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Modern simulation codes for general relativistic ideal magnetohydrodynamics are all facing a long-
standing technical problem given by the need to recover fundamental variables from those variables that are
evolved in time. In the relativistic case, this requires the numerical solution of a system of nonlinear
equations. Although several approaches are available, none has proven completely reliable. A recent study
comparing different methods showed that all can fail, in particular for the important case of strong
magnetization and moderate Lorentz factors. Here, we propose a new robust, efficient, and accurate
solution scheme, along with a proof for the existence and uniqueness of a solution, and analytic bounds for
the accuracy. Further, the scheme allows us to reliably detect evolution errors leading to unphysical states
and automatically applies corrections for typical harmless cases. A reference implementation of the method
is made publicly available as a software library. The aim of this library is to improve the reliability of binary
neutron star merger simulations, in particular in the investigation of jet formation and magnetically driven
winds.
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I. INTRODUCTION

General relativistic magnetohydrodynamic (GRMHD)
simulations are an important tool to study many astro-
physical scenarios involving neutron stars (NSs) and black
holes (BHs). In particular, they represent the leading
approach to investigate the dynamics of binary neutron
star (BNS) and NS-BH mergers, which are the most
important events in the nascent field of multimessenger
astrophysics with gravitational wave (GW) sources [1].
Arguably one of the most pressing unsolved problems

related to BNS and NS-BH mergers is to find the exact
mechanism powering short gamma-ray bursts (SGRBs).
The simultaneous detection of the gravitational wave event
GW170817 and the SGRB named GRB 170817A [2–4],
along with the following “afterglow” emission across the
entire electromagnetic spectrum (e.g., Refs. [1,5–7]),

provided compelling evidence that BNS mergers can power
SGRBs (e.g., Refs. [8–10]). In turn, this implies that the
remnant object resulting from a BNS merger can launch, at
least in some cases, a relativistic jet, which was indeed
confirmed for GRB 170817A [9,10]. However, the jet
launching mechanism and the nature of the object acting as
a central engine, either an accreting BH or a massive NS,
remain uncertain (e.g., Ref. [11]).
Current simulations suggest that a mechanism based on

neutrino-antineutrino annihilation would not be powerful
enough to explain SGRBs [12,13], reinforcing the alternative
idea that the main driver of jet formation should be a strong
magnetic field. GRMHD simulations of BNS and NS-BH
mergers, while considerably more complex and expensive
because of the inclusion of magnetic fields, become neces-
sary to properly address the problem. Recent studies in this
direction already provide important hints, supporting a
scenario where the central engine is an accreting BH
[14,15] while disfavoring the massive NS scenario [16].
Nonetheless, a final answer is still missing, and it will be
necessary to overcome the technical limitations of present
GRMHD codes to ultimately solve the problem.
The merger event GW170817 was also accompanied

by the kilonova transient AT 2017gfo, powered by the
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radioactive decay of heavy r-process elements synthesized
within the matter ejected by the merger (e.g., Refs. [1,17]).
Although this kilonova was observed in unprecedented
detail, the interpretation in terms of specific ejecta compo-
nents and their physical origin is still under debate. Also in
this case, numerical relativity simulations represent the
ideal approach to fully understand the different mass
ejection processes occurring in a BNS (or a NS-BH)
merger. Moreover, for some of these ejection processes,
magnetic fields are likely to play an important role (e.g.,
Refs. [18,19]), and therefore simulations should be per-
formed in GRMHD.
The present work is devoted to a technical but crucial

aspect of these simulations that has proven surprisingly
difficult, and is motivated by the importance of GRMHD
simulations in the context of BNS mergers (see, e.g.,
Ref. [20] for a recent review). Modern evolution codes
are based on evolution equations written in the form of
coupled conservation laws for baryon number density,
energy, and momentum density, including the electromag-
netic contributions, and either magnetic field or vector
potential. Primitive variables such as matter velocity,
density, and pressure, are not directly evolved. Instead,
they have to be recovered from the evolved quasiconserved
quantities after each evolution step.
While in Newtonian physics the above recovery is trivial,

for the relativistic case one has to numerically solve a
system of coupled nonlinear equations. The system
involves also the equation of state (EOS), which encodes
the behavior of matter up to supranuclear densities by
specifying the pressure as a function of density and
temperature. An additional degree of freedom is the
electron fraction, which effectively describes the matter
composition, and which can only change due to neutrino
reactions. Since the EOS is not well constrained theoreti-
cally or by observation, a crucial requirement is the ability
to perform simulations employing arbitrary EOSs. This
precludes closed-form solutions for the primitive variables,
and the system has to be solved numerically. Since the
solution is required inside the innermost loop of the
evolution, computational efficiency is almost as important
as robustness.
Note that most evolution codes make the simplifying

assumption of ideal MHD. Although the electrical con-
ductivity in merger remnants is very high, this approxi-
mation might not be justified for all aspects of the problem.
On the other hand, evolving resistive GRMHD equations
introduces even more difficulties (see also Ref. [21]). The
equations for the primitive variable recovery are also very
different for resistive GRMHD. Another complication is
that in regions with strong magnetic fields but low mass
density, movement of the matter becomes dominated by the
field. Treating this “force-free” regime would in principle
require different numerical evolution methods (for exam-
ple, see Ref. [22]).

The simpler problem of recovering the primitive varia-
bles in relativistic hydrodynamics without magnetic fields
is already solved in a robust manner, as described in
Ref. [23] (also adopted in Ref. [24]). For the full problem
of ideal GRMHD, several recovery methods with different
limitations have been employed in GRMHD evolution
codes [25–32]. Older schemes such as Ref. [30] are limited
to particular analytic prescriptions for the EOS. Newer
schemes can in principle work with any EOS, but not all
implementations actually allow the use of arbitrary EOSs.
For a detailed review, we refer to Ref. [33].
All of the schemes investigated in Ref. [33] were shown

to fail in certain regimes. While some of them work well
enough in most of the regimes encountered during a merger
simulation, even rare primitive recovery failures need to be
handled and remain a common hurdle. An additional
complication is that not all combinations of values for
the evolved variables correspond to physically valid primi-
tive variables. The occurrence of invalid evolved variables
due to numerical errors of the evolution needs to be
monitored and, if possible, corrected. If the recovery can
fail also for valid input, it becomes impossible to reliably
assess the overall validity.
In this work, we develop a new recovery algorithm with

the mathematically proven ability to always find a solution,
and which is guaranteed to recognize invalid evolved
variables. Furthermore, the scheme provides mathemati-
cally derived accuracy bounds. Our scheme is limited to the
ideal MHD approximation, but it does not introduce
problems in the force-free regime. We provide a reference
implementation which is ready to use in any GRMHD
evolution code, in the form of a C++ library named
RePrimAnd [34]. Our implementation is written to be
completely EOS-agnostic and provides a framework for
EOSs that can easily be extended. Since our aim is to
improve reliability, we subject the numerical implementa-
tion of the algorithm to a comprehensive suite of tests, also
studying the effects of finite floating-point precision.
The article is organized as follows: In Sec. II, we state the

problem, derive the new scheme, prove the existence and
uniqueness of a solution, and investigate the expected
accuracy. In Sec. III, we discuss possible corrections to
invalid evolved variables. In Sec. IV, we present numerical
tests of our reference implementation, demonstrating
robustness, efficiency, and precision. Here we also compare
to other existing schemes. Then, we study error propaga-
tion of evolution errors to the primitive variables in Sec. V,
identifying potentially problematic regimes. Finally, in
Sec. VI we draw our conclusions.

II. FORMULATION OF THE SCHEME

A. Primitive variables

Our scheme is designed for evolution codes which
evolve variables defined on a spacelike foliation of
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spacetime from one time slice to the next. The hyper-
surfaces and their normal observers define a frame we will
refer to as the Eulerian frame.
We denote the 3-velocity of the fluid with respect to the

Eulerian frame as vi, and the corresponding Lorentz factor
as W. We will also use a quantity z≡Wv. The baryon
number density in the fluid rest frame is denoted as nB. It is
common to multiply nB with an arbitrary mass constantmB
to define the baryonic mass density ρ ¼ nBmB. The
pressure in the fluid rest frame is assumed to be isotropic
and denoted as P. Denoting the fluid contribution to the
total energy density in the fluid rest frame as ρE, we define
the specific internal energy:

ϵ ¼ ρE
ρ
− 1: ð1Þ

We further define a ¼ P=ρE and the relativistic enthalpy:

h ¼ 1þ ϵþ P
ρ
¼ ð1þ ϵÞð1þ aÞ: ð2Þ

Note that the definitions of ϵ and h both depend on the
arbitrary choice of mB.
The primitive variables we use to describe the electro-

magnetic field are the electric and magnetic fields as seen
by an Eulerian observer. In terms of the Maxwell tensor,

Eμ ¼ nνFμν; Bμ ¼ nν�Fμν; ð3Þ

where n is the normal to the hypersurfaces of the foliation,
and the star denotes the Hodge dual.Eμ, Bμ are tangential to
the hypersurface and thus equivalent to 3-vectors Ei, Bi.
Our scheme neither requires nor provides the fields in the
fluid frame, which can be obtained from the above using
standard transformations.

B. Equation of state

We assume an equation of state (EOS) of the form

P ¼ Pðρ; ϵÞ: ð4Þ

The EOS could also depend on further variables, such as
the electron fraction, as long as those variables are evolved
variables or can be obtained from evolved variables in a
trivial way, and can therefore be treated as fixed parameters
in the primitive recovery algorithm.
For our purpose, it is also important to specify a validity

range for each EOS. The validity range considers both
physical and technical constraints. The most important
physical constraint is the zero-temperature limit for the
internal energy. An example of a technical constraint is the
range of values available for an EOS given in tabulated
form. Currently, our scheme uses an EOS-dependent
validity region specified in the following form:

ρmin ≤ ρ ≤ ρmax; ð5Þ

ϵminðρÞ ≤ ϵ ≤ ϵmaxðρÞ: ð6Þ

However, it could easily be adapted to a more general shape
in ρ, ϵ parameter space. We require that the lower validity
bound ϵminðρÞ be the zero-temperature value at the given
density. This is the only meaningful choice for any
numerical simulation involving cold matter at any time.
Our error policy for correcting invalid evolved variables is
based on this assumption, as is the proof for guaranteed
success of the algorithm.
Our scheme relies on some physical constraints.

Causality and thermodynamic stability require

0 ≤ c2s < 1; ð7Þ

where cs is the adiabatic speed of sound, given by

c2s ¼
d lnðhÞ
d lnðρÞ

����
s¼const

: ð8Þ

If the EOS depends on electron fraction, it is also assumed
to be constant in the above expression. We assume positive
baryon number density and positive total energy density,
which implies

0 ≤ ρmin ≤ ρ; −1 < ϵminðρÞ ≤ ϵ: ð9Þ

We assume that the pressure is positive and further
bounded by the total energy density (dominant energy
condition), which implies

0 ≤ a ≤ 1: ð10Þ

For a given EOS, we also require a positive lower bound h0
for the relativistic enthalpy h, such that 0 < h0 ≤ hðρ; ϵÞ
over the entire validity region of the EOS. This requirement
only excludes exotic matter with P ≤ −ρE.
Note that we do not assume ϵ > 0 or h ≥ 1. The

definitions of ϵ and h depend on the arbitrary choice of
the mass constant mB. Unless the latter is fine-tuned to the
average baryon binding energy at low density, nuclear
physics EOSs often yield slightly negative ϵ. In practice, h0
is of order unity.
By design, our scheme is not confined to any particular

equation of state. It only uses the information defined above
and does not make any other kind of EOS-specific
distinctions or adjustments. For the purpose of testing
our scheme, we use two specific EOSs as examples:
(1) A hybrid EOS given by a cold part and a simple

thermal part:

Pðρ; ϵÞ ¼ PcoldðρÞ þ ðΓth − 1Þρðϵ − ϵcoldðρÞÞ; ð11Þ
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ϵminðρÞ ¼ ϵcoldðρÞ: ð12Þ

For the cold part, we employ the MS1 EOS from
Ref. [35] (based on Ref. [36]), and we use Γth ¼ 1.8.
This hybridized type of EOS is often used in
numerical relativity.

(2) The classical ideal gas, given by

Pðρ; ϵÞ ¼ ρϵðΓ − 1Þ; ð13Þ

ϵminðρÞ ¼ 0: ð14Þ

Here, we use an adiabatic exponent Γ ¼ 2. Pressure
and internal energy are zero at zero temperature. We
use this unrealistic model, where pressure is only
given by thermal effects and degeneracy pressure is
ignored, as a corner case for testing our algorithm.
Note that in numerical relativity, an ideal gas EOS
normally refers to a hybrid EOS based on a poly-
trope with adiabatic exponent Γ ¼ Γth as the zero-
temperature limit.

We note that numerical relativity tools are often judged
by how well they function with tabulated nuclear physics
EOSs, because such tables often contain isolated points
with thermodynamically inconsistent jumps or regimes
with superluminal sound speed. Violations of basic physi-
cal constraints such as causality can lead to many funda-
mental problems with the evolution equations. In Sec. II G,
we will point out a potential problem for primitive recovery.
In our opinion, any effort to ensure that primitive variable
recovery and other aspects of simulations can produce
results with faulty EOSs is a step in the wrong direction.
Instead, we advocate in favor of repairing minor EOS faults
before use.

C. Evolved variables

Our scheme is intended for numerical evolution codes
employing evolution equations for energy, momentum, and
baryon number density formulated as a quasiconservation
law. This is the case for finite-volume shock-capturing
schemes. The evolved quantities are called conserved
variables, although only the baryon number is strictly
conserved. The fluid contribution is given by

D̄ ¼ ρW; ð15Þ

τ̄ ¼ D̄ðhW − 1Þ − P; ð16Þ

S̄i ¼ D̄Whvi: ð17Þ

Including also EM contributions, the evolved variables are
given by

D ¼ D̄; ð18Þ

τ ¼ τ̄ þ 1

2
ðE2 þ B2Þ; ð19Þ

Si ¼ S̄i þ ϵijkEjBk: ð20Þ

In most formulations, the evolved variables above include
the volume element of the spatial metric. Since this factor is
available from the spacetime evolution, it is not relevant for
the following and was left out of the definitions.
In addition to the evolved variables D, τ, Si, we assume

that the magnetic field B in the Eulerian frame is either an
evolved variable or can be reconstructed from evolved
variables without knowledge of the fluid-related primitive
variables, such that B is known when our primitive
reconstruction scheme is run. This is the case for state-
of-the-art methods such as constrained transport schemes or
schemes evolving the vector potential.
We only consider evolution codes that assume the ideal

MHD limit, which corresponds to the additional condition

El ¼ −ϵljkvjBk: ð21Þ

This precludes the use of our scheme for resistive MHD
simulations.
For convenience, we define rescaled variables as

q̄ ¼ τ̄

D̄
; r̄i ¼

S̄i
D̄
; ð22Þ

q ¼ τ

D̄
; ri ¼

Si
D̄
; ð23Þ

bi ¼
Biffiffiffiffi
D̄

p ; b ¼
ffiffiffiffiffiffiffiffi
bibi

q
: ð24Þ

It is worth noting that for most aspects of our scheme, the
relevant scale for the magnetic field is given by b, not by
the commonly used magnetization, defined as the ratio
between magnetic and fluid pressure. Since the pressure is
typically orders ofmagnitude below themass energy density,
OðbÞ ¼ 1 corresponds to a very large magnetization.
We also need to decompose the momentum into parts

parallel and normal to the magnetic field:

rik ¼
blrl
b2

bi; ri⊥ ¼ ri − rik: ð25Þ

The decomposition is undefined for the case of zero
magnetic field, but we exclusively use the product with
b2 in our scheme, which is always well defined.

D. Useful relations

In the following, we collect definitions and analytic
relations for later use. First, we define two quantities that
will play a central role:
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μ≡ 1

Wh
; x≡ 1

1þ μb2
: ð26Þ

Trivially, their ranges are limited to

0 < μ ≤ 1=h0; 0 < x ≤ 1: ð27Þ

Given the conserved variables and μ, one can directly
express the primitive variables analytically. Since the
system is overdetermined, there are different possible
expressions which may disagree if the given μ is incon-
sistent with the conserved variables. In the latter case, some
expressions can diverge. We will use the ambiguity to cast
the recovery into a root-finding problem by expressing the
same variables in different ways that only agree for the
correct value of μ.
As an intermediate step, we first remove the electro-

magnetic part of the conserved variables. From Eq. (21),

E2 ¼ x2μ2B2r2⊥; ð28Þ

r̄i ¼ xri⊥ þ rik: ð29Þ

This allows us to compute the pure fluid part of the
conserved variables. The corresponding quantities relevant
for our purpose can be written as

r̄2 ¼ x2r2⊥ þ r2k; ð30Þ

q̄ ¼ q −
1

2
b2 −

1

2
μ2x2b2r2⊥: ð31Þ

We can now express the velocity as v ¼ μr̄. This expression
does not guarantee, however, that v < 1 for any μ. One way
to avoid exceeding the speed of light is to use the quantity z,
which yields

vðzÞ ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p < 1: ð32Þ

Although we do not have a closed-form expression for z as
a function of μ, we can use z to obtain a useful upper limit
for the velocity, given by

z ¼ r̄
h
≤

r
h
≤

r
h0

≡ z0; v ≤ v0 ≡ vðz0Þ: ð33Þ

After obtaining the velocity and Lorentz factor, we can
extract the rest mass density and specific internal energy
using the expressions

ρ ¼ D̄=W; ð34Þ

ϵ ¼ Wðq̄ − μr̄2Þ þW − 1: ð35Þ

If ρ and ϵ are in the validity range of the EOS, we can now
compute the pressure P ¼ Pðρ; ϵÞ and the enthalpy hðρ; ϵÞ.
Finally, the following expression for μ itself turns out to be
useful:

μ ¼ 1

hW
¼ 1

hWðW−2 þ v2Þ ð36Þ

¼ 1
h
W þ v2

μ

¼ 1
h
W þ r̄2μ

: ð37Þ

E. Designing the master function

In the following, we formulate the primitive variable
recovery as a root-finding problem for a suitable master
function. To this end, we employ the following design goals:
(1) The function should be one-dimensional.
(2) It should be continuous.
(3) It should always have exactly one root, even for

unphysical values of the conserved variables.
(4) It should be well behaved in the Newtonian limit.
(5) It should be well behaved for zero magnetic field.
(6) There should be a known interval which contains the

root, and on which the function is defined.
(7) The root-finding procedure should not require deriv-

atives of the EOS.
For our scheme, we use μ defined in Eq. (26) as the

independent variable to solve for; i.e., we will construct a
function fðμÞ which crosses zero where μ is consistent with
the conservative variables. The latter take on the role of
fixed parameters. To construct f, we start with Eqs. (30)
and (31) and define

r̄2ðμÞ ¼ r2x2ðμÞ þ μxðμÞð1þ xðμÞÞðrlblÞ2; ð38Þ

q̄ðμÞ ¼ q −
1

2
b2 −

1

2
μ2x2ðμÞb2r2⊥: ð39Þ

Next, we define functions for velocity and Lorentz factor:

v̂ðμÞ ¼ minðμr̄ðμÞ; v0Þ; ŴðμÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̂2ðμÞ

p ; ð40Þ

where v0 is the upper velocity limit from Eq. (33). Further,
we define rest mass density and specific energy according
to Eqs. (34) and (35):

ρ̂ðμÞ ¼ D̄

ŴðμÞ ; ð41Þ

ϵ̂ðμÞ ¼ ŴðμÞðq̄ðμÞ − μr̄2ðμÞÞ þ v̂2ðμÞ ŴðμÞ2
1þ ŴðμÞ ; ð42Þ
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provided that the results fall within the validity range of the
EOS. Otherwise, the density ρ̂ is adjusted to the closest
value within the validity range for ρ, and ϵ̂ to the closest
value within the validity range for ϵ at adjusted density ρ̂. In
Eq. (42), we express the term W − 1 in a way that prevents
large rounding errors in the case of small velocities. Using
the EOS, we compute the pressure, defining

P̂ðμÞ ¼ Pðρ̂ðμÞ; ϵ̂ðμÞÞ;

âðμÞ ¼ P̂ðμÞ
ρ̂ðμÞð1þ ϵ̂ðμÞÞ ;

ĥðμÞ ¼ hðρ̂ðμÞ; ϵ̂ðμÞÞ: ð43Þ

To close the circle, we can now express μ itself as a function
μ̂ðμÞ based on ŴðμÞĥðμÞ. However, we find that this
straightforward choice does not yield a function respecting
our design goals. One reason is that under extreme
conditions, the strong limitations introduced for P̂; ϵ̂; ρ̂,
and Ŵ can cause severe kinks in the function.
By trial and error, we find that using Eq. (37) results in a

very different master function fðμÞ that is well suited to our
purposes. It is given by

fðμÞ ¼ μ − μ̂ðμÞ; ð44Þ

μ̂ðμÞ ¼ 1

ν̂ðμÞ þ r̄2ðμÞμ : ð45Þ

As an additional minor modification, we compute the
variable ν≡ h=W in two slightly different ways based
on Eqs. (2) and (35), defining

νAðμÞ ¼
ĥðμÞ
ŴðμÞ ¼ ð1þ âðμÞÞ 1þ ϵ̂ðμÞ

ŴðμÞ ; ð46Þ

νBðμÞ ¼ ð1þ âðμÞÞð1þ q̄ðμÞ − μr̄2ðμÞÞ; ð47Þ

ν̂ðμÞ ¼ maxðνAðμÞ; νBðμÞÞ: ð48Þ

The motivation behind the second form νB is to reduce the
kink introduced by limiting ĥ, only limiting â instead,
while allowing ϵ to change further. For this, ð1þ ϵÞ=Ŵ is
computed directly from Eq. (35), which does not involve
the EOS. The reason we use the smoother νB only when ϵ
crosses the upper limit, but not when crossing the lower
limit, is that decreasing ν̂ increases μ̂ and decreases the
overall slope of the master function in some regimes, which
is disadvantageous with respect to ensuring uniqueness.
Examples for the master function resulting for different

regimes are shown in Fig. 1. As one can see, the master
function is almost linear unless the Lorentz factor or
magnetic scale b are large, but it remains well behaved
even then. Note that we only show the root-bracketing

interval that is constructed in the next section. Beyond this
interval, the function can have strong kinks.

F. Existence of solution

In the following, we prove that the master function
always has a root, not just for valid evolved variables, but
also for invalid ones. To this end, we construct an interval
over which the master function changes sign. We start by
defining an auxiliary function

faðμÞ ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 þ r̄2ðμÞ

q
− 1: ð49Þ

This is a smooth function which does not require evaluation
of the EOS, using only the EOS-specific global lower
enthalpy bound h0. It is easy to show that fa is strictly
increasing andhas exactly one rootμþ in the interval ð0; h−10 �.
Wewill show that μþ constitutes an upper bound for the root
of the master function f. For faðμþÞ ¼ 0, we find

μþr̄ðμþÞ ¼
r̄ðμþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h20 þ r̄2ðμþÞ
p

≤
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h20 þ r2
p ¼ v0; ð50Þ

FIG. 1. Master function f for different regimes, combining
velocities v ¼ 0 and v ¼ 0.99 (labeled “vlarge”), magnetic field
scale b ¼ 0 and b ¼ 2 (“blarge”), internal specific energy ϵth ¼ 0
(“cold”) and 10 (“hot”), where ϵth denotes the difference from the
zero-temperature case. Velocities are oriented orthogonally to the
magnetic field, which is the most difficult case. In the top panel,
the independent variable μ is scaled to the initial root bracket μþ,
and the function is scaled to the maximum value over the interval
shown. The lower panel shows the behavior near the root μ̃0.
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where we use r ≥ r̄ and the monotonicity of the above
expression with respect to r̄. From Eq. (40), we find
v̂ðμþÞ ¼ μþr̄ðμþÞ ≤ v0 < 1. Further, faðμþÞ ¼ 0 implies
that

μþh0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̂2ðμþÞ

q
¼ Ŵ−1ðμþÞ: ð51Þ

Using the definition Eq. (48) of ν̂, which implies ν̂ ≥ νA, we
can write

μþν̂ðμþÞ ≥ μþ
ĥðμþÞ
ŴðμþÞ

≥ μþ
h0

ŴðμþÞ
; ð52Þ

¼ Ŵ−2ðμþÞ ¼ 1 − μ2þr̄2ðμþÞ: ð53Þ

Hence,

1 ≤ μþðν̂ðμþÞ þ r̄2ðμþÞμþÞ ¼ μþ=μ̂ðμþÞ: ð54Þ

Using the definition of the master function, Eq. (44), we find
that fðμþÞ ≥ 0, and, trivially, fð0Þ < 0. Since f is continu-
ous, it has at least one root in the interval ð0; μþ�. From
Eq. (52), we also find that the root is strictly below μþ
unless ĥðμþÞ ¼ h0.
Conveniently, the interval provides a useful initial

bracketing for the root-finding algorithm. Although finding
μþ requires another numerical root solving, the computa-
tion of fa does not require the expensive evaluation of the
EOS. Moreover, determining μþ is not required if r < h0.
In this case, v̂ð1=h0Þ < 1 and fað1=h0Þ > 0, hence one can
safely use ð0; 1=h0� to bracket the root.
The main reason to expend this effort is to ensure that

v̂ ≤ v0 < 1. Beyond μþ, the cutoff in Eq. (40) can induce a
strong kink in the master function, reducing efficiency of
the main root finding. With the tight upper limit μþ, the
only reason for the cutoff is to make absolutely certain that
not even rounding errors in ultra-relativistic cases can lead
to not-a-number results. Finally, being able to use v̂ ≤ v0
simplifies the uniqueness proof in the next section.

G. Uniqueness of solution

Uniqueness of physically valid solutions is obviously
important for any evolution scheme based on the conserved
variables considered in this work. For the purpose of our
recovery scheme, we require in addition that (i) for valid
evolved variables, the master function has no additional
roots corresponding to invalid solutions, and (ii) for invalid
evolved variables, it still has exactly one root. In this
section, we will prove that the above conditions are met.
We first compute the derivative of the master function.

Differentiation and straightforward algebraic computations
yield

dx
dμ

¼ −x2b2; ð55Þ

dr̄
dμ

¼ −
ð1 − xÞx2

μr̄
r2⊥; ð56Þ

dq̄
dμ

¼ −ð1 − xÞx2r2⊥; ð57Þ

d
dμ

ðμr̄ðμÞÞ ¼ 1

r̄
ðx3r2⊥ þ r2kÞ ≥ 0: ð58Þ

Since μr̄ðμÞ is monotonically increasing and we have
shown in Sec. II F that μþr̄ðμþÞ ≤ v0, it follows that for
μ ≤ μþ, Eq. (40) reduces to v̂ðμÞ ¼ μr̄ðμÞ. From this, we
find

d
dμ

lnðŴÞ ¼ Ŵ2μðx3r2⊥ þ r2kÞ: ð59Þ

In the following, we assume that the density D̄=Ŵ does not
leave the allowed range of the EOS. This corner case is
discussed in the Appendix. We then obtain

d
dμ

lnðρ̂Þ ¼ −
d
dμ

lnðŴÞ: ð60Þ

So far, we have computed derivatives of quantities that do
not depend on Eq. (42), and therefore we did not need to
consider the limiting of ϵ to the valid EOS range. For the
derivative of ϵ̂, we first consider the case in which ϵ
computed by Eq. (42) is in the valid range. We then find

d
dμ

ϵ̂ ¼
�
1þ ϵ̂ −

1

Ŵμ

�
d
dμ

lnðŴÞ: ð61Þ

At a solution, μŴ ĥ ¼ 1, and we obtain

d
dμ

ϵ̂ ¼ −
P̂
ρ̂

d
dμ

lnðŴÞ ¼ P̂
ρ̂2

d
dμ

ρ̂: ð62Þ

This means that changes of density ρ̂ and specific energy ϵ̂
are adiabatic when varying μ near a solution; i.e., the
derivative of specific entropy ŝ is zero. For the case in
which ϵ computed by Eq. (42) is below the valid range of
the EOS, ϵ̂ is set to the lower bound of the validity range,
ϵminðρ̂Þ, which is the zero-temperature limit according to
our EOS requirements. Consequently, ρ̂ðμÞ and ϵ̂ðμÞ follow
a curve of constant s. In both of the above cases we can
therefore compute the derivative of ĥ using the adiabatic
sound speed given by Eq. (8) and the derivative of density
given by Eq. (60), obtaining

d
dμ

ln ĥ ¼ −ĉ2s
d
dμ

ln Ŵ; ð63Þ
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where ĉs ¼ csðρ̂; ϵ̂Þ. In both cases, ν̂ ¼ ν̂A ¼ ĥ=Ŵ, and we
find

d
dμ

ln ν̂ ¼ −ð1þ ĉ2sÞ
d
dμ

ln Ŵ: ð64Þ

At a solution, the derivative of the master function becomes

d
dμ

fðμÞ ¼ 1 − v̂2 þ v̂2ð1 − c2sÞ
x3r2⊥ þ r2k

r̄2

≥ 1 − v̂2 > 0; ð65Þ

as shown in the Appendix. The requirement cs < 1 is
therefore sufficient to guarantee uniqueness of the root for
all velocities and magnetic fields. Note that for super-
luminal sound speeds, we cannot prove uniqueness unless
v2c2s < 1. In that case, the proof of existence still holds, but
is not known if the physical solution becomes ambiguous.
So far, we have not addressed the corner case where the

specific energy is above the valid range of the EOS. In that
case, ν̂ is computed from Eq. (47). A straightforward
computation (see the Appendix) reveals that uniqueness
is always ensured under the condition that

AðρÞ
1þ â

∂a
∂ϵ ≤ 1 − c2s : ð66Þ

The function A is defined by the relation

AðρÞ
ρ

¼ d
dρ

ϵmaxðρÞ −
P
ρ2

: ð67Þ

It is related to the change of specific entropy along the
upper validity range ϵmax of the EOS. For A ¼ 0, the
equation above reduces to the thermodynamic condition for
adiabatic change. The condition given by Eq. (66) does not
seem to be very restrictive. If in doubt, one can always use a
boundary with A ¼ 0 (constant specific entropy) to guar-
antee uniqueness in all cases. In practice, we encountered
no problems using upper validity bounds defined by either
constant temperature or constant ϵ.

H. Guaranteed accuracy

Since the root of the master function is determined
numerically, we require a criterion to stop the iteration once
sufficient accuracy is reached. What is sufficient depends
on the other errors present in a numerical evolution scheme.
We will discuss evolution errors in Sec. V. In this section,
we discuss the error propagation of the root-finding
accuracy to quantify the accuracy of the recovered
primitives.
However, we first need to specify how the final result is

computed from the outcome of the last root-finding
iteration. This involves a design decision, since the

available variables μ, μ̂, ν̂, r̄, q̄, v̂, Ŵ, ρ̂, ϵ̂, ĥ, P̂ allow
us to compute the primitives in many different ways, which
lead to different error propagation. Here, we use Ŵ, ϵ̂, ρ̂, P̂
directly, which turns out to be a good choice in terms of
error propagation. To reconstruct the velocity vector, we
use the expression

v̂i ¼ μr̄i ¼ μxðri þ μðblrlÞbiÞ; ð68Þ

which is just Eq. (29) rearranged to avoid degeneracy for
the case b ¼ 0. It is easy to verify that the Lorentz factor
Wðv̂2Þ corresponding to Eq. (68) is exactly Wðv̂2Þ ¼ Ŵ.
Since ρ̂ ¼ D=Ŵ, the conserved density D̂ ¼ ρ̂Wðv̂2Þ com-
puted from the recovered primitive variables ρ̂, v̂i agrees
exactly with the original one.
In the following, we only consider the case where the

solution is in the validity region of the EOS. For invalid
solutions, the accuracy of the solution is less relevant, since
in this case the cause is the evolution error, and the result
will either be corrected to the valid range or the simulation
aborted. The error introduced by such corrections will be
discussed in Sec. V D.
Assuming the root of fðμÞ was determined numerically

to an accuracy of δμ, we now estimate the resulting
accuracy of the primitive variables to linear order, comput-
ing—e.g., δŴ ¼ δμdŴ=dμ. We already evaluated the first
derivatives at a root of f in Sec. II G. From those, we obtain

δŴ

Ŵ
≤ v̂2Δ; Δ≡ Ŵ2 δμ

μ
; ð69Þ

δẑ
ẑ
≤ Δ;

δv̂
v̂

≤
jδv̂ij
v̂

≤
Δ
Ŵ2

; ð70Þ

δρ̂

ρ̂
≤ v̂2Δ;

δĥ

ĥ
≤ v̂2Δ; ð71Þ

δϵ̂

1þ ϵ̂
≤ âv̂2Δ;

δϵ̂

ϵ̂
≤ ð1þ ϵ̂Þ â

ϵ̂
v̂2Δ; ð72Þ

δρ̂E
ρ̂E

≤ 2Δ;
δP̂

P̂
≤ v̂2ð1þ âÞ ĉ

2
s

â
Δ; ð73Þ

where jδv̂ij denotes the norm given by the 3-metric of the
vector δvi. The error in the recovered primitive variables
corresponds to errors δq, δSi of conserved variables. We
estimate these errors to linear order, by inserting ρ̂, ĥ, P̂, v̂i

into Eqs. (15)–(20) and (21), and then evaluate the first
derivatives with respect to μ at the root. We obtain the
following scaling:

jδSij
jSij

≤ Δ;
δð1þ qÞ
1þ q

≤ 4v2Δ: ð74Þ
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We find that the accuracy in μ required for a fixed relative
error of the primitives increases with increasingly relativ-
istic velocities. On the other hand, the magnetic scale b has
no impact on the error bounds. It is also worth noting that
the error δs of the specific entropy s is zero (to linear order
in δμ) because the variation of ρ̂, ϵ̂ with respect to μ is
adiabatic (see Sec. II G). Finally, we note that the above
error bounds do not include numerical rounding errors.
Those will be discussed in Sec. IV B.

III. ENFORCING VALIDITY

In typical numerical simulations, the evolved magneto-
hydrodynamic variables frequently reach an invalid state at
some points, mainly due to ordinary numerical error, but
also external influences such as gauge pathologies near the
centers of newly formed black holes. Often, such violations
are harmless and can be corrected. Any such correction
turns unphysical conditions into regular evolution errors,
and obviously different prescriptions will lead to different
errors, both in magnitude and in character. Although
correcting violations should be regarded as part of the
evolution scheme, some basic pointwise corrections can be
incorporated into the primitive recovery code, granting it
power to change the evolved variables. The following
effects cause typical harmless violations:
(1) When evolving zero-temperature initial data, arbi-

trary small evolution errors can lead to evolved
variables that correspond to a fluid energy density
below the zero-temperature limit.

(2) At numerical grid points at the surface of neutron
stars moving through vacuum, mass and energy
densities during a single time step can drop by orders
of magnitude or even become negative. Although the
absolute errors of the conserved variables remain
small compared to the global scales of the system,
the resulting local error of the specific internal
energy and velocity can become huge and lead to
an invalid state. The effect is alleviated over time
because the errors tend to heat the outermost layer of
NS surface, creating a hot atmosphere that reduces
the density gradient.

(3) During collapse to a black hole, mass density and/or
temperature might leave the range covered by the
given EOS, arriving at a state that is not unphysical
but cannot be evolved further. This typically
occurs in regions already inside the horizon or about
to be engulfed by a rapidly expanding apparent
horizon.

(4) The coordinates near a black hole center are strongly
stretched for gauges like the puncture gauge, and the
surroundings are extremely under-resolved numeri-
cally. Under those conditions, all kinds of numerical
instabilities can occur for the combined magneto-
hydrodynamical and spacetime evolution system.

A. Simple corrections

By design, our primitive variable recovery scheme is able
to deal also with invalid input. As a side effect, we obtain a
projection onto the valid regime by simply recomputing the
evolved variables from the recovered primitives. As
described in Sec. II E, the scheme always yields a pair
ρ̂, ϵ̂ such that ϵ̂ is within the validity range of the EOS at ρ̂.
We first consider the important case in which the raw

value of ϵ is below the valid range. In this case, only the
recomputed conserved energy τ changes, while S and D
stay the same. This can be seen as follows. The only
variable through which the adjustment of ϵ to the valid
range impacts the master function is ν̂. For the case at hand,
Eq. (48) implies ν̂ ¼ νA. Furthermore, the conserved
energy τ enters exclusively through Eq. (42). Therefore,
if τ is adjusted such that Eq. (42) yields the range-limited
value for ϵ̂, we arrive at the same primitive variables
without adjustment.
For the case in which the energy is above the validity

range of the EOS, all recomputed conserved variables can
change. One could prevent this by always using ν̂ ¼ νA, but
not without changing the behavior of the master function
away from the solution. However, this case is less impor-
tant, because this correction should only be allowed at low-
density fluid-vacuum boundaries (NS surfaces) or inside
horizons.
In the interiors of black holes, it becomes necessary to

employ a more lenient error policy than outside. Although
physical effects cannot propagate out of the horizon,
violations of the constraint equations and gauge effects
impact the exterior. Therefore, one cannot allow any
runaway instability inside the horizon. For the matter part,
this mainly concerns energy and momentum, since the total
baryon number is conserved in finite-volume schemes
(artificial atmosphere corrections aside), and the mass
density remains finite. The energy can be limited by
allowing the aforementioned correction to the EOS range
inside horizons even at high densities.
This leaves the momentum. For pure hydrodynamic

simulations, limiting the velocity proved effective to
prevent runaway instabilities near the BH center. This
was employed for the simulations in Ref. [23], by rescaling
the velocity to stay within a given limit. For MHD
simulations, this approach has a side effect. Since the
reconstructed electric field depends on the velocity via
Eq. (21), it will also change. That might be problematic or
not, depending on the evolution scheme. The evolution of
the EM field might be problematic in this regime in any
case. However, addressing such problems is clearly not
inside the scope of the primitive variable recovery, since it
operates pointwise and cannot change electric or magnetic
fields in any reasonable way.
Another correction often applied is to enforce a mini-

mum mass density, also called artificial atmosphere. There
are two motives. One is the wish to use a tabulated EOS
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that does not include zero density (this might be achieved
more consistently by extending the range to zero via
analytic expressions). The more fundamental motive is
that the hydrodynamic evolution equations break down in
vacuum. In purely hydrodynamic simulations, it is common
to set the atmosphere velocity to zero with respect to the
simulation’s coordinate system, in order to prevent an
unphysical influx of matter. In ideal MHD simulations,
the situation is more complicated because the electric field
is tied to the velocity via Eq. (21). Therefore, the atmos-
phere velocity prescription should be the domain of the
evolution scheme and not of the primitive recovery.

IV. PERFORMANCE

In the following, we assess how well our scheme
performs in practice. For this, we subject a reference
implementation to a series of numerical tests. These
stand-alone tests simulate conditions relevant for the future
use of the scheme in actual numerical simulation codes.
Our tests aim to validate that the following requirements

are met. First, the scheme should not fail to converge for
any input we expect to occur in numerical simulations of
binary neutron star mergers (or supernova core collapse,
which has similar demands). Second, within the physical
regimes that may occur in the above scenarios, the errors
caused by the primitive recovery should be insignificant
compared to the ones caused by modern evolution schemes.
Lorentz factorW, magnetic scale b, and specific energy ϵ

are the most important variables governing the behavior of
the primitive recovery. To get an indication of what values
to expect for b, we consider the merger simulations
described in Refs. [37,38] as a typical use case. The
maximum magnetic field strength reached after the merger
by various amplification mechanisms is ∼1017 G. The
lowest density reached in the funnel along the axis after
black hole formation is around∼108 g=cm3, although these
conditions do not coincide.
The corresponding value b ≈ 100 constitutes a reason-

able scale up to which we demand robustness. A compa-
rable value b ≈ 30 corresponds to initial data with neutron
stars possessing a magnetar-like exterior field strength
1015 G that extends into an artificial atmosphere with
typical densities of 105 g=cm3. In merger simulations,
the regions with magnetic fields amplified even further
do not overlap with the lowest-density regions. Combining
a field ∼1017 G with the aforementioned artificial atmos-
phere density, we find that b ≈ 103 exceeds practical use
cases by far, and demanding robustness up to this scale is
not required.
Although the typical Lorentz factors we encounter in

merger simulations are well below 10, one motivation for
magnetized merger simulation is to observe the launch of a
jet, and future applications might follow up such a jet to
higher Lorentz factors. High Lorentz factors might also

appear inside black holes. Therefore, we demand robust-
ness up to W ¼ 103.
Regarding the requirements for specific energy, we note

that nuclear matter at the highest densities possible in NSs
can reach OðϵÞ ¼ 1 at zero temperature. Although temper-
atures can easily reach ∼50 MeV inside merging NSs (see
Ref. [39], for example), this happens at high densities. The
thermal contribution to ϵ stays well below unity (see, e.g.,
the appendix of Ref. [40]). Furthermore, for states with
ϵ ≫ 1, the energy of the photon gas dominates that of
baryonic matter, and the evolution equations of magneto-
hydrodynamics are not applicable anymore. It seems
reasonable to demand accuracy and robustness of the
primitive recovery up to ϵ ≈ 10.
In order to understand finite precision effects, we

compare the accuracy that our reference implementation
reaches to the expected accuracy derived in Sec. II H, using
a value Δ ¼ 10−8. We assume that such an accuracy is
negligible compared to the evolution error. Note, however,
that in Sec. V, we show that the accuracy of ϵ (and hence P)
related to the accuracy of the evolved variables deteriorates
quickly for b > 1, with a factor ≈b2=ϵ. We therefore restrict
tests of primitive recovery accuracy to the regime b < 5
and caution that one cannot trust the evolution scheme at
higher values.

A. Code design

We created a reference implementation for the algorithm
described in Sec. II. A schematic summary of the algorithm
is given in Fig. 2. We provide our reference implementation
in the form of a C++ library named RePrimAnd. The
library is not tied to any particular evolution framework,
allowing the use in arbitrary evolution codes. It also
contains a framework providing access to different types
of EOS through a generic interface, ensuring that the user
code (such as our primitive recovery code) is completely
EOS-agnostic. The generic interface also provides the EOS
validity ranges and rigidly enforces our EOS requirements
(see Sec. II B). The reference implementation is publicly
available [34].
Our library provides different EOS types (not yet includ-

ing fully tabulated ones), including a hybrid EOS based on a
tabulated cold part. Although theMS1 variant fromRef. [35]
used for our test is given analytically in the form of piecewise
polytropic expressions, we evaluate it in our tests as a
tabulated cold part, in order to test the general-purpose code
intended for production runs.We set the allowed range of the
EOS to ρmax ¼ 3 × 1015 g=cm3, ϵmax ¼ 51.
In order to find the root of the master function, our

implementation uses the TOM748 algorithm [41] provided
by the BOOST library. This root-finding scheme is similar
to the well known Brent-Dekker schemes, but it uses
inverse cubic instead of quadratic interpolation whenever
possible, improving convergence speed near the solution. It
keeps the solution enclosed in a bracket, with extent
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converging in a limited amount of steps, and it does not
make use of function derivatives. The motivation for
avoiding derivatives is that, in practice, tabulated EOSs
tend to have very inaccurate partial derivatives, which is
problematic when using a derivative-based root solver such
as Newton-Raphson. Our implementation, therefore, does
not make use of the sound speed or other derivatives. The
root is determined to an accuracy specified by prescribing
Δ defined in Eq. (69), where the error δμ is taken as the size
of the current tightest bracket of the root.
In the case where r ≥ h0, we need to determine μþ from

the root of the auxiliary function fa, for which we employ a
standard Newton-Raphson root solver. This is unproble-
matic, since fa is a smooth, monotonic, analytic function.
We determine μþ to an accuracy close to machine pre-
cision, and then increase μþ by a multiple of the root-
solving accuracy to ensure the root of the master function is
really contained.

B. Robustness and accuracy

Our main test validates both robustness and expected
accuracy by sampling the primitive variable parameter

space given by density, temperature/specific energy, mag-
netic scale b, and velocity. We sample z ¼ Wv between 0
and 1000, magnetic scale b from 0 to 5, and the specific
thermal energy from ϵth ¼ 10−4 up to 50. For the MS1
EOS, we sample the mass density from 106 to 1015 g=cm3.
For the ideal gas EOS, the mass density is irrelevant due to
the scaling behavior of the EOS. We use two orientations of
the velocity, parallel and orthogonal to the magnetic field.
The tests are performed both for the ideal gas and for the
hybrid EOS, described in Sec. II B, and we demand an
accuracy Δ ¼ 10−8.
We verify that the algorithm always, without any

exception, succeeds in recovering the correct solution for
the valid input described above. Moreover, we create test
cases to assure that input corresponding to energy outside
the range possible for a given EOS is correctly classified
as such.
To assess the accuracy, we compute the conserved

variables from the primitives, apply the primitive recovery
algorithm, and compare the result to the original primitives.
Further, we compute the conservatives from the recovered
primitives and compare them to the original conservatives.
Our test suite compares the observed accuracy for each
individual primitive variable to the one expected from
Eqs. (69)–(73), and also the accuracy of the corresponding
conserved variables to Eq. (74). When demanding an
accuracy better than Δ≲ 10−7, those bounds are exceeded
either for high Lorentz factors or very small ϵ and v. We
attribute the excess error to various rounding errors.
We identify the most important rounding errors as

follows. First, the master function is the difference of
two values which can each be expressed only to machine
precision. To get the impact on the root, we have to divide
by the derivative of the master function, which in this case
satisfies f0 ≤ 1 − v2c2s . At the same time, we demand an
accuracy Δ=W2. For the highly relativistic case W ¼ 103

and around 16 digits machine precision, this limits
Δ > 10−10. If the sound speed approaches unity, the
accuracy is further limited. Second, ϵ is computed by
subtracting kinetic and magnetic energy density from the
total one. If ϵ is small compared to these, the cancellation
error causes a loss of significant digits. Analyzing Eq. (42),
we find additional rounding errors of magnitudes z2=ϵ and
b2W=ϵ worse than machine precision.
Taking into account both the regular errors predicted by

Eqs. (69)–(73) as well as the main rounding errors
discussed above, the recovered accuracy is quantitatively
within the expected bounds over the whole range of our test
cases. Figure 3 shows the recovered accuracy for the
pressure as well as the boundary where the errors caused
by rounding start exceeding those caused by root finding.
We do not expect rounding errors to be of practical

importance. The rounding errors at low ϵ, v are very small
and only dominate because the regular errors approach
zero. The rounding errors in the ultrarelativistic/highly

FIG. 2. Schematic overview of the recovery algorithm informa-
tion flow and list of required equations. Arrows denote depend-
encies, including variables further up in the chain. Double arrows
denote computations that require information about the EOS
validity bounds; the one double arrow labeled “EOS” refers to
evaluation of the EOS. Intermediate results obtained during
evaluation of the master function in the last root finding iteration
are denoted “Last call.” Square brackets refer to the list of fixed
parameters (independent of μ) during root solving. The density ρbnd
stands for any one of the upper and lower EOS validity bounds.
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magnetized regime are still not prohibitive, but will be
dominated by the errors of the time evolution, which will be
discussed in Sec. V.

C. Efficiency

In the following, we discuss the efficiency of our scheme
on the level of the algorithm, while reserving benchmarks
of the execution speed of the implementation within actual
GRMHD simulations for future work. We measure the
computational efficiency of our algorithm in terms of calls
to the EOS. The motivation is that for a tabulated EOS
including thermal and composition degrees of freedom, a
single EOS call is likely more expensive than the evaluation
of the analytic expressions within our recovery scheme.
The worst scenario is when the EOS is tabulated with
temperature as one independent variable. Each EOS call
then requires an inversion step to convert from ϵ to T.
Figure 4 shows how the efficiency varies with specific

energy and velocity, either for zero magnetic field, or with
magnetic scale fixed to a large value of b ¼ 10. We find
that the efficiency does not degrade even for Lorentz factors
up to 1000 and magnetic scales up to b ¼ 10. At the density
shown, b ¼ 10 corresponds to extremely high magnetiza-
tions of orders 104 (for W ¼ 1) to 107 (for W ¼ 1000).
When considering the whole parameter space used in the

unit tests (not just the cuts shown in the plots) and both
EOS types, we find a maximum number of 23 calls to the
EOS required to achieve an accuracy Δ ¼ 10−8. The
maximum occurs for the ideal gas and only when both
ϵ > 40 and b > 2—i.e., thermal energies much larger and
magnetic energies larger than the rest mass density.
In Fig. 5, we show the efficiency with respect to velocity

and magnetic scale b, taking the latter up to extreme values

b ¼ 104, far beyond any reasonable use case. We find that
beyond b ¼ 10, the efficiency gradually starts to decrease.
At b ¼ 104, W ¼ 103, we require around 40 steps for Δ ¼
10−8 (which implies δμ=μ ≈ 10−14). At this point, the root-
solving convergence speed has decreased roughly to that of
bisection. Still, we encounter no failures to converge even
in this range.
Note that the extremes reached in our tests are rather

pathological scenarios which are rarely encountered in
simulations and are therefore not relevant for numerical
costs of simulations. In practice, we expect an average
number of required calls below 10.

FIG. 4. Number of calls to the EOS required to reconstruct the
primitives to accuracyΔ ¼ 10−8, as a function of specific thermal
energy and velocity (in terms of z ¼ Wv). The results were
obtained for the case of the hybrid EOS (see text) at a mass
density ρ ¼ 6 × 1012 g=cm3. The upper panel shows results for
the magnetic scale b ¼ 0, and the lower panel for the magneti-
cally dominated case b ¼ 10.

FIG. 3. Relative error of reconstructed pressure, as a function of
specific thermal energy and velocity (the latter in terms of
z ¼ Wv). The results were obtained for the case of the hybrid
EOS (see text), at fixed mass density 6 × 1012 g=cm3, demanding
an accuracy Δ ¼ 10−8. The upper panel shows results for zero
magnetic field, and the lower panel for the magnetically domi-
nated case b ¼ 10. The solid lines mark the regions where
expected errors related to rounding start to exceed those related to
root solving.

FIG. 5. Number of calls to the EOS required to reconstruct the
primitives to accuracy Δ ¼ 10−8, as a function of magnetic scale
b and velocity (in terms of z ¼ Wv). The results were obtained
for the case of the hybrid EOS (see text) at a mass density
ρ ¼ 6 × 1012 g=cm3. The upper panel shows results for cold
matter ϵth ¼ 10−4, and the lower panel for very hot matter
ϵth ¼ 10. For comparison, we also show the magnetization as
contour lines of log10ðB2=PÞ. The red line marks a magnetic field
strength of B ¼ 1016 G.
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D. Comparison with other schemes

In the following, we compare our scheme to existing
ones. We refer to Ref. [33] for a comprehensive review and
numerical tests of previous schemes. The main character-
istics are listed in Table I.
One important difference is the number of independent

variables. Most of the existing schemes need to solve an
equation in two or three unknowns. This is a severe
drawback. First, it is difficult to ensure that the solution
is found. The Newton-Raphson (NR) schemes might not
converge. Second, robust but fast schemes that guarantee
finding the solution in a limited number of steps only exist
for one-dimensional root finding. Third, the recovery
schemes based on NR require an initial guess, which is
typically taken from the previous time step during numeri-
cal evolution. This makes the methods more unpredictable
and more difficult to test, as they do not depend on the
conserved variables in a deterministic way. As two of the
existing schemes, our scheme is using one-dimensional
root finding. Further, it also makes use of a tight initial
bracketing interval proven to contain exactly one solution.
As demonstrated in Ref. [33], all of the existing schemes

can fail for Lorentz factors 10–1000, depending on the
magnetization. Figure 3 of Ref. [33] shows the number of
iterations or failure to converge as a function of magneti-
zation and Lorentz factor, at fixed density 1011 g=cm3 and
T ¼ 5 MeV (thus ϵ < 1). For our scheme, b is the most
relevant measure for the magnetic field (but not necessarily
for the other schemes). For comparison, the magnetization
1010 covered in the figure corresponds to values up to
b ≈ 104. As argued before, such values are outside the
parameter space relevant for use in merger simulations.
Therefore, the failures at low velocity, but with magneti-
zation around 109 shown in Fig. 3 of Ref. [33] are not
problematic in practice. The fact that our scheme showed

no failure at b ¼ 104 for the test shown in Fig. 5 is,
however, reassuring regarding the numerical robustness.
The failures at relativistic velocities for lower magnetiza-
tion shown in Fig. 3 of Ref. [33] should, however, be
regarded as problematic. For our algorithm, the existence
and uniqueness of the solution are proven analytically, and
we successfully test our numerical implementation up to
Lorentz factors W ¼ 1000 in the whole parameter space
described in Sec. IV B.
Strong magnetization is important for studying the

engine of short gamma-ray bursts (SGRBs), where ideally
a very low-density matter is subject to very strong magnetic
fields. This regime is also problematic for the numerical
time evolution itself. The ability of our scheme to distin-
guish reliably between valid and invalid evolved variables
is therefore an important advantage.
Figure 2 of Ref. [33] shows the average of the relative

errors (called σ̄ in the following) for ρ, vi, ϵ as a function of
temperature and density for fixed low magnetization
pmag=p ¼ 10−3 and Lorentz factor W ¼ 2. We note that
for the nuclear physics EOS, one can ignore the top-left part
of the plots in Fig. 2, because this low-density, high-
temperature regime corresponds essentially to a photon gas
not relevant for practical use. Using the energy density ργ ∝
T4 of a photon gas, we find that the bound ϵ < 10 used in
our tests corresponds to temperatures below a straight line
(in the log-log plot) through ð1012 g=cm3; 1012 KÞ and
ð104 g=cm3; 1010 KÞ. For the ideal gas EOS, the temper-
ature is instead defined assuming only baryons, such that
ϵ < 1 throughout the figure.
In most of the physically relevant region, the recovery

accuracy shown in Ref. [33] seems more than sufficient for
use in evolution schemes. However, some existing schemes
exhibit isolated regions where the accuracy degrades
inexplicably. This is worrisome, since the figure shows
only a mildly relativistic two-dimensional cut in the
parameter space, and there is no guarantee that the accuracy
will not deteriorate intolerably elsewhere. In contrast, our
scheme has the advantage of a theoretical model for the
errors of each of the primitive variables, including the
dominant finite-precision errors. This model was validated
for our numerical implementation over the full parameter
space ðρ;W; ϵ; bÞ as described in Sec. IV B.
Regarding the efficiency, the different tolerance mea-

sures allow only a rough comparison, using the number of
root-finding iterations shown in Figs. 1 and 3 of Ref. [33].
Note that the top-left part of the plots in Fig. 1 is not
practically relevant for the nuclear physics EOS, as dis-
cussed above. As mentioned before, the problems at the
highest magnetizations >109 in Fig. 3 of Ref. [33] can be
safely ignored for practical use. In case no failure occurs,
only the Newman scheme appears to be consistently
requiring less than around 10 steps also for relativistic
velocities. The others need 30 iterations or more in certain
regions of parameter space.

TABLE I. Main characteristics of different recovery schemes.
We list the independent variables used in the root finding
(translated to our notation), the variables for which the EOS
needs to be evaluated, whether the scheme requires derivatives of
the EOS, whether the formulation allows a bound on the number
of iterations needed for finding the solution, and whether the
scheme requires one to provide an initial guess for the solution.

Scheme
Independent
variables

EOS
form

EOS
derivatives

Steps
bounded

Guess
needed

This work μ Pðρ; ϵÞ No Yes No
Noble [30] ðD=μ; v2Þ Pðρ; hÞ Yes No Yes
Siegel [33] ðD=μ; TÞ Pðρ; TÞ Yes No Yes
Duran
[26]

ðW;D=μ; TÞ ϵðρ; TÞ Yes No Yes

Neilsen
[31,32]

D=μ Pðρ; ϵÞ No Yes No

Newman
[42]

P Pðρ; hÞ No Yes No
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Our scheme is guaranteed to converge in a finite number
of steps, because the root-finding algorithm performs
bisection steps if needed. Our tests have shown that the
efficiency does not degrade for large Lorentz factors
(W < 1000) or strong magnetization (b < 100), in contrast
to most other schemes. The worst-case scenario for our
scheme seems to be extreme values of ϵ. Even for
essentially photonic states (ϵ ¼ 50), it does not require
more than 23 EOS calls in the regime b < 5, W < 1000.
Up to this point, we considered the convergence criteria

used during the iteration as an integral part of the different
algorithms. Now we have to discuss if the different
measures of success could bias the comparison. In
Ref. [33], recovery was called successful when an average
error σ̄ < 5 × 10−8 could be achieved. Comparing this to
the root-solving errors given by Eqs. (69)–(73), we find that
σ̄ < KΔ, where K is a constant of order unity.1 However,
the term δϵ=ϵ is also very sensitive to unavoidable
cancellation errors, as already discussed in Sec. IV B.
Taking into account the finite floating-point precision of
q, r, b, we find that catastrophic cancellation decreases the
number of valid digits for ϵ by around log10ðz2=ϵÞ for the
case b ¼ 0, z2 ≫ ϵ, and by log10ðb2=ϵÞ for v ¼ 0, b2 ≫ ϵ.
For the ideal gas case shown in the upper panel of Fig. 3 in
Ref. [33], ϵ and P are constant, and one can easily estimate
the loss of precision. Assuming a typical machine precision
of 15 digits for q, r, b, rounding errors will make it
impossible to reach the tolerance σ̄ required in Ref. [33] at
W ≳ 2 × 103 (for small B) or at P=Pmag ≳ 5 × 108 (for
small v). The above errors are a fundamental consequence
of evolving the conserved variables, independent of the
recovery scheme. Some, if not all of the “failures” near the
upper boundary of the ideal gas panels are therefore
inevitable also for our scheme.
We test if our implementation can reach the σ̄ tolerance

from Ref. [33] within our standard test domain introduced
in Sec. IV B. In general, at b ¼ 0, our theoretical order of
magnitude estimate predicts a larger impact of rounding
errors for ϵ≲ 0.005ðW=103Þ2. For the ideal gas, the
tolerance σ̄ was indeed only reached when restricting ϵ
above this estimate. Apart from this regime, the tolerance
was reached in the whole standard test domain (W ≤ 103,
b < 5) using Δ ¼ 10−8. The same holds for the hybrid
EOS. We conclude that the impact of the cancellation error
on the error measure σ̄ is close to the theoretical minimum
for our implementation. In contrast, all schemes shown in
Ref. [33] exceed the tolerance already below W < 103 at
small B, where our scheme succeeds.

The above discussion indicates that σ̄ might not be a
good choice as a criterion for recovery failures. We also
point out that the relative error of ϵ is not a good measure
for the error of the temperature, which is more closely
related to the thermal part ϵth. For practical applications, it
seems preferable to allow the inevitable accuracy loss for ϵ
discussed above, recovering each primitive variable as
accurately as theoretically possible. Whether or not the
unavoidable cancellation errors in ϵ are tolerable surely
depends on the application and should be regarded as part
of the post-recovery error policy.
As is pointed out in Ref. [33], comparing the number of

EOS calls between different schemes does not directly
translate to numerical costs. The reason is that the schemes
differ with respect to the required form of the EOS. Our
scheme is using P ¼ Pðρ; ϵÞ, while nuclear physics EOS
tables are typically given in terms of T instead of ϵ. It was
argued in Ref. [33] that it is advantageous if the master
function directly uses the temperature as the independent
variable, because otherwise each call to the EOS requires
another root finding to determine T. We regard this as a
shortcoming of the EOS implementation and advocate
against basing the design of the primitive recovery on
internals of specific EOS implementations. A more natural
solution is to first create new tables in terms of ϵ (or a
suitable analytic function thereof) by interpolating avail-
able nuclear physics tables. This allows one to choose the
most robust recovery procedure without sacrificing speed.
When using a lookup table based on temperature, however,
the scheme proposed in Ref. [33] might indeed be faster
than ours. We point out, however, that the large speedup
discussed in Ref. [33] seems to be based on a particularly
wasteful implementation of the inversion TðϵÞ that can
require up to 100 steps. In Ref. [23], we used a discrete
bisection in index space followed by inverse interpolation,
which requires <10 steps for realistic table sizes.
In contrast to Ref. [33], we do not test the scheme with a

fully tabulated EOS and can therefore make no conclusive
claims on robustness and accuracy of the implementation in
this case. However, the algorithm itself is guaranteed to find
a solution. We recall that the proof of existence does not
rely on EOS properties except for a lower bound on h. A
table in conjunction with an interpolation method repre-
sents a well-defined EOS. As long as this EOS respects the
physical constraints listed in Sec. II B, the uniqueness is
also guaranteed. A careless implementation of a tabulated
EOS that violates those constraints might, however, cause
our algorithm to find wrong, unphysical solutions. For such
faulty EOSs there might even exist several physical
solutions. Furthermore, our accuracy bounds are not
guaranteed anymore because they rely on the constraints
as well. Still, we do expect the numerical root finding to
converge to a solution. Even jumps in the master function
would only reduce the efficiency of the TOM748 solver,
possibly down to that of bisection. We recall that this

1This ceases to be true near zero crossings of ϵ. Whether such
crossings can occur depends on the choice of the arbitrary
constant mB (see Sec. II A). This ambiguity is a general problem
with the definition of σ̄, which contains a term δϵ=ϵ. It is not
relevant for the following discussion, but might be a pitfall in the
low-density, low-temperature regime.
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root-finding method does not use derivatives, and would
therefore not be affected by an EOS implementation
returning inaccurate numerical derivatives of the pressure.
Such inconsistencies might affect those schemes in
Ref. [33] based on Newton-Raphson root solvers.
However, the failures to converge exposed in Ref. [33]
also appear for the purely analytic ideal gas EOS, and can
therefore not be attributed to possible faults in EOS tables.

V. IMPACT OF NUMERICAL ERROR IN
EVOLVED VARIABLES

In the following, we investigate consequences of numeri-
cal errors in the evolved variables in conjunction with the
corrections of invalid states described in Sec. III. Further,
we identify regions in parameter space where the primitive
variables are particularly sensitive to errors of the
evolved ones.

A. Newtonian limit

It is instructive to consider the relation between evolved
and primitive variables in the Newtonian limit. Assuming
that both kinetic and thermal specific energies are non-
relativistic corresponds to v ≪ 1, ϵ ≪ 1, a ≪ 1, h ≈ 1 (for
simplicity, we chose mB such that h0 ¼ 1 in this section).
To leading order in v2 and ϵ, we obtain

x → xN ¼ 1

1þ b2
; ð75Þ

r̄i → xNri⊥ þ rik; ð76Þ

vi → r̄i; ð77Þ

ϵ → q −
1

2
ðb2ð1þ v2⊥Þ þ v2Þ: ð78Þ

Taking the Newtonian limit locally does not imply small b.
However, if the magnetic field energy is comparable to the
rest mass density, one cannot expect the velocity to stay
nonrelativistic during the course of the evolution. It is a
plausible assumption that the density of kinetic energy is
not much smaller than the magnetic energy density. Setting
Oðb2Þ ≈Oðv2Þ, we find xN ≈ 1. Since OðEÞ ¼ OðvBÞ, we
can also neglect the electric contribution b2v2⊥ to ϵ.
On a side note, it is easy to show that the master function

Eq. (44) becomes a linear function in the Newtonian limit
(with b2 ≪ 1). As xðμÞ ≈ 1, r̄ðμÞ and q̄ðμÞ are independent
of μ and equal to the correct values. The same holds in turn
for ρ̂, ϵ̂, P̂. Further, ν̂ ≈ ĥ ≈ h0. Since r̄2 ≪ 1, the master
function becomes fðμÞ ≈ μ − 1.
We now turn to the propagation of the evolution error of

the variables q, r, D. Even in the Newtonian limit, both v2

and b2 contributions can dominate q if ϵ is even smaller.
Since v is essentially computed from r, computing ϵ from

the evolved variables suffers from cancellations that
amplify the evolution errors. In detail,

δϵ

ϵ
¼ δq

q

�
O
�
b2

ϵ

�
þO

�
v2

ϵ

��

þ δb
b
O
�
b2

ϵ

�
þ jδrij

r
O
�
v2

ϵ

�
: ð79Þ

Once δϵ=ϵ exceeds unity, reconstructing ϵ from the
evolved variables might lead to larger errors than simply
setting it to the zero-temperature value. Assuming some
bound for the relative errors of the evolved variables, this
corresponds to critical values for b2 and v2.

B. Magnetically dominated regime

In the context of magnetohydrodynamic evolution,
“magnetically dominated” refers to the magnetic pressure
exceeding the fluid pressure. Increasing the field strength at
fixed matter density, the movement of matter becomes
constrained along the field lines at some point.
This effect is also reflected in the equations we use for

primitive recovery. The relation between total and fluid
momentum S⊥ components perpendicular to the magnetic
field is S̄⊥ ¼ xS⊥, as seen from Eq. (29). The quantity x
depends only on μb2. In the limit μb2 ≫ 1, we find x ≪ 1.
In that case, the perpendicular part of the evolved momen-
tum is dominated by the electromagnetic part. However, the
latter is proportional to v⊥ in ideal MHD, and also points in
the same direction. Therefore, the evolution error of the
perpendicular part of momentum is not amplified by
cancellations when recovering the fluid velocity orthogonal
to the field. Also, the parallel part of the evolved momen-
tum is not problematic, since it has no electromagnetic
contribution.
As discussed for the Newtonian limit, strong magnetic

fields are also detrimental to the accuracy of ϵ, since
evolution errors in B are amplified by cancellation. From
Eq. (39), we find that the magnetic field contribution to the
energy causes strong cancellation error if q̄ ≪ b2ð1 − v2⊥Þ.

C. General case

To quantify the error amplification in the general case,
we compute the partial derivatives of the primitive variables
with respect to the conserved ones (by means of finite
differences). As expected, specific internal energy and
pressure exhibit large error amplification in some regimes,
while the fluid momentum is well behaved. Figure 6 shows
the behavior of amplification factors of the specific energy
error in relation to errors in the evolution of q, b, and r,
defined as

Aq ¼
δ logðϵÞ
δ logðqÞ

����
D;r;b

; ð80Þ
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Ab ¼
δ logðϵÞ
δ logðbÞ

����
D;q;r

; ð81Þ

Ar ¼
δ logðϵÞ
δ logðrÞ

����
D;q;b

: ð82Þ

The error of the pressure shows the same qualitative
behavior. For a magnetar-strength field B ¼ 1015 G, we
find that a relative evolution error of δb=b ¼ 10−4 would
start to dominate the evolution of ϵ at densities of
magnitude 108 g=cm3. The same holds for a relative error
δq=q ¼ 10−4, which is to be expected, since q is dominated
by the b2 contribution. This regime could be relevant for the
engine of SGRBs, as a popular model assumes a low-
density funnel along the rotation axis of a black hole
immersed in a strong magnetic field which is anchored in a
surrounding disk. Similarly, the material surrounding a
supramassive (i.e., long-lived) neutron star merger remnant
could be affected.
The consequence of artificial heating could be artificial

outflows and increased neutrino luminosity. To assess the
potential for spurious winds, we can compare the scales of
additional specific energy caused by the evolution error and
the specific gravitational binding energy. At a distance
100 km from a M ¼ 2 M⊙ remnant, we find that the
thermal error starts to dominate at densities 108 g=cm3,

again for a fiducial evolution error δb=b ¼ 10−4 and
B ¼ 1015 G.
On the other hand, the above discussion is overly

pessimistic if the increase in thermal energy by physical
effects, such as shocks or neutrino absorption, greatly
exceeds the one by numerical errors. In other words, the
presence of a mild outflow caused by mild heating should
be met with more skepticism than stronger outflows caused
by prominent heating.

D. Interaction with recovery corrections

Enforcing the evolved variables to stay in the physically
valid regime corresponds to a projection onto the validity
boundary. Depending on the choice of projection, it is
possible that the corrections cause a drift along the
boundary, in the worst case with a preferred direction.
This is of particular concern for the very frequent correction
of limiting the specific energy above the zero-temperature
value. For our scheme, only the energy density is corrected
in that case. Therefore, it does not introduce a drift of the
evolved momentum density.
The main effect of limiting ϵ above the zero-temperature

value may be to induce a spurious heating. The reason is
that cutting the evolution error distribution from below
creates a positive bias until the error distribution has little
support below the cut. Of course, the raw error distribution
before the correction could already contain a bias. For the
idealized case in which the evolution errors follow a zero-
mean normal distribution around the correct result, we
expect the temperature to increase until the thermal energy
reaches a level comparable to the width of the error
distribution for total energy.
Note that excessive artificial heating could reduce the

velocity, since the momentum density incorporates a factor
h. However, if h is significantly increased nonhomoge-
neously by the errors, the corresponding changes in thermal
pressure can be expected to cause gradients and corre-
sponding acceleration.
In the above discussion, we omitted the effect of finite

root-solving accuracy. Our implementation of the algorithm
recomputes all conserved variables from the primitive ones
if, and only if, corrections were required. Therefore, the
momentum only remains constant to the accuracy of the
root solving when applying the correction to the energy.
This error is formally bounded by Eq. (74). We cannot
predict, however, if the distribution limited by this bound is
symmetric or not. Any bias might lead to a cumulative
effect over many corrections. For the worst possible
scenario where each correction leads to the maximum
possible momentum error always pointing along the
momentum, a few thousand corrections could add up to
intolerable levels.
To assess the actual behavior, we performed a numerical

experiment. Instead of using a full numerical evolution, we
employ a random walk model representing an evolution

FIG. 6. Amplification factors Aq, Ar, and Ab for the relative
error of ϵ, as defined in Eq. (80), for the example of cold matter
obeying the MS1 EOS. Top panel: amplification as a function of
density, for fixed magnetic field and velocity. Bottom panel:
amplification versus velocity, for fixed density and no
magnetic field.
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error, starting at selected states. After each “evolution” step,
we apply the primitive recovery and limit the conserved
variables to the allowed regime. The cumulative corrections
applied to energy and momentum are monitored.
In this approach, we can prescribe the error distribution.

As a worst-case example, we use a normal distribution with
a negative mean for the energy error. Starting at a zero-
temperature state, this causes frequent corrections to the
energy. Note that the expected error in the momentum does
not depend on the magnitude of the corrections, but this
randomized test nevertheless involves different magni-
tudes. For the root-finding accuracy, we use four different
values: Δ ¼ 10−710−8, 10−9, 10−10.
We find that the average momentum error is orders of

magnitude smaller than the limit Eq. (74). Selecting an
initial state v ¼ 0.99, b ¼ 2, ρ ¼ 6 × 1012 g=cm3, the
momentum errors of individual correction steps approach
machine precision levels around Δ ¼ 10−9. We believe that
the reason might be that the accuracy increases drastically
during the final root-finding step, such that the average root
error is much smaller than the prescribed maximum. We
conclude that cumulative effects of the corrections can likely
be neglected. In case of evidence to the contrary, the solution
would be to simply not recompute the momentum, sacrific-
ing machine-precision consistency for error reduction.
We also apply the random walk model to states with

different combinations of b ¼ f0; 2g, v ¼ f0; 0.99g, ϵth ¼
f0; 10g, perturbing the evolved variables separately with
normally distributed relative errors of order 10−4. This test
confirms that the implementation of the zero-temperature
energy correction works as intended. We monitored the
behavior of vi, W, ϵ, P, μ for the above cases and did not
encounter any problematic behavior.

VI. SUMMARY AND DISCUSSION

In this work, we solved the technical problem of
primitive variable recovery in relativistic ideal magneto-
hydrodynamic evolution codes via a new fully reliable
scheme. We derived a mathematical proof that the algo-
rithm always finds a valid solution, and that the solution is
unique. Moreover, we derived expressions that allow us to
prescribe the accuracy of the individual primitive variables.
The guaranteed reliability of the new algorithm is a big

advantage compared to older methods, which are able to
handle most of the parameter space encountered in BNS
merger scenarios, but may still fail in some cases Ref. [33].
Even rare recovery failures are very problematic, since they
necessitate manual intervention, and may require repeating
parts of the simulation. Recovery failures are practically
unpredictable and potentially chaotic (we recall the
Newton-Raphson fractal related to convergence properties
of a standard root-finding procedure). This is aggravated
for recovery schemes that rely on an initial guess taken
from the previous time step. The automated approach of
using a fixed state (e.g., artificial atmosphere) in case of

recovery failure will render simulations unpredictable in
practice.
The ability to identify unphysical evolved variables, as

well as the nature of the invalidity, is another advantage of
our method. All evolution schemes produce unphysical
states occasionally, most of which are harmless. However,
sometimes invalid input occurs as the first symptom of
more severe evolution errors. Our method allows us to
prescribe an error policy and selectively apply corrections
based on the nature of the problem. Such corrections (or
lack of corrections) should be considered as part of the
evolution scheme, but they are mentioned in the literature
only rarely.
The design of our scheme naturally suggests a particular

prescription for correcting slightly unphysical input. We
discussed potential cumulative effects of those corrections,
and predicted that it will create artificial heating if the
matter is close to zero temperature. We also showed that
there should be no direct impact on the momentum. We
validated this by performing a numerical experiment using
random walk perturbations to emulate evolution errors.
Since the implementation of recovery algorithms is a

work-intensive endeavor, we are making our reference
implementation public in form of a well-documented
library named RePrimAnd [34], which can be used by
any evolution code. In order to be useful in practice, the
recovery should not constrain the type of EOS. Therefore,
our recovery algorithm is formulated in an EOS-agnostic
manner, and the reference implementation contains a
generic interface for using arbitrary EOSs.
We subjected the code to a comprehensive suite of tests,

demonstrating that both the algorithm and the actual
implementation are robust up to Lorentz factors and values
of magnetization much larger than those relevant for BNS
mergers. We also showed that the scheme is computation-
ally efficient regarding the number of EOS evaluations
(efficiency of EOS implementations aside).
While investigating the accuracy of the recovery scheme,

we identified regimes where rounding errors are amplified
by unavoidable cancellation errors. We quantified the
dominant contributions and found that the accuracy mea-
sured in our tests is compatible with the predictions. We
also found that the rounding errors are irrelevant, because
the very same cancellation also leads to the amplification of
evolution errors. Investigating the error propagation from
evolved to primitive variables, we showed that the accuracy
of the thermal energy and thermal pressure can severely
degrade when evolving strongly magnetized regions of low
density.
We believe that our results will be useful in particular for

studying the launching mechanism of jets powering
SGRBs, as well as the mass ejection processes that are
ultimately responsible for kilonova signals. Both astro-
physical scenarios involve strongly magnetized matter.
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APPENDIX: DERIVATIONS

In this Appendix, we provide derivation steps left out in
the main text. First, we derive Eq. (65) for the derivative of
the master function. Starting from Eq. (44),

f ¼ μ − μ̂ ¼ μ − ðν̂þ r̄2μÞ−1; ðA1Þ

f0 ¼ 1þ ðν̂þ r̄2μÞ−2ðν̂0 þ r̄2 þ 2r̄r̄0μÞ ðA2Þ

¼ 1þ μ̂2ðν̂0 þ r̄2 − 2ð1 − xÞx2r2⊥Þ; ðA3Þ

where primes denote derivatives with respect to μ. We first
consider the case where ϵ computed from Eq. (42) does not
exceed the upper limit allowed by the EOS (but may be
smaller than the zero-temperature limit). For those cases,
we can use Eq. (64) to get

f0 ¼ 1þ μ̂2
�
−ð1þ c2sÞν̂

Ŵ0

Ŵ
þ r̄2 − 2ð1 − xÞx2r2⊥

�
ðA4Þ

¼ 1þ μ̂2ð−ð1þ c2sÞν̂Ŵ2μðx3r2⊥ þ r2kÞ
þ x2r2⊥ þ r2k − 2ð1 − xÞx2r2⊥Þ: ðA5Þ

At a solution, we have μ̂ ¼ μ and ν̂Ŵ2μ ¼ 1, which leads to

f0 ¼ 1þ μ2ð−ð1þ c2sÞðx3r2⊥ þ r2kÞ
þ x2r2⊥ þ r2k − 2ð1 − xÞx2r2⊥Þ ðA6Þ

¼ 1þ μ2ðð1 − c2sÞðx3r2⊥ þ r2kÞ − x2r2⊥ − r2kÞ ðA7Þ

¼ 1 − μ2r̄2 þ μ2ð1 − c2sÞðx3r2⊥ þ r2kÞ: ðA8Þ

Using the fact that v̂ ¼ μr̄ at the solution, we arrive
at Eq. (65).
We now address the case where ϵ computed from

Eq. (42) does exceed the limit ϵmax below which the
EOS is valid. Equation (48) then becomes

ν̂ ¼ νB ¼ ð1þ âÞð1þ q̄ − μr̄2Þ; ðA9Þ

ν̂0 ¼ ν̂

1þ â
â0 þ ð1þ âÞðq̄0 − r̄2 − 2μr̄r̄0Þ: ðA10Þ

Inserting Eqs. (56), (57), and (30) yields

ν̂0

ν̂
¼ â0

1þ â
−
1þ â
ν̂

R2; ðA11Þ

with R2 ≡ x3r2⊥ þ r2k ≤ r̄2. For the case at hand,

âðρ̂Þ ¼ aðρ̂; ϵmaxðρ̂ÞÞ, and hence

â0 ¼ ρ̂0
�∂a
∂ρ þ

dϵmax

dρ
∂a
∂ϵ

�
: ðA12Þ

Splitting the derivative of ϵmax into adiabatic and residual
contributions by using definition Eq. (67), we obtain

â0 ¼ ρ̂0
�∂a
∂ρ þ

�
P̂
ρ̂2

þ Aðρ̂Þ
ρ̂

� ∂a
∂ϵ

�
ðA13Þ

¼ ρ̂0
�
da
dρ

����
s
þ Aðρ̂Þ

ρ̂

∂a
∂ϵ

�
: ðA14Þ

One can express the adiabatic sound speed in terms of a as

da
dρ

����
s
¼ 1þ a

ρ
ðc2s − aÞ; ðA15Þ

which allows us to write

â0 ¼ ρ̂0

ρ̂

�
ð1þ âÞðc2s − âÞ þ A

∂a
∂ϵ

�
: ðA16Þ

Evaluating at the solution, we can use μ̂ ¼ μ and
Ŵ2ν̂μ ¼ 1. Using also Eqs. (59) and (60), we get

ν̂0

ν̂
¼ −Ŵ2μR2

�
1þ c2s þ

A
1þ â

∂a
∂ϵ

�
: ðA17Þ

Inserting this into Eq. (A3), we can rewrite the master
function derivative at the solution as

f0 ¼ 1 − v̂2 þ v̂2
R2

r̄2

�
1 − c2s −

A
1þ â

∂a
∂ϵ

�
: ðA18Þ

If Eq. (66) holds, f0 is always strictly positive at the
solution, as claimed in Sec. II G.
Finally, we need to discuss the corner case where the

mass density computed in Eq. (41) is outside the valid
range of the EOS. If D̄=ŴðμþÞ > ρmax or D̄ < ρmin, there is
no solution with valid density and no need to determine
the root. The only complication arises when D̄=ŴðμþÞ <
ρmax < D̄ or D̄=ŴðμþÞ < ρmin < D̄. Although the proof for
the existence of a solution remains valid in those cases, we
did not succeed in proving uniqueness of the master
function root on the range ð0; μþ�. Luckily, it is not
necessary to prove uniqueness on the full interval.
Instead, we numerically solve D̄=ŴðμÞ ¼ ρmin =max for μ.
We recall that ŴðμÞ is an analytic expression that does not

KASTAUN, KALINANI, and CIOLFI PHYS. REV. D 103, 023018 (2021)

023018-18



involve the EOS and monotonically increases with μ.
Hence, we can find a subinterval ðμa; μbÞ ⊆ ð0; μþÞ that
consists of all values for which the density D̄=ŴðμÞ is
valid. We already know that the master function f has at

most one root on that interval. There is a solution with valid
density if and only if fðμaÞ and fðμbÞ have opposite signs,
which is easy to check. Using an initial bracket ðμa; μbÞ for
the root finding then ensures uniqueness.
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