range distance between the sensor and the target.

Flight direction

Azimuth

Ground range

Slant range
Incidence angle

H
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gh
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Ground footprint

Swath width

Swath

Nadir track

Figure 2.8: Schematic of spaceborne SAR imagery.

The SAR sensor can measure two critical parameters, i.e., the amplitude and phase
difference of the received echoes. The amplitude value indicates the degree of interaction
between the signal and the illuminated surface. A higher amplitude value denotes a more
substantial reflection, while a lower value suggests a weaker reflection. The amplitude of
the target in SAR images is determined by the image resolution, target size and wavelength
of the SAR sensor. On the other hand, the phase difference can be used to determine the
distance between the sensor and the ground pixel, enabling accurate estimations of the
surface’s topography or displacement (Bürgmann et al., 2000). Generally, when using nat-
ural terrain as a target, such as grass or forest trees, these targets tend to be smaller than
the resolution cell. As a result, the echoes received from one pixel can be a combination
of several individual echoes, and the phase values can vary randomly. Additionally, the
amplitude may fluctuate significantly, resulting in speckle error (Singleton et al., 2014),
which can be addressed through multi-looking processing.
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2.5.1.2 SAR Acquisition Mode

Satellite SAR sensors employ different acquisition modes, as illustrated in Figure 2.9, i.e.,
the StripMap mode, the Spotlight mode, and the Interferometric Wide Swath (IW) or
Terrain Observation with Progressive Scan (TOPS):

Flight direction

Azimuth

Ground range StripMap

Spotlight

Flight direction

Azimuth

Ground range
Interferometric Wide Swath

Swath width

Swath width

Figure 2.9: Different modes of spaceborne SAR missions for image acquisition.

• StripMap mode, utilized by various SAR satellites, including European Remote Sens-
ing Satellite (ERS), Environmental Satellite (Envisat), Advanced Land Observing
Satellite (ALOS), and TSX, is the standard mode. In this mode, the sensor’s point-
ing direction is fixed, and it records lines of the image as it moves along its orbit
(Lanari et al., 2001).

• Spotlight mode, is designed to obtain high-resolution SAR imaging at the expense
of spatial coverage. This mode steers the antenna in the azimuth direction, which
prolongs the illumination time for each image element, resulting in higher spatial
resolution. However, the scene size is smaller than that of the StripMap mode
(Eineder et al., 2009).

• IW or TOPS mode was developed. This mode is the default acquisition mode for
Sentinel-1 over land. An IW image is formed from three sub-swaths containing
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several bursts that overlap slightly. The image is not continuously acquired, but
after recording a burst from a sub-swath, the antenna is steered to measure a burst
from the next sub-swath. This method results in an image with extensive spatial
coverage and moderate resolution (Torres et al., 2012).

2.5.1.3 SAR Distortion

Example: mountainous region

Ground range

thgieh tibr
O
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LayoverForeshortening Shadow

1 2 43 5

Figure 2.10: Simplified example of distortions in satellite SAR imagery.

For all imagery modes, the side-looking configuration has implications for SAR dis-
tortions since SAR sensors are used to map objectives on the ground in the slant-range
coordinate, which can result in three different types of distortions in the acquired SAR
image as revealed in Figure 2.10, i.e., foreshortening, layover and shadow effects (Rosen
et al., 2000):

• Foreshortening occurs when a slope is mapped in the slant range and appears shorter
than it would while the surface is flat.

• Layover effects occur on specific slopes where the location of pixels is inverted after
being mapped on the slant range.

• Shadow is a phenomenon that occurs when the SAR sensor does not illuminate an
object on the ground because other elements that are closer to the sensor are located
at a higher elevation and obstruct the radar signal from reaching the object.

2.5.1.4 SAR Mission

An overview of the important SAR satellite missions since the 1990s is demonstrated in
Figure 2.11, including their timeline, frequency band, and repeat cycle. In recent decades,
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Figure 2.11: Overview of the major spaceborne SAR missions, the duration at the end of each
mission (unit: days) indicates the repeat cycle of the satellites.

a wealth of SAR data has been available for the Earth’s surface analysis, proving extremely
valuable. Launching the ERS-1, ERS-2, and Envisat satellites by European Space Agency
(ESA) significantly improved InSAR techniques and time series analysis, enabling it to be
widely utilized (Berardino et al., 2002; Ferretti et al., 2001).

The start of the S1 mission in 2014 marked a significant milestone in the availability
of SAR data. It was the first mission designed explicitly for SAR imaging, making it
suitable for InSAR applications. It acquires medium-resolution data worldwide regularly,
providing a reliable source of SAR data for at least twenty years (Torres et al., 2012).
However, it has been challenging to apply InSAR to specific regions and objectives due to
the temporal sparsity and limited coverage of the SAR data provided by these satellites.
On the other hand, the launch of high-resolution sensors such as TSX and CSK has further
broadened the applications of InSAR, particularly in urban and infrastructure monitoring,
as well as in vegetate and semi-vegetated areas, due to their high spatial and temporal
resolutions, making them suitable for detailed displacement mapping (Cigna et al., 2014;
Berardino et al., 2002). However, their archive of data is sporadic in some areas.

2.5.2 Interferometric SAR (InSAR)

It is possible to generate an interferogram by subtracting the phases of two SAR images
obtained from slightly different spatial positions, as illustrated in Figure 2.12. This method
can be applied for two significant applications: topographic mapping, which has been
discussed in prior research (Rossi et al., 2012; Rufino et al., 1998; Zebker and Goldstein,
1986), as well as displacement monitoring (Amelung et al., 1999; Gabriel et al., 1989).
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Figure 2.12: Displacement of InSAR geometry in the plane normal to the flight. B⊥ and B∥
are the perpendicular and parallel baselines, respectively. θ and θi represent the look and
incidence angles, respectively. r is the distance between the SAR sensor and the Earth’s

surface. ∆d denotes the Earth surface deformation between the two times of image
acquisitions t0 and t1.

2.5.2.1 Workflow of InSAR Processing

The simplified workflow of DInSAR, illustrating the process from the original SAR images
to the final displacement map, is demonstrated in Figure 2.13. This workflow comprises
a series of essential steps, including coregistration, resampling, interferogram generation,
differential interferogram filtering, phase unwrapping and geocoding to obtain the dis-
placement map, which is elaborated in detail as follows:

1. In order to mitigate the impact of noise components, the interferogram is frequently
processed by exploiting a multi-looking process whereby neighboring pixels are spa-
tially averaged. This technique improves the SNR but at the cost of spatial resolution
(Hanssen, 2001).

2. Coregistration refers to the mathematical alignment of the slave image with the
master image using a transformation model based on a low-order polynomial. To
calculate the parameters for transformation, we need to estimate shifts at various
locations across the amplitude images using a least squares fit method. The coreg-
istration accuracy can be enhanced using an external DEM (Nitti et al., 2010), as
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Figure 2.13: Simplified workflow of differential InSAR.

demonstrated in Figure 2.14a. Resampling is applying the transformation model
to the slave image to align it with the master image, ensuring that corresponding
pixels in both images are matched. The aim is to guarantee the accuracy of the
interferogram generated from the aligned images.

3. After aligning the master and slave images, the interferogram is generated by multi-
plying the master image with the resampled slave image using a complex conjugate.
The estimated interferometric phase is a summation of coherent components, includ-
ing surface deformation, flat-Earth, topography, atmosphere, and noise as follows
(Rosen et al., 2000; Bürgmann et al., 2000; Bamler and Hartl, 1998):

∆ϕ = ∆ϕdef +∆ϕflat +∆ϕtopo +∆ϕatm +∆ϕnoise (2.3)

4. To achieve precise measurements of deformation in an interferogram, it is crucial
to eliminate the influences of other components. Among them, the flat-Earth and
topographic components are determined by the sensor’s geometry and the Earth’s
shape, which can be accurately computed and subtracted from the data, as revealed
in Figure 2.14c. The flat-Earth component’s computation relies on the sensor’s
relative geometry and the Earth model. An exact estimate of this component can
be obtained by leveraging the accurate orbital data and the ellipsoidal Earth model,
such as the widely-used World Geodetic System 1984 (WGS84) model (Bamler and
Hartl, 1998):

∆ϕflat = −4π

λ
B|| (2.4)

where λ represents the wavelength of SAR imaging, B|| represents the parallel base-
line. The flattened interferogram is derived after the removal of the flat-Earth com-
ponent. In addition, the interferometric phase is often filtered to minimize noise and
increase phase measurement accuracy (Goldstein and Werner, 1998).
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Figure 2.14: Examples of intermediate results of InSAR processing, i.e., (a) DEM, (b) coherence
map, (c) flat-Earth component, (d) differential interferogram, (e) filtered differential
interferogram, and (f) filtered differential interferogram with intensity map.

5. The topographic component in an interferogram arises due to the difference between
the actual Earth surface elevation and the ellipsoidal model exploited in the analysis.
To rectify this, an external DEM is utilized to estimate the topographic component,
which can then be effectively removed from the interferogram (Bamler and Hartl,
1998):

∆ϕtopo = −4π

λ

B⊥

r sin θ
∆h (2.5)

where B⊥ represents the perpendicular baseline of the interferogram, r represents
the distance between SAR sensor and Earth surface, sin θ represents the incidence
angle, and ∆h is the surface height from ellipsoid. The differential interferogram is
generated after the removal of the topographic component.

6. Although the flat-Earth and topographic components can be precisely estimated and
subtracted from interferograms, the atmospheric phase components differ. This is be-
cause several physical parameters of the ionosphere and troposphere layers influence
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the atmospheric phase delay. Obtaining accurate information on these parameters
in space and time is intricate. As a result, estimating the atmospheric phase can
be a complex process (Hanssen, 2001). The tropospheric component can be either
neglected or estimated through the interferometric phase or external atmospheric
information.

7. After eliminating the components above from the interferogram and discarding the
remaining noise, the observed phase change is typically attributed to surface defor-
mation as follows:

∆ϕdef = −4π

λ
∆d (2.6)

where ∆d represents the surface deformation acquired between the two SAR images.
Due to the periodicity of the interferometric phase, only a modulo 2π of the phase
values can be obtained. Thus, an unwrapping process, as described by Goldstein
and Werner (1998), is required to solve the phase ambiguity in the wrapped phase
and recover the integer phase cycle from obtaining the absolute phase value.

8. Eventually, the unwrapped interferogram can be geocoded from SAR geometry to
WGS84, and the displacement map can be generated.

2.5.2.2 Coherence and Decorrelation

The degree of similarity between the radar echoes of master and slave images in InSAR
processing is typically assessed as the coherence:

γ =
|E(s1s

∗
2)|√

E(s1s∗1)E(s2s∗2)
(2.7)

where E denotes the mathematical expectation, and symbol ∗ represents the complex
conjugate.

In practice, estimating the mathematical expectations by repeated measurements is
impossible. Therefore, coherence is usually estimated using the values within a window
around a pixel:
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To estimate the coherence, removing the flat-Earth and topographic components is
often necessary. This is because coherence estimation assumes that the pixels within the
estimation window are statistically stationary (Zebker and Chen, 2005). In order to meet
this assumption, all pixels within the coherence window must exhibit the exact scattering
mechanisms.

In InSAR processing, decorrelation is a primary source of the noise (Figure 2.15). When
the radar echoes interact with the elements within a resolution cell similarly for both
master and slave images, the phase is correlated. Two sources of interferometric phase
decorrelation assume that the radar system’s thermal noise is negligible. The first source
is temporal decorrelation, which occurs when there is a significant change in scattering
properties, such as coverage of snow and ice or dense vegetation. The second source is
spatial decorrelation, which results from the slightly different viewing geometries of the
master and slave images (Zebker et al., 1992).
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Figure 2.15: An example of decorrelation during InSAR processing. (a) The coherence map of
two TSX images has a temporal baseline of 11 days and a perpendicular baseline
of -5 meters. (b) The corresponding differential interferogram is derived using the
same SAR image pair.

2.5.2.3 Topographic and Orbital Errors

The remaining DEM and orbital errors also exist. Any inaccuracies in the DEM would
result in correlated errors in the interferogram with the perpendicular baseline. This is
because the topographic component of the interferogram is directly proportional to the
baseline, making it a sensitive indicator of any errors in the underlying DEM:

δϕtopo = −4π

λ

B⊥

r sin θ
δh (2.9)

where δϕtopo and δh represent the phase and topographic errors.

Generating DEM using SAR images can result in significant topographic errors due to
large perpendicular baselines. One approach to correcting this issue is to estimate the re-
maining DEM error through least squares adjustment by generating interferograms with
different perpendicular baselines, provided that multiple images are available. This cor-
rection method can help to ensure accurate interferograms (Fattahi and Amelung, 2013).
For example, S1, designed with a narrow orbital tube specifically for InSAR applications,
typically experiences less DEM error than other sensors when generating DEM using SAR
images (Salvi et al., 2012). However, inaccuracies in the satellite’s orbital estimation can
still result in errors when estimating the flat-Earth component. These errors can present
as a linear trend across the interferogram and can be corrected by fitting a linear ramp
to the phase change across the interferogram. Historical SAR missions such as ERS and
Envisat are particularly susceptible to such errors. In contrast, modern satellites like TSX
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and CSK have higher orbital accuracy and usually produce precise estimations of the
flat-Earth component (Fattahi and Amelung, 2014).

2.5.2.4 Atmospheric Artifacts

Atmospheric artifacts can also lead to inaccuracies in InSAR processing. Atmospheric
artifacts refer to phase delays in the ionospheric and tropospheric layers of the atmosphere.
The ionospheric phase shift is commonly caused by changes in the total electron content
(TEC) within the ionospheric layer of the atmosphere. The ionospheric phase change can
be estimated and mitigated by utilizing internal information within the original SAR data
(Gomba et al., 2015; Jung et al., 2012). The degree of delay is directly proportional to the
wavelength of the microwave signal and is particularly pronounced in high latitudes and
equatorial regions (Meyer, 2010). Thus, ionospheric artifacts are typically less significant
in mid-latitudes for shorter wavelengths, such as those in the C- and X-bands, and can
often be disregarded. The ionospheric phase change can be estimated and corrected by
utilizing internal information within the original SAR data, as mentioned in previous
studies (Gomba et al., 2015; Jung et al., 2012).

On the other hand, the occurrence of tropospheric delays in interferometry is mainly
due to three different types of variations in tropospheric parameters, i.e., The first type
arises from broad-scale lateral variations and increases with relative lateral distance. It is
corrected by removing a low-order phase ramp or estimated using global weather models
(Jolivet et al., 2011). The second type is caused by vertical variations of water vapor, re-
sulting in topography-dependent atmospheric delays, estimated empirically or using global
weather models (Jolivet et al., 2011). The third type is caused by the short-wavelength
turbulent troposphere, which is highly variable in space and time, making it challenging
to estimate (Bekaert et al., 2015). To reduce this type of tropospheric delay, atmospheric
information with the high spatial and temporal resolution is required, such as from densely
distributed GNSS networks.

2.5.2.5 Sensitivity of Line-of-sight (LOS) to Slope Motion

InSAR methods only acquire displacements along the LOS direction, while for slope mo-
tion, it is often assumed that the surface deformation is along the slope surface. Figure
2.16 demonstrate the relationship between the actual displacement rates Vslope and the
LOS displacement rates from ascending data VA and descending data VD, respectively
(Dai et al., 2022):

• If the terrain slope faces almost towards the south or the north, the measured LOS
displacements from ascending and descending SAR data tend to be nearly equal
(Figure 2.16a).

• If the terrain slope is oriented towards the east, the measured LOS displacement
obtained from the ascending data will generally be more significant than that from
the descending data (Figure 2.16b).

• If the terrain slope is oriented towards the west, the measured LOS displacement
obtained from the descending data will generally be more significant than that from
the ascending data (Figure 2.16c).
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Figure 2.16: Diagrams from the side view and the plan view illustrating the effects of variation
in aspect on the LOS projection component (Source: Dai et al. (2022)).

Figure 2.17 reveals the geometric relationship between an ascending LOS direction and
a specific slope aspect, and the LOS displacement can be expressed as (Cascini et al.,
2010):

u⃗ =

 u⃗E
u⃗N
u⃗Z

 =

 cosαs sin θ
sinαs sin θ
− cos θ

 (2.10)

where u⃗ refers to the unit vector of LOS displacement, αs and θ denote the angle between
satellite heading direction and incidence angle, and |u⃗| = 1.

Moreover, the real deformation along the slope could be expressed as (Cigna et al.,
2014):

r⃗ =

 r⃗E
r⃗N
r⃗Z

 =

 sinα cosφ
cosα cosφ
− sinφ

 (2.11)

where α and φ denote the slope aspect and slope angle, r⃗ refers to the unit vector of the
real displacement along the slope, and |r⃗| = 1.

The two unit vectors have the relationship as follows:

cosβ =
r⃗ · u⃗

|r⃗| · |u⃗|
= cosαs sin θ sinα cosφ+ sinαs sin θ cosα cosφ+ cos θ sinφ (2.12)
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Figure 2.17: Geometric relationship between an ascending LOS direction and a specific maximum
slope aspect (Source: adapted by Dai et al. (2022)).

where β refers to the angle between two unit vectors. Hence, the LOS and real displace-
ment can be derived as (Dai et al., 2022):

VLOS = Vslope × cosβ (2.13)

Finally, the sensitivity S of LOS to slope motions can be derived as (Dai et al., 2022):

S =
VLOS

Vslope
(2.14)

where S demonstrates how much a unit change in LOS displacement can be used to
measure the actual displacement.

2.5.3 Advanced Multi-temporal InSAR (MT-InSAR)

Conventional DInSAR is a robust technique for investigating significant displacements re-
sulting from sudden earthquakes. However, when the displacement is subtle or spans a
more extended period, DInSAR struggles to detect the signal due to phase decorrelation
and atmospheric disturbance, usually in the range of a few millimeters or centimeters.
Hence, the advanced MT-InSAR methods have been introduced to overcome such limita-
tions and extract the time series of displacements. Although these methods differ in theory
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and practice, they share the common objective of generating a time series displacement
from a series of SAR data using a few key steps. Firstly, an interferogram stack is derived,
followed by selecting coherent pixels and connecting their interferometric phases over time
to derive the displacement time series. MT-InSAR approaches are divided into two broad
categories, i.e., PSI and SBAS methods, each optimized for a specific type of scattering
mechanism in SAR imagery.

2.5.3.1 Scattering Mechanism
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Figure 2.18: Scattering mechanisms for (a) an ideal single scatterer element, (b) a persistent
scatterer element, and (c) a distributed scatterer. The corresponding temporal
phase variations of the scattered waves are simulated and visualized.

In SAR imaging, the phase of a pixel signifies the combined contribution of wavelets
from all scattering elements present within that pixel, as depicted in Figure 2.18. Due
to the unpredictable movements of these scattering elements, the phase changes across
multiple radar measurements. Ideally, a pixel would have a single scattering solid element,
such as an artificial corner reflector (CR), for InSAR to be perfectly implemented. This
results in minimal phase noise and guarantees the coherence of the pixel phase in any
combination of SAR images. Maintaining temporal phase correlation in interferograms
with long temporal and perpendicular baselines can be challenging, as a pixel may contain
multiple scattering elements. However, PSs can still preserve enough temporal phase
correlation in interferograms, even with long baselines, if one of the scattering elements
within the pixel dominates the other elements. PS points are typically found in urban
areas where buildings act as scattering solid elements. Multi-looking is not applied to
the interferograms during the analysis to detect PS points, as multi-looking introduces
more scatterers to a resolution cell (Hooper et al., 2012). Although PSs are valuable
in remote sensing applications, they are not commonly found in natural environments.
Instead, pixels typically consist of multiple scattering elements, known as DSs, whose
phase correlation decays rapidly due to random scatterer movements. As a result, DSs
can only maintain enough correlation in interferograms with short baselines. To enhance
the SNR of DS data, it is customary to employ multi-looking techniques (Parizzi and
Brcic, 2010).
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(a) (b)

Figure 2.19: An example of interferogram network in (a) persistent scatterer interferometry (PSI)
and (b) small baseline subsets (SBAS) approaches. The x and y axes illustrate the
temporal and spatial baselines.

2.5.3.2 Interferogram Stacking

The most straightforward technique of MT-InSAR is stacking, which assumes a linear
model for displacement and calculates the average displacement rate from a collection of
interferograms. To maintain the phase correlation of DSs, the interferograms are generated
using image pairs with short temporal and perpendicular baselines. Additionally, the
interferograms are multi-looked to improve the SNR. The interferometric phase of a specific
pixel in differential interferogram i can be expressed as (Hooper et al., 2004):

∆ϕi = ∆ϕi
def + δϕi

orb + δϕi
topo +∆ϕi

atm +∆ϕi
noise (2.15)

where δϕorb and δϕtopo represent the remaining errors in orbital data and topography. For
pixel in interferogram with m samples, the linear rate of displacement v̂ is:

v̂ =
1

m
Σm
i=1

∆ϕi

Bi
T

(2.16)

where Bi
T represents the temporal baseline of interferogram i (Wright et al., 2001).

The stacking approach is practical when the phase component of displacement displays
a linear trend over time while other phase components remain constant. As a result,
averaging eliminates random errors and maintains the linear displacement trend. However,
the estimated displacement rate may be biased if this assumption is not met. To improve
the reliability of the estimated displacement rate, it is recommended to mitigate errors
resulting from atmospheric phase delay, orbital inaccuracies, and any remaining DEM
prior to averaging the interferograms (Wang et al., 2009a).

2.5.3.3 Persistent Scatterer Interferometry (PSI)

During PSI processing, a collection of single-master interferograms is created, and the
pixels displaying the highest signal-to-ratio values are selected (Hooper et al., 2007, 2004).
These pixels are referred to as PSs, and they typically originate from rocks and manufac-
tured objects. PSs maintain a stable phase even in interferograms with large temporal and
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perpendicular baselines. Then, one of the SAR images is chosen as the reference, and all
other images are resampled to match the reference image, as illustrated in Figure 2.19a.
PSI first identifies PSs by leveraging amplitude dispersion, the ratio of standard deviation
to the average amplitude value for a specific pixel in a stack of interferograms as follows
(Hooper et al., 2007):

DA =
σA
µA

(2.17)

where D, σ, and µ represent the dispersion, standard deviation, and mean amplitude
value.

Each PS candidate’s temporal phase behavior is then analyzed to estimate its noise
level. There are two primary methods for estimating the noise level of a pixel. The first
method involves the double phase difference between neighboring PS candidates, which
removes spatially correlated atmospheric and orbital errors (Kampes, 2005; Ferretti et al.,
2001). This method is most effective in urban areas but relies on a predefined displacement
model, which may lead to high noises. The second method estimates the noise level in a
stack of interferograms without relying on a predefined displacement model (Hooper et al.,
2004). Contributions from deformation, atmosphere, and orbital errors are estimated by
spatial filtering, while DEM error is estimated by correlation with perpendicular baselines.
This approach provides a higher density of detected PSs in non-urban areas. After select-
ing the PS pixels, their phases are unwrapped and connected temporally to obtain the
displacement time series. Tropospheric artifacts and unwanted components are estimated
and removed by spatial and temporal filtering. Finally, the remaining DEM errors are
modeled and removed based on the correlation of unwrapped phases with perpendicular
baselines.

2.5.3.4 Small Baseline Subsets (SBAS)

SBAS method exploits a network of small temporal and spatial baselines as revealed in
Figure 2.19b, to minimize the decorrelation between image pairs (Anderssohn et al., 2009;
Lanari et al., 2007). The distributed scatterer DSs, defined as the pixel that shares sim-
ilar statistical behavior with its neighboring pixels, is considered. The pixels with high
coherence are usually selected with thresholding in a given percentage of interferograms
(Berardino et al., 2002). To improve the reliability of detecting DS pixels, SBAS inter-
ferograms are typically multi-looked to increase the SNR of phase values. However, this
process can result in a loss of resolution and blurring of coherent pixels within noisy sur-
roundings. To overcome this limitation, a statistical phase analysis can be employed to
identify coherent pixels at the original interferogram resolution (Hooper, 2008). Once the
reliable pixels have been found, their phases are either independently unwrapped in two
dimensions or jointly unwrapped with time acting as the third dimension of each interfer-
ogram (Hooper, 2008; Berardino et al., 2002). Finally, to resolve the displacement at each
date, the unwrapped displacement of interferograms in the network is inverted.
For instance, suppose ∆di is the displacement in the t-th interferogram between two

dates. In that case, the following linear system is created for each pixel, with m equations
for each interferogram and n unknowns for each SAR date:

Am,nXn,1 = Lm,1 (2.18)

where A is a matrix filled with 1 and -1 for the image pairs and 0 otherwise, L represents the
displacements of a pixel in all SBAS interferograms, X denotes the unknown displacement
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at each SAR data and is solved by least squares estimation by minimizing the Lp norm of
residuals:

X̂ = argmin ||L−AX||p (2.19)

The unknown displacement is solved by conventional least squares estimation (Amemiya,
1983):

X̂ = (ATA)−1ATL (2.20)

As the last stage of SBAS processing, after estimating the time series of displacement,
DEM error is estimated by considering its correlation with the perpendicular baseline and
atmospheric artifact is removed from the time series by spatial and temporal filtering.

2.5.4 Corner Reflector InSAR (CR-InSAR)

2.5.4.1 Overview

Artificial CR is manufactured equipment utilized as auxiliary tools in SAR and InSAR
analysis. Their primary function is to generate coherent echoes with stable amplitude
and phase information during radar acquisitions (Bovenga et al., 2014). By deploying
CRs as artificial coherent scatters, it is possible to increase the number of measurement
points in MT-InSAR analysis, particularly in areas such as vegetated, semi-vegetated, or
agricultural regions, where there is a risk of severe coherence loss between successive SAR
image acquisitions (Garthwaite, 2017; Bovenga et al., 2014; Shan et al., 2013; Fu et al.,
2010; Froese et al., 2008; Xia et al., 2004). Furthermore, this approach offers an alternative
solution for increasing the accuracy and reliability of SAR and InSAR measurements in
challenging environments, which are commonly used to calibrate and validate SAR sensors,
both in terms of radiometric and geometric measurements (Gisinger et al., 2020; Doerry,
2014; Marinkovic et al., 2007; Freeman, 1992; Gray et al., 1990).

2.5.4.2 Conventional Designs

CRs typically consist of two or three electrically conducting surfaces that can generate
strong radar echoes from regions with low effective radar cross-section (RCS). By reflecting
incoming electromagnetic waves multiple times, they can accurately backscatter the waves
in the same direction as they arrived, leading to solid echoes even from objects with small
dimensions.

Conventional trihedral corner reflectors (TCRs) with large dimensions, such as those
with an edge of 1 meter, are known for their steady and robust echoes (Figure 2.20a
and 2.20b). Therefore, these TCRs have been proposed as an effective instrument for
monitoring slope stability in vegetated mountainous areas, as they provide a reliable source
of coherent scatters that can be detected by SAR and InSAR systems (Bovenga et al.,
2017, 2014; Shan et al., 2013; Froese et al., 2008; Xia et al., 2004, 2002). The variation of
shape and size of metal plates would influence the RCS and signal-to-clutter ratio (SCR).
For instance, the triangular, squared, and pentagonal TCRs were designed and tested in
different studies (Crosetto et al., 2013; Qin et al., 2013; Xia et al., 2004). Figure 2.21
reveals examples of the intensity map of the conventional TCRs in high-resolution TSX
data. Those TCRs were settled to monitor the slope kinematics of the Shuping landslide
in the previous study by Xia et al. (2004), which are still valid nowadays.
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Figure 2.20: Examples of the conventional triangular TCRs and our experimental designs for
monitoring slope instability.

On the other hand, Dheenathayalan et al. (2017) conducted a study where they tested
significantly smaller TCRs designed especially for high-resolution data, with an edge mea-
suring approximately 14.5 cm. Their results showed an average SCR of around 6 dB, with
corresponding clutter intensity improvement by around 6 dB. However, the small-scale
CRs in their study were only suitable for high-resolution datasets such as TSX or CSK,
not for medium or even lower-resolution datasets like S1. Larger CRs would have higher
RCS and SCR values but with more challenging deployment and maintenance procedures,
as reported by Shan et al. (2013). To address this issue, we introduce our CRs as a com-
promise solution that can be used for InSAR monitoring using both high-resolution and
medium-resolution SAR images. It is a cost-effective option with easy installation and
maintenance.

2.5.4.3 Our Experimental Designs

It is essential to highlight that when designing CRs for SAR satellites, no universal solu-
tion would work equally well for all operational satellites (Garthwaite, 2017). Therefore,
creating a CR specific to the sensor being used or a compromise solution that considers
the need for multiple sensors for effective operational monitoring is necessary.

Therefore, we experiment to evaluate the effectiveness of a newly designed dihedral
corner reflector (DCR) with compact dimensions (30-40 cm radius), featuring symmetrical
geometry that enables its use for both ascending and descending SAR observations. They
are composed of two sets of semi-circular metal plates positioned perpendicular to each
other, which are installed on a standard pillar, with the same inclination angle of 10◦

symmetrically, as revealed in Figure 2.20c and 2.20d. These reflectors have broadened the
scope of their application to fields that require 3D velocity mapping from SAR data.
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Figure 2.21: Examples of the intensity map of the conventional triangular TCRs in high-
resolution TSX data.

2.5.4.4 CR-InSAR Processing

CR-InSAR is a specialized InSAR technique for studying CRs (Shan et al., 2013; Froese
et al., 2008; Xia et al., 2004). The method primarily relies on the calculation of the double-
phase difference of a reference CR across various epochs to extract valuable information
as follows:

∆ϕij = (ϕs
i − ϕs

j)− (ϕm
i − ϕm

j ) (2.21)

where ∆ϕij represents the double phase difference of CRs i and j, the superscripts m and
s are master and slave images.

Then following Equations 2.3 to 2.6 and 2.21, the double phase difference could be
expressed as:

∆ϕij = −2π ·Kij −
4π

λ

B⊥

r sin θ
∆hij −

4π

λ
∆dij +∆ϕatm (2.22)

where K denotes the phase ambiguity, ∆h represents the differences in DEM error, and ∆d
refers to the displacement parameters based on linear and seasonal functional models. The
atmospheric effects, i.e., tropospheric and ionospheric phase components, are neglected by
the double-difference of phase observations considering the closing distance of deployed
CRs (Froese et al., 2008; Xia et al., 2004).

After obtaining the wrapped phase through double differencing, the next step is to
unwrap it to determine the phase ambiguity. To accomplish this, we utilized the least
squares ambiguity decorrelation adjustment (LAMBDA) method to estimate the absolute
phase and derive the LOS motion (Kampes and Hanssen, 2004).

By introducing pseudo-observations for DEM errors and displacement parameters as a
priori knowledge due to the lack of redundancy, the problem can be converted to integer
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ambiguity estimation as follows (Kampes and Hanssen, 2004):

y = Aa+Bb+ n (2.23)

where y represents the observed double phase differences, a and b are integer-valued un-
known ambiguities and unknowns for the baseline components, respectively. A and B are
design matrices for ambiguity terms and baseline components, respectively. n represents
noises and errors.
To obtain the integer ambiguity, the solution of Equation 2.23 is estimated from solving

the minimization problem (Kampes and Hanssen, 2004):

min ||y −Aa−Bb||2Qy
(2.24)

where Qy is the variance-covariance-matrix of observations, and a is integer. This min-
imization problem is a classical integer least squares problem addressed in the previous
study (Teunissen, 1993).
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3.1 Challenges in Landslide Monitoring Using Spaceborne
Remote Sensing

First of all, when studying landslide hazards, one important objective is to forecast a pos-
sible timeframe for when a failure is likely to occur. For such purpose, the inverse velocity
(INV) algorithm has gained popularity due to its simplicity and effectiveness in early
warning as evidenced by numerous recent studies (Zhou et al., 2020; Carlà et al., 2017).
In practice, however, one of the primary obstacles faced when implementing INV is the
presence of various types of artificial or systematic disturbances. InSAR time series often
exhibit a range of regular or irregular fluctuations that arise from systematic errors and
anthropogenic factors. These disturbances can be measurement inaccuracies, instrument
malfunctions, and periodic variations caused by precipitation, groundwater fluctuations,
and anthropogenic actions. Such disturbances may result in outlier data points and un-
usual behaviors concerning the INV method, necessitating data smoothing techniques.
In past studies, several approaches have been developed to carry out data smoothing of
displacement data, including using short-term and long-term moving averages and expo-
nential smoothing functions (Carlà et al., 2017; De Blasio, 2011). However, such filtering
can not always be satisfying: if the kernel utilized in the smoothing function is too large,
critical features may be lost in the filtered curve, while reducing the size of the kernel does
not adequately address the noise present in the displacement data. Therefore, we propose
an analytically-based modeling before the INV analysis.

Secondly, coherence loss is a significant limitation when using InSAR techniques, es-
pecially for those densely-vegetated areas, which is often found for landslide cases in
mountainous regions. To tackle this issue, the ground-based artificial CRs are very good
auxiliaries for InSAR measurements in increasing the number of the measurement point.
However, no universal solution for designing CRs would work equally well for all opera-
tional satellites. In our study, we carried out experiments to assess the performance of our
newly designed small DCRs in monitoring post-failure kinematics, which could be utilized
in both ascending and descending satellite data. It can also be suitable for both medium-
resolution and high-resolution images. Such small DCRs lack the strong echoes found in
traditional large triangular CRs. To address challenges like biased GNSS positioning or
interference from other scatterers and to identify our DCRs in SAR images correctly, we
propose a selection strategy based on variations in pixel power resulting from the instal-
lation of CRs. This strategy utilizes different properties and characteristics of the CRs to
ensure accurate identification.

Thirdly, when using spaceborne remote sensing techniques to monitor slope instability,
the mechanism of landslides can be complex. In many cases, landslides begin as slow-
moving events, with speeds ranging from a few millimeters to several meters per year
(Lacroix et al., 2020). Due to the variety of landslide types, it is difficult to observe them
all using a single spaceborne sensor. Furthermore, each sensor has unique advantages and
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disadvantages, e.g., spaceborne optical imaging being beneficial for measuring large-scale
displacement. However, accuracy can be impacted by factors such as measurement preci-
sion, alignment error between relevant image pairs, and interpolation methods (Debella-
Gilo and Kääb, 2011; Delacourt et al., 2004). In addition, acquiring cloud-free images
during rainy seasons or in mountainous regions can be challenging. Finally, assessing the
physical characteristics of catastrophic landslides, such as velocity and friction, can be ex-
tremely difficult due to the temporal gap between suitable imagery when applying optical
remote sensing (Lacroix et al., 2020). In contrast, InSAR technology can monitor subtle
ground motions, but the displacement measured is limited to one-fourth of the wavelength
between adjacent pixels (Singleton et al., 2014; Jiang et al., 2011). InSAR technology is
inappropriate for monitoring rapid displacements exceeding the threshold limit, such as
glacier motion, seismic deformation near faults, and catastrophic failures. Additionally,
SAR sensors are not sensitive to deformation in the N-S direction. GNSS measurements
could improve the reliability of horizontal components of InSAR observations, but GNSS
data may be unavailable in remote areas. Only a few particular landslide cases in hot-spot
areas can be continuously analyzed and monitored with GNSS. Therefore, a methodology
that integrates multiple techniques is required to monitor the complicated procedures for
landslide disasters.

3.2 Proposed Methodology

3.2.1 Analytically-based Modeling for Inverse Velocity

In order to obtain accurate fittings that capture the relevant features and minimize the
influence of noise, we propose an analytical approach for smoothing the displacement values
obtained through MTI processing. Our method utilizes least squares adjustment and L1
regression, assuming that the displacement within the landslide area remains relatively
constant after the primary failure. We introduce parameters and thresholds that reflect the
limitations of MTI processing precision. This approach effectively removes disturbances
and smooths the MTI time series.

In specific, we modeled the fluctuated displacement time series by the following equation:argmin
{
∥y − x∥22 + λ ∥Ax∥1

}
c1 ≤ xi+1 − xi ≤ c2

(3.1)

where y represents the observation, x is variable, A comprises the sparse matrix for the
tridiagonal representation of the standard second difference operator, and λ is the factor
balancing the fitting and sparsity.

Since the obtained MTI measurements are characterized by cm to mm precision, we
introduce a relatively generous threshold amounting to c1 is 0.01 meter. Since we do not
want to over-smooth the features caused by the landslide failure in the fitting process, the
parameter c2 is not set in this study.

Values of INV will approach zero corresponding to the increasing time as velocities
increase asymptotically closer to the failure. Once the smoothed displacements are gener-
ated, INV could be derived and thus, a prediction of the failure could be achieved.

More details will be elaborated in Section 4.4.4.
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3.2.2 Identification of Small-scale CR-like Objectives

We utilize three distinct weighting factors to develop our selection strategy for identifying
CRs in SAR images.

• The first factor is the inverse of the amplitude dispersion index, which indicates the
stability of the CRs. Higher values correspond to increased stability.

• The second factor considers the intensity increments of pixels after the installation
of the CRs. We expect the CRs to improve lower clutter intensity in SAR images,
and this factor helps to identify pixels that exhibit such improvements.

• The third factor is an upper empirical bound based on the ensemble average of pixel
intensities in sequential images following the deployment of the CRs. This factor
sets a threshold to prevent the selection of pixels with stable and strong signals that
may originate from sources other than CRs, such as broken roads or buildings on
the landslide slope.

After deriving and normalizing all three weighting factors, we use a conditional proba-
bility model to calculate the probability of each pixel within the search window being a
CR:

Pw = P (wA) · P (wI |wA) · P (wE |wA, wI) (3.2)

Based on our established parameters, pixels with higher probabilities within the search
window are more likely to exhibit features similar to the tested CRs. In our experiment,
this selection strategy successfully identified and located the tested CRs in both TSX
and S1 images. Our proposed method can also serve as a general strategy for identifying
similar targets with CR-like echoes in other cases. To apply this method to other types
of CRs, we need only adjust the time interval for estimation and the empirical value for
calculation based on the specific properties of each CR.

Additional information on this topic can be found in Section 5.3.2.

3.2.3 Modeling 4D Slope Instability Dynamics

In order to monitor and interpret the life cycle of landslides and their failure mechanisms
from multiple perspectives, a combination of satellite remote sensing observations, in-situ
measurements, and geophysical approaches can be implemented. This thesis proposes a
framework that integrates spaceborne optical imaging and InSAR techniques with feature
extractions using time series decomposition and a mathematical relaxation model. Figure
3.1 outlines the data-processing workflow and significant steps in this framework.

This approach allows us to assess complete post-failure slope 4D spatiotemporal pat-
terns. By combining multiple remote sensing techniques with feature extraction and re-
laxation modeling, we can overcome the limitations of individual sensors and gain insights
into the complete 4D spatiotemporal characteristics of post-failure landslide deformation.
This approach provides a comprehensive understanding of the evolution of landslides,
enabling us to monitor and interpret their kinematics more effectively.

The deformation components between optical and SAR observations in the common
E-W direction are modeled, indicating the same temporal evolution. The multi-sensor
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Ⅰ: Optical images processing Ⅱ: Multi-temporal InSAR processing
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Figure 3.1: Flowchart of data processing and the framework of modeling 4D post-failure slope
instability dynamics.

remote sensing observations are resolved as follows:
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0 1 0
0 0 1

 ·

 dU
dE
dN

 (3.3)

where d represents displacement, LOS1,2,3 are S1 ascending data, S1 descending data,
and TSX descending data, respectively. θ and α are inclination angle and heading angle,
respectively.

Then, we could conduct ICA modeling different magnitudes of relaxation decaying for
the E-W and N-S displacements from the optical images after the primary failure. Sim-
ilarly, the E-W and U-D displacements for the period of MTI results were resolved with
different polynomial regressions following ICA analysis. The process of ICA is achieved as-
suming that each independent component follows a non-Gaussian probability distribution.
The mixed signals and independent components have the following relationship:

Ot×n = Dt×l · Sl×n (3.4)
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where O is the remote sensing observations, D represents the mixing matrix, and S is the
decomposed source matrix. The subscripts t is the number of observations, n represents
pixels in each acquisition, and l is the number of ICs.

Finally, we continue to integrate the multi-sensor remote sensing data by modeling a
mathematical exponential decay to represent the stress relaxation mechanisms of the land-
slide body after failure. The exponential model helps to link the multi-sensor observations
in the temporal domain. The modeling equation has been applied as follows:

dk(tk) = ak · etk/τ + ck (3.5)

where d(t) is the displacement at the time since failure t, and k=x,y,z, where x,y,z rep-
resent the E-W, N-S and vertical directions, respectively. a is amplitude associated with
decay, c is an offset, and τ is the decay factor (τ < 0), representing the decelerating phases.
More details on this framework can be found in Section 6.5.

43





4 Pre- and Co-failure:
Slope Instability Monitoring
Using Spaceborne Remote Sensing

This chapter was published as:

Zhuge Xia, Mahdi Motagh, Tao Li, and Sigrid Roessner. “The June 2020 Aniangzhai
landslide in Sichuan Province, Southwest China: Slope instability analysis from radar and
optical satellite remote sensing data.” Landslides 19(2), 313–329.

Author contribution statement:

Zhuge Xia did most of the work, including conceptualization, methodology development,
validation, formal analysis, investigation, writing, and visualization. Mahdi Motagh con-
tributed to the discussion and writing. Tao Li and Sigrid Roessner helped in the discussion.

45



4 Pre- and Co-failure: Slope Instability Monitoring Using Spaceborne Remote Sensing

4.1 Abstract

A large, deep-seated ancient landslide was partially reactivated on 17 June 2020 close to
the Aniangzhai village of Danba County in Sichuan Province of Southwest China. It was
initiated by undercutting of the toe of this landslide resulting from increased discharge of
the Xiaojinchuan River caused by the failure of a landslide dam, which had been created
by the debris flow originating from the Meilong valley. As a result, 12 townships in the
downstream area were endangered leading to the evacuation of more than 20,000 people.
This study investigates the Aniangzhai landslide area by optical and radar satellite re-
mote sensing techniques. A horizontal displacement map produced using cross-correlation
of high-resolution optical images from Planet shows a maximum horizontal motion of ap-
proximately 15 meters for the slope failure between the two acquisitions. The undercutting
effects on the toe of the landslide are clearly revealed by exploiting optical data and field
surveys, indicating the direct influence of the overflow from the landslide dam and wa-
ter release from a nearby hydropower station on the toe erosion. Pre-disaster instability
analysis using a stack of SAR data from Sentinel-1 between 2014 and 2020 suggests that
the Aniangzhai landslide has long been active before the failure, with the largest annual
LOS deformation rate more than 50 mm/yr. The 3-year wet period that followed a rel-
ative drought year in 2016 resulted in a 14% higher average velocity in 2018–2020, in
comparison to the rate in 2014–2017. A detailed analysis of slope surface kinematics in
different parts of the landslide indicates that temporal changes in precipitation are mainly
correlated with kinematics of motion at the head part of the failure body, where an ac-
celerated creep is observed since spring 2020 before the large failure. Overall, this study
provides an example of how full exploitation of optical and radar satellite remote sensing
data can be used for a comprehensive analysis of destabilization and reactivation of an
ancient landslide in response to a complex cascading event chain in the transition zone
between the Qinghai-Tibetan Plateau and the Sichuan Basin.

4.2 Introduction

Landslides are widespread geological hazards in mountainous regions worldwide. Once a
landslide mass loses its stability, it could induce strong destructiveness. Landslide pro-
cesses are complex and often comprise different process types. Some of them move fast
(Quecedo et al., 2004), but several other landslides also take place slowly and steadily
at the beginning, and then accelerate suddenly terminating in catastrophic avalanche-
type or collapse-like movement styles (De Blasio, 2011). Landslides have occurred more
frequently due to increased urbanization, continued deforestation, and increased extreme
weather events (Lee et al., 2017; Biasutti et al., 2016; Schuster, 1996). To monitor landslide
disasters and build effective early warning systems (EWSs), the adopted technical means
should meet at least the following requirements: adequate regional coverage and temporal
sampling capacity, sufficient measuring accuracy related to the velocity of the monitored
processes, and good cost performance. Ground-based methods, such as continuous GNSS
for landslide monitoring, are difficult to set up and implement in mountainous and re-
mote areas (Akbarimehr et al., 2013). Instead, optical and radar satellite remote sensing
plays a promising role in driving innovation in large-scale detection, monitoring, and as-
sessment of landslide hazards and can be quite useful to incorporate in the framework of
multidisciplinary disaster risk reduction (DRR).
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Cross-correlation of optical images can be used to assess the kinematics of large slope
failures (Yang et al., 2020; Travelletti et al., 2012). Furthermore, automated and semi-
automated approaches using time series of multi-sensor optical images have already been
developed to create multi-temporal inventories by identifying landslide areas based on
changes in vegetation cover (Yang et al., 2019; Behling et al., 2016). Optical remote sensing
data have become more commonly available in recent years and are easily understood
and handled by non-experts (Yang et al., 2020). However, clear sky images may not be
readily available prior to and during a given landslide event. Moreover, the displacement
accuracies retrieved from cross-correlation analyses are highly dependent on the resolution
of the optical remote sensing acquisitions and the satellite’s precise orbit position and
orientation posture (Debella-Gilo and Kääb, 2011). Hence, optical remote sensing has
limited use in reliably supporting near real-time hazard assessments and EWSs.

Synthetic Aperture Radar (SAR) offers new opportunities to support the systematic
detection and monitoring of landslides over extensive regions and for the development
of regional-scale landslide warning systems (Motagh et al., 2013; Bianchini et al., 2013;
Herrera et al., 2013; Colesanti and Wasowski, 2006). With synoptic imaging capabili-
ties, under inclement weather conditions and independent of sunlight conditions, SAR
techniques provide invaluable information on landslide locations, boundaries and changes
to vegetation within landslide bodies, based on the exploitation of radar amplitude and
phase information. Advanced Multi-temporal InSAR (MT-InSAR) methods, e.g., Persis-
tent Scatterer Interferometry (PSI) and Small Baseline Subsets (SBAS), can be exploited
to evaluate subtle changes in landslide creep rates in response to external triggering fac-
tors; these changes can indicate impending failures (Hu et al., 2020; Handwerger et al.,
2019; Teshebaeva et al., 2015). The new surge in available SAR data via Sentinel-1 (S1)
satellites has provided golden opportunities to use SAR sensors as operational instruments
for landslide hazard assessments (Solari et al., 2019) and temporal predictions of large fail-
ures (Mantovani et al., 2019). In particular, S1 data have higher spatial resolution and
global dual-polarization coverage with improved revisit times of 6–12 days over the data
from previous C-band SAR missions such as ERS and Envisat. As S1 data are available at
no cost, there has also been growing interest from scholars for objective change detections,
landslide hazard assessments, and potential techniques for multidisciplinary DRR (Dai
et al., 2020; Dini et al., 2020; Intrieri et al., 2018; Dai et al., 2016; Barra et al., 2016; Feng
et al., 2015).

On 17 June 2020, close to Aniangzhai village of Danba County in Sichuan Province of
Southwest China, a massive landslide of ∼6 million m3 (Yan et al., 2021) was partially
reactivated. The main triggering factors were the undercutting effects and erosion on the
toe of the landslide body from the overflow of a dammed lake (height of nearly 8∼10
meters), which was created by debris flows coming from the northern Meilong valley
comprising a complex cascading event chain. Firstly, the heavy rainfall in summer 2020
induced debris flows in the Meilong valley. With the help of Sentinel-2 (S2) optical images,
we observe that the debris flow generated from the valley regions north of the reservoir
flowed towards the south. Then, the washed-out stones and soils formed a barrier dam just
under the ancient Aniangzhai landslide body and blocked the Xiaojinchuan River, leading
to an increase in the water level (seeing supporting material: Figure 4.13). Thereafter,
the overflow of the barrier dam, influenced by the discharge of the surplus water from the
nearby hydropower station to reduce the flood pressure, undercut the toe of the landslide,
resulting in partial reactivation of this ancient landslide body. Soon after the lower part of

47



4 Pre- and Co-failure: Slope Instability Monitoring Using Spaceborne Remote Sensing

the landslide area collapsed gradually. In this case, this specific cascading event chain of
“rainfall - debris flows - dammed lake - outburst floods - erosion - landslide” was formed
and threatened a dozen villages downstream, resulting in an evacuation of more than
20,000 people to abandon and leave their home towns (Yan et al., 2021).

In this study, we report investigations on ground deformation of the Aniangzhai landslide
before and during June 2020 failure using optical and radar satellite remote sensing data.
Sub-pixel cross-correlation of high-resolution optical images from Planet is utilized to
obtain information on the main landslide failure, e.g., horizontal movement and moving
direction. Then, S1 SAR data are analyzed using the MT-InSAR techniques to assess
the slope instability between 2014 until the time of failure. The results are then analyzed
against changes in meteorological conditions to assess the long-term and transient behavior
of the Aniangzhai landslide. We also evaluate a method for anticipating the time of
failure based on MT-InSAR results using a modified inverse-velocity method. Finally, we
introduce some findings based on the abnormal behaviors of the Normalized Difference
Vegetation Index (NDVI) and interferometric coherence over the landslide mass before
the failure.

4.3 Environmental and Geomorphological Settings

Danba County is located on the southeastern edge of the Qinghai-Tibet Plateau, and Ani-
angzhai village is located in the center of Danba County. The geomorphological structure
of the region comprises high mountains and narrow valleys with an average elevation of
approximately 1800 m above sea level (a.s.l.). The June 2020 Aniangzhai landslide is a
case of a partial reactivation of an ancient and larger slope failure (Zhao et al., 2021).
The original ground surface of the Aniangzhai landslide has an elevation of approximately
2000∼2500 m a.s.l. The topographic profile and possible thickness of the landslide body
were investigated in a recent study exploiting UAVs (Zhao et al., 2021), suggesting a max-
imum thickness of approximately 60 meters. Based on our field investigation and Zhao
et al. (2021), the vertical component of motion was significant at the head part of the
failure; while the landslide slipped down as a whole in the middle-lower part. Therefore,
we assume that the Aniangzhai landslide has a rotational-translational mechanism, with
rotational component being more significant in the upper part and translational compo-
nent becoming predominant in the middle-lower part. Moreover, this region is located in
the upper reaches of the Yangtze River, which is full of water resources. The foot of the
Aniangzhai landslide area reaches the Xiaojinchuan River. There is also a dam nearby,
which is very close to the failure region upstream (Figure 4.1). We compared the river
courses in June over the last 3 years before the 2020 failure (seeing supporting materials:
Figure 4.14). The river courses demonstrate similar extents and appearances in 2018 and
2019, regulated by the reservoir upstream. In contrast, the river course during the 2020
failure event shows major inundation due to surplus water from the reservoir. The an-
nual mean temperature for this region is approximately 14℃. However, due to elevation
changes, the differences between the top of the mountain and the valley could be greater
than 24℃. Because of the plateau monsoon climate and complicated geomorphology, lots
of natural disasters are taken place frequently in this region, especially landslide hazards.

Figure 4.2 illustrates a Skysat optical image and several photos from the fieldwork, in
which different zones of the landslide area are highlighted. The high-resolution optical
image from Skysat was acquired on 25 November 2020 with an accuracy of half-meter
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Figure 4.1: Location of the study area. Backgrounds are Planet high-resolution remote sensing
optical images (RGB bands), which are acquired (a) before the failure on 15 June
2020, and (b) after the failure on 24 June 2020.

(Figure 4.2f). The landslide area lays on the hillside north of the country town, and it was
previously described as an ancient rockfall area. The red line in Figure 4.2f, indicates the
center part of the failure, which had the largest deformation in this event; the orange line
indicates the medium motion of approximately 1∼5 meters, whilst the yellow line reveals
the extent of the whole landslide body. It is obvious to see the main scarp on the head
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Figure 4.2: Display of the landslide failure and different zones of the landslide body, as well as
examples of damages in the event. (a) Ravaged roads on the edge of the central
failure. (b) The northern lateral flank of the landslide. (c) Damaged extra high
voltage (EHV) transmission tower. (d) Front view of ravaged roads. (e) The toe of
the landslide body. (f) Skysat optical image acquired on 25 November 2020, with the
boundaries of three different zones of the landslide, i.e. the red, orange and yellow
lines represent the areas with the fast, medium and slow movements in this event,
respectively. (g) Cracked house. (h) The southern flank of the center part, which had
the fastest displacement rates during this failure. (i) The main scarp of the failure in
the southeast direction.

of the failure area, as well as the erosion on the toe of the landslide. As demonstrated in
Figure 4.2e, the vegetation on the toe was washed away and a steep valley was formed
in the front of the landslide body due to enormous mass loss. And this directly triggered
the reactivation of the ancient landslide body. The deformation then started in the upper
part, and the whole block was moving downwards.

50



4.4 Data and Methodology

Figures 4.2b, h and i show the boundaries of the landslide failure. Figure 4.2b reveals
the northern lateral flank of the landslide, where cracks, approximately 1∼1.5 meters wide,
caused by block motion are clearly visible. Figure 4.2h displays the southern flank of the
central failure, which had the fastest displacement rates during the 2020 failure. Figure
4.2i shows the main scarp of the failure in the southeast direction. Other pictures reveal
examples of damages that occurred in this disaster. Figures 4.2a and d show the ravaged
roads, which were broken and had a drop of a few meters. Figures 4.2c and g display a
damaged extra high voltage (EHV) transmission tower and a cracked house in this event.

4.4 Data and Methodology

4.4.1 Remote Sensing Optical Images

We use two high-resolution optical satellite images acquired by Planet Lab (Team, 2017)
satellite constellation to assess the horizontal kinematics of the failure, i.e. extent, direction
and magnitude. The satellite data is acquired right before and after the event, i.e. on
15 June 2020 and 24 June 2020, respectively (Figure 4.1). The used Planet Lab satellite
imagery has a resolution of about 3 meters. Indeed, the horizontal displacements are quite
obvious when these two images are superimposed on each other. The Planet Lab images
comprise three multi-spectral bands covering the visible part of the spectrum (RGB). The
red band is used in this study with the best root-mean-square error in image registration
among these three bands. The two Planet images are cropped to the same subset covering
the landslide area forming the input to the cross-correlation analysis using the COSI-Corr
software package to estimate the horizontal displacements (Leprince et al., 2007). The
cross-correlation is estimated with steps of 2×2, which provides the east-west (E-W) and
north-south (N-S) horizontal displacements calculated by every two steps. Then a median
filter is applied. In the end, the magnitude of displacement in each pixel is calculated as
the norm of vectors from the results in two directions.

4.4.2 MT-InSAR Analysis Using Sentinel-1 SAR Data

We apply the C-Band SAR images acquired by S1 satellite for MT-InSAR analysis in this
study (Copernicus, 2020), specific information of the acquisition can be found in supporting
materials (Table 4.4). In detail, the InSAR processing is carried out immediately after
the failure with 89 descending images of S1 Interferometric Wide (IW) swath mode from
October 2014 to July 2020. Among them, a few images in 2014–2015 cover the study area
partially and they are stitching together for the exploitation. The spatial resolution is
approximately 5m×20m with a 250 km swath. There are both ascending and descending
datasets available. As seen from optical images, the main direction of the slope is towards
the north-west, which causes foreshortening effect in ascending data. Thus, the descending
data are selected for our analysis in this case. Due to the temporal gap of the original
dataset in 2017–2018, the MT-InSAR processing is carried out in two temporal frames,
i.e. 2014–2017 and 2018–2020.

During the processing, the time series of SAR images are well-coregistered and then
cropped to the identified subset of the landslide area. The subset covers an area of ap-
proximately 26 square kilometers (4.7×5.6 km). The 2000 SRTM DEM (30m) is utilized
for geocoding and estimating the topographic phase component in InSAR processing (Farr
et al., 2007). The processing chain of S1 has already been mentioned in many previous

51



4 Pre- and Co-failure: Slope Instability Monitoring Using Spaceborne Remote Sensing

Table 4.1: Parameters investigated for analyzing slope instability before failure using Google
Earth Engine (GEE), parameters of SAR images from S1A are listed together for
comparison as well.

Exploited dataset
Temporal
resolution

Spatial
resolution

Duration of
exploited dataset

SAR images Sentinel-1A 12 days 5m× 20m Oct 2014 to June 2020
Rainfall CHIRPS daily 0.05◦(∼5km) Jan 2000 to June 2020
NDVI MODIS daily 500m Jan 2014 to May 2021
NDVI Landsat-8 16 days 30m Jan 2014 to May 2021
NDVI Sentinel-2 5 days 10m Dec 2018 to May 2021

studies (Haghshenas Haghighi and Motagh, 2017; Fattahi et al., 2016; Grandin et al., 2016;
Yagüe-Mart́ınez et al., 2016). The traditional InSAR has limitations for landslide mon-
itoring. The main limitations are the widespread loss of coherence between consecutive
image acquisitions and atmospheric disturbances (Wasowski and Bovenga, 2014; Zebker
et al., 1992). Thus, we apply the advanced MT-InSAR techniques to mitigate the problem
and retrieve the information of displacement, i.e. PSI and SBAS methods. The GAMMA
and StaMPS software packages are used for the implementation of interferometric and
MT-InSAR analysis (Wegnüller et al., 2016; Hooper et al., 2012, 2007), with atmospheric
correction obtained using the Generic Atmospheric Correction Online Service (GACOS)
product (Morishita et al., 2020; Wang et al., 2019). In PSI processing, a stack of single-
master interferograms is generated and the pixels with the highest signal-to-ratio values
are selected (Hooper et al., 2007, 2004). Such pixels are regarded as Persistent Scatter-
ers (PS), mostly come from rocks and man-made features. As for the SBAS method,
the algorithm exploits a network of small temporal and spatial baselines to minimize the
decorrelation between image pairs (Anderssohn et al., 2009; Lanari et al., 2007). The
distributed scatterer (DS), which is defined as the pixel that shares similar statistical be-
havior with its neighbouring pixels, is taken into account. MT-InSAR baseline networks
and selecting criteria can be found in supporting materials (Figure 4.15). With the help
of MT-InSAR techniques, we could obtain comparable results between PSI and SBAS
methods for analyzing slope instability. In addition, MT-InSAR time series are further
exploited using inverse-velocity (INV) theory to predict the time of failure.

4.4.3 Auxiliary Data

To better understand the dynamics of the Aniangzhai landslide in relation to potential
influencing factors, some auxiliaries are exploited (Table 4.1). The first auxiliary in-
cludes precipitation retrieved from the Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS). Spanning all longitudes, CHIRPS incorporates 0.05◦ res-
olution (∼5km) satellite imagery between 50◦S-50◦N and in-situ station data to create
gridded rainfall time series. The precision of the rainfall datasets is sufficient for appli-
cations and exploitation at the regional scale. In our study area, available CHIRPS data
cover a time span of 20 years between 2000 and 2020, and the precipitation is calculated
for Danba County.
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The second auxiliary includes multiple optical remote sensing collections to obtain NDVI
values. The NDVI value is calculated as follows:

NDVI =
NIR-RED

NIR+RED
(4.1)

where RED is the red portion of the electromagnetic spectrum and NIR is near-infrared
light. In this study, NDVI time series from three different satellite datasets are exploited
and compared. Details can be found in Table 4.1. The MODerate-resolution Imaging
Spectroradiometer (MODIS) Reflectance product MCD43A4 provides daily reflectance
data adjusted using a bidirectional reflectance distribution function (BRDF). Data of
both Terra and Aqua satellites are used in the generation of this product, providing the
highest probability for quality assurance input data (DAAC, 2021). For comparison and
validation, two other collections of optical remote sensing satellites are applied, i.e., the
Landsat-8 collection (16-day temporal resolution and 30-meter spatial resolution), and S2
data (5-day temporal resolution and 10-meter spatial resolution). To be noticed is that
the S2 dataset for this study area is only available since late 2018.
The precipitation and NDVI analyses were conducted with the help of the Google Earth

Engine (GEE). We developed our own scripts to generate the monthly-mean and yearly
precipitation during 2000–2020 for Danba County for further exploration in this study;
whilst NDVI is calculated or obtained for the slope affected by the landslide from the
mentioned three satellite collections during different periods (Table 4.1). The NDVI values
are further compared with the interferometric coherence. The purpose of the comparison
is to see whether some features could be obtained for early warning without complex
MT-InSAR processing (Jacquemart and Tiampo, 2021).

4.4.4 Inverse-velocity Theory for Anticipating the Time of Failure

When landslides, rockfalls and similar hazards are investigated, one of the major interests
is to predict a potential time range when a failure might be likely to happen. For this goal,
already several approaches have been developed, among them, the INV method which is
considered to be a simple but effective method for EWS being used in many studies during
recent years (Zhou et al., 2020; Carlà et al., 2017).
In order to apply INV, the first step is to calculate the velocity of LOS displacement

from the time series of displacement. The calculation of landslide velocity is always a
complicated problem. On the one hand, the strength parameters for different landslide
types should be considered in the calculation. On the other hand, the friction coefficient
and friction resistance will change with different stages of activities and the volumes of
the landslide (De Blasio, 2011). The key challenge is that in reality the observations of
displacement could be influenced by man-made or systematic noises. Such noises include
measurement errors, random instrument noises and noises from periodic changing factors
such as rainfall, groundwater, human activities, etc. These noises could lead to outliers and
abnormal behaviors for INV, which makes data smoothing necessary. In previous studies,
some approaches are exploited to generate the smoothing of the displacement, such as
short-term and long-term moving averages and exponential smoothing functions (Carlà
et al., 2017; De Blasio, 2011). In this study, we have applied these different approaches,
but the outcomes have not been satisfying. The reason for this is, if the kernel of the
smoothing function is too large, the filtered curve would possibly lose some important
features, whilst the noise in displacement could not be improved using a smaller kernel.
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In order to obtain ideal fittings which capture the relevant features and to mitigate the
influence from noises, we propose a method to smooth the displacement values obtained
by MT-InSAR processing. The method uses least squares and L1 regression under the
assumption that after the main failure has happened, the further displacement occurring
within the landslide area remains more or less constant. In this context, we introduce the
parameter c to represent the limitations of the measurements, whereas c1 and c2 represent
the minimum and maximum detectable displacements, respectively. In specific, if the
magnitude of displacement is larger than c1, then the slope movement is considered to
occur in form of sliding. Since the obtained MT-InSAR measurements are characterized
by cm to mm precision (Haghighi and Motagh, 2019; Motagh et al., 2017; Wang et al.,
2012; Osmanoğlu et al., 2011), we introduce a relatively generous threshold amounting to
c1 is 0.01 meter. Since we do not want to over-smooth the features caused by the landslide
failure in the fitting process, the parameter c2 is not set in this study. In the result, we
calculate the smoothed displacement by the following equation:argmin

{
∥y − x∥22 + λ ∥Ax∥1

}
c1 ≤ xi+1 − xi ≤ c2

(4.2)

where y represents the observation, x is variable and A comprises the sparse matrix for the
tridiagonal representation of the standard second difference operator, and λ is the factor
balancing the fitting and sparsity. To solve (4.2), a package for solving convex optimization
problems (Grant and Boyd, 2008, 2014) was used, to derive x that minimizes expression
(4.2) being subject to the constraints while using identical parameters. Values of INV will
approach zero corresponding to the increasing time as velocities increase asymptotically
closer to the failure. Once the smoothed displacements are generated, INV could be
derived and thus, a prediction of the failure could be achieved.

4.5 Results

4.5.1 Horizontal Displacement Based on High-resolution Optical Images

Figure 4.3 illustrates the horizontal displacement calculated from Planet optical images
for a short period of time comprising the situation right before and after the failure, i.e.
1 day before the failure and 8 days after the failure. The applied two Planet images are
shown as background in Figure 4.3. The main component of the horizontal displacement
occurs in the E-W direction with a maximum displacement of approximately 13.2 meters
towards the west. In the N-S direction, the displacement is oriented towards the north with
a maximum displacement of approximately 6.9 meters. Overall, the absolute horizontal
displacement is estimated as the norm of vectors from displacements in N-S and E-W
directions, and the maximum magnitude reaches approximately 14.7 meters in the N-W
direction. The result also demonstrates that some localized deformations exist out of
the main body of the failure, mainly in the northwest and southwest corners of the area
shown on the image in Figure 4.3. The moving directions of those localized deformations
are different compared to the ones obtained for the main failure. This subset area is shown
with significant motion comparing to the surrounding areas. From Figure 4.3, we can see
that the maximum horizontal displacement rate could reach ∼1.6m/day, which is too large
to be applied using InSAR monitoring (Crosetto et al., 2016).
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Displacement (m)
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Figure 4.3: 2D results of horizontal displacement (Duration: 15 June 2020 and 24 June 2020)
generated using Planet optical images. The lengths and directions of the arrows
represent the magnitudes and the moving directions of motion. The orange line
represents the failure area (same as in Figure 4.2).

4.5.2 MT-InSAR Analysis

Figure 4.4 shows a comparison of the results of MT-InSAR processing for the two different
periods using both PSI and SBAS methods. The displacement rates have been derived
in line-of-sight (LOS) direction, whereas positive values represent motion towards the
satellite, whilst the negative values represent motion away from the satellite. The reference
point, representing a stable area during the whole time period is selected outside of the
landslide region in the northern hill slope. From the MT-InSAR analysis, it is deducted
that the area of the June 2020 failure had already experienced movements prior to the
actual failure, especially in the center part of the landslide body.

As seen in Figure 4.4, the creeping movement could already be revealed within the land-
slide body for the time period of 2014–2017. In this period, the maximum displacement
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Figure 4.4: Comparison of MT-InSAR results for (a) PSI in period of 2014–2017, (b) SBAS in
2014–2017, (c) PSI in 2018–2020 and (d) SBAS in 2018–2020; the blue line and trian-
gles in (d) show the location of the selected topographic profile and points analyzed
in Figure 4.5. Image background is comprised of the Planet optical image acquired
on 15 June 2020.

Table 4.2: Relevant statistics of MT-InSAR results for the ancient slope failure reactivated in
2020 (Figure 4.1). Parameters for the PSI and SBAS results (Figure 4.4) of the two
periods are listed respectively.

Statistics Number of PS/DS Max. disp. Max. velocity Mean velocity
(Unit:) (-) (mm) (mm/yr) (mm/yr)

PSI 2014–2017 180 -55.7 -23.8 -12.9
SBAS 2014–2017 133 -88.4 -37.8 -14.7
PSI 2018–2020 167 -91.6 -40.3 -15.6
SBAS 2018–2020 342 -124.1 -54.6 -17.9

rate in LOS direction amounts to approximately -24 and -38 mm/yr, for the PSI and
SBAS methods, respectively. For the 2018–2020 period up to the failure, the displacement
rates within the area of the June 2020 failure have significantly increased compared to the
2014–2017 period, reaching the maximum of approximately -40 and -55 mm/yr for the PSI
and SBAS results, respectively, in the center of the landslide body. Moreover, the areas
outside of the landslide failure turn out to be stable in general. The relevant statistics for
the PSI and SBAS results for the ancient slope failure reactivated in 2020 can be found
in Table 4.2.
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Figure 4.5: Plotting of (absolute) LOS displacements along a topographic profile for the SBAS
results in 2018–2020. The location of the profile is shown in Figure 4.4d. (a) The
selected topographic profile. (b)-(g) show the MT-InSAR results of points along the
selected profile from northwest to southeast.

Figure 4.5 shows a comparison of displacement time series along a selected topographic
profile (marked by blue in Figure 4.4d) for the SBAS results in 2018–2020. Point T1 is
situated on the channel floor and points T2–T4 are located on the partial failure part;
while T5 and T6 are situated on the upper part of the ancient landslide and outside of
the failure body. The displacements rates of selected points in the top (T5 and T6) and
bottom (T1 and T2) zones are smaller compared to the displacements rates in the central
failure zones (T3 and T4). Meanwhile, the central failure zones have a relatively larger
slope inclination compared to the top and bottom zones. The above results are further
elaborated in the Discussion.

4.5.3 Influence of Precipitation on the Kinematics of the Landslide

Figure 4.6a demonstrates the annual precipitation amounting to 855.5 mm in 2014, then
increasing by 5.7% in 2015, but decreasing by 9.0% in 2016. In contrast, for the period of
2017–2019, we observe a constant increase by 12.3%, 1.1% and 5.2% respectively compared
to the previous year. Figure 4.6b shows that from April to June 2020, rainfall is 30.5%,
4.0% and 26.4% higher than the long-term average for the last 20 years, respectively.
To better quantify the role of the 2020 heavy precipitation in influencing the kinematics

of the landslide, we focused on the 2018–2020 period and analyzed the time series of LOS
displacements at different parts of the landslide. Figure 4.7 illustrates the locations of
ten points selected arbitrarily over the whole landslide body: points P1–P3 from the head
of the failure part (Zone I); points P4–P6 from the central failure body (Zone II); points
P7–P9 from the foot of the landslide (Zone III); and point P10 from the landslide body,
but outside of the 2020 failure.
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Figure 4.6: (a) Annual precipitation within Danba County for period of 2014 to 2020. (b) Com-
parison of monthly-mean precipitation for period of the last 20 years with precipita-
tion in 2020.
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Figure 4.7: Location of arbitrarily selected points (P1–P10) over the landslide body. The region is
classified according to the behavior of these points from spring 2020 until the failure;
P1–P9 are within the failure region while P10 from the landslide body is located
outside of the 2020 failure. T1–T6 are the selected points along topographic profile
as shown in Figure 4.4d. The background image is from Planet optical image.

The results of MT-InSAR time series for the selected points are displayed in Figure 4.8;
the dot lines show the time series retrieved from the SBAS processing, while the blue lines
represent the fitting curves obtained based on the smoothing methodology described in
Section 4.4.4. As seen in Figure 4.8, points P1–P3, which are located in Zone I, show
accelerations and decelerations throughout the entire time series with a clear accelerating
trend as of spring season in 2020. In contrast to points P1–P3, the displacement rates
at points P7–P9 are relatively lower; they exhibit periods of acceleration in the step-
wise pattern and a constant velocity at the end of the time series. Points P4–P6 in the
center region show the highest displacement rates among all the selected points with fewer
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Figure 4.8: LOS displacements for period of 2018–2020 for SBAS result and the corresponding
fittings of points (a) P1–P3, (b) P4–P6, (c) P7–P9 and (d) P10. The locations of
points have shown in Figure 4.7.

variations in overall velocity compared to other parts of the landslide, although some
periods of slowing-downs and accelerations occur in the same period as in case of points
P1–P3 (e.g., in June 2019). Point P10, located outside of the 2020 failure, reveals a steady
movement at the beginning, punctuated by a short episode of acceleration in March-April
2019 and another obvious acceleration since spring 2020.

Figure 4.9 reveals the comparison of the LOS velocity of points P1–P3 on the image of
Figure 4.9a and the corresponding precipitation in the period of 2018–2020. These three
points are selected for INV processing due to the strong correlation of the simultaneous
speeding up of their displacement rates in response to the increasing cumulative precip-
itation in the rainfall season. Obviously, there are three rainfall seasons in Figure 4.9b,
corresponding to the rainy months of May to September. We calculate the increments of
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Figure 4.9: Comparing of landslide kinematics with the corresponding precipitation in points
P1–P3. (a) Fitted LOS displacements of points P1–P3 from 2018 to 2020. The
marked periods are mid-April to mid-June in the three rainy seasons before the failure.
Relevant statistics of increments are listed in Table 4.3. (b) The daily and cumulative
precipitation from 2018 to 2020.

Table 4.3: Increments of precipitation and the corresponding increments of LOS displacement of
points P1–P3 from mid-April to mid-June in 2018–2020.

Increment ∆t1 ∆t2 ∆t3

Rainfall (mm) 247.79 217.03 264.49
Displacement in P1 (mm) 6.49 4.14 6.58
Displacement in P2 (mm) 6.49 3.02 7.86
Displacement in P3 (mm) 2.33 0.50 2.78

the precipitation in different years and then compare this with the amount of changes in
the corresponding LOS displacements of the selected points in the same duration. The re-
sults are displayed in Table 4.3. Here we observe that for the first time period of mid-April
to mid-June in 2018, where rainfall reaches 248 mm, approximately 6.5, 6.5 and 2.3 mm
increases in displacement values are observed at points P1–P3, respectively. Interestingly,
compared to the period t1, the increments of displacement in t2 of these points decline
corresponding to the reduced rainfall, i.e., when the rainfall in t2 drops by approximately
12%, the variations of displacement of points P1–P3 also drop by approximately 36%,
53% and 79%, respectively. However, for the third time span t3, we can see that since the
rainfall raises by 22% compared to t2, the displacement increments of points P1–P3 also
increase by 59%, 160% and 456% than the values in t2.

4.5.4 INV Results for Anticipating the Time of Failure

Figure 4.10 demonstrates the results of INV analyses. In Section 4.4.4, we described
anticipating the time of failure using the modified INV theory. The period considered in
the INV analyses is from April 2020 to mid-June 2020, which is affected by the heavy
precipitation before the failure, and is the same for all the selected points. It is worth
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Figure 4.10: (a) Results of INV analysis for points (a) P1–P3 and (b) P5 and P7. Red lines
display the results of INV, whereas the black dashed lines show the actual failure
time.

noting that, the areas with accelerating LOS displacement before failure are needed to be
evaluated for INV analysis (Manconi and Giordan, 2016). Otherwise, the method leads
to underestimation or overestimation of the failure time. This has been shown in Figure
4.10b for points P5 and P7, which are located in an area, where no acceleration was found
before the failure. Applying the INV method to these two points resulted in overestimated
prediction times, i.e., approximately 20 and 66 days after failure. The results presented in
Section 4.4.4 shows that among the whole landslide body, only the top of the failure area
indicated accelerated creep since spring 2020 in response to the heavy rainfall (Zone I in
Figure 4.7). By performing INV analysis for the points in this area, we observe that the
INV can predict the time of failure properly (Figure 4.10a).

4.5.5 Comparison of NDVI and Coherence Values

Figure 4.11a shows the negative correlation between coherence and NDVI (MODIS) in
2014–2020. Regardless of the temporal gap in SAR data availability, the changes in co-
herence and NDVI show quite an obvious opposite trend. NDVI indicates whether or
not the target region being observed is covered by vegetation, while coherence is used to
describe changes in backscattering properties and similarities between radar echoes (Wang
et al., 2009b). The high NDVI values occur in summer, when the area is covered by more
vegetation and thus the coherence becomes low. In contrast, less vegetation and thus,
less volume scattering in winter results in higher coherence values for that season. An
interesting result from Figure 4.11a is that coherence drops to its lowest values (∼0.22)
over the past six years before the landslide failure. There are another two minimum values
for June 2015 and July 2016 in the coherence plot. However, these minima are caused by
long temporal baselines between SAR image pairs during these periods.

Figure 4.11b shows the comparison of NDVI values from three different satellite collec-
tions pronounced in Section 4.4.3. Due to the limited temporal resolution, NDVI values
generated from Landsat-8 could not reveal promising results for detailed monitoring of
vegetation dynamics. In contrast, NDVI time series generated from MODIS and S2 show
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Figure 4.11: (a) Comparison of NDVI (MODIS) and interferometric coherence of the 2014–2020
period. The S1 dataset for this region has a temporal gap in 2017–2018. (b) Com-
parison of NDVI time series from three different satellite collections of the period
from July 2018 to May 2021. The NDVI and coherence values are calculated for the
same slope area affected by the failure.

good temporal correlation and agreement. Moreover, the two NDVI time series show some
declines before the failure, i.e., MODIS-derived NDVI shows two declines of approximately
50 and 10 days before the failure; whilst the one derived from S2 indicates a drop of ap-
proximately 20 days before the failure. Reasons for these drops are elaborated in more
detail in the Discussion.

4.6 Discussion

This study has shown the great potential of applying high-resolution optical and radar
satellite remote sensing data and related techniques for the quantitative multi-temporal
assessment of surface kinematics related to the 2020 Aniangzhai landslide failure in the
mountainous region of Danba County. Generally, optical and radar remote sensing are two
methods with their own advantages and weaknesses that can be used to monitor different
stages or types of landslides, e.g., from initial slow creep motion to accelerated stage.
These methods are complementary to each other and are exploited together in this study.

Based on the optical remote sensing data, the dynamics of the presented cascading
events leading to Aniangzhai landslide failure could be clearly observed in their consec-
utive steps, allowing a comprehensive understanding of the resulting disaster chain. The
failure with large displacement as shown in Figure 4.3 is beyond the detective capability
of the InSAR technique (Crosetto et al., 2016). Our optical results are similar to the
deformation vector distribution of reactivated deposits obtained by Zhao et al. (2021).
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However, Zhao et al. (2021) presented the results from tens of monitoring points from 22
June to 12 July, while in our study we derived the horizontal deformation of the whole
failure area using optical remote sensing data between 15 June and 24 June. They also
concluded that the Aniangzhai landslide slipped down as a whole; as the movement did
not change the microtopography, rather the relative positions of points. Our fieldwork
supports this observation, e.g., the houses on the failure body were only cracked but not
collapsed (Figure 4.2). The flooded areas, as well as the sediments of debris flows, are well
demonstrated in the Planet and S2 images, indicating the direct cause and the sources
of this event. The main direction of horizontal displacement from Planet optical images
also provides a guidance for choosing the 6-year descending dataset in MT-InSAR analysis
with a better observation geometry. Moreover, the results obtained from optical images of
the June 2020 failure indicate larger deformation on the lower part of the slide compared
to its middle and head parts in the large failure zone (Figure 4.3). The explanation for
this result could be that the foot of the landslide is closer to the river and is influenced
by both water release from the upstream dam and barrier lake to relieve flood pressure.
All these factors make the slope more vulnerable to undercutting and erosion, resulting in
the large failure on the lower part of the slide. As for the undercutting effects and erosion
on the toe of the landslide body, debris flows from the Meilong valley caused by higher
rainfall in summer 2020 played a vital role. This is consistent with the conclusions as
revealed in Yan et al. (2021). They suggest that the continuous rainfall in 2020 increased
groundwater content and reduced the stability of loose sediments in Meilong valley. Then
the debris flows formed in Meilong valley washed away loose sediments and bedrocks in
the Xiaojinchuan River, a barrier dam was formed just under the Aniangzhai landslide
toes and eventually the overflowed current from the barrier dam washed and eroded the
foot of the ancient landslide body.

By applying radar remote sensing and MT-InSAR techniques, temporal and spatial
variability in the kinematics of the Aniangzhai landslide from 2014 until the 2020 failure
could be comprehensively investigated (Figure 4.8 and Table 4.2). Mean LOS deformation
rates during pre-disaster stage clearly identifies instability of the landslide, with the largest
deformation rates higher than 50 mm/yr in Zone II. The deformation rates, however,
change spatially in the entire slope with points located on larger slope angles, i.e., T3
and T4 in Figure 4.5, showing higher LOS displacement rates compared to the other
points. Zhao et al. (2021) identified the Aniangzhai slope as showing characteristics of
a landslide with a constant deformation state that requires certain prevention measures
before entering into next phase of catastrophic failure. Our multi-temporal interferometric
results confirm this observation by Zhao et al. (2021) and further show that the long-term
displacement rates before the June 2020 failure were not constant; rather, they changed
over time. Influenced by above-average precipitation in summer and the 3-year wet period
that followed a relative drought year in 2016, we observe that the landslide moved in
2018–2020 approximately 14% faster than in 2014–2017.

To better investigate the role of precipitation in influencing the kinematics of landslides,
the statistics on the 2018–2020 period from mid-April to mid-June are analyzed (Table
4.3). This clearly shows how temporal changes in precipitation are correlated with the
kinematics of motion of points in Zone I (Figure 4.7). Several InSAR studies have shown
that ancient landslides reveal instabilities or even precursors in the form of accelerated
creep before the failure (Ao et al., 2020; Handwerger et al., 2019; Teshebaeva et al., 2015),
but the source of acceleration could be different. In some cases, e.g., Teshebaeva et al.

63



4 Pre- and Co-failure: Slope Instability Monitoring Using Spaceborne Remote Sensing

(2015), small creeps and accelerations have been correlated well with the increasing seis-
micity. We have checked the Chinese Earthquake Catalog and searched for earthquakes
around Aniangzhai with a radius of 20 km over the last 1 year before the failure. Results,
however, show no big earthquake (>2.0) occurred in the region; the nearest seismic activ-
ity during this period was around 25 km away from Aniangzhai in the southwest direction
on 9 January 2020 (M 1.8 and a depth of 10 km). Therefore, we exclude tectonic forces
as the source of the accelerated creep in Zone I.

It is worth noting that deep-seated landslides such as Aniangzhai cannot directly react
to rainfall, since the changing of groundwater conditions towards activation of the sliding
plane requires some time until the surface runoff has been infiltrated to a certain depth
(Vallet et al., 2016; Iverson, 2000). In the normal non-flooding seasons, toe erosion of the
landslide should be a constantly ongoing process as well, leading to a backward propagation
of deformation in the upslope direction until the time of failure (Leroueil and Locat, 2020;
Teshebaeva et al., 2015). In this process, rainfall does not play a direct role, but as an
indirect one usually occurring with a lag in time (Haghshenas Haghighi and Motagh, 2016;
Vallet et al., 2016; Teshebaeva et al., 2015; Iverson, 2000). In our case, however, results
show that the lag time is very short as the acceleration occurs almost at approximately the
same time when the precipitation increases. More, in-depth geophysical analysis will be
needed to investigate the reason behind this short time lag between rainfall and motions
in Zone I of this deep-seated landslide. Besides, our results of precipitation analysis also
reveal that the formation of debris flows in the Meilong valley could trace back to April
2020 (Figure 4.6 and Figure 4.9), when rainfall was approximately 30% higher than the
mean values of the last 20 years. This is consistent with Chen et al. (2005), that the
formation of debris flow in this area, i.e. Danba County requires a longer preparatory
phase of increased precipitation before a larger rainstorm eventually triggers the onset of
the debris flow. All these observations suggest that the ancient Aniangzhai landslide was
already active, which eventually failed partially following the undercutting effect in 2020.

The MT-InSAR analysis also provides a good basis for investigating evolution and kine-
matics of motion in different parts of the Aniangzhai landslide. The smoothing method
developed in Section 4.4.4 helped us to properly smooth the data in order to detect the
long-term and transient deformation without losing significant information from the data.
These results have important implications for developing an early warning system for the
Aniangzhai landslide and highlight that InSAR techniques can be used as an operational
monitoring system in Aniangzhai to track progressive deformation and potential release
areas in near real time in order to mitigate hazards associated with landslide failure (Ao
et al., 2020; Carlà et al., 2019, 2018; Hu et al., 2018a). Future works should focus on
comparing the performance of moderate resolution S1 images with higher-resolution SAR
images from missions like TerrasAR-X or CosmoSky-Med to better investigate the poten-
tial and existing limitations in S1 data for landslide analysis (Liu et al., 2020; Hosseini
et al., 2018; Milillo et al., 2014; Bovenga et al., 2012).

NDVI analysis using MODIS and S2 data reveals some interesting patterns, which may
have the potential for early landslide warnings in the Aniangzhai landslide. As expected,
the NDVI values increase while the coherence decreases due to the corresponding increases
in the volume scattering. This behavior has been illustrated well in Figure 4.11a, where a
negative seasonal correlation is clearly observed between the coherence and NDVI values.
Despite having different spatial resolutions, time series of NDVI from MODIS and S2 show
good consistency with each other (Figure 4.11b). Two interesting drops are observed in
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Figure 4.12: (a) Comparison of NDVI (MODIS) in 2017–2019 and in 2020, and orange lines are
examples of LOS velocities in 2020 for points selected arbitrarily within the head of
the failure region. (b) Comparison of coherence for time period of 2018–2019 and
in 2020.

NDVI retrieved from MODIS data before the 2020 failure; one in May, and the other
in June 2020, i.e., 50 and 10 days before the large failure. For the S2 data, a single
drop is observed, i.e., 20 days before the failure. To investigate whether these signals are
related to the behavior of the Aniangzhai landslide or whether they occur seasonally and
independent of the slope motion, we plotted the NDVI values (MODIS) in 2020 against its
historical values of the 2017–2019 period in Figure 4.12a. Examples of LOS displacements
in 2020 from points selected arbitrarily from Zone I are also shown in Figure 4.12a for
comparison.

It is difficult to fully disentangle the causes of the drops in NDVI values, as such drops
are influenced by many factors including soil moisture, surface erosion, plant degradation
and slope deformation (Jacquemart and Tiampo, 2021; Liu et al., 2015; Farrar et al., 1994;
Nicholson and Farrar, 1994). One explanation could be that the drops are related to errors
in data production. As mentioned in Section 4.4.3, the MODIS dataset is generated with
adjustment through BDRF, which might contribute to interpolation errors. Alternatively,
the drops could be related to changes in vegetation structure before the failure as it occurs
at approximately the same time, when a distinct acceleration in landslide active deforma-
tion is seen; no similar behaviours were observed in the historical values. Unfortunately,
the S2 data do not have a dense temporal coverage for the first drop to be used as the
validation. However, based on the above discussion and our results, we do not exclude the
interpretation that the increase in rate of active deformation or the occurrence of small
landslides before the main failure, as observed in seismic data (Yan et al., 2021), could have
altered the scattering properties and vegetation structure in the landslide region, in turn
leading to lower NDVI values. Similar observations of shallow soil erosion and vegetation
damage near fault zones and river networks have been reported elsewhere (Geitner et al.,
2021; Jacquemart and Tiampo, 2021; Gan et al., 2019). As for the post-failure behaviors
of NDVI time series, signification changes are expected compared to the pre-failure situa-
tion (Figures 4.11 and 4.12a). Similar observations of post-event behaviors can be found
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in Behling et al. (2016). The structure of vegetation over the slope area could be greatly
influenced by the large failure, and would last for a certain period in the future.

In a similar manner as above, we also investigated the changes in the time series of coher-
ence values for the Aniangzhai landslide. A recent study indicated the linear relationship
between NDVI and coherence (Bai et al., 2020). As longer temporal baselines could lead to
lower coherence values, only SAR images with a 12-day temporal baseline were used here.
However, as shown in Figure 4.12b, the coherence-based results are not very promising. A
possible reason is that coherence is usually already low during summer in this region, since
this time of the year is characterized by maximal vegetation growth. Therefore, it seems
difficult to accurately discern a further drop in the time series due to low coherence and
high uncertainty. Nevertheless, we can still observe a relatively stronger declining trend
for coherence in 2020 compared to the previous years, which might be related to active
deformation and changes in volume scattering of the landslide. Unfortunately, there are
no available S1B data for this study area. Otherwise, we could study the coherence from
6-day image pairs to determine whether the drop in coherence caused by slope destabiliza-
tion would be more accessible. It can be assumed that, if performed in winter, coherence
analysis might have resulted in a better performance for ongoing slope activation with less
vegetation compared to the analysis in this study.

The stretch to an EWS is hypothetical at this stage, and additional case studies are
needed to further analyze the key factors in changing NDVI and coherence values. We
suggest that the consideration of both parameters might lead to possible observations
of signs of slope activation. With more experiments in the future, these results might
contribute to a potential EWS for landslide hazards.

4.7 Conclusion

This paper focused on exploiting multi-sensor remote sensing technology to investigate
the June 2020 Aniangzhai slope failure and the active deformation prior to the event
since late 2014. Cross-correlation analysis of high-resolution optical data from Planet
provides detailed information about the spatial pattern of slope kinematics. Moreover,
the undercutting effects on the toe of the landslide body, which played a vital role in
the toe erosion and reactivation of this ancient landslide body, are also clearly visible in
the optical data. The toe erosion was triggered by overflow of a dammed lake, created
due to heavy rainfall and the resulting debris flows coming from the Meilong valley to
the Xiaojinchuan River, and was influenced also by the discharge of the surplus water
from a nearby hydropower station to reduce the flood pressure. Complementary analyses
using multi-temporal SAR satellite remote sensing shows that the Aniangzhai landslide
was not dormant. Rather, it was already active before the failure, with a maximum
LOS displacement rate of around 38 mm/yr in 2014–2017, reaching approximately 55
mm/yr in 2018–2020. Our findings indicate that not the whole landslide body was subject
to accelerating creep before the June 2020 failure; rather, only the points situated on the
upper parts of the landslide failure sustained pronounced acceleration of the creep starting
in spring 2020. As a result, the time series of displacements derived from these points could
be utilized to forecast the potential window of failure. Moreover, we observed the sign
in which an acceleration of creep on the head part of the failure region and a decrease
in NDVI values took place almost at the same time, opposite to the prevailing trends
in this area. We discussed the likely causes to interpret this phenomenon and suggested
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that this sign may be regarded as a parameter to be integrated into an EWS. With more
case studies in the future, the methods proposed in this paper can be utilized under the
framework of multidisciplinary DRR for a comprehensive analysis of the cascading event
chain influencing the instability of the ancient landslides.
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4.9 Supplementary Materials

This supporting material includes four three text sections, three figures and one table.
First, we show a comparison between the normal river state and the one with debris flows
in 2020 failure (based on the S2 data). Moreover, the previous river courses and the one in
the 2020 failure, which was flooded in the event, are compared from Planet optical images
in this study. Besides, we describe the exploited descending S1 SAR acquisitions and the
baseline graphs of interferograms.

4.9.1 Comparison of River Courses

By exploiting S2 datasets, the debris flows triggered by the heavy precipitation could be
observed quite obviously. Due to the limitation of optical remote sensing and the geological
settings in this area, the cloud-free images are hardly to find, especially in the rainy season
(May to July). For comparison, we choose these two images from 13 August 2019 and 27
August 2020, respectively. The first one shows the normal state of the river; whilst the
latter image clearly shows the debris flows triggered in this event, regarding as the direct
cause to the construction of the barrier lake under the Aniangzhai ancient landslide body.
As seen in Figure 4.13b, the debris flows were comprised of several failures from the valley
region north to the reservoir.

From the Planet optical images, we investigate the river courses of Xiaojinchuan River
in previous years. As seen from Figure 4.14, different from the course in the event of
the 2020 failure, the previous river courses in June 2018 and June 2019 demonstrated the
similar narrow extends and appearances, which indicated the normal states of the river
course. In comparison with Figure 4.14d, we can obviously see the floods, the barrier lake
and the flooded areas in this event on 24 June 2020.
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Figure 4.13: Comparison of the river courses between (a) the normal one in the previous year
on 13 August 2019 and (b) the debris flows on 27 August 2020. The images are S2
acquisitions.

Figure 4.14: Comparison of the river courses for the rainy season in the previous years, on (a) 06
June 2018, (b) 06 June 2019, (c) 06 June 2020, to the river course of the accident
(d) 24 June 2020. The planet remote sensing optical images are exploited.

4.9.2 Detailed Parameters of Exploited SAR Data

For the exploited S1 data, both ascending and descending images are available. However,
since the landslide body has the foreshortening effect in ascending orbit, the descending
data is exploited in this study. The utilized images range from October 2014 until June
2020. The detailed parameters can be found in Table 4.4. There are totally 89 images.
However, a few images in the period of 2014 to 2015 cover the study area partially and
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Table 4.4: Summary of parameters of the exploited descending S1 SAR acquisitions in this study.

Parameter Value Unit

Duration 2014–2020 –
Orbit descending –

Number of images 89 –
Heading angle 192.8 degree
Incidence angle 36.9 degree

Pixel size in azimuth 13.9 m
Pixel size in slant range 2.3 m

Wavelength 5.6 cm

(a) (b)

(c) (d)

Figure 4.15: Baseline networks in MT-InSAR processing of (a) PSI for the first time span in
2014–2017; (b) SBAS for the first time span in 2014–2017; (c) PSI for the second
time span in 2018–2020; (d) SBAS for the second time span in 2018–2020.

they are stitching together for the exploitation. In the end, 80 images are applied in this
study for the MT-InSAR processing.

4.9.3 Comparison of Baseline Graphs

For the baseline graphs in the MT-InSAR processing, the images on 01 January 2016 and
20 July 2019 are selected as the mater and supermaster images in the PSI and SBAS
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processing for the two time series of SAR images, respectively. Because of the lower
sampling frequency in the first period, we set the thresholds for temporal and spatial
baselines as 350 days and 120 metres to build the SBAS network. As for the second
time span, the consecutive images have a continuous 12-day interval. Hence, we set the
thresholds as 200 days and 80 metres. In specific, the corresponding baseline graphs are
shown in Figure 4.15.
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5.1 Abstract

Using SAR and InSAR technology, artificial corner reflectors (CR) are popular coherent
targets for monitoring ground instability with sub-centimeter accuracy in non-urban areas.
In this letter, we investigate the performance of a newly designed small dihedral corner
reflector (DCR) for monitoring post-failure creep at the Aniangzhai landslide in Danba
County, China. The new double geometry CRs consist of two sets of semi-circular metal
plates, each 30–40 cm in radius and perpendicular to each other. Six such CRs are installed
for Corner Reflector Interferometric SAR (CR-InSAR) analysis using both TerraSAR-X
(TSX) High-resolution Spotlight (HS) data and medium-resolution Sentinel-1 (S1) SAR
images. The CRs are first identified in SAR images using a probability model by taking
into three factors. These are (1) inverse of amplitude dispersion, (2) intensity increment
after the installation, (3) an upper empirical bound derived from the ensemble average of
pixel intensities in post-deployment SAR images. Experimental results show that the CRs
improve the background intensity in TSX images by around 30 dB, with signal-to-clutter
ratio (SCR) exceeding 25 dB. Furthermore, the radar cross-section (RCS) of CRs in both
TSX and S1 images remains relatively stable, ranging from 15 dB to 23 dB, making them
suitable for CR-InSAR analysis using double-difference phase observations.

5.2 Introduction

Artificial corner reflectors (CRs) are manufactured auxiliaries for synthetic aperture radar
(SAR) and interferometric SAR (InSAR) analysis, as they introduce coherent scatters
with stable amplitude and phase information during radar acquisitions (Bovenga et al.,
2014). Deploying CRs as artificial coherent scatters is an alternative to increase the
number of measurement points in multi-temporal InSAR analysis, especially when there
is a risk of severe coherence loss between successive SAR image acquisitions in vegetated,
semi-vegetated, or agricultural regions (Xia et al., 2004). Due to their steady and robust
echoes, traditional trihedral corner reflectors (TCRs) with large dimensions, e.g., with
an edge of 1 meter, have been proposed as an effective instrument for monitoring slope
stability in vegetated mountainous areas (Bovenga et al., 2014; Shan et al., 2013; Froese
et al., 2008; Xia et al., 2004).

The increase in the availability of high-resolution X-band SAR imagery by German
TerraSAR-X (TSX) and the Italian COSMO-Skymed (CSK) satellites has made the use
of CRs more appealing, as such SAR systems could benefit from smaller CRs which can
be installed in challenging environments with the advantage of having low cost, easy
installation, and simple maintenance (Dheenathayalan et al., 2017). However, there is a
limitation in using smaller CRs in that a reduction in power occurs due to the reduced
size of reflectors that would limit their applicability for medium-resolution SAR images
from missions like Sentinel-1 (S1) and ALOS-2 (Dheenathayalan et al., 2017; Garthwaite,
2017). It is worth noting that with regard to the design of CRs, no single design that
could perform equally well for all of the currently operational SAR satellites (Garthwaite,
2017). Thus, a sensor-specific CR or a compromise solution for several sensors needs to
be taken for operational monitoring.

In this study, we present the results of our experiment for using a newly designed
dihedral corner reflector (DCR) for monitoring post-failure creep at Aniangzhai landslides
in China. The CRs have small dimensions (each 30–40 cm in radius), and are constructed
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with symmetrical geometry (Figure 5.1), making them suitable for both ascending and
descending SAR observations and broadening their application to those fields requiring
the generation of 3D velocity maps from SAR data. Previous studies have shown that
the primary deformation of the Aniangzhai landslide is along the northwest direction
(Xia et al., 2022b), which makes the landslide more sensitive to SAR observations from a
descending track. Therefore, here we mainly focused on descending SAR images that have
more sensitivity to slope motion in the study area. However, results from S1 ascending data
are also presented for comparison purposes. Six CRs were deployed at different positions
of landslides in November 2020 (Figure 5.1a). Then through a research proposal with
the German Aerospace Agency, we tasked High-resolution Spotlight (HS) data acquisition
from a descending orbit between July 2020 and February 2022. We also analyzed S1
ascending and descending data for a similar period to evaluate the performance of CRs for
C-band SAR systems. In total, we exploited 51 TSX and 90 S1 images of the Aniangzhai
landslide for this experiment.

This paper is organized as follows. Following this introduction, the design of the ex-
periments and the selection strategy using a conditional probability model for CRs for
different SAR sensors are introduced. Two important indices to evaluate the CRs, i.e.,
radar cross-section (RCS) and signal-to-clutter ratio (SCR), and the method of Corner
Reflector Interferometric SAR (CR-InSAR), are elaborated as well. Finally, the results of
tested DCRs are demonstrated, compared, and discussed in detail, followed by an overall
conclusion of this study.

5.3 Experiments and Methodology

5.3.1 Experimental Design

CRs are usually composed of two or three electrically conducting surfaces to produce pow-
erful radar echoes from areas with low effective RCS. Multiple reflections might precisely
backscatter incoming electromagnetic waves in the same direction from which they come.
As a result, even objects with small dimensions can produce mighty echoes. When CRs
point directly along the boresight of a SAR antenna, the RCS of CRs could reach its max-
imum. Figure 5.1d shows the schematic design and location of our CRs in the study area.
They are composed of two sets of semi-circular metal plates positioned perpendicular to
each other, so that they can be used for both ascending and descending high-resolution
satellite imagery. These two sets are installed on a standard pillar, with the same inclina-
tion angle of 10◦ symmetrically. Among the six CRs, CR03 and CR04 have a radius of 40
cm, while the rest have a relatively smaller radius of 30 cm. The initial locations of the
six CRs for the installation are measured with Global Positioning System (GPS).

5.3.2 Selection Strategy for CRs

In order to overcome difficulties such as biased GPS position or unpredictable interference
with other scatterers (Figure 5.1c), we propose a general selection strategy for identifying
CRs in SAR images based on different properties and variations of power in pixels brought
by the installation of CRs. The selection strategy is based on three different weighting
factors. The first one is the inverse of amplitude dispersion index wA, which represents
the phase stability of CRs, with higher values being suggestive of more stability (Ferretti
et al., 2001). The second weighting factor wI is the intensity increments of pixels after the
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Figure 5.1: (a) Study area and locations of tested CRs, specified by numbers 1–6. The background
image is from a Skysat high-resolution optical image acquired in November 2020. The
boundaries of different zones of the landslide body are presented (Xia et al., 2022b).
(b) Field photo from a tested CR over Aniangzhai landslide. (c) Position relationship
between CR03 and the newly arranged TCR as an unexpected interference. (d) The
general schematic of constructed CRs.

installation, as theoretically we would expect the CRs to improve the lower clutter intensity
in SAR images. The third weighting factor wE is an upper empirical bound derived from
the ensemble average of pixel intensities in sequential images after the deployment. This
factor restricts selections of pixels other than CRs with stable and stronger signals that
could come from, e.g., broken roads, buildings, and similar constructions on the landslide
slope. Finally, after the derivation and normalization of all three weightings, a conditional
probability model for every pixel is derived within the search window using

Pw = P (wA) · P (wI |wA) · P (wE |wA, wI) (5.1)

According to the existing parameters, pixels with a more significant probability inside
the search window are more likely to exhibit features similar to the tested CRs. In our
experiment, this selection strategy helped properly identify and locate the tested CRs
in both TSX and S1 images. Indeed, the method proposed here could also be exploited
as a general strategy for other cases to identify similar targets with CR-like echoes. For
example, when applied on other types of CRs, the only parameters that need to be changed
in the above formulation are the time interval to estimate wI and the empirical value for
calculating wE based on the properties of individual CRs.
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5.3.3 Radar Cross-section (RCS)

The projected area of a metal sphere scattering the same amount of energy in the same
direction as the target is known as RCS (Knott et al., 2004), and its unit is often written
in logarithmic form, i.e., dBm2 or dBsm. RCS indicates the measure of the target’s
detectability (Shan et al., 2013), defined theoretically as

RCS =
4π · (Ae)

2

λ2
(5.2)

where Ae is the projected area of the effective cross-section of CR, and λ is the wavelength,
i.e., approximately 3.1 and 5.5 cm for TSX and S1 satellites, respectively. The maximum
RCS of our tested CR with this specific design of geometry could be computed as

RCSmax =
4π · (

√
2
2 π ·R2)2

λ2
=

2π3 ·R4

λ2
(5.3)

where R is the radius of the semi-circular metal plates. According to the equation (5.3),
the maximum theoretical RCS of our CRs in TSX images is approximately 32.2 dB for
the CRs with a 40 cm radius, and about 27.2 dB for 30 cm radius. As for S1 data, the
CRs with a 40–cm and 30–cm radii have the maximum theoretical RCS values of around
27.2 dB and 22.2 dB, respectively.

Alternatively, RCS could also be measured directly from SAR images using the peak
method in the spatial domain (Ulander, 1991)

RCSmeasure = ECR ·Acell (5.4)

where ECR is the intensity of CR, and Acell is cell resolution. The measured RCS should
be lower than the theoretical value due to the misalignment of the antenna.

5.3.4 Signal-to-clutter Ratio (SCR)

SCR is another commonly used metric for target visibility in SAR images (Freeman, 1992).
The targets such as CRs are needed to be much higher than the scattering level of the
background. The SCR is defined as (Freeman, 1992)

SCR =
RCST

⟨RCSC⟩
(5.5)

where RCST represents the target RCS, and ⟨RCSC⟩ is the ensemble average of clutter
RCS neighboring the point target. For the conventional TCRs with strong power and
cross-like signals in the SAR image, the clutter RCS is usually estimated with the average
clutter intensity within the four clutter quadrants. However, in our study, the tested
CRs were not strong enough to generate such cross-like signals due to small dimensions
and differences in spatial resolution. Instead, only several concentrated pixels could be
dominated and obtained. Thus, we derive the clutter RCS using an ensemble average
within the search window neighboring tested CRs.
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5.3.5 CR-InSAR Processing

Following identifying CRs, we exploit the CR-InSAR method for deformation analysis of
the Aniangzhai landslide. CR-InSAR is a specific InSAR method applied for CRs (Shan
et al., 2013; Froese et al., 2008; Xia et al., 2004). It mainly exploits the information from
double phase difference compared to a reference CR in different epochs

∆ϕij = (ϕs
i − ϕs

j)− (ϕm
i − ϕm

j ) (5.6)

where ∆ϕij represents the double phase difference of CRs i and j, the superscripts m and
s are master and slave images. Then the wrapped phase obtained by double differencing
needs to be unwrapped to estimate phase ambiguity. Here we used the least squares
ambiguity decorrelation adjustment (LAMBDA) method to estimate the absolute phase
(Kampes and Hanssen, 2004), and derive line-of-sight (LOS) motion based on linear and
seasonal functional models. The atmospheric effects, i.e., tropospheric and ionospheric
phase components, are neglected by the double-difference of phase observations considering
the closing distance of deployed CRs (Froese et al., 2008; Xia et al., 2004).

5.4 Results and Discussion

With the help of new methodology, we were able to identify our newly designed dihe-
dral CRs correctly in both high resolution TSX HS and medium resolution S1 data (see
supporting material Figure 5.3). The traditional ways to identify the conventional TCRs
would be visual checking assisted by GPS coordinates as they would create intense echoes
due to their large dimensions. However, this process does not work for our type of CR
due to their small dimension and low energy. Moreover, due to the resampling of the CRs,
the precise coordinate of CRs may not be the highest CR intensity peak. Our proposed
strategy to identify small CRs has the following advantages: (1) It enables to identify
CRs containing several concentrated pixels in SAR images, especially when CRs are lo-
cated at the border of pixels. (2) It mitigates and reduces the influence of unpredictable
interference from other scatterers with even stronger echoes in both high- and medium-
resolution SAR images. (3) It can be adopted when the signals of tested CRs are not as
strong as the conventional TCRs. (4) It can be utilized when the signals are influenced
by low sensitivity and layover effect caused by satellite observation geometry. However,
this selection strategy also has limitations in that it needs a priori information, e.g., the
deployment time of CRs. With more a priori knowledge, a more reliable the estimation of
the weighting factors could be obtained, leading to more accurate identification of CRs.

As revealed in Figure 5.2, after selections of CRs in SAR images, we could obtain
results of all the evaluation factors on the tested CRs. It is worth mentioning that TSX
and S1 datasets are delivered in different types, i.e., the short complex and float complex
format, respectively. Therefore, for a better comparison of two SAR data, the format
of TSX images is first converted to the same as S1 data; then the calibrated intensity
time series for two data are checked to ensure that the tested CRs exhibit identifiable
scattering in SAR images. In order to illustrate the spatial distribution characteristics of
radar intensity in this area, the radar intensity maps for the tested CRs are also displayed
after their deployment (see Figures 5.4 to 5.6 in supporting material).

Figures 5.2a-5.2c show the time series of calibrated intensity on tested CRs in TSX
and S1 data. In TSX images, the background intensities of the tested CRs are enhanced
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Figure 5.2: Results of the tested CRs. (a)-(c) Time series of calibrated radar intensity. (d)-
(f) Time series of the measured RCS values. (g)-(i) Time series of the measured
SCR values. (j)-(l) LOS displacements estimated using CR-InSAR method. (m)-(n)
Converted slope displacements on CRs. The left, middle and right columns are TSX
descending, S1 descending, and S1 ascending datasets, respectively. The light gray
dashed lines represent the deployment of the CRs.

from approximately -15 dB to 15 dB after the deployment. For S1 images, however,
this improvement is lower, i.e., by around 10 and 5 dB for the descending and ascending
images, respectively. We also found that two CRs were missing by analyzing the results.
CR04 could be observed initially after the deployment, but as of 2021, its intensity had
decreased rapidly and was no longer visible in the search window. CR06 was completely
missing in our analysis. Through the field investigation in late 2021, we found that the
major reason for missing signals could be the skewed viewing orientations caused by man-
made impediments, which were fixed during later fieldwork.

In general, we can say that the tested CRs work better in TSX images than in S1
images in improving the background clutter. This is mainly due to the great difference
in spatial resolution between TSX and S1 SAR images, with the resolution of 0.9× 1.2m
and 2.3× 14.0m, respectively. Moreover, except for CR03 in S1 images, the intensity time
series of CRs remains stable until the end of both SAR data. The calibrated intensity of
CR03 shows a significant increase after June 2021 in S1 data. Checked by the fieldwork,
we found that another group had set a new TCR with an edge of one meter very close to
our CR03 (Figure 5.1c, around 2∼3 meters), which also appears in SAR data since June
2021. As a result, the intensity of CR03 interfered by this new TCR in S1 descending
images, leading to an unusual signal rising (Figure 5.2b). On the contrary, this interference
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was not dominant in TSX HS images due to their higher spatial resolution, enabling us
to easily separate echoes from CR03 and its neighbouring CR (Figure 5.2a), a task which
was impossible to accomplish in medium-resolution S1 descending images. Besides, this
TCR is descending-orbit orientated, so the results of S1 ascending data are not affected
by the new TCR in the evaluation (Figure 5.2c).

Figures 5.2d-5.2f demonstrate the time series of measured RCS on tested CRs in TSX
and S1 images. Generally, we observe that the derived RCS values remain more or less
stable for both TSX and S1 images, ranging from 15–23 dB; whilst the RCS of CRs in
TSX images is approximately 5–10 dB higher than the values in S1 images. Compared
to the theoretical RCS, it is not surprising that the derived RCS from SAR images could
not reach the maximum analytical values expected, as the CRs are not optimally deployed
for specific satellite orbits. Moreover, the CRs are not directed towards the boresight,
too. Similar to the intensity analysis, the same rising feature of RCS for CR03 could be
observed after June 2021 due to the influence of another TCR nearby.

Figures 5.2g-5.2i reveal the time series of derived SCR for tested CRs in TSX and S1
images. Overall, SCR in TSX images exceeds 25 dB, suggesting the great potential for
recognition between CRs and background clutter when using TSX images. On the con-
trary, SCR in S1 is lower, mainly around 15 dB and 10 dB in descending and ascending
data. Although it is not as good as in TSX, the RCS of CRs in S1 images is still appar-
ent compared to the clutter. This suggests that the tested CRs could be distinguished
compared to the dark background coming from dense vegetation in this area. Taking into
account SCR, the effective phase errors for TSX and S1 images are about 0.04 and 0.13
radians, respectively (see supporting material); while the effective displacement errors in
the LOS direction are about 0.1 and 0.6 mm in X-band and C-band, respectively. Another
interesting feature revealed in Figure 5.2g is the drop of SCR values in TSX images since
April and its increase in winter. This feature could possibly be linked to the increase in
precipitation and growth in vegetation in the summer season that causes the drops of the
SCR values (Kozu et al., 2001).

Figures 5.2j-5.2l reveal results from CR-InSAR analysis of CRs using TSX and S1
datasets with CR05 on the upper slope above the failure part of the landslide being se-
lected as the reference CR. For the LOS displacements, the amounts of deformation from
ascending and descending are different. For a better comparison, we further converted
LOS displacements into slope displacements of the two descending SAR data. The move-
ment of the landslide block may be controlled by a sliding surface that is approximately
parallel to the surface of the slope (Xia et al., 2022b). Therefore, the average slope and
aspect of the middle and lower parts of the landslide are exploited to calculate the scaling
factors. Figures 5.2m and 5.2n demonstrate the converted slope displacements from TSX
and S1 descending datasets. Please note that the Aniangzhai landslide slope is facing to
the west, which causes a layover effect in ascending orbit SAR data (Haghshenas Haghighi
and Motagh, 2016). Moreover, it is not feasible to convert the S1 ascending data to slope
direction, as this observation geometry has very low sensitivity to the landslide slope mo-
tion (Haghshenas Haghighi and Motagh, 2016; Motagh et al., 2013); during the process of
calculation, the scaling factors for transformation from LOS direction to slope direction
are within the interval of 0.19∼0.23, causing great artificial exaggeration and extreme
values. Hence, the results derived from ascending orbit data are not as promising as the
results from descending orbit.
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5.5 Conclusion

As seen in Figures 5.2m and 5.2n, for both TSX and S1 descending data, CR01–03 sug-
gest similar kinematics of motion from the beginning until October 2021. After conversion
into slope direction, the differences in magnitude of slope displacements between TSX and
S1 data are found to be reduced compared to the differences in LOS displacements, i.e.
from a few cm to 1 cm, especially for CR03. Until the end of October 2021, cumulative
slope displacements of CR01–03 in TSX images are 17.8, 21.5, and 24.3 cm, respectively;
in S1 images the displacements are 16.3, 19.4, and 24.0 cm, respectively. As of October
2021 we observe a distinct slowing-down of slope motion in both SAR images. The slow-
ing down could be linked to the upslope loading from deposition of new material into the
vacancies in landslide toe and foot areas (Xia et al., 2022b; Lacroix et al., 2020).
In a previous study, Dheenathayalan et al. (2017) successfully tested trihedral CRs with

even smaller dimensions than ours containing an edge of around 14.5 cm, with their SCR
of around 6 dB on average and improving the clutter intensity by around 6 dB. The
small-scale CRs in Dheenathayalan et al. (2017) are specialized only to be used for high-
resolution datasets such as TSX or CSK, and not for lower resolution datasets such as
S1. Larger CRs would undoubtedly result in higher RCS and SCR values. However, the
deployment and maintenance procedures would also be more difficult (Shan et al., 2013).
Our dihedral CR could act as a compromise solution among different CRs, which can be
used for InSAR monitoring using both TSX and S1 SAR data at a relatively low cost with
easy installation and maintenance.

5.5 Conclusion

This study confirms that small DCRs designed within the framework of this experiment can
reliably be used for deformation monitoring using CR-InSAR technique. An experimental
study to assess post-failure creep at Aniangzhai landslide in China using both TSX HS and
S1 images showed that the background intensity in TSX images was enhanced by around
30 dB after CR installation, with SCR exceeding 25 dB. In comparison, the background
intensity in S1 images was improved by only about 5–10 dB, with SCR of around 10–15 dB.
In both TSX HS and S1 SAR images, the RCS of CRs remained rather consistent, ranging
from 15 dB to 23 dB, making them appropriate for CR-InSAR analysis using the double-
difference phase method. High-resolution SAR images have irreplaceable advantages in
SAR and InSAR analysis due to the significant improvement in spatial resolution and
shorter revisit times. Although our CRs were initially designed for X-band SAR systems,
they illustrated sufficient SCR to be applied in S1 images for interferometric analysis,
making them complementary to other traditional survey methods such as GPS or leveling.
They can be installed quickly and easily at a relatively low cost in landslide regions, where
ground-based measurements are lacking, for near real-time deformation monitoring and
supplementing landslide hazard warning systems.
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5.7 Supplementary Materials

This supporting material includes four text sections and five figures. Here, the formula
for calculating effective displacement and phase errors from SCR is demonstrated. And
we describe and elaborate on the proposed selection strategy for our CRs based on a
conditional probability model applied in TSX and S1 datasets. Four different examples of
intensity near CRs are displayed correspondingly. Moreover, the radar intensity maps for
the tested CRs CR01–03 and CR05 are demonstrated in all exploited SAR images after
their deployment in November 2020. Besides, we present one site photo of the interference
from the triangle CR.

5.7.1 Calculation of SCR

The effective displacement error and phase error could be derived from SCR as (Ketelaar,
2009):

derr =
λ

4π
· ϕerr ≈

λ

4π
· 1

2 · SCR
(5.7)

where derr is the effective displacement error, ϕerr is the effective phase error, λ is the
wavelength, SCR is the signal-to-clutter ratio.

5.7.2 Selection Strategy

In this study, the proposed selection strategy works appropriately for identifying our tested
CRs in all exploited satellite datasets, though our CRs have small dimensions and low
energies than the conventional triangular CRs. Generally, we calculate the probability
for each pixel in SAR with the different setting conditions. Then, the highest one within
the search window based on the GPS coordinates is identified to be the CR’s position.
The advantages of the proposed selection strategy are demonstrated with four examples
in Figure 5.3 as follows:

• As shown in Figure 5.3a, several concentrated pixels instead of a single pixel could be
dominated for CRs in high-resolution SAR images, especially when CRs are located
at the border of pixels. In this case, the probabilities of all pixels are calculated.
The location of CR shall be identified as the pixel containing the highest probability
using the proposed strategy.

• As shown in Figure 5.3b, in TSX images, unpredictable interference could occur
with other scatterers with even stronger echoes. In this case, our proposed strategy
could help identify the correct position of CR, avoiding interference from another
CR settled by another group.

• As shown in Figure 5.3c, as for S1 descending images, our CRs could not be easily
recognizable due to the small dimensions in medium-resolution SAR images. There
would be clutter pixels with similar or even stronger echoes than the CRs. In this
case, our proposed strategy could help identify the correct position of CR in S1
images.

• As shown in Figure 5.3d, in S1 ascending images, our CRs could not be easily recog-
nizable due to the layover effect and low sensitivity caused by satellite observation
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(a) (b)

(c) (d)

Figure 5.3: Examples of demonstrating the proposed selection strategy using a conditional prob-
ability model for (a) CR01 in TSX descending image on 24 March 2021; (b) CR03
in TSX descending image on 03 August 2021; (c) CR01 in S1 descending image on
21 July 2021; (d) CR01 in S1 ascending image on 30 October 2021. The rest pixels
without markers have the probability of zero.

geometry. In this case, our proposed strategy is working to identify the correct
position of CR.

5.7.3 Radar Intensity Map

The radar intensity maps for the tested CRs CR01–03 and CR05 are displayed in Figures
5.4 to 5.6 for all datasets after their deployment. The purpose is to illustrate the spatial
distribution characteristics of radar intensity in this area, especially the intensity map of
CR03 after July 2021. The interference from the newly arranged triangular CR could
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Figure 5.4: Radar intensity map for the tested DCRs CR01–03 and CR05 after the deployment
in TSX descending dataset.

Figure 5.5: Radar intensity map for the tested DCRs CR01–03 and CR05 after the deployment
in S1 descending dataset.

be clearly seen in the TSX images (Figure 5.4). In addition, the influence of the layover
effects brought by the observation geometry could be clearly observed in the ascending
intensity time series (Figure 5.6).

5.7.4 Site Photo of Interference Reflector

Figure 5.7 shows a site photo of the interference TCR near our tested CR03. The triangle
TCR can accumulate water, which could cause its RCS to be unstable. The following
photos can be used as an example to illustrate this.
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Figure 5.6: Radar intensity map for the tested DCRs CR01–03 and CR05 after the deployment
in S1 ascending dataset.

Figure 5.7: Site photos of the interference TCR near our tested CR03.
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6.1 Abstract

A massive landslide often causes long-lasting instability dynamics that need to be analyzed
in detail for risk management and mitigation. Multiple satellite remote sensing observa-
tions, in-situ measurements, and geophysical approaches have been jointly implemented to
monitor and interpret the life cycle of landslides and their failure mechanisms from various
perspectives. In this work, we propose a framework where satellite optical and synthetic
aperture radar (SAR) remote sensing techniques are combined with feature extractions us-
ing independent component analysis (ICA) and a mathematical relaxation model to assess
the complete four-dimensional (4D) spatiotemporal patterns of post-failure slope evolu-
tion. The large, deep-seated Aniangzhai landslide in Southwest China that occurred on 17
June 2020 is comprehensively analyzed and characterized for its post-failure mechanism.
Time series of Planet high-resolution optical images are first explored to derive the large
horizontal motions for the first six months after the failure. Spatiotemporal dynamics of
line-of-sight (LOS) displacement in the landslide body are then derived between November
2020 and February 2022 by combining 40 TerraSAR-X (TSX) High-resolution Spotlight
(HS) images and 76 medium-resolution Sentinel-1 (S1) SAR datasets using Multi-temporal
InSAR (MT-InSAR) method. The InSAR-derived results are subsequently analyzed with
ICA to find common deformation components of points between optical and MT-InSAR
results, indicating the same temporal evolution in the deformation pattern. Finally, the
complete 4D deformation field for the whole post-failure period is modeled using a decaying
exponential model representing stress relaxation after the failure by integrating multiple
remote sensing datasets. Cross-correlation analysis of Planet imagery shows a decaying
exponential pattern of post-failure displacements with an approximately 94% reduction
in the deformation rate after six months with respect to the co-failure event. MT-InSAR
analysis suggests a maximum LOS displacement rate of approximately 30 cm/year over the
main failure body from November 2020 to February 2022; while the high-resolution TSX
datasets show irreplaceable advantages in choosing the number of measurement points in
MT-InSAR analysis with the number of measurement points being five times larger than
those obtained by S1 datasets. The ICA analysis reveals three main types of kinematic
patterns in the temporal evolution of post-failure deformation in MT-InSAR results, the
dominant one being an exponential declining pattern similar to the results from Planet
observations. Integrated 4D deformation modeling suggests that the most significant post-
failure displacement mainly occurred toward the west, amounting to 28 meters during the
entire post-failure acquisitions from June 2020 until February 2022. Additionally, maxi-
mum displacements of 17 meters and 19 meters occurred in this period toward the north
and downward, respectively.

6.2 Introduction

Landslides are a common geological hazard in mountainous areas worldwide, causing fa-
talities in urban settlements, damage to infrastructure and agriculture, and substantial
economic losses. The mechanism of landslides is often complicated, with most of the
landslides being slow-moving at the beginning, at speeds ranging from a few millimeters
to several meters each year (Lacroix et al., 2020). Then, due to specific triggers such as
earthquakes, violent storms, or scouring from debris flows, creeping landslides can rapidly
accelerate, leading to shear stress resisting shear strength, and eventually generating a
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catastrophic avalanche-like movement (De Blasio, 2011). In remote mountainous regions
with steep slopes, ground-based systems for landslide monitoring, such as GNSS, are chal-
lenging to implement (Xia et al., 2022b). In order to effectively compensate for this
deficiency, satellite remote sensing techniques could be applied as an alternative to detect,
monitor, and evaluate landslide hazards at regional scales. However, satellite optical and
SAR remote sensing have unique advantages and weaknesses.

Due to its simplicity and reliability, the sub-pixel offset tracking technique using the
normalized cross-correlation (NCC) algorithms has been widely implemented in optical
remote sensing for horizontal displacement monitoring (Paul et al., 2015; Debella-Gilo
and Kääb, 2011; Delacourt et al., 2004). For example, large-scale horizontal deformations
can be derived from optical image time series for glacier movement, where the maxi-
mum velocity could exceed a hundred meters per year (Paul et al., 2015). Horizontal
displacement of unstable slopes could also be obtained using the NCC to evaluate the
kinematic properties of landslides (Delacourt et al., 2004). However, measurement preci-
sion, alignment error between relevant image pairs, and different interpolation factors can
significantly impact the accuracy of the deformation maps produced through the NCC
method (Debella-Gilo and Kääb, 2011; Delacourt et al., 2004), so this processing is only
available when the magnitude of deformation is more than one-tenth of the pixel size (Hu
et al., 2018b; Debella-Gilo and Kääb, 2011). It is also challenging to acquire cloud-free
images during catastrophic failures as landslides more frequently occur in mountainous
regions and during the rainy seasons. Additionally, assessing the physical characteristics
(e.g., velocity, friction, and other physical parameters) of catastrophic landslides is ex-
tremely difficult due to their destructive capability and the temporal gap between suitable
imagery when applying optical remote sensing (Lacroix et al., 2020).

SAR interferometry (InSAR) technology is another alternative for systematically iden-
tifying and monitoring geological hazards on a regional and even continental scale (Festa
et al., 2022; Garg et al., 2022; Hu et al., 2022; Zhou et al., 2022b; Tomás et al., 2019; Motagh
et al., 2017; Herrera et al., 2013), which could be implemented in inclement weather and
be unaffected by sunlight conditions. In InSAR technology, many different methods can be
adopted to precisely identify ground motion. For instance, advanced Multi-temporal In-
SAR (MT-InSAR) techniques such as persistent scatterer interferometry (PSI) and small
baseline subset (SBAS) can be used to estimate landslide creep rates and time series
with centimeter to millimeter level precision (Zhou et al., 2022a; Handwerger et al., 2019;
Teshebaeva et al., 2015; Motagh et al., 2013). Over the last decades, an increasing number
of academics have shown interest in monitoring slope instability dynamics using InSAR
due to the significant increase in the number of images from the C-band Sentinel-1 (S1)
satellite since its launch in 2014 (Festa et al., 2022; Dai et al., 2020; Tomás et al., 2019;
Di Martire et al., 2018; Intrieri et al., 2018; Barra et al., 2016; Feng et al., 2015). Mean-
while, the development of the X-band high-resolution TSX mission also makes MT-InSAR
techniques more promising in low coherence areas due to the increased spatial resolution
and higher density of measurement points, as shown by numerous studies (Xia et al.,
2022a; Di Martire et al., 2018; Singleton et al., 2014; Bovenga et al., 2014; Motagh et al.,
2013). However, the application of InSAR technology has limitations due to decorrelation
between radar images or unwrapping errors caused by rapid motions with significant gra-
dients. The limitation of measured displacement is one-fourth of the wavelength between
adjacent pixels (Singleton et al., 2014; Jiang et al., 2011). Therefore, using InSAR technol-
ogy for rapid displacements, such as glacier motion, seismic deformation near faults, and
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catastrophic failure exceeding the threshold limit is inappropriate (Singleton et al., 2014).
Furthermore, SAR sensors are not sensitive to the deformation in the North-South (N-S)
direction. GNSS measurements could be applied to improve the reliability of horizontal
components of InSAR observations (Hu et al., 2018b). However, GNSS data are often
unavailable in remote areas, especially for studying inaccessible landslides. Only a small
number of particular landslide cases in hot-spot areas could be continuously analyzed and
monitored with GNSS.

Taking the Aniangzhai landslide event in Sichuan Province of Southwest China as a case
study, we investigate and characterize the post-failure mechanism of 17 June 2020. This
ancient landslide near the Aniangzhai village was partially reactivated under a complex
cascading event. Triggered by heavy rainfall in summer, the debris flows came from the
northern gully to the Xiaojinchuan River, which flowed directly under the ancient landslide
body and eroded the slope toe (Zhao et al., 2021; Zhu et al., 2021); then a big failure was
triggered, and more than 20,000 people and 12 townships downstream were impacted
(Xia et al., 2022b; Yan et al., 2021; Zhao et al., 2021). After the event, Zhao et al.
(2021) conducted an emergency response and exploited UAVs to study the topographic
change and the causality of the failure; whilst Yan et al. (2021) analyzed the seismic data
and extracted different signals for landslide, debris flows, and floods, to obtain further
interpretations for different stages of the hazard chain. Subsequent studies for this event
confirmed that an apparent precursory motion already existed before the 2020 failure over
the ancient landslide body, ranging from -50 to -80 mm/year (Kuang et al., 2022; Xia
et al., 2022b; Zhu et al., 2021).

In this paper, we complement and design a framework to characterize the complete
4D post-failure deformation dynamics of the Aniangzhai landslide by integrating high-
resolution optical and SAR satellite remote sensing data with feature extraction techniques
and a mathematical relaxation model. Horizontal and line-of-sight (LOS) displacements
for different periods are first derived using Planet and SAR data, respectively. Then three
ascending and descending SAR datasets from TSX and S1 are combined to retrieve the
displacements in East-West (E-W) and Up-Down (U-D) directions from LOS observations
by ignoring the N-S displacement. In the following, optical and InSAR observations are
then analyzed using independent component analysis (ICA) to extract the common spa-
tiotemporal features of post-failure displacement between different sensors. Finally, the
entire post-failure mechanism is retrieved from optical and radar data using an exponential
decay model representing stress relaxation after the failure.

6.3 Geographical Setting of the Study Area

Danba County is situated on the southeastern side of the Qinghai-Tibet Plateau, and
the Aniangzhai village is centered in this county. This region consists of steep mountains
and narrow valleys. The landslide area is located at an altitude of around 2000∼2500 m
a.s.l., with the thickness of around 60 meters being evaluated by a local study exploiting
UAV (Zhao et al., 2021). Figure 6.1 illustrates the post-failure status of the Aniangzhai
landslide and the different zones of the landslide body. During the complex hazard chain
in June 2020, the soil, stones and vegetation on the toe of the landslide were washed away
by the debris flows; then a deep valley was formed in front of the landslide body, and this
debuttressing directly triggered the reactivation of the ancient landslide body. Figures 6.1c
and 6.1d show the boundaries of the landslide failure and reveal the southern and northern
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(e)

(b)

(d)

滚滚长江东逝水

Centre part of landslide
The 2020 failure
Ancient landslide body
The main scarp
Toe of the landslide area

(a)

(c)

Figure 6.1: The Aniangzhai landslide and ground pictures of its different zones: (a) geographical
setting of the study area, (b) the toe, (c) the southern lateral flank, (d) the north-
ern lateral flank, and (e) the main scarp (adapted by Xia et al. (2022b)). The red
line reveals the central zone of the 2020 event, which had the most significant move-
ment during the catastrophic failure; the orange line depicts a medium motion of
around 1∼5 meters, whereas the yellow line shows the extent of the ancient landslide
body. The background image in (a) is from Skysat high-resolution image acquired in
November 2020.

lateral flanks of the landslide, respectively. Those cracks are clearly visible caused by block
motion, with a width of approximately 1∼1.5 meters. Indeed, this structure improves the
difficulties in phase unwrapping for MT-InSAR processing.

6.4 Methodology

The data-processing workflow and significant steps included in this framework are outlined
in Figure 6.2, as well as the methodologies are discussed in detail in this section.

6.4.1 Optical Images Processing

We process and evaluate post-failure horizontal kinematics of the landslide body after the
June 2020 failure, e.g., extent, direction, and magnitude of the motion, using a sequence
of high-resolution optical satellite images taken by the Planet Lab satellite constellation
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Ⅰ: Optical images processing Ⅱ: Multi-temporal InSAR processing
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Figure 6.2: Flowchart of data processing and the framework. (The missing abbreviations: ROI is
the area of interest; E-W is the East-West direction; N-S is the North-South direction;
U-D is the up-down direction; PCA is the principal component analysis.)

(Team, 2017). The applied Planet satellite imagery has a resolution of 3 meters, which
is acquired from June 2020 to January 2021. The steps to generate the time series of
horizontal deformation from Planet images are as follows: (i) the red band is split out of
the multi-spectral Planet imagery, since it has the lowest root-mean-square error (RMSE)
in image registration among those three RGB bands; (ii) all the Planet acquisitions are
cropped and registered to the same subset spanning the landslide region, constituting
the input to the NCC analysis using the COSI-Corr software package (Leprince et al.,
2007) for the computation of the E-W and N-S horizontal displacements for every two
steps of pixels; (iii) a median filter is then applied, and the irrelevant areas outside of the
failure body, as well as the outliers whereas the signal-to-noise ratio (SNR) is below 0.9,
are masked out; SNR belongs to the interval [0,1], and the higher, the better; (iv) the
magnitude and direction of displacements are finally derived for each pixel.

6.4.2 Multi-temporal InSAR Processing

This study exploits X-band TSX SAR images and the C-band S1 SAR images for MT-
InSAR processing. The detailed features of the data are shown in Table 6.1. Based on
the already existing knowledge from previous studies that the displacement is towards the
North-West direction, the descending TSX images from the German Aerospace Agency
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Table 6.1: Relevant features of the deployed SAR data for MT-InSAR processing. HS represents
the High-resolution Spotlight mode, while IW refers to the Interferometric Wide (IW)
swath mode. σT and σS represent the temporal resolution and spatial resolution,
respectively. The unit of σT is day, and the unit of σS is meter×meter in range and
azimuth directions.

SAR Data Mode Duration Image σT σS

TSX descending HS 2020.11–2022.02 40 11 0.91×1.25
S1 descending IW 2020.11–2022.02 40 12 2.33×13.96
S1 ascending IW 2020.11–2022.02 36 12 2.33×13.93

(DLR) are exploited due to their higher sensitivity (Haghshenas Haghighi and Motagh,
2016). The TSX data in spotlight mode has a resolution of around 0.9×1.2m in range and
azimuth direction, respectively. The restrictions imposed by decorrelation and unwrapping
errors due to rapid motions prohibit the use of the images from July 2020 to October 2020
for the MT-InSAR processing, despite the fact that we acquired the TSX immediately
after the failure. In fact, only a few scatters could be obtained when we initially tried
to analyze the entire collection of TSX data since the failure. Therefore, for the MT-
InSAR processing, we only used 40 TSX images from November 2020 to February 2022.
Meanwhile, we analyze 40 S1 descending and 36 S1 ascending C-band SAR images during
the same period for the MT-InSAR processing (Copernicus, 2020). The S1 images have a
resolution of around 2.3×14.0m in range and azimuth direction, respectively.

The MT-InSAR processing chain has been discussed in a number of previous studies
(Haghshenas Haghighi and Motagh, 2017; Fattahi et al., 2016; Grandin et al., 2016). In
InSAR processing, time series of SAR images are well-coregistered and then cropped to
the selected subset of the area of interest (ROI). For landslide monitoring, the traditional
InSAR has limitations, which is the extensive coherence loss between successive image
collections and atmospheric disturbances (Wasowski and Bovenga, 2014; Zebker et al.,
1992). Hence, advanced MT-InSAR techniques are used to deal with the problem and
derive displacement in the LOS direction. In this study, we apply the SBAS technique
to process all SAR data, exploiting a network of small spatial and temporal baselines to
reduce the decorrelation (Anderssohn et al., 2009; Lanari et al., 2007). In SBAS processing,
the distributed scatter is taken into consideration, which is defined as a pixel having similar
statistical behavior to its neighbors. The GAMMA and StaMPS software packages are
used to implement the interferometric and MT-InSAR analysis (Wegnüller et al., 2016;
Hooper et al., 2012, 2007).

After multiple MT-InSAR results are derived from various SAR datasets, we resolve
the horizontal and vertical deformation with the weighted least squares (WLS) method
following the equation (Fuhrmann and Garthwaite, 2019; Hu et al., 2014): dLOS1

dLOS2

dLOS3

 =

 cosθ1 −sinθ1cosα1 sinθ1sinα1

cosθ2 −sinθ2cosα2 sinθ2sinα2

cosθ3 −sinθ3cosα3 sinθ3sinα3

 ·

 dU1

dE1

dN1

 (6.1)

where d represents displacement, LOS1,2,3 are S1 ascending data, S1 descending data,
and TSX descending data, respectively. θ and α are inclination angle and heading angle,
respectively. We use a diagonal matrix W1 to weight the least squares, containing different
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spatial resolutions for different sensors, i.e., W1 = diag [ σ2
LOS1 σ2

LOS2 σ2
LOS3 ]

−1. The spatial
resolutions σTSX and σS1 are around 1.5m and 14.2m, respectively.
The three unknowns are theoretically solvable using the three observations, i.e., defor-

mation in E-W, N-S, and U-D directions. However, the SAR sensor is not sensitive to the
deformation of the N-S direction since the satellite heading angle is near that direction,
possibly leading to artificial exaggeration. Hence, the N-S component is often ignored
in resolving three-dimensional velocity in the studies (Ren et al., 2022; Fuhrmann and
Garthwaite, 2019). Here, we adopt the same strategy to only resolve the deformation in
the E-W and U-D directions using three tracks by omitting the N-S component; as for
our case study of the Aniangzhai landslide, the E-W displacements dominate the horizon-
tal displacement. It is equivalent to having one track InSAR observation as a redundant
observation in the least squares adjustment.

6.4.3 Spatiotemporal Independent Component Analysis (ICA) of
Displacement

In this section, we introduce the feature extraction of landslide kinematics from different
spatiotemporal patterns over the entire Aniangzhai landslide body by performing ICA
decomposition (the yellow curve in Figure 6.1). Since the obtained observations often
contain different components in experiments, time series decomposition is a frequently
utilized strategy for data processing to isolate the mixed signals from noises. In this
study, we mainly use the ICA based on the fixed-point algorithms for ICA (FastICA)
approach (Hyvärinen and Oja, 2000). ICA is a leading method for finding hidden factors
or components in multivariate multidimensional statistics, which decomposes time series
into independent components (ICs) in statistics (Delac et al., 2005; Draper et al., 2003;
Hyvärinen and Oja, 2000).
The process of ICA is achieved assuming that each independent component follows a

non-Gaussian probability distribution. The mixed signals and independent components
have the following relationship:

Ot×n = Dt×l · Sl×n (6.2)

where O is the remote sensing observations, D represents the mixing matrix, and S is
the decomposed source matrix. The subscripts t is the number of the observations, n
represents pixels in each acquisition, and l is the number of ICs.
As a pre-processing step for ICA, centralization and whitening should be implemented

to make the initially solved mixing matrix degenerate into an orthogonal array, reducing
the correlation between features and the workload. As an alternative, this procedure can
also be implemented with principal component analysis (PCA), a method for extracting
uncorrelated signals from heterogeneous data. With PCA, we reduce the dimensionality
and noise from the remote sensing observations, maintain the features with the largest
contribution to the variance, and retrieve the principal components (Peng et al., 2022;
Delac et al., 2005; Draper et al., 2003). Eventually, with the help of the fixed-point
iterative algorithm in FastICA, the source, mixing, and unmixing matrices can be derived
by maximizing spatially non-Gaussian sources (Hyvärinen and Oja, 2000).
The optical and InSAR displacements are individually processed with the ICA algo-

rithm. For the horizontal deformation derived using optical observations, its temporal
kinematics can be simply extracted and simulated with ICA using a mathematical relax-
ation model. The kinematics are comprised of different magnitudes of temporal decay
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since the large failure, in a manner of exponential or logarithmic forms, which we have
tested both of them in this study. For the InSAR observations, the chosen TSX observa-
tions are exploited due to availability and the highest density of scatters, i.e., five times
higher than in the S1 dataset. In order to reduce the geometric discrepancy introduced
by the different satellite sensors, we converted the displacement time series from the LOS
direction to the slope direction (Herrera et al., 2013).
Furthermore, to mathematically describe the dominated motion kinematics for different

spatial patterns of InSAR observations, polynomial kernel ridge regression is adopted to
simulate the motion characteristics from different ICs (Exterkate, 2013), representing those
expanded features extracted from different spatiotemporal patterns as follows:

y(x) =
n∑

i=1

αi · k(xi, x) + βi (6.3)

with
k(xi, x) = (xix+ 1)q (6.4)

where x and y(x) represent the InSAR observations and the output of the nonlinear system
at each pixel i, α is the weight coefficients, and β is the constant offsets, q is the order of
polynomial function. To avoid over-fitting, we only apply low-order polynomial regression,
i.e., second to 4th-order polynomials containing the best RMSEs, which are then used for
integrating optical and InSAR observations in the next section.

6.4.4 Multi-sensor Integration Modeling

In this section, we propose a methodology to integrate multi-sensor satellite remote sensing
datasets using a decaying exponential model in order to overcome the limitations of a
single sensor and derive a complete 4D map of landslide deformation characteristics. For
example, when using NCC to process optical images, the measurement precision is limited
by the accuracy of the applied images, and the vertical information is unavailable. On
the other hand, when applying the MT-InSAR method, only the deformation in the LOS
direction can be obtained using data with a single satellite track, and the sensor is not
sensitive to the deformation in the N-S directions as well. Here, the identical points
distributed in all remote sensing datasets are defined as identical point collection (IPC).
As mentioned in the previous section, we could conduct ICA modeling different magni-

tudes of relaxation decaying for the E-W and N-S displacements from the optical images
for the first six months after the failure. Similarly, the E-W and U-D displacements for the
period of MT-InSAR results were resolved with different polynomial regressions follow-
ing ICA analysis. Here, the common deformation components between optical and SAR
observations in the common E-W direction are modeled, indicating the same temporal
evolution, and the corresponding offsets are estimated as follows:

dLOS1

dLOS2

dLOS3

dEW−OP

dNS−OP

 =


cosθ1 −sinθ1cosα1 sinθ1sinα1

cosθ2 −sinθ2cosα2 sinθ2sinα2

cosθ3 −sinθ3cosα3 sinθ3sinα3

0 1 0
0 0 1

 ·

 dU2

dE2

dN2

 (6.5)

with

∆dE,i =
1

m

m∑
i=1

√
(dE2,i − dE1,i)

2 (6.6)
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Table 6.2: Relevant statistics of NCC results from Planet images. The maximum and mean
displacements dmax and dmean, as well as the maximum and mean velocities vmax and
vmean are derived and displayed for the sequential time spans. The co-failure results
(June 17 to June 24) is from our previous studies (Xia et al., 2022b). The unit for
displacement is meter, and the unit for velocity is meter/day.

Duration Time lag (day) dmax dmean vmax vmean

20200617–20200624 t0 = 8 14.72 3.82 1.84 0.48
20200624–20200726 t1 = 33 14.30 7.78 0.43 0.24
20200726–20200930 t2 = 67 8.95 2.67 0.13 0.04
20200930–20210111 t3 = 104 11.70 2.62 0.11 0.03

where ∆dE,i represents the displacement offset in the common E-W direction at each pixel
i, being derived from the ensemble average of all offsets for common pixels in temporal evo-
lution. m is the number of common observations at each pixel following ICA analysis. The
rest parameters are the same as in equation (6.1). We considered the weighting matrix W2

here for the least squares adjustment, which is W2 = diag [ σ2
LOS1 σ2

LOS2 σ2
LOS3 σ2

OP σ2
OP ]−1.

The spatial resolution of TSX and S1 has been previously mentioned, and σOP is approx-
imately 4.2 meters. Similarly, the offsets in the U-D directions could be derived as the
generation of E-W offsets. However, as the N-S components are ignored in the previous
derivations in multi-track InSAR processing, only the measurements from optical obser-
vations are available and taken into the subsequent modeling procedures by setting the
initial displacement in the N-S direction to zero.

After that, we continue to integrate the multi-sensor remote sensing data by modeling
a mathematical exponential decay to represent the stress relaxation mechanisms of the
landslide body after failure. The modeling equation has been applied as follows:

dk(tk) = ak · etk/τ + ck (6.7)

where d(t) is the displacement at the time since failure t, and k=x,y,z, where x,y,z rep-
resent the E-W, N-S and vertical directions, respectively. a is amplitude associated with
decay, c is an offset, and τ is the decay factor (τ < 0), representing the decelerating phases.
The decay factor is derived using the largest displacement in the E-W direction. We as-
sume that the post-failure dynamics are homogeneous under the natural state and the
decay factor remains the same for decaying kinematics of all time series over the landslide
body. The logarithmic form of the model is also tested and will be elaborated more in the
discussion.

6.5 Results

6.5.1 Horizontal Deformation Based on Planet Images

Figure 6.3 illustrates the time series of horizontal displacements derived from Planet op-
tical images after the catastrophic failure in June 2020. The results show quite a large
displacement for 1.5 months after the failure, with the maximum deformation of around
14.3 meters towards the N-W direction. After that, the rate of horizontal deformation
decreases with time (see Table 6.2 for statistical details).
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(a) 20200624-20200726

Horizontal displacement 
in two-dimension (2-D)
(Unit: meter) 

0 - 2.5
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(b) 20200726-20200930

(c) 20200930-20210111

June 2020
failure zone

Figure 6.3: 2D results of horizontal displacement derived using Planet images. The results are
within the time spans (a) from 24 June 2020 to 26 July 2020, (b) from 26 July 2020 to
30 September 2020, and (c) from 30 September 2020 to 11 January 2021. The arrows
demonstrate the magnitude and direction of the motions for different patterns using
a step of 15 pixels in both W-E and N-S directions. The boundaries of the landslide
body are presented in Figure 6.1d.

Table 6.2 reveals that both vmax and vmean of the failure body were reducing after
failure in an exponential form during the period of observations. The co-failure results in
Table 6.2, i.e., from 17 June to 24 June, are from our previous study and are used here
for comparison (Xia et al., 2022b). The four time intervals t0 ∼ t3 that we choose for
NCC calculation are increasing with time, to be suitable for catching the incrementally
decreasing displacements of the failure part. Between phases of t0 ∼ t1, t1 ∼ t2 and
t2 ∼ t3, the decaying ratios in vmax are approximately 76%, 70% and 15%, respectively;
while the decay ratios in vmean are about 50%, 83% and 25%, respectively. In total, the
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Figure 6.4: MT-InSAR results with displacement rates in LOS direction using (a) descending
TSX data, (b) descending S1 data, and (c) ascending S1 data. The time period of
observations for the MT-InSAR processing is from November 2020 to February 2022.
The boundaries of different zones of the landslide body are the same as the ones in
Figure 6.1d. Image background is from Planet image acquired in August 2021.

vmax and vmean have been reduced by around 94.02% and 93.75% with respect to the
co-failure displacement rates during the entire optical acquisition.

6.5.2 MT-InSAR Results

Figure 6.4 demonstrates the MT-InSAR displacement rates in the LOS direction for TSX
and S1 data from November 2020 to February 2022, with positive values indicating motion
towards the satellite and negative values indicating motion away from it. Outside of the
landslide zone in the northern hillslope, a reference point is selected to represent a stable
location throughout the entire data acquisition.
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Figure 6.5: Resolved horizontal and vertical displacements in (a) East-West (E-W) and (b) Up-
Down (U-D) directions from multi-track MT-InSAR observations. The boundaries of
different zones of the landslide body are presented in Figure 6.1d. Image background
is from a Planet image acquired in August 2021.

As seen in Figure 6.4a and Figure 6.4b, the central failure part has the largest displace-
ment rates with a maximum velocity in the LOS direction reaching approximately -300
mm/year for both descending TSX and S1 data. Interestingly, the upper part outside
the ancient landslide body also shows deformation, with a LOS velocity amounting to
-200 to -100 mm/year. Moreover, another creeping landslide outside the ancient landslide
could be seen in the southern hillslope and along the river channel with displacement rates
of approximately -100 to -50 mm/year. Although the MT-InSAR results from S1 data,
demonstrate similar distributions and features as the TSX results (Figures 6.4a and 6.4b),
the number of measurement points is significantly lower compared to TSX data, i.e., more
than five times smaller. This is not surprising considering the significant difference in
spatial resolution of the two exploited datasets. Figure 6.4c shows the MT-InSAR results
using ascending S1 data. The ascending satellite observation geometry is less sensitive
than the descending data for this landslide case with N-W motions. Accordingly, the re-
vealed maximum displacement rates could also reach a magnitude of about 300 mm/year.
However, for the descending datasets, the most significant deformation could be observed
in the central failure part of the landslide (red curve), while for the ascending datasets,
the toe area of the landslide body could be observed with the largest deformation.
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By integrating ascending and descending S1 data with descending TSX data using least
squares inversion (see Section 6.4.2), we resolved the horizontal and vertical displacements
in E-W and U-D directions by ignoring the N-S component, and Figure 6.5 shows the
results. For the E-W displacement, positive values indicate motion towards the East,
while negative values indicate motion towards the West. For the vertical displacement,
positive values indicate motion upwards while negative values indicate motion downwards.
Interestingly, Figure 6.5 reveals two opposite characteristics of the kinematics over the

ancient landslide body. For the failure part in the downslope (Zone 1), the horizontal de-
formation dominates the motion as the largest displacement in the E-W direction amounts
to -350 mm/year, much larger than the vertical motion with a displacement rate of about
-200 mm/year. On the contrary, the head part of the landslide (Zone 2) reveals larger ver-
tical displacements than horizontal motions, amounting to -150 to -100 mm/year. The new
landslides in the southern hillslope contain more horizontal displacements than vertical,
horizontal motions after the June 2020 failure.

6.5.3 Feature Extraction Using ICA

In order to investigate the spatiotemporal patterns of landslide kinematics, we further
conducted the ICA decomposition to the optical and InSAR time series. For the optical
measurements, exponential decay is the dominant decomposed feature, from which dif-
ferent deformation magnitudes could be simply expressed. Taking the advantages of the
high density in the included measurement points over the landslide body (Figure 6.4), the
descending TSX data is exploited with the LOS velocities converted along slope direction
as mentioned in Section 6.4.3 for better interpretation. It is worth noting that artificial
exaggeration and extreme values could be obtained when the conversion factor approaches
zero. For example, in the studies of Kalia (2018) and Herrera et al. (2013), anomalous
solution occurs when the conversion factor ranges in [-0.3, 0.3]. Hence, we filtered out
scatters with the conversion factor within the same interval, leading to approximately 2%
of total scatters being excluded from MT-InSAR results.
Figure 6.6 demonstrates the ICA results applied to the TSX time series in order to

extract deformation features over the entire ancient landslide body from November 2020 to
February 2022. Figure 6.6a shows the locations of derived scatters with the most significant
independent components, i.e., the most significant features from the observations; while
Figure 6.6b reveals the solved mixing matrix for the first three ICs. Figure 6.6c shows the
corresponding mean and cumulative daily precipitation covering this period. We use the
daily rainfall dataset from the Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS). CHIRPS creates gridded rainfall time series that cover all longitudes using
0.05◦ resolution (∼5km) satellite images, as well as in-situ station data. Its accuracy is
sufficient for regional applications and exploitation.

By performing ICA, we can see that IC1 reveals the feature of a general exponential
trend of decline for the entire period, similar to the result from Planet data, dominating the
pixels mainly, which are concentrated in the central failure part (Zone 1). In comparison,
IC2 reveals a feature dominating the upper part with creeping motions (Zone 2), which
remains stable from the beginning until April 2020, then speeds up since April 2020 due
to the rising amount of precipitation, and slows down again correlated with the dry season
since November 2021. The third component, IC3, which dominates the toe and foot
part of the landslide, reveals the same feature as IC2 before October 2021. Thereafter,
however, IC3 moves reversely and remains relatively stable compared to IC2. Overall,
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Figure 6.6: Results of independent component analysis (ICA) applied to TSX observations over
the area of the ancient landslide body. (a) Locations of derived scatters with the
most significant independent components. Image background is from a Planet image
acquired in August 2021. (b) The mixing matrix from independent component anal-
ysis. (c) The corresponding daily and cumulative precipitation. The corresponding
blue and yellow windows in (b) and (c) represent the rainy period and dry period
afterwards.

ICA decomposition helps to extract and classify the time series of kinematics for different
spatiotemporal patterns over the landslide body.

6.5.4 4D Deformation Modeling

Figure 6.7 shows the results of the integration of optical and InSAR measurements using
an exponential decay model representing the stress relaxation after the failure. The decay
factor τ is estimated using the largest displacement in the E-W direction, i.e., the IPC7,
assumed to be the same for all the time series for landslide kinematics. Eight samples are
chosen randomly and displayed as examples in Figure 6.7, and their locations are shown
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Figure 6.7: (a) Example of deriving decay factor in the exponential modeling using the largest
displacement in E-W direction integrating both optical and InSAR measurements.
(b) Example of InSAR observations in E-W direction for ICP7 using regression with
IC1 model. Examples of derived 4D displacements using an exponential decay model
in (c) E-W direction, (d) N-S direction, and (e) U-D direction. The corresponding
locations of the IPCs are shown in Figure 6.8l.

in Figure 6.8l. For the validation of the modeling, since we do not obtain in-situ data,
we exploited two Planet images to derive the horizontal displacements covering the entire
remote sensing collection, i.e., the first one on 15 June 2020 before the failure, the latter one
on 24 March 2022. We apply the NCC algorithms to derive the horizontal displacement,
and the validation can only be performed in E-W and N-S directions. Figures 6.7c and d
reveal the validation results. To be noticed is that the overall displacement of IPC4 for
validation is discarded due to lower SNR values (<0.9). Nevertheless, the rest validations
show good correspondence with the modeled displacements.
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Figure 6.8: Examples of 4D post-failure modeling from IPCs in E-W, N-S and vertical directions
for various time frames of 3 days, 10 days, 30 days and 90 days after the catastrophic
failure on 17 June 2020. Yellow curve shows the boundary of ancient landslide body
(see Figure 6.1a).

Figure 6.8 reveals examples applying the integrated model for recovering displacement
rates in 3 days, 10 days, 30 days, and 90 days after the failure. The modeling is derived
in E-W, N-S, and U-D directions, and applied to the re-gridded pixels over the landslide
body. We set here the areas outside of the northern and southern flanks, and on the
head part, which did not fail during the 2020 event, to be stable; and the areas between
them to be active with the largest deformation existing near the river channel, which is
proved by our studies and fieldworks as shown in Figure 6.1. To evaluate the quality
of the modeling in three dimensions, we examine the RMSEs of the derived model. The
RMSEs are 0.12∼0.54, 0.32∼2.07, and 0∼0.08 meters in the W-E, N-S, and U-D directions,
respectively. Aside from RMSEs, we also check the coefficient of determination R2, which
is the measure of the proportion of the variation in a strain that can be interpreted by
the independent variable, which is used to judge the explanatory power of the regression
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model (Steel et al., 1960). In our study, R2 are 92%∼99%, 68%∼99%, and 50%∼99% in
modeling the W-E, N-S, and U-D displacement, respectively.

6.6 Discussion

In this paper, we developed a framework to demonstrate how the high-resolution optical
and SAR satellite remote sensing data can be applied and integrated with the exponen-
tial relaxation model to assess complicated post-failure slope stability related to the 2020
Aniangzhai landslide failure in Southwest China. A comprehensive analysis of the entire
landslide dynamics after failure cannot be performed using only a single sensor, since the
sensor has its own unique strengths and weaknesses. However, a combination of SAR and
optical data can be exploited to detect various procedures or types of landslides. For ex-
ample, in this study, we used optical imagery to monitor the rapid phase of the Aniangzhai
landslide after failure, and applied InSAR techniques to investigate the creeping movement
from November 2020 to February 2022. To integrate multi-sensor observations, we apply
exponential decay modeling with least squares adjustment to simulate and recover the
complete 4D time series for the kinematics of the entire ancient landslide.

6.6.1 Early Post-failure Deformation from Planet

The dynamics of the slope stability after the Aniangzhai landslide failure are clearly
demonstrated in their sequential phases using optical remote sensing time series. Our
previous study revealed that the maximum horizontal displacement rate during the failure
could reach approximately 1.8 meters per day (Table 6.1). In contrast, the displacement
rate decreased significantly by approximately 76% and 94% at 1.5 and 6 months after the
failure, respectively. Though, the horizontal displacements over the failure part could still
be distinctly observed until the end of July 2020, amounting to approximately 14.3 meters
toward the N-W direction. Thereafter, we observed a reduction in the maximum and mean
velocities. For comparison, Kuang et al. (2022) also derived horizontal displacement using
offset tracking techniques after the failure, with a maximum horizontal displacement of
approximately 16 meters. By comparing our study with their distributed deformation vec-
tors, the results are clearly consistent with each other, although the horizontal deformation
is slightly lower in our study. The difference could be due to various post-processing and
parameter strategies in the data processing. We also observed a squeezing phenomenon
from the northern and southern flanks toward the central failure zone, which was observed
during our fieldwork.

Generally, the Planet results show that the deformation failure part becomes stepwise
stabilized after the June 2020 failure, indicating that the increased shear stress has been
reduced and relaxed with time after a failure. The increase in shear stress is mainly due
to the debuttressing and the mass loss at the toe due to rapid river incision during the
cascading event (Zhao et al., 2021; Lacroix et al., 2020). After the catastrophic failure,
the slowing-down in landslide kinematics implies the restabilization of the landslide body,
mainly due to the decreased shear stress and increased shear strength. Possible reasons
behind this could be the reload by the downward-moving materials from the upslope, the
compaction effects of new materials under gravitational force, the improvement of soil
cohesion, and the recovery of support to the landslide body (Lacroix et al., 2020; Catane
et al., 2019).
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In addition, the derived optical results reveal that until the end of September 2020,
larger deformation could still be observed near the northern ridges close to the channel
of the failure part, which is similar to our previous co-failure results (Xia et al., 2022b).
Explanations for this phenomenon may be that the toe of the landslide was closer to
the river and was more severely influenced during the 2020 cascading event, by both the
upstream dam and the release of water from the barrier lake to relieve flood pressure
during the failure. After September 2020, although the general trend of the failure area
deformation stabilized, small zones of displacement could still be found with noticeable
deformation close to the southwestern bedrock.

6.6.2 Post-failure Kinematics from MT-InSAR

Applying SAR remote sensing and MT-InSAR technology, we can study the evolution of
creeping kinematics of the Aniangzhai landslide body after failure. Overall, the activation
and instability dynamics of the ancient Aniangzhai landslide body are obviously revealed
by comparing the pre-failure and post-failure LOS deformation rates. With the help of
fieldwork investigation, we see two main regions for the ancient Aniangzhai landslide body:
the main area that failed during the June 2020 event (Zone 1), and the other part in the
above that did not fail (Zone 2). The geographical divider can be recognized as the orange
curve in Figure 6.5 above the main scarp of the failure part. For the failure part, the
precursory LOS displacement rates could only range from -50 to -80 mm per year (Kuang
et al., 2022; Xia et al., 2022b), while its post-failure velocities could reach approximately
-300 mm annually. In comparison, the upper part had a sort of pre-failure displacement
rate of around -40∼0 mm/year, which now amounts to over -150 mm/year.

Interestingly, the retrieved horizontal and vertical deformation also reveal different kine-
matics for those two parts. The horizontal displacements for the lower failure part exceed
the vertical displacements and dominate the post-failure kinematics during the SAR ob-
servations. In contrast, the upper part was more dominated by vertical displacements.
These two different features could be observed on the landslide body at the same time.
These results indicate that the lower failure part continues to move similarly to the June
2020 failure, i.e., toward the river channel, while the upper active part mainly proceeds
with vertical motions. Through field investigations, we can confirm that the upper active
landslide is shallow in depth, and much steeper slopes (>45◦) could be observed there.
Hence, the vertical displacement could be explained as vertical creeping motions rather
than gravity compaction. It is relatively common that the movement rates within the
lower parts of the landslide body are higher since its initial movement is induced from its
bottom by the constant undercutting of its toe area during the 2020 event. The movement
retrogressively transfers into the landslide’s upper parts, causing subsequent deformation
of lesser intensity.

It is essential to mention that, during our field expeditions, we see a lot of anti-slide
piles have been deployed by authorities along the river channel after the failure, and the
reinforcement of the bottom has been ongoing to increase the surface resistance and prevent
further downslope sliding for the lower failure part. However, our MT-InSAR results found
a significant acceleration of the upper part after June 2020, where such equipment and
measurements are not observed or taken above the main scarp. Therefore, for prevention,
similar measurements are suggested to be implemented over the main scarp of failure in
case it turns from creeping landslides to catastrophic failure in the future.
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A comparison of MT-InSAR results derived from TSX and S1 indicates the irreplaceable
advantages of exploiting high-resolution TSX imagery for slope stability monitoring in
this study. Due to the significant spatial resolution and better observation geometry,
the acquired scatters over the sliding slope are much denser when using TSX data than
when exploiting S1 data (Figure 6.4), which is capable of capturing more details and
features of different patterns in landslide dynamics. Furthermore, for the new creeping
landslides in the southern hillslope and along channels, it is reasonable to assume that
they were triggered due to the complex cascading event in June 2020, since the creeping
motions were not detected in the previous studies (Xia et al., 2022b). In general, MT-
InSAR techniques with proper post-processing strategies could be used as an essential
complement to remote monitoring systems similar to those in mountainous areas such as
Aniangzhai for monitoring progressive deformation and detecting possible release zones to
control and reduce the hazards posed by landslides (Carlà et al., 2019).

6.6.3 ICA-based Spatiotemporal Features of Deformation

The ICA decomposition could offer another opportunity to characterize complicated land-
slide kinematics. The rapid motions observed by optical data reveal different magnitudes
of exponential decay. As for the InSAR observations, most features of the ancient Ani-
angzhai landslide body are represented by three independent components; then, they are
analyzed qualitatively rather than quantitatively due to the dimensionless quantity of ICs.
IC1 mainly reveals that the kinematic changes at the landslide’s central failure parts are
not correlated with precipitation. IC2 and IC3 illustrate stability before April 2021, and
then accelerations from April 2021, corresponding to the increased precipitation during
the rainy season. This is due to the water infiltration and saturation, which can decrease
the shear strength (Lacroix et al., 2020). In the winter season, with a reduced amount of
precipitation, IC2 is inverted to have the dynamics to slow down accordingly. In contrast,
however, IC3 seems to move in the opposite direction and remains stable after October
2021 (Figure 6.6b). A possible explanation could be that since IC3 refers to the lower part
of the landslide; with the deployed anti-slide piles increasing the resistance, the downslope
mass accumulates and reloads from upslope materials. The gravitational compaction and
increased friction help decrease shear stress and restabilize the mass on the slip surface
in this area. This explanation also coincided with the optical and MT-InSAR results
we obtained, in which buttressing at the toe of the landslide could be observed, and the
landslide was incrementally slowing down with time. In addition, as proven by our field
investigation, we can find that the lower failure part (Zone 1) and the upper creeping part
(Zone 2) contain different motion characteristics, consistent with the different features of
IC1 and IC2 extracted using ICA decomposition (Figure 6.6).

6.6.4 Resolving 4D Post-failure Kinematics

The tool we applied to integrate optical and SAR remote sensing is an exponential decay
model representing the stress relaxation after failure as suggested by optical observations.
Experimental investigations have shown that post-failure relaxation mechanisms of land-
slide body follow an exponential or logarithmic decay (Cui et al., 2021; Wang et al., 2008;
Rice et al., 2001). Similar models have also been used to model post-seismic deformation
following earthquakes (Kreemer et al., 2006; Savage and Prescott, 1978). Indeed, we have
also tried the decaying logarithmic model. However, when deriving the model parameters
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along the common E-W directions, the logarithmic model, with an R2 of about 67%∼89%,
does not perform as well as the exponential model, with an R2 of about 92%∼99%. Hence,
we eventually adopted the exponential decay model in this study for sensor integration
and modeling of the 4D deformation field.

For the multi-sensor integration, the regridding of multiple remote sensing results is
required since a number of observations are discarded, i.e., InSAR scatters from different
orbits are not identical due to different SAR observation geometries, as well as the shadow
and overlay effects; optical results could also face anomaly issues or low SNR values during
NCC processing, making the results unconvincing. Hence, we regridded and calculated the
pixel size based on new results from the exponential modeling to facilitate this situation.
We assume that the selected common points in the new grid share the same or similar
behaviors and magnitude in motion kinematics. It is worth noting that if the grid spacing
is too small, the number of points in each grid will also be low; in contrast, the number
of points in each collection will increase when the grid space rises, but by doing so, it is
difficult to distinguish the features of different patterns from landslides. With testing, we
set 0.0005◦ (approximately 50 meters) as the size of a regridded pixel in this study.

For modeling 4D displacements, the results in the U-D direction show the lowest RM-
SEs, followed by the E-W and N-S direction results. This is expected considering the
different precision between optical and InSAR monitoring, as well as the limited number
of optical observations. Indeed, the RMSE in N-S could be improved by using densely
distributed optical images in the temporal domain. However, this is not an easy task
considering the limited quantity of cloud-free acquisitions. As for the coefficient of deter-
mination, R2 responds to what percentage of the fluctuations in the dependent variable
y can be described by the fluctuations in the independent variable x. A coefficient of
determination greater than 0.3 is generally considered meaningful (Abdi, 2007; Asuero
et al., 2006). The coefficient of determination in the E-W direction is the best, followed by
the N-S and vertical directions, respectively, which have almost reached 50%. This is also
reasonable when the equation has a slight change in the dependent variable y and mainly
the independent variable x is changing, i.e., when the equation and the x-axis are nearly
parallel, the regression model has a small R2 at this time (Hastie et al., 2009). Overall,
the modeling in the N-S directions is not as good as in the other two directions; however,
the modeling of all three directions is considered satisfactory in this study.

It should be stressed that our method for 4D modeling has some limitations and advan-
tages. The major limitation is that many observations will be discarded in the selection
process of the IPCs due to different observation geometries of sensors, as sensors with
lower resolution do not contain densely distributed scatters. On the contrary, the gaps in
optical and SAR remote sensing could be resolved to derive the complete 4D deformation
pattern, which is impossible to achieve using only optical or SAR data. Therefore, even
without GNSS measurements, the InSAR measurements, initially representing the relative
displacement, are converted into absolute displacement by integrating with optical data
and using least squares adjustments. Furthermore, the exponential decay model used to
connect the observations of different sensors at different times could be easily improved
in the future, either by a better alternative physical model or a statistical model. For
example, a Kalman filtering approach could be incorporated with the stress relaxation
mechanism due to its capability to suppress the measured noises and predict the prospec-
tive state and mechanism of landslides (Meinhold and Singpurwalla, 1983).
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6.7 Conclusion

This paper presents a methodology to characterize the complete 4D post-failure deforma-
tion of the 17 June 2020 Aniangzhai landslide using various remote sensing sensors. The
3-meter high-resolution optical data from Planet provide detailed information on the early
(∼6 months) spatial patterns of slope kinematics, demonstrating how the post-failure ve-
locities decay with time. Further slope deformation analysis using SAR data indicates that
the Aniangzhai landslide is active with a maximum LOS rate of approximately 30 cm/year
from November 2020 until February 2022. New creeping landslides are also found on the
southern hillslope and along river channels, thanks to high-resolution SAR datasets.
Integrating multi-sensor remote sensing techniques using a feature extraction technique

and a relaxation model helps overcome the limitation of every single sensor, providing
insights into the complete 4D spatiotemporal characteristics of post-failure landslide de-
formation. For the Aniangzhai landslide, maximum deformation from June 2020 until
February 2022 was estimated toward the west, amounting to approximately 28 meters,
followed by 17 and 19 meters displacements toward the north and downwards, respec-
tively. The temporal evolution of displacement illustrates a declining characteristic, which
can be modeled using an exponential relaxation model, representing stress relaxation after
the failure. Such a predictive capability can be used to forecast landslide displacements
effectively and to help reduce landslide risk. Although we used high-resolution remote sens-
ing imagery from Planet and TerraSAR-X in this study, the methodology can be similarly
applied to the freely available medium-resolution Sentinel-1 SAR and Sentinel-2 optical
remote sensing images covering various landslide life cycles. However, the measurement
accuracy could be compromised due to the lower resolution of Sentinel data.
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7 Summary and Future Perspectives

7.1 Summary

This thesis involves investigating the pre-, co- and post-failure of the catastrophic Ani-
angzhai landslide in Danba County, China, which evolves from slow-moving at displace-
ment rates of a millimeter per year to devastating failure. The spatiotemporal features of
various displacements with long-term and transient behaviors were analyzed using high-
resolution and moderate-resolution satellite sensors, such as Planet, Skysat, TSX, S1, S2,
and Landsat. On the other hand, artificial corner reflectors were employed as auxiliaries to
support spaceborne remote sensors in monitoring slope instabilities over densely vegetated
and mountainous regions. The integration of multiple sensors offers new opportunities to
overcome the limitations of a single satellite sensor.

Chapter 4 of this study utilizes multi-sensor remote sensing technology to investigate
the Aniangzhai slope failure in June 2020 and the active deformation leading up to the
event since late 2014. High-resolution optical data from Planet is analyzed using cross-
correlation to obtain detailed information about the spatial pattern of slope kinematics.
Additionally, the undercutting effects on the toe of the landslide body, which played a
vital role in the toe erosion and reactivation of this ancient landslide body, are visible
in the optical data. Complementary analyses using multi-temporal SAR satellite remote
sensing indicate that the Aniangzhai landslide was not dormant, with a maximum LOS
displacement rate of around 38 mm/yr in 2014–2017, reaching approximately 55 mm/yr
in 2018–2020. Furthermore, this study shows that only the points on the upper parts
of the landslide failure sustained pronounced acceleration of the creep starting in spring
2020, which can be utilized to forecast the potential failure window. Furthermore, a sign
of the acceleration of creep on the head part of the failure region and a decrease in NDVI
values took place almost simultaneously, opposite to the prevailing trends in this area.
This phenomenon might be integrated into an EWS.

Chapter 5 confirms the reliability of small dihedral corner reflectors for deformation
monitoring using the InSAR technique. An experimental study of post-failure creep at
the Aniangzhai landslide in China using TSX and S1 images showed that the background
intensity in TSX images improved by around 30 dB after CR installation, with SCR
exceeding 25 dB. In comparison, S1 images showed an improvement of only about 5–10
dB, with an SCR of around 10–15 dB. The RCS of CRs remained relatively consistent in
both TSX HS and S1 SAR images, ranging from 15 dB to 23 dB, making them suitable for
CR-InSAR analysis using the double-difference phase method. These CRs can be easily
installed at a relatively low cost in landslide regions where ground-based measurements
are lacking, providing near real-time deformation monitoring and supplementing landslide
hazard warning systems. Furthermore, they complement other traditional survey methods
such as GPS or leveling and can be applied in S1 images for interferometric analysis,
despite being initially designed for high-resolution SAR systems. This study also verified
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that high-resolution SAR images have significant advantages in SAR and InSAR analysis
due to their improved spatial resolution and shorter revisit times.

Chapter 6 introduces a methodology for characterizing the complete 4D post-failure
deformation of the Aniangzhai landslide using various remote sensing sensors. The study
utilizes high-resolution optical data from Planet and multiple SAR data to analyze the
spatiotemporal characteristics of post-failure landslide deformation. The results show that
the Aniangzhai landslide is still active, and new creeping landslides have been detected.
A feature extraction technique and a relaxation model are integrated to provide insights
into post-failure landslide deformation’s complete 4D spatiotemporal characteristics. The
methodology can be applied to medium-resolution S1 SAR and S2 optical remote sens-
ing images, but measurement accuracy may be compromised. In general, the proposed
methodology and framework can be used to forecast landslide displacements and reduce
landslide risk effectively.

After conducting extensive research and analysis, the findings of this thesis provide in-
sightful answers to the research questions posed in the first chapter, which are summarized
as follows:

1. Question: What is the most important role of spaceborne remote sensing technology
in identifying, monitoring, predicting and managing landslide hazards? What are the
advantages of spaceborne remote sensing compared to other geodetic methodologies?

Answer: The most critical role of spaceborne remote sensing techniques is to pro-
vide time series of slope surface kinematics remotely at a local or regional scale. The
complexity of landslide prediction makes it challenging to understand slope instabil-
ity comprehensively, with only a limited number of instances where accurate insights
are obtained. However, the obtained surface kinematics using remote sensing can
offer valuable assistance in defining warnings and thresholds for alerts and recon-
structing physical models close to reality as the foundation for comprehending slope
stability and designing mitigation measures. In addition, continuous landslide re-
mote sensing is necessary to create a long-term archive of data and analysis results,
providing a more profound and credible comprehension of the physical processes
involved in landslides.

Compared to other geodetic methodologies, such as airborne remote sensing or
ground measurements, the advantages of spaceborne remote sensing involve a large
coverage area, consistent and frequent data acquisition and quality, and cost-effective
and rapid response for remote regions.

2. Question: What is the performance of spaceborne remote sensing techniques in
monitoring slope instability caused by different triggering factors and procedures?
How can these triggers be integrated into landslide analysis for the causality, mech-
anism and anticipation during the complex cascading event?

Answer: Spaceborne remote sensing techniques have shown promising performance
in monitoring local and regional scale slope instability caused by various triggering
factors and procedures. These techniques can provide information on the terrain,
land cover, ground displacements with subtle changes, and variation in the land-
scape that may indicate the presence or evolution of slope instability. On the other
hand, many different triggering factors may affect landslide procedures, such as pre-
cipitation, river water fluctuation, pore pressure and erosion. Some of these factors
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are easily observed and analyzed together with the surface kinematics obtained by
spaceborne remote sensing; other factors may not be possible to be obtained di-
rectly. Instead, physical modeling is required based on remote sensing observation
for further joint analysis.

Various methods have been developed to integrate these triggering factors into land-
slide analysis to identify and quantify their influence on slope instability. For ex-
ample, geospatial models can simulate the interactions between different factors,
such as rainfall, slope angle, and soil properties, to better understand the causal
mechanisms of slope instability. Additionally, time series decomposition and feature
extraction methods, such as PCA, ICA, Fourier transform, and wavelet analysis, can
support the analysis of spatiotemporal remote sensing data and identify the most
critical factors contributing to slope instability. The recently extended deep learn-
ing algorithms can also contribute to that. Anticipation of complex cascading events
can be achieved using real-time remote sensing data and modeling techniques. For
example, landslide susceptibility maps can be updated in real-time using continuous
monitoring data to provide early warnings and anticipate the occurrence of cascad-
ing events. Integrating spaceborne remote sensing data and analysis techniques into
landslide analysis can improve our understanding of slope instability and enable the
development of effective mitigation strategies.

3. Question: What is the difference between spaceborne optical and SAR remote
sensing sensors in monitoring local and regional scale slope instability? What are
their advantages and limitations? To what extent can they be integrated to address
and highlight the deformation at different scales?

Answer: Spaceborne optical sensors capture images using visible and infrared wave-
lengths, while SAR sensors transmit and receive microwave signals to create images.
The horizontal deformation of surface kinematics can be derived using spaceborne
optical imaging, while single SAR techniques can measure displacement in LOS di-
rections.

As a result, optical sensors are better suited for capturing detailed surface features
and large ground deformation. In contrast, SAR sensors are better for detecting sub-
tle changes in terrain and subsurface deformations. In addition, optical sensors can
be affected by cloud cover and weather conditions, while SAR sensors can penetrate
clouds and operate in all weather conditions.

The two types of sensors can be integrated to provide complementary information
and improve the accuracy of deformation monitoring at different scales. Using inte-
gration methodology like our proposed framework, the mathematical and geophysical
modeling could fully exploit each sensor’s unique advantages. Integration may re-
quire specialized software and expertise, and the cost of processing and analyzing
data from both sensors may be higher than just one type of sensor.

4. Question: How and to what extent can landslide monitoring be improved using
auxiliaries like artificial corner reflectors? What is the better strategy for designing
the reflectors and selection in imagery?

Answer: Artificial CRs can improve landslide monitoring by providing stable and
precise coherent pixels for both optical and SAR remote sensing. Scholars can more
accurately track deformation over time by placing CRs in areas of interest. For
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example, when measuring densely vegetated, semi-vegetated, or agricultural areas,
it is possible to design and deploy a network of CRs. The kinematics obtained from
the surface of CR-network using spaceborne remote sensing could be accomplished
instead of measuring the challenging coherence loss area for landslide cases.

Regarding design, CRs should be made of durable and stable materials, such as
metal, and placed in a location unlikely to be disturbed by natural processes or
human activities. It should be acknowledged that no single reflector design can
provide optimal performance across all operational satellites. Therefore, to ensure
effective monitoring, it is necessary to either use sensor-specific CR designs or adopt
a compromise solution that can accommodate multiple sensors. Thus, our new CRs
are good examples that can be applied for both ascending and descending orbits,
while they can also be applied for both medium- and high-resolution images. Of
course, the cost element is a vital aspect of CR design.

When selecting imagery, choosing a sensor with a suitable wavelength and resolution
for the application is essential. Additionally, the sensor should be able to acquire
data consistently and regularly to enable effective monitoring. In this thesis, our
proposed selection strategy with the probability model helped identify and locate the
tested CRs that exhibited weaker echoes than the traditional reflectors across various
images. Moreover, this approach proposed here could be utilized as a universal
strategy for detecting analogous targets with echoes resembling those of CRs in
other scenarios.

7.2 Future Perspectives

In this dissertation, the case study of a large, deep-seated landslide during a complex cas-
cading event was conducted, in which heavy precipitation, debris flows, dammed lake, and
erosion effects coupled and triggered the reactivation of the ancient landslide body. When
there are rivers and dams near unstable slopes, we can see that the landslide dynamics
and its intrinsic physical mechanisms are often more complicated, and the reaction of
slope instability to induced factors is more difficult to interpret. However, observing such
complex geological hazard chains is often crucial, and in this regard, spaceborne remote
sensing plays an essential role in landslide detection, monitoring, analysis and prediction.
These satellite-based methods have revolutionized the study and investigation of landslide
hazards compared to conventional ground methods, providing critical information on the
dynamics and risks associated with these geological disasters.
Looking to the future, we can see that there are still several opportunities for advancing

the field of satellite-based landslide remote sensing:

1. Recent advancements in advanced sensors and platforms have significantly expanded
the potential of spaceborne landslide remote sensing. For instance, cooperated by
the National Aeronautics and Space Administration (NASA) and the Indian Space
Research Organisation (ISRO), the NASA-ISRO SAR (NISAR) mission is a joint
project to develop and launch a dual-frequency SAR on an Earth observation satel-
lite. It will use a deployable antenna to operate on both L-band and S-band (Rosen
et al., 2017). It is noted that L- and S-band have a better penetration capability
than C- or X-band, making NISAR suitable for landslide monitoring. On the other
hand, all data collected from NISAR will be freely available for 1–2 days commonly
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or within hours for emergencies like disasters (Rosen and Kumar, 2021). Such short
sampling frequency can significantly improve the spaceborne capability to emergency
response for geological hazards such as catastrophic failure or debris flows. There-
fore, spaceborne landslide remote sensing has the potential to be integrated into
an EWS and a multidisciplinary DRR framework for prompt response to landslide
disasters. On the one hand, the densely sampled images can be beneficial for con-
ducting a comprehensive analysis of the cascading events that impact the stability
of landslides. They can also offer new opportunities in landslide anticipating and
prediction, e.g., the INV method can be significantly improved based on real-time
updated images.

Another example is the recent experiments conducted by Xu et al. (2023), where an
airborne P-band SAR sensor is tested and verified to have superior performance in
landslide monitoring compared to conventional C-, X- or L-band due to its better
capability of penetration. With the development of satellite sensor technology, we
may see a SAR mission carrying P-band sensors in the future, which could be a
critical improvement for landslide hazard analysis and risk assessment.

2. Another exciting area of research is the integration of multiple remote sensing tech-
niques for landslide monitoring, as we conducted in this thesis. More importantly,
the inversion of the deeper physical mechanisms of landslides involved could be per-
formed. For the time being, combining SAR, optical, GNSS or CRs can provide a
complete understanding of landslide surface kinematics and help validate and refine
landslide detection algorithms, since each sensor has unique advantages and weak-
nesses in monitoring complicated landslide dynamics. What needs to be counted
here is the in-depth analysis and inversion of the intrinsic stability of landslides
beneath surface movements based on spaceborne remote sensing techniques.

Future perspectives can include numerical modeling approaches based on the surface
kinematics derived using remote sensing observations, such as viscoplastic flow and
pore pressure diffusion model (Hu et al., 2020) or modeling evolution of solid volume
fraction (Xu et al., 2021). Since landslides comprise many different types of motion,
the required numerical modeling approaches can also be various.

Future perspectives can also include using physically- or statistical-based modeling
to integrate various sensors, which can consider different features of motion char-
acteristics behind the slope instability. For instance, a Kalman filtering approach
could be integrated with the stress relaxation mechanism, given its ability to filter
out measurement noises and predict potential states and mechanisms for landslide
study.

3. Moreover, decorrelation is still a significant limitation in InSAR applications for land-
slide investigation, since most occur in mountainous regions. Although advanced
MT-InSAR methods have been developed, much room remains for improvement.
For instance, from the algorithm aspect, specific new methodologies are proposed
to solve the decorrelation issues, e.g., Mirzaee et al. (2022) proposed a “phase link-
ing” approach which could solve the seasonal decorrelation over snowfall areas using
Delaunay networks for phase unwrapping.

On the other hand, auxiliaries such as artificial CRs can be explicitly applied to
the decorrelation problem when studying landslide cases in densely vegetated, semi-
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vegetated and agricultural areas. CRs are beneficial, cost-effective and long-lasting
auxiliaries in spaceborne remote sensing. They can provide coherent targets for
InSAR monitoring and be applied for NCC analysis in optical and SAR images.
For example, for a large area with dense vegetation or low coherence, deploying a
network of CRs to help derive the ground kinematics is possible. In this thesis, we
evaluate the performance of our newly designed small DCRs and display preliminary
results. However, more efforts are still needed to comprehensively understand and
compare the role of different CRs in various landslide cases, as well as better ways
to design, deploy and analyze different CRs. For such purposes, we have deployed
our new and conventional TCRs on a large, deep-seated, slowing-moving landslide
body and tasked C-band, X-band and L-band datasets and GNSS data. Future
perspectives also involve developing a more compromise design of CRs for various
satellite-based sensors in landslide monitoring.

4. At last, with the development of artificial intelligence and neural networks, another
key area of focus is the development of automated or semi-automated algorithms
for landslide identification and mapping in the spatiotemporal domain, in order to
produce inventory maps for landslide hazards at a regional or even larger scale. In
this regard, machine learning and deep learning can be applied to analyze SAR and
optical data, allowing for the rapid identification and classification of landslides based
on different bands and various terrain features using satellite-based remote sensing
techniques. This will significantly enhance the ability to respond to landslide hazards
and facilitate decision-making for disaster management. The image processing for
landslide remote sensing has already significantly been enhanced based on machine
learning (Novellino et al., 2021; Ji et al., 2020). However, combing machine learning
and the physics of slope instability is still challenging work at the moment, and
plenty of scholars are endeavoring to solve this issue.
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Ullo SL (2018) X-and c-band sar data to monitoring ground deformations and slow-moving
landslides for the 2016 manta and portoviejo earthquake (manabi, ecuador). In: 2018 IEEE
International Conference on Environmental Engineering (EE), IEEE, pp 1–6

Dille A, Kervyn F, Handwerger AL, d’Oreye N, Derauw D, Bibentyo TM, Samsonov S, Malet
JP, Kervyn M, Dewitte O (2021) When image correlation is needed: Unravelling the complex
dynamics of a slow-moving landslide in the tropics with dense radar and optical time series.
Remote Sensing of Environment 258:112402

Dini B, Manconi A, Loew S, Chophel J (2020) The punatsangchhu-i dam landslide illuminated by
insar multitemporal analyses. Scientific Reports 10(1):1–10

Doerry AW (2014) Reflectors for sar performance testing. Tech. rep., Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States)

Draper BA, Baek K, Bartlett MS, Beveridge JR (2003) Recognizing faces with pca and ica. Com-
puter Vision and Image Understanding 91(1-2):115–137
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slope failure: a general framework. Environmental Earth Sciences 66:245–256

Feng G, Li Z, Shan X, Zhang L, Zhang G, Zhu J (2015) Geodetic model of the 2015 april 25
m w 7.8 gorkha nepal earthquake and m w 7.3 aftershock estimated from insar and gps data.
Geophysical Journal International 203(2):896–900

124



Bibliography

Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in sar interferometry. IEEE Transactions
on Geoscience and Remote Sensing 39(1):8–20

Festa D, Bonano M, Casagli N, Confuorto P, De Luca C, Del Soldato M, Lanari R, Lu P, Manunta
M, Manzo M, et al. (2022) Nation-wide mapping and classification of ground deformation phe-
nomena through the spatial clustering of p-sbas insar measurements: Italy case study. ISPRS
Journal of Photogrammetry and Remote Sensing 189:1–22

Freeman A (1992) Sar calibration: An overview. IEEE Transactions on Geoscience and Remote
Sensing 30(6):1107–1121

Fritz A, Kattenborn T, Koch B (2013) Uav-based photogrammetric point clouds–tree stem mapping
in open stands in comparison to terrestrial laser scanner point clouds. The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40:141–146

Frodella W, Gigli G, Morelli S, Lombardi L, Casagli N (2017) Landslide mapping and character-
ization through infrared thermography (irt): suggestions for a methodological approach from
some case studies. Remote Sensing 9(12):1281

Froese C, Poncos V, Skirrow R, Mansour M, Martin D (2008) Characterizing complex deep seated
landslide deformation using corner reflector insar (cr-insar): Little smoky landslide, alberta. In:
Proc. 4th Can. Conf. Geohazards, pp 1–4

Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Natural Hazards
and Earth System Sciences 18(8):2161–2181

Fu W, Guo H, Tian Q, Guo X (2010) Landslide monitoring by corner reflectors differential inter-
ferometry sar. International Journal of Remote Sensing 31(24):6387–6400

Fuhrmann T, Garthwaite MC (2019) Resolving three-dimensional surface motion with insar: Con-
straints from multi-geometry data fusion. Remote Sensing 11(3):241

Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas:
Differential radar interferometry. Journal of Geophysical Research: Solid Earth 94(B7):9183–
9191

Gan Br, Yang Xg, Zhang W, Zhou Jw (2019) Temporal and spatial evolution of vegetation coverage
in the mianyuan river basin influenced by strong earthquake disturbance. Scientific Reports
9(1):1–14

Garg S, Motagh M, Indu J, Karanam V (2022) Tracking hidden crisis in india’s capital from space:
implications of unsustainable groundwater use. Scientific Reports 12(1):1–17

Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth-Science Reviews 162:227–
252

Garthwaite MC (2017) On the design of radar corner reflectors for deformation monitoring in
multi-frequency insar. Remote Sensing 9(7):648
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