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The direct detection of continuous gravitational waves from pulsars is a much anticipated discovery in
the emerging field of multimessenger gravitational wave (GW) astronomy. Because putative pulsar signals
are exceedingly weak large amounts of data need to be integrated to achieve desired sensitivity.
Contemporary searches use ingenious ad hoc methods to reduce computational complexity. In this paper
we provide analytical expressions for the Fourier transform of realistic pulsar signals. This provides
description of the manifold of pulsar signals in the Fourier domain, used by many search methods. We
analyze the shape of the Fourier transform and provide explicit formulas for location and size of peaks
resulting from stationary frequencies. We apply our formulas to analysis of recently identified outlier at
1891.76 Hz.
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I. INTRODUCTION

Continuous gravitational waves are an eagerly antici-
pated but elusive phenomena [1]. Despite a series of
searches since early 2000 (in particular [2–8]) there have
been no loud detections. Some recent papers have seen
signals with moderately high SNR, but it is not known yet
whether they are due to the instrumental noise or astro-
physical signals.
Continuous gravitational waves are expected from rap-

idly rotating neutron stars, as well as from more exotic
sources [9–14].
In this paper we study the Fourier transform of the

continuous wave signal using analytical techniques.

This study was motivated by loosely coherent algorithms
[15–17] which adapt to the shape of the signal manifold.
The Fourier transform of continuous wave signal is

analogous to the time-domain representation of a binary
waveform. Understanding it is essential for interpreting
detection candidates.
The Fourier transform can be computed numerically by

first generating gravitational wave signal. Present day
gravitational wave detectors produce data at 16384 Hz
sample rate, so a 3-day signal takes ≈33 GB of memory to
store. One can reduce storage requirements by heterodyn-
ing, but that still results in cumbersome memory and
computing requirements.
Our analytical results yield a simple method for deter-

mining location and strengths of peaks in the Fourier trans-
form of a continuous wave signal, without the need to
generate the entire waveform. This has immediate applica-
tions for understanding the influence of detector artifacts.
Currently available gravitational wave data has fre-

quency spectrum contaminated with numerous sharp peaks
[2,6]. The question of overlap of astrophysical signals with
these artifacts can be partitioned into direct and inverse
problems:

(i) In a direct problem, we know the signal parameters
with some tolerance and we would like to find out
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which instrumental lines are located in the signal
spectrum.

(ii) In the inverse problem, we want to know which
signals have spectrum covering a known line.

We provide explicit formulas describing location and
strength of the peaks in the Fourier transform. These for-
mulas can then be used to efficiently solve both direct and
inverse problems of correspondence between signals and
sharp detector artifacts. We developed an algorithm for
peak computation, detailed in Fig. 4.

II. SIGNAL MODEL

A pure monochromatic signal has linear phase evolution.
While this would be computationally simple to search
for, the search would be challenging due to confusion of
putative signals with numerous instrumental lines [6].
Realistic gravitational wave signals have multiple sources

of modulation, due to Doppler shifts from detector motion
relative to the source, possible source motion due to nearby
astrophysical bodies, or intrinsic evolution of the source,
such as slow decrease in frequency due to energy loss.
All such signals are nearly monochromatic and can be

described by the equation

hðtÞ ¼ ℜðaðtÞeiϕðtÞÞ ð1Þ

The Fourier transform of hðtÞ is thus a convolution of the
Fourier transform of amplitude modulation and the phase
modulation terms. The amplitude modulation aðtÞ varies
slowly, and its Fourier transform has only five terms: a
constant offset, and harmonics (sinusoidal terms) corre-
sponding to periods of half and full sidereal day. Thus most
of the complexity is in the behavior of the phase modu-
lation term.
To simplify exposition we assume that aðtÞ is unity

everywhere the signal is defined and focus on the phase
modulation terms alone. We do study the case when input
data has gaps, which act as a much stronger amplitude
modulation of the waveform.
Such gaps occur naturally due to lock losses in inter-

ferometer operations. They can also arise effectively in data
that would normally be deweighted due to high noise, or
due to unfavorable interferometer angle to the incoming
linearly polarized signal.
The phase modulation ϕðtÞ is a powerful tool in

separating astrophysical signals from detector artifacts,
but its complicated form and dependence on many param-
eters, such as source and detector locations and frequency
drift parameters presents a computational challenge.
It is instructive to consider a simplified situation of a

fixed frequency source and a detector following two
superimposed circular motions—one around Earth’s axis
and one of Earth around the Sun.
First, we compute relative detector position to Earth

center:

r⃗Earth ¼

0
B@

cosðωrottþ α0Þ cosðδ0Þ
sinðωrottþ α0Þ cosðδ0Þ
sinðδ0Þ

1
CAREarth ð2Þ

where α0 and δ0 are the detector longitude and latitude
locations correspondingly.
The full motion of the detector is then described as

r⃗det ¼ r⃗Earth þ v⃗ cosðωorbtÞ þ u⃗ sinðωorbtÞ ð3Þ

where u⃗ and v⃗ are two perpendicular vectors in the ecliptic
plane parametrizing Earth’s orbital motion.
This can be generalized as

r⃗det ¼ r⃗off þ
XK
k¼1

v⃗k cosðωktÞ þ u⃗k sinðωktÞ ð4Þ

Here r⃗off is a constant offset, which for circular approxi-
mation is REarth sinðδ0Þˆz⃗. Since the offset is constant, it only
affects absolute signal phase. For simplicity we will assume
r⃗off ¼ 0 in subsequent calculations.
Our simplified example with two modulations arising

from circular motions corresponds to K ¼ 2. The Eq. (4) is
general enough that one can fit any realistic signal by
including additional harmonics, for example, due to plan-
etary perturbations. The algorithm presented in Fig. 4 is run
using solar system barycenter timings incorporating full
complexity of the underlying signal.
The direction to the source is given by

n̂source ¼

0
B@

cosðαÞ cosðδÞ
sinðαÞ cosðδÞ
sinðδÞ

1
CA: ð5Þ

Here α is the right ascension in radians [0, 2π) and δ is the
declination in radians [−π=2, π=2].
The detector velocity vector is

v⃗det ¼
d
dt

r⃗det ¼
XK
k¼1

u⃗kωk cosðωktÞ − v⃗kωk sinðωktÞ: ð6Þ

The Doppler shift is computed from the formula:

D ¼ n̂source · v⃗det
c

¼
X
k

n̂source · u⃗k
c

ωk cosðωktÞ −
n̂source · v⃗k

c
ωk sinðωktÞ:

ð7Þ

We introduce relative modulation depth arelk and modu-
lation phase ϕk:
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arelk ¼ ωk

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn̂source · u⃗kÞ2 þ ðn̂source · v⃗kÞ2

q
ð8Þ

ϕk ¼ arctan

�
n̂source · u⃗k
n̂source · v⃗k

�
: ð9Þ

Then the Doppler shift becomes:

D ¼
XK
k¼1

arelk cosðωktþ ϕkÞ: ð10Þ

Let us widen the model for our source signal to include
polynomial frequency evolution, which is observed in radio
pulsars:

fðtÞ ¼
XN
n¼0

fn
tn

n!
ð11Þ

The signal received at the detector is then

fðtÞ ¼
�XN

n¼0

fn
tn

n!

��
1þ

XK
k¼1

arelk cosðωktþ ϕkÞ
�
: ð12Þ

This ignores relativistic corrections.
Let us assume that the products fnarelk are negligible for

all n ≥ 1. This is the case for frequency drifts in most
known radio pulsars. For example, with f1 ≈ 10−12 Hz=s
and with Doppler shifts from Earth orbital motion arel2 ≈
10−4 we find the product f1arel2 ≈ 10−16 Hz=s much smaller
than resolution of most all-sky searches. Then the signal
model simplifies to:

fðtÞ ¼
XN
n¼0

fn
tn

n!
þ f0

XK
k¼1

arelk cosðωktþ ϕkÞ: ð13Þ

We now introduce phase modulation depth ak as

ak ¼
2πf0arelk

ωk
¼ 2πf0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn̂source · u⃗kÞ2 þ ðn̂source · v⃗kÞ2

q
:

ð14Þ

Then the phase model of our signal is

ϕðtÞ ¼ ϕ0 þ 2π
XN
n¼1

fn−1
tn

n!
þ
XK
k¼1

ak sinðωktþ ϕkÞ: ð15Þ

Here ϕ0 controls the initial phase of the signal.
To make sense of modulation amplitudes and phases, we

focus on our initial case of two circular modulations.

The vectors u1 and v1 describing Earth’s rotation are

v⃗1 ¼ REarth

0
B@

cos α0 cos δ0
sin α0 cos δ0
0

1
CA ð16Þ

u⃗1 ¼ REarth

0
B@

− sin α0 cos δ0
cos α0 cos δ0
0

1
CA ð17Þ

where α0 and δ0 are detector longitude and latitude
correspondingly.
Then the parameters corresponding to Earth’s rotation

are

ϕ1 ¼ arctan

�
n̂source · u⃗k
n̂source · v⃗k

�

¼ arctan

�
sinðα − α0Þ cosðδ0Þ
cosðα − α0Þ cosðδ0Þ

�
¼ α − α0 ð18Þ

a1 ¼
2πf0REarth

c
jcosðδÞ cosðδ0Þj ð19Þ

We see that modulation phase ϕ1 is just the difference
between source right ascension and detector longitude.
The vectors u2 and v2 describing Earth orbital motion are

v⃗2 ¼ Rorb

0
B@

1

0

0

1
CA ð20Þ

u⃗2 ¼ Rorb

0
B@

0

cos ϵ

sin ϵ

1
CA ð21Þ

where ϵ ¼ 23.4° is the obliquity of the ecliptic.
The parameters corresponding to Earth orbital motion

around the Sun are somewhat more complicated:

ϕ2 ¼ arctan

�
sinðαÞ cosðδÞ cosðϵÞ þ sinðδÞ sinðϵÞ

cosðαÞ cosðδÞ
�

ð22Þ

a2¼
2πf0Rorb

c

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðαÞcos2ðδÞþðsinðαÞcosðδÞcosðϵÞþsinðδÞsinðϵÞÞ2

q
ð23Þ

This complexity is due to the choice of equatorial
coordinate system. Had we chosen ecliptic coordinates
instead the orbital motion parameters would be simple,
while the Earth rotation parameters have similar expressions
to the above, as we will essentially exchange indices. As we
will see later the shorter period motion introduces more
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complexity in the Fourier transform, so it makes sense to use
the equatorial coordinate system in applications.

III. FOURIER TRANSFORM OF
QUASIMONOCHROMATIC SIGNAL

A. Signal spectrum

In the general case the signal spectrum is

h̃0ðfÞ ¼
Z

T=2

−T=2
exp ðiϕðtÞÞe−i2πftdt

¼
Z

T=2

−T=2
exp

�
iϕ0 þ 2πi

XN
n¼2

fn−1
tn

n!

þ i
XK
k¼1

ak sinðωktþ ϕkÞ
�
· e−i2πðf−f0Þtdt ð24Þ

Thus the spectrum depends on initial signal phase ϕ0,
initial frequency f0, higher order frequency expansion
parameters fk (for k ≥ 1), phase modulation depth ak
and modulation phase ϕk.
For searches less than 30 days the effect of third order

and higher frequency derivatives can be neglected for
astrophysical sources. Keeping terms up to a second order
in frequency, the equation simplifies to

h̃0ðfÞ ¼
Z

T=2

−T=2
exp

�
iϕ0 þ i2π

�
f1

t2

2
þ f2

t3

6

�

þ i
XK
k¼1

ak sinðωktþ ϕkÞ
�
· e−i2πðf−f0Þtdt: ð25Þ

The treatment of sinusoidal phase modulation can use
either the Jacobi-Anger expansion in terms of Bessel
functions or approximation of the sine function by
polynomials.

B. Polynomial approximation

The polynomial approximation is particularly effective
when ωlT is small.
For example:

ak sinðωktþ ϕkÞ ¼ ak

�
ωkt −

ω3
kt

3

6
þOðω5

kt
5Þ
�
cosðϕkÞ

þ ak

�
1 −

ω2
kt

2

2
þOðω4

kt
4Þ
�
sinðϕkÞÞ:

ð26Þ
Table I shows modulation parameters for sources emit-

ting at various example frequencies.
For example, in the case of T ¼ 3 days we find that the

Earth’s orbital motion is a good candidate for polynomial
expansion and would need terms up to a cubic order.
Indeed, the error in Eq. (26) can be bounded by the 4th

order term:

al
ω4
l T

4

4!24
≤ 0.11 ð27Þ

Here we assumed the expansion is centered on the middle
of the interval so the maximum time is T=2.
Let LE be the set of indices describing expanded

harmonics. Consider the following integral by neglecting
constant phase term:

h̃0ðfÞ ¼
Z

T=2

−T=2
exp

�
2πig1

t2

2
þ 2πig2

t3

6

þ i
X
k∉LE

ak sinðωktþ ϕkÞ
�
· e−i2πðf−g0Þtdt ð28Þ

where coefficients gn have been introduced that describe
both initial polynomial frequency modulation parameters
and the contribution from polynomial expansion of sinus-
oidal modulations:

TABLE I. Modulation parameters.

Modulation term Source frequency Earth rotation Orbital motion Unit

ωl � � � 6.3 0.017 (1/day)
al 200 Hz 23 630000 � � �
al 1000 Hz 115 3200000 � � �
al 2000 Hz 230 6300000 � � �
alωl 200 Hz 0.0017 0.123 Hz
alωl 1000 Hz 0.0084 0.63 Hz
alωl 2000 Hz 0.017 1.23 Hz
alω2

l 200 Hz 1.2 × 10−7 2.4 × 10−8 Hz2

alω2
l 1000 Hz 6.1 × 10−7 1.2 × 10−7 Hz2

alω2
l 2000 Hz 1.2 × 10−6 2.4 × 10−7 Hz2

Modulation parameters for various sources. The amplitude modulation values are worst case, as seen in LIGO
Livingston interferometer. Phase and frequency modulation are dominated by orbital motion, while the frequency
derivatives are larger for terms from Earth rotation.
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gn ¼ fn þ
X
k∈LE

akω
nþ1
k

2πðnþ 1Þ! cos
�
ϕk þ

πn
2

�
: ð29Þ

This model of polynomial plus harmonics is very effective in
describing a realistic pulsar signal. As wewill show later, the
phase behavior of exact Solar System barycenter timings can
be approximated with a single harmonic plus a third order
polynomial over any data stretch of 3 days or less.

C. Jacobi-Anger expansion

We now focus on the application of the Jacobi-Anger
expansion. Applying it to all sinusoidal terms we get:

h̃0ðfÞ ¼
Z

T=2

−T=2
exp

�
2πig1

t2

2
þ 2πig2

t3

6
− i2πðf − g0Þt

�

· exp

�
i
X
l∉LE

al sinðωltþ ϕlÞ
�
dt

¼
Z

T=2

−T=2
exp

�
2πig1

t2

2
þ 2πig2

t3

6
− i2πðf − g0Þt

�

·
Y
l∉LE

X
kl

iklJklðalÞ expðiklðωltþ ϕlÞÞdt: ð30Þ

The product and sum symbols can be exchanged yield-
ing a sum over multi-indices k⃗ ¼ ðk1;…; kMÞ:

h̃0ðfÞ ¼
Z

T=2

−T=2
exp

�
2πig1

t2

2
þ 2πig2

t3

6
− i2πðf − g0Þt

�

·
X
k⃗

Y
l∉LE

iklJklðalÞ expðiklðωltþ ϕlÞÞdt: ð31Þ

The indices k⃗ span an infinite lattice for exact expression.
However, the values JklðalÞ decrease rapidly for kl ≫ jalj,
allowing a finite sum to be used in practical calculations.
The number of remaining indices in a sum depends on

modulation depth al and can be fairly substantial even for
relatively small modulation values. This complexity is
intrinsic to the problem, as can be confirmed by examining
numerically computed Fourier transform in Fig. 2—the
multitude of peaks would need separate harmonic terms to
produce them.
Mathematically, this can be understood as follows.
Firstweperform the expansion of longer periodharmonics

as done in Eq. (28) keeping only one remaining harmonic.
Then we split the integral into pieces of length matching one
period Tp (where Tpω1 ¼ 2π). We assume the full integra-
tion interval is the integer multiple of period Tp:

h̃0ðfÞ ¼
XM
m¼0

Z
Tp=2þmTp

−Tp=2þmTp

· exp

�
2πig1

t2

2
þ 2πig2

t3

6
þ ia1 sinðω1tþ ϕ1Þ

�
· e−2πiðf−g0Þtdt: ð32Þ

Shifting the internal integration variable by mTp we obtain:

h̃0ðfÞ ¼
XM
m¼0

Z
Tp=2

−Tp=2
exp

�
2πig1

ðtþmTpÞ2
2

þ 2πig2
ðtþmTpÞ3

6
þia1 sinðω1tþ ϕ1Þ

�
· e−2πiðf−g0ÞðtþmTpÞdt: ð33Þ

The argument of the sine function is unmodified because we
shift by integral number of periods.
The Taylor formula provides a convenient way to

compute a shift of any analytic function:

pðtþ TÞ ¼
X∞
n¼0

Tn

n!
dn

dtn
pðtÞ: ð34Þ

For polynomials the sum is finite because higher order
derivatives vanish. Our polynomial is only third order:

pðtÞ ¼ 2πðg0 − fÞtþ 2πg1
t2

2
þ 2πg2

t3

6
: ð35Þ

Leading to a simple expression for the shift:

pðtþmTpÞ ¼ pðtÞ þmTp2π

�
g0 − f þ g1tþ g2

t2

2

�

þm2T2
p

2
2πðg1 þ g2tÞ þ

m3T3
p

6
2πg2: ð36Þ

Thus the shifted integral can be described as a convolu-
tion of a single-period Fourier transform with a Fourier
transform of expðiðpðtþmTpÞ − pðtÞÞ. The latter can be
separated into three parts:

(i) a multiplication by the phase

exp

�
2πi

�
g1m2T2

p

2
þ g2m3T3

p

6

��
ð37Þ

(ii) a shift in frequency by g1mT þ g2m2T2
p=2 which we

denote by operator SðmÞ.
(iii) and a convolution with Fourier transform of a

Gaussian expðπiTpg2t2Þ iteratedm times. We denote
a single iteration of the convolution by operator T.

Then the full integral can be expressed as

h̃0ðfÞ ¼
XM
m¼0

e2πið
g1m

2T2p
2

þg2m
3T3p
6

ÞTmSðmÞh̃10ðfÞ ð38Þ

where h̃10ðfÞ denotes a single period Fourier transform:
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h̃10ðfÞ ¼
Z

Tp=2

−Tp=2
exp

�
2πig1

t2

2
þ 2πig2

t3

6

þ ia1 sinðω1tþ ϕ1Þ
�
e−i2πðf−g0Þtdt ð39Þ

This expression explains features of the Fig. 2. The
repeated pattern is due to iterations of the operator T and
frequency shift SðmÞ. However, both this operator and the
frequency shift S introduce frequency shifts that are not
aligned to frequency bins of the full Fourier transform.
Thus the height of peaks varies with each iteration.
The variation in phase together with convolution acts to

scramble the heights of smaller peaks resulting in a
signature of the underlying signal.

IV. FOURIER TRANSFORM SHAPE

The Eq. (38) allows us to understand the Fourier trans-
form of continuous wave signals in a qualitative way. For
practical applications it is desirable to know the details such
as location of the peaks and their heights.
While this can be done by the numerical integration of

formula (38), the computation is comparable in difficulty to
taking the Fourier transform directly. What we would like
instead is a simple formula depending on parameters of the
signal gk, ω1 and ϕ1.
To obtain such formulas, consider the integral

h̃0ðfÞ ¼
Z

T=2

−T=2
exp

�
2πig1

t2

2
þ 2πig2

t3

6

þ i
X
l∉LE

al sinðωltþ ϕlÞ
�
e−2πiðf−g0Þtdt

¼
Z

T=2

−T=2
expðiΛðtÞÞdt: ð40Þ

Because of the imaginary terms in the exponent it is highly
oscillatory. These oscillations will cancel out (on average),
except in points where derivative of ΛðtÞ vanishes:

Λ0ðtÞ ¼ 2πg1tþ 2πg2
t2

2
þ
X
l∉LE

alωl cosðωltþ ϕlÞ

− 2πðf − g0Þ: ð41Þ

This can be rewritten as

FðtÞ ¼ g0 þ g1tþ g2
t2

2
þ
X
l∉LE

alωl

2π
cosðωltþ ϕlÞ ¼ f:

ð42Þ

Because f is a free parameter, the support of the
spectrum of our signal is close to the image of the interval
½−T=2; T=2� under a function FðtÞ (Fig. 2).

The largest peaks in the spectrum should correspond to
the values of f for which larger time intervals have
stationary phase, and thus to the points fa ¼ FðtaÞ such
that the derivative of F vanishes:

F0ðtaÞ ¼ g1 þ g2ta −
X
l∉LE

alω2
l

2π
sinðωlta þ ϕlÞ ¼ 0 ð43Þ

This equation has an approximate solution in the special
case of a single sinusoidal term and small parameters g1
and g2.
In this case the equation reduces to

sinðω1ta þ ϕ1Þ ¼
2πg1
alω2

1

þ 2πg2
alω2

1

ta ð44Þ

Let t0a ¼ −ϕ1þπn
ω1

be the zero of the sine function.
Applying one step of Newton-Raphson method to find

the solution of the above equation using t0a as the initial
value, we have

ta ¼ t0a −
g1 þ g2t0a

g2 − ð−1Þn a1ω3
1

2π

ð45Þ

Let us check how close we got to true zero of F0ðtÞ. We
substitute ta into Eq. (43):

F0ðtaÞ ¼ g1 þ g2ta −
alω2

1

2π
sinðω1ta þ ϕlÞ

≈ a1ω2
1O

��
−ω1

g1 þ g2t0a

g2 − ð−1Þn a1ω3
1

2π

�
3
�
: ð46Þ

We see the approximate solution ta has canceled all
linear terms.
To find out the frequencies of the peaks we can now

substitute ta into the Eq. (42). We find

f ≈ FðtaÞ ≈ g0 þ g1ta þ g2
t2a
2

þ ð−1Þn a1ω1

2π

 
1 −

1

2

 
ω1ðg1 þ g2t0aÞ
g2 − ð−1Þn a1ω3

1

2π

!
2
!
: ð47Þ

The zeros of the second frequency derivative are simpler
to find:

F00ðtaÞ ¼ g2 −
X
l∉LE

alω3
l

2π
cosðωltb þ ϕlÞ ¼ 0: ð48Þ

In the case of a single sinusoidal term we have:

a1ω3
1

2π
cosðω1tb þ ϕ1Þ ¼ g2 ð49Þ

tb ¼
arccosð2πg2

a1ω3
1

Þ − ϕ1 þ πn

ω1

ð50Þ

VALLURI, DERGACHEV, ZHANG, and CHISHTIE PHYS. REV. D 104, 024065 (2021)

024065-6



For the common case of j2πg2j ≪ ja1ω3
1j the formula

simplifies to

tb ¼ −ϕ1 þ πn ð51Þ
To test these formulas we generated barycentered time

series for LIGO Hanford and Livingston interferometers
[18] for multiple sky locations over one year period.
Figure 1 shows locations of local frequency maxima and

minima, as well as inflection points where the second
frequency derivative vanishes for a portion of this data for a
3-day period starting at GPS time 1160657033 generated
for LIGO Hanford interferometer.
Figure 2 shows power spectrum (absolute value squared

of the Fourier transform) of a pure 1000 Hz signal with
amplitude 1 as observed by LIGO Hanford interferometer.
Unlike real data sets which have gaps due to interferometer
lock loss this time series is contiguous.
We observe that the spectrum support (marked by the

thick green line below the graph) is correctly computed by
formula (42).
The peak locations marked by short blue lines at the top

of the graph were computed with formula (47) and
correspond well with numerical results.
Having found peak locations we would like to have a

measure of their heights, as those clearly vary.
Near a point of stationary frequency the Fourier trans-

form has the form

hlocalðfÞ ¼
Z

t1

t0

e2πiðϕþFðtaÞðt−taÞþg̃2ðt−taÞ3=6Þe−2πiftdt ð52Þ

where we introduced g̃2:

g̃2 ¼ g2 −
a1
2π

cos ðω1ta þ ϕ1Þ
6

: ð53Þ

This equation is designed to describe the vicinity of
f ¼ FðtaÞ. The limits of the integration t0 and t1 bound the
region where the approximation holds, in particular there is
no need to integrate over points close to other stationary
frequency points.
The height of the peak is given by

jhlocalðFðtaÞÞj ¼
����
Z

t1

t0

e2πig̃2ðt−taÞ3=6dt
����: ð54Þ

We now need to find out which values of t0 and t1 to use.
Naively we might expect that one should use a small
interval where the frequency does not change far away from
stationary value FðtaÞ.
However, this will grossly underestimate peak height.

The reason is that the value of truncated Airy function
[Eq. (54)] keeps growing with increasing time interval, as
nearby frequencies contribute due to spectral leakage.
A good heuristic is to choose t0 and t1 to be the inflection

points, or a data boundary if it occurs earlier.
The truncated Airy function has an expression in terms

of incomplete Gamma function:Z
t1

t0

eit
3

dt ¼ 1

3
ffiffiffiffiffi
−i3

p
�
Γ
�
1

3
;−it30

�
− Γ
�
1

3
;−it31

��
ð55Þ
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FIG. 1. Example 3-day frequency evolution of 1000 Hz mono-
chromatic signal from source at right ascension 0° and declination
0°. The blue lines mark locations of local frequency minima and
maxima. Green circles mark location of inflection points. The
frequencies were computed for LIGO Hanford interferometer.
The 3-day segment started at GPS 1160657033.
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FIG. 2. Example 3-day Fourier transform of 1000 Hz mono-
chromatic signal from source at right ascension 0° and declination
0°. The green line at the bottom of the plot shows spectrum support
region estimated using Eq. (42). The blue line at the top shows peak
locations estimated using Eq. (47). The Fourier transform was
computed assuming 100% duty cycle for LIGO Hanford interfer-
ometer. The 3-day segment started at GPS 1160657033.
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This equation has some ambiguity as to the branch of
cubic roots. This arises purely from using the incomplete Γ
function:

Γða; zÞ ¼ ΓðaÞ
�
1 − zae−z

X∞
k¼0

zk

Γðaþ kþ 1Þ
�

ð56Þ

The constant terms in the formula above subtract when
substituted in Eq. (55).
This can also be seen by expanding eit

3

into a Taylor
series and integrating the result:Z

t1

t0

eit
3

dt ¼
X∞
k¼0

ikt3kþ1
1

k!ð3kþ 1Þ −
X∞
k¼0

ikt3kþ1
0

k!ð3kþ 1Þ ð57Þ

However, for practical application it is convenient to
approximate with a heuristic piecewise linear function that
captures the general shape of the integral.
To do this, we introduce the function

HðaÞ ¼
� jaj when jaj < 0.4

0.4 when jaj ≥ 0.4
ð58Þ

Then

jhlocalðFðtaÞÞj ¼
����
Z

t1

t0

e2πig̃2ðt−taÞ3=6dt
����

≈
1

κ
jHðt1κÞ − ð−1Þsgnðt0Þsgnðt1ÞHðt0κÞj ð59Þ

where κ ¼ ffiffiffiffiffiffiffiffiffi
6=g̃2

3
p

.
This simple formula works surprisingly well. An illus-

tration is given in Fig. 3. Here we marked both peak
locations and their strength. Also for this example we
introduced a gap of 30 hours, demonstrating the ability to
handle noncontiguous data.

V. SPECTRUM SHAPE ALGORITHM

The analysis detailed in the previous section can be
condensed into the algorithm for determining Fourier
transform spectral shape (Table IV).
At the start of the algorithm we compute a sequence of

times relative to Solar System barycenter. This could be
done exactly, or as an approximation. For example, one can
compute these times for a relatively coarse grid on the sky
and then use a suitable method, such as [19] to interpolate
between locations.
Once this time series has been obtained it can be fitted to

the formula

ti ¼
XN
n¼1

gnsni þ A cosðω1si þ ϕ1Þ ð60Þ

over an interval matching the coherence length of the
Fourier transform. Long stretches of data are best analyzed
using overlapped intervals. A straightforward speedup
is to interpolate the fits from those computed on a coarse
grid.
Also, iteration over signal waveforms with the same sky

location but with different frequency drift is achieved by
direct modifications of coefficients gk.
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FIG. 3. Example 3-day Fourier transform of 1000 Hz mono-
chromatic signal from source at right ascension 0° and declination
0°. The green line at the bottom of the plot shows spectrum
support region estimated using Eq. (42). The blue line at the top
shows peak locations estimated using Eq. (47). The red lines
show peak strength estimated using Eq. (59). The Fourier
transform was computed assuming the data stretch had a 30 hour
gap in data for LIGO Hanford interferometer. The 3-day segment
started at GPS 1160657033. The gap started 10 hours later.

FIG. 4. Algorithm used to compute the shape of Fourier
transform.
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With the fit in hand, it is straightforward to find locations
of stationary points ta and inflection points tb [Eqs. (45),
(50), and (51)].
Now the frequencies of the peaks are given by for-

mula (47) and peak height is computed using formula (59).
The computed spectrum shape can be used to understand

the dwell time of signal waveform and used to characterize
and mitigate the influence of detector artifacts—either after
analysis by removing outliers coincident with detector
lines, or during the analysis by decreasing weight of
segments with larger peak heights.

VI. PERFORMANCE

The formulas (47), (54), and (59) are very efficient
compared to computing Fourier transform from scratch or
to numerically integrating Eq. (38).
For the direct problem of determining peak locations and

amplitudes, any method would need to compute time-
stamps first. The computing cost of the Fourier transform is
similar or larger to the cost of computing timestamps—
such algorithms have theoretically steeper scaling of
CÑ logðÑÞ of computational effort compared to number
of Ñ of input data points. In practice the running time of the
Fourier transform is strongly influenced by implementation
efficiency or, in other words, constant C. A general purpose
library algorithm will not be as efficient as hand-tuned
implementation for fixed input size.
Our algorithm replaces the Fourier transform with a fit of

computed timestamps, that is easy to optimize taking
advantage of vector arithmetic. Moreover, for large param-
eter searches we would need to perform this computation
repeatedly for a range of signal parameters, in particular
frequency and frequency derivative. In such a situation,
computing Fourier transform over and over again is very
expensive. Our algorithm computes peak timings with a
simple formula, and can be used to translate signal parameter
range into the range of peak locations and amplitude.
The inverse problem of determining signal parameters that

correspond to a known instrumental line is even harder to
solve with brute force Fourier transform, as it will require to
sample a large grid to check for coincidence of computed
peaks with the line. As expected an analytic formula is much
faster.
The efficiency of the algorithm is contingent on the

validity of the underlying model. To test how well this
model fits the data we made a study using numerically
computed timings.
A coarse sky grid of 182 points was used for this study.

The points on the grid were arranged in 18° increments in
declination and right ascension. Only one value of right
ascension was used for equatorial poles with declination
of �90°.
For each point in the sky grid we generated 17520 Solar

System barycenter timings using routines from LAL library
[20]. The timing started at GPS 1160657033 with 0.5 hour

increments. Separate datasets were generated for LIGO
Hanford and Livingston interferometers.
Using this dataset we tested fit to the single harmonic

model:

t0 ¼
XN
n¼0

gn
tn

n!
þ A sinðωstþ ϕ1Þ ð61Þ

where t is the time in the detector frame of reference, t0 is
the time at Solar system barycenter and ωs is the angular
frequency corresponding to Earth sidereal rotation period.
All other coefficients were fitted.
For each point in the sky the entire set of timestamps was

separated in 3-day stretches, with nearby stretches over-
lapped by 1.5 days. Each stretch was fitted using at most
cubic terms N ¼ 3. The absolute worst residual maximized
over all stretches and all sky points was 13.2 μs.
A similar procedure was performed for 6-day stretches,

this time increasing the number of polynomial terms to
N ¼ 4 and using a 3-day overlap. The absolute worst
residual was 24.7 μs.
As the typical signals studied in continuous gravitational

wave searches go up to 2 kHz the precision of the fit is
sufficient to apply results described in this paper.

VII. APPLICATION TO ANALYSIS OF
OUTLIER AT 1891.76 Hz

The outlier at 1891.75674 Hz identified in recent search
[21] is an excellent target to illustrate application of our
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FIG. 5. Apparent frequency of a signal with parameters equal to
those of the outlier at 1891.76 Hz, at the detectors. The difference
in Doppler shifts between interferometers is small compared to
the Doppler shifts from the Earth’s orbital motion. The reference
time is at GPS epoch 1183375935.
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method. If it is of astrophysical origin it would likely
correspond to the fastest rotating neutron star found to date.
This outlier had a frequency drift of −8.22 × 10−12 Hz=s
and rather wide frequency evolution as illustrated in Figs. 5
and 6 (reproduced from [21]).
As shown on Fig. 1 the outlier spanned almost 0.25 Hz

because of large Doppler shifts due to orbital motion.

Because the O2 science run spanned 9.5 months there is a
region with stationary frequency. For this outlier it happens
to overlap a gap in data taking.
Figure 6 shows interferometer spectrum in the top panel.

It was generated without applying any outlier specific
corrections such as Doppler shifts or amplitude modulation,
but using the same noise-weighting scheme. The individual
points correspond to individual bins in 1800 s long Hann-
windowed Fourier transforms of the underlying data. This
is a rather coarse resolution compared to the 6-day long
coherence length used in the last stage of outlier followup
in [21]. However, the plot does show an absence of large
detector artifacts—such as narrow lines that occur at other
frequencies.
In order to better understand this outlier it is desirable to

figure out whether some coherent detector noise is being
masked by shot noise background. To do this we examine
the locations of stationary peaks of our outlier. As it has
arisen from a search over wide parameter space, the
presence of instrumental noise source should force those
peaks to cluster so as to raise the signal-to-noise ratio of the
outlier.
Figure 7 shows how peak frequencies change with

outlier frequency drift for LLO detector at LIGO
Livingston observatory. Having analytic formulas was
essential to producing this plot, as otherwise we would
need to iterate over individual frequency drift values—a
procedure that is difficult to do even on a large cluster
because of large demands on storage bandwidth of existing
software.
We observe a fairly even distribution of peak on Fig. 7,

except for gaps due to gaps in O2 science run and a dense
area on the left corresponding to outlier frequency
minimum.
A magnified view of peak near outlier frequency mini-

mum is shown on Fig. 8. We used different colors
to separate individual peak lines. We observe that as
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density around the frequency of the outlier at 1891.76 Hz. The
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estimated by the Falcon pipeline for a signal with the parameters
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frequency drift varies most peaks move in the same
direction, with small variations between individual peaks.
There is no single area where many peaks cross that would
allow a sharp instrumental line to have undue influence.
However, it could be that there is a wider hidden

instrumental line and the outlier takes advantage of that
by increasing peak density where the line is. To study this we
made plots of peak density, one of which—a magnified view
of low frequency band—is shown in Fig. 9. We observe that
there is nothing special about the frequency drift correspond-
ing to the outlier at 1891.76 Hz, and, in fact, there are nearby
areas of larger frequency drift and larger peak density.
Similar plots for LHO detector at LIGO Hanford

observatory are similar, except for showing smaller peak

density. Our conclusion from these studies is that it is
highly unlikely that the outlier at 1891.76 Hz was caused
by a stationary detector artifact.

VIII. CONCLUSIONS

The question of identification of continuous wave out-
liers to detector disturbances is of utmost importance in
separating astrophysical signals from detector artifacts.
In this paper we analyze the shape of the Fourier

transform of continuous wave gravitational wave signal
and present simple formulas to compute peak heights and
locations arising from features in frequency evolution of
gravitational wave signal.
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While our focus was on understanding Fourier trans-
form of a gravitational wave signal, the formulas and the
analysis presented here can be applied to any signals of
this form.
We apply our formulas to investigate the outlier at

1891.76 Hz [21] and find that this outlier is unlikely to
be induced by a stationary detector artifact.
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