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Abstract
We review a recent development at the interface between discrete mathematics on one
hand and probability theory and statistics on the other, specifically the use of Markov
chains and their boundary theory in connection with the asymptotics of randomly
growing permutations. Permutations connect total orders on a finite set, which leads
to the use of a pattern frequencies. This view is closely related to classical concepts of
nonparametric statistics. We give several applications and discuss related topics and
research areas, in particular the treatment of other combinatorial families, the cycle
view of permutations, and an approach via exchangeability.
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1 Introduction

Ranks are at the basis of nonparametric statistics, copulas are a standard tool for the
description of dependencies, and permutons have recently been introduced as limit
objects for large permutations. We survey some of the connections between these
concepts, mainly from a probabilistic and statistical point of view. In particular, we
explain the use ofMarkov chains and their boundary theory in the context of sequences
of permutations. This approach has received some attention in connection with the
asymptotics of other randomly growing discrete structures, such as graphs and trees.

The paper addresses a statistically educated audience. Consequently, we only men-
tion Chapter 13 of van der Vaart (1998) in connection with ranks in statistics, and for
copulas we refer to Nelson (2006). In Sect. 2 we recall some basic aspects of permu-
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tations; see Bona (2004) for a textbook reference. In Sect. 3 we introduce permutons,
which are two-dimensional copulas. The basic reference here is the seminal paper
Hoppen et al. (2013). The construction of limits is discussed in some generality, again
from a probabilistic point of view.

Permutons arise as limits if pattern frequencies are considered. In Sect. 4 we explain
an approach to the augmentation of discrete spaces that is based on the construction of
suitable Markov chains and the associated boundary theory. The latter can be seen as
a discrete variant of classical potential theory, going back to Doob (1959); see Woess
(2009) for a general textbook reference and Grübel (2013) for an elementary introduc-
tion closer to the present context. We show that the pattern frequency topology arises
naturally if a specific Markov chain (Πn)n∈N is chosen. This approach also provides
an almost sure construction, meaning that Πn → Π∞ ‘pathwise’ with probability
one.

Section 5 collects some applications. Finally, in the last section, we sketch some
related problems and research areas, where we use the reviewish character of the
present paper as a license for explaining connections that seem to be known to
researchers in the field, but not necessarily to an interested newcomer (which the
author was, some years ago). It should be clear that we will have to (and do) resist the
temptation of always giving the most general results.

Throughout, a specific data set will be used to illustrate the various concepts, and
we occasionally point out analogies to statistical concepts.

2 Permutations

For a finite set A we write S(A) for the set of bijections π : A → A and abbreviate
this to Sn if A = [n] := {1, . . . , n}. An element π of Sn can be represented in one-line
notation or in standard cycle notation. For the first π = (π(1), π(2), . . . , π(n)) (or
π(1)π(2) · · · π(n) if no ambiguities can arise) is simply the tuple of its values, and
we note at this early stage that this notation presupposes a total (or linear) order on
the base set A. The second one is somewhat closer to the notion of a bijection: Each
element a of A will run through a finite cycle if π ∈ S(A) is applied repeatedly. In
the special case A = [n] this leads to a tuple of cycles, and standard notation means
that these are individually ordered by putting the respective largest element first and
then listing the cycles increasingly according to their first elements. The transition
lemma, also known as Foata’s correspondence, provides a bijection between the two
representations by erasing the brackets in the step from cycle to one-line notation,
and, roughly, by inserting brackets in front of every increasing record in the one-line
notation, such as in

5 87324916 −→ (5)(87324)(916). (1)

Much of the classical material connecting permutations and probabilities refers to the
cycle structure, typically under the assumption that the random permutationΠn is cho-
sen uniformly from Sn , which we abbreviate to Πn ∼ unif(Sn). A standard problem,
often discussed in elementary probability courses, concerns the probability pn thatΠn
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has at least one fixed point, i.e. a cycle of length 1, which can be evaluated with the
inclusion–exclusion formula to pn = ∑n

k=1(−1)k+1/k!. Further, the correspondence
in (1) relates the number of cycles on the right to the number of increasing records
on the left hand side. As a final example we mention that the distribution of the cycle
type Cn = (Cn(1), Cn(2), . . .) of Πn , where Cn(i) denotes the number of cycles of
length i in Πn , is given by

P
(
Cn(1) = c1, Cn(2) = c2, . . .

) =
∞∏

i=1

1

i ci ci ! , (2)

where the values ci , i ∈ N, have to satisfy the obvious constraint that
∑

i∈N ici = n. In
particular, Cn(i) = 0 for i > n. Multiplication by n! leads to a formula for the number
of permutations of a given cycle type. From a probabilistic point of view, rewriting (2)
as

L
(
(Cn(1), . . . , Cn(n))

) = L
[
(Z1, . . . , Zn)

∣
∣Tn = n

]
, (3)

with Z1, . . . , Zn independent, Zi Poisson distributed with parameter 1/i , and Tn :=∑n
i=1 i Zi , seemsmore instructive; for example, it provides access to the distributional

asymptotics. We refer to Arratia et al. (2003) for this and related material. Our later
aim, however, is to deal with limits for the permutations themselves, but we will return
to the cycle view in Sect. 6.2.

We may also describe a permutation π ∈ Sn by its n × n permutation matrix M(π)

with entries mi j = 1 if π( j) = i and mi j = 0 if π( j) �= i . For the permutation on the
left in (1) we get

M(π) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

Below we will return to the fact that the composition of permutations corresponds to
matrix multiplication in this description.

Finally, permutations appear as order isomorphisms: If <1 and <2 are total orders
on some finite set A, then there is a unique π ∈ S(A) such that

a <1 b ⇐⇒ π(a) <2 π(b) for all a, b ∈ A.

A one-line notation such as 587324916 in (1) defines a total order on the set of
numerals, with 5 the smallest and 6 the largest element. With ‘<’ the canonical order
on [n] (or R) the permutation π ∈ Sn then provides an order isomorphism between
([n],<) and ([n],<π), with ‘<π ’ given by the one-line notation for π .
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Suppose now that we have data x1, . . . , xn ∈ R, with xi �= x j if i �= j (no ties). The
rank of xi in this set is given by rk(xi ) = rk(xi |x1, . . . , xn) = #{ j ∈ [n] : x j ≤ xi },
and these can be combined into a permutation πx := (rk(1), . . . , rk(n)) ∈ Sn . For
two-dimensional data (x1, y1), . . . , (xn, yn) with no ties in the two sets of component
values we then obtain two permutations πx , πy that define two total orders on [n].
These are, in the above sense, connected by the permutation

π = π((x1, y1), . . . , (xn, yn)) = πy ◦ π−1
x . (5)

In this situation, the permutation plot for π is known as the rank plot for the data.
The order-relating permutation does not depend on the order in which the observation
vectors are numbered. Formally, it is invariant under permutations σ of [n] in the sense
that the permuted pairs (xσ(1), yσ(1)), . . . , (xσ(n), yσ(n)) lead to the same π . Hence,
in statistical terms, π depends on the data only through their empirical distribution.

We close this section with a data example. The 16 largest cities in Germany may
be ordered alphabetically, or by decreasing population size, or by location in the west-
east or south-north direction. Starting with an ordering by size the corresponding
geographic orderings are

πlong = (15, 11, 13, 3, 7, 9, 2, 6, 4, 8, 16, 14, 10, 12, 1, 5),

πlat = (14, 16, 1, 5, 4, 2, 7, 12, 10, 15, 6, 8, 13, 3, 9, 11).

For example, Berlin is fairly far in the east and fairly far up north within this group.
The permutation relating these as total orders is given by

πlat ◦ π−1
long = (9, 7, 5, 10, 11, 12, 4, 15, 2, 13, 16, 3, 1, 8, 14, 6). (6)

Fig. 1 shows the true locations (in longitude and latitude degrees) on the left and the
rank plot on the right hand side, with the four largest cities in red. The observant
reader will have noticed that the rank plot is, essentially, the associated permutation
matrix. In fact, the plot of a permutation also leads to an interpretation (or coding) of
permutations that will be central for the permuton aspect: Writing δx for the one-point
measure at x we can associate a distribution μ(π) on the unit square with π ∈ Sn via

μ(π) := 1

n

n∑

i=1

δ(i/n,π(i)/n). (7)

Clearly, π can be recovered from μ(π). Also, for all π ∈ Sn , the marginals of μ(π)

are the discrete uniform distributions on the set {1/n, 2/n, . . . , 1}.
In view of later developments we note that in the passage from rank plot to permu-

tation plot the relative positions of the points in x- and y-direction do not change. In
our data example, a city that is north (up) or east (right) of some other city will stay
so if we move from the left to the right part of Fig. 1.

123



Ranks, copulas, and permutons

Fig. 1 Scatter plot and rank plot for the city data (red: the four largest cities)

3 Patterns, subsampling and convergence

Our aim in this section is to obtain a formal framework for the informal (andubiquitous)
question, ‘what happens as n → ∞?’. We may, for example, start with a sequence
(πn)n∈N of permutationswithπn ∈ Sn for all n ∈ N and regard these as elements of the
setS := ⊔∞

n=1 Sn , whichwe then need to augment in order to obtain a limit. A standard
procedure begins with a set F of functions f : S → [0, 1] that separates the points
in the sense that, for each pair π, σ ∈ S with π �= σ , there is a function f ∈ F such
that f (π) �= f (σ ). We then identify π ∈ S with the function f �→ f (π), which is an
element of the space [0, 1]F which, endowed with the product topology, is compact
by Tychonov’s theorem. The closure of the embedded S provides a compactification
S̄ of S, where convergence of a sequence (πn)n∈N is equivalent to the convergence
of all real sequences ( f (πn))n∈N, f ∈ F . Moreover, each function f ∈ F has a
continuous extension to S̄. In the present situation F will always be countable, and
we start with the discrete topology on S. Then S̄ is a separable compact topological
space, and the boundary ∂S is a compact subset.

We discuss three function classes and the resulting topologies.
First, let F be the set of indicator functions fσ = 1{σ }, σ ∈ S, i.e. fσ (σ ) = 1 and

fσ (π) = 0 if π �= σ . Then, if (πn)n∈N is a sequence that leaves S in the sense that
for each k ∈ N there is an n0 = n0(k) ∈ N such that πn /∈ Sk for all n ≥ n0, we
always get the function which is equal to 0 as the pointwise limit, hence the boundary
consists of a single point. This topology is known as the one-point compactification.

For the second example we note first that order relations transfer to subsets by
restriction. For A = [n], π ∈ Sn , and B = [k] with k ≤ n, restricting <π from A to
B amounts to deleting all entries greater than k in the one-line notation of π , which
gives the one-line notation for a permutation σ ∈ Sk . We generally write σ = π [B] if
(B,<π) is order isomorphic to ([k],<σ ). If B = {i1, . . . , ik} ⊂ [n]with i1 < · · · < ik

this is equivalent to
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Table 1 Patterns in the city data
permutation Permutation 123 132 213 231 312 321

Pattern frequency 69 57 88 61 130 50

Relative frequency .152 .125 .193 .134 .286 .110

σ( j) < σ(m) ⇐⇒ π(i j ) < π(im) for j, m ∈ [k],

a condition that will appear repeatedly below.We now define fσ : S → [0, 1], σ ∈ Sk ,
by fσ (π) = 1 if σ = π [A] for A = [k], and fσ (π) = 0 otherwise. As in the previous
case the functions take only the values 0 and 1, so that convergence means that fσ (πn)

remains constant from some n0 = n0(σ ) onwards. In view of
∑

σ∈Sk
fσ (π) = 1 for

all π ∈ Sn , n ≥ k, any such sequence leads to a sequence (σk)k∈N, σk ∈ Sk , that
has the property that fσk (πn) = 1 for all n ≥ n0(k). Clearly, this sequence must be
projective in the sense that the restriction of σk to [l] with l ≤ k is equal to σl . This
implies that there is a total order <π∞ onNwhich reduces to <σk on [k] for all k ∈ N.
The result is known as the projective topology, and the set of limits is the set of total
orders on N.

The third topology will lead to permutons. It arises if we use pattern counting,
another aspect that is closely related to the interpretation of permutations as connecting
total orders. Let M(k, n) be the set of strictly increasing functions f : [k] → [n],
n ≥ k. We define the relative frequency of the pattern σ in the permutation π as

t(σ, π) = 1

#M(k, n)
#
{

f ∈ M(k, n) : σ(i) < σ( j) ⇔ π( f (i)) < π( f ( j))
}
.

Of course, #M(k, n) = (n
k

)
. We augment this by putting t(σ, π) = 0 if k > n. Using

the notation from the previous paragraph and identifying f ∈ M(n, k) with its range
A we see that the numerator is the number of size k subsets A of [n] with π [A] = σ .
Table 1 contains the absolute and relative frequencies for the six patterns of length
three in the city data introduced at the end of Sect. 1. The four largest cities generate
the pattern σ = 2413 ∈ S4.

From a probabilistic or, in fact, statistical point of view, we may regard the relative
frequencies as probabilities in a sampling experiment. With ξ = ξn,k uniformly dis-
tributed on the set of all subsets A of [n] with size k, the function σ �→ t(σ, π) is the
probability mass function of the random element π [ξ ] of Sk . In particular, whenever
k ≤ n, ∑

σ∈Sk

t(σ, π) = 1 for all π ∈ Sn . (8)

Building on an earlier approach in graph theory, Hoppen et al. (2013) introduced a
notion of convergence based on such pattern frequencies. We identify a permutation
π with its function σ → t(σ, π) on the set S and with values in the unit interval;
it is easy to see that different permutations lead to different functions. The general
approach outlined above then leads us to define convergence of the sequence (πn)n∈N
as convergence of t(σ, πn) for all σ ∈ S. Below we will refer to this as the pattern
frequency topology,
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For the construction to be of use we need a description of the boundary ∂S = S̄\S.
In the general setup the limit of a convergent sequence (πn)n∈N with |πn| → ∞ is
simply the function

π∞ : S → [0, 1], σ �→ lim
n→∞ t(σ, πn),

but obviously, not all functions from S to [0, 1] appear in that manner. For example,
(8) implies that

∑
σ∈Sk

π∞(σ ) = 1 for any fixed k ∈ N, and a conditioning argument
leads to the inequality π∞(σ ) ≥ t(σ, ρ) · π∞(ρ) for all σ ∈ Sk , ρ ∈ Sn with k ≤ n.
In fact, we even have, for all k, l, m ∈ N with k < l < m and all σ ∈ Sk , ρ ∈ Sm ,

t(σ, ρ) =
∑

τ∈Sl

t(σ, τ ) t(τ, ρ). (9)

This follows from viewing the sampling procedure as removing single elements
repeatedly, and then decomposing with respect to the permutation obtained at the
intermediate level. The decomposition (9) will play an important role later in the
context of the dynamics of permutation sequences; see Sect. 4.

Now copulas enter the stage: A (two-dimensional) copula C : [0, 1] × [0, 1] →
[0, 1] is the distribution function of a probability measure on the unit square that has
uniformmarginals, meaning thatC(u, 1) = u for all u ∈ [0, 1] andC(1, v) = v for all
v ∈ [0, 1]. We define the associated pattern frequency function t(·, C) by sampling:
For σ ∈ Sk let t(σ, C) be the probability that a sample (X1, Y1), . . . , (Xk, Yk) from
C leads to the permutation σ in the sense that

Πn((X1, Y1), . . . , (Xk, Yk)) = σ,

see also (5). As the joint distribution of the sample is invariant under permutations it
follows that, for all k ∈ N and σ ∈ Sk ,

t(σ, C) = k! P(X1 < X2 < · · · < Xk, Yσ(1) < Yσ(2) < · · · < Yσ(k)).

We observe (but do not prove) that C is determined by the function σ �→ t(σ, C) on
S, and that for copulas, weak convergence is equivalent to the pointwise convergence
on S of these functions. Note the analogy to the moment problem in the first and to
the moment method in the second statement.

We can now collect and rephrase some of the main results in Hoppen et al. (2013).
For the definition of the random permutations in part (c) we refer to (5) again, and to
the description given there of a suitable algorithm for obtaining the permutation from
the data. Ties in the X - resp. Y -values may be ignored as these are, individually, a
sample from the uniform distribution on the unit interval.

Theorem 1 (a) A sequence (πn)n∈N of permutations in S with |πn| → ∞ converges
in the pattern frequency topology if and only if there is a copula C such that

lim
n→∞ t(σ, πn) = t(σ, C) for all σ ∈ S. (10)
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Moreover, the copula C is unique.
(b) In the pattern frequency topology, the boundary ∂S is homeomorphic to the

space of copulas, endowed with weak convergence.
(c) Let C be a copula and suppose that (Xi , Yi ), i ∈ N, are independent random

vectors with distribution function C. For each n ∈ N let Πn be the random permutation
associated with the first n pairs (X1, Y1), . . . , (Xn, Yn). Then, in the pattern frequency
topology, Πn converges to C almost surely as n → ∞.

Below we will refer the stochastic process (Πn)n∈N in part (c) of Theorem 1 as the
permutation sequence generated (or parametrized) by the copula C .

From a probabilistic point of view it is not too difficult to understand this result: Let
M1 = M1([0, 1] × [0, 1],B([0, 1] × [0, 1])) be the space of probability measures on
the Borel subsets of the unit square, endowed with the topology of weak convergence,
and consider the embedding π �→ μ(π) of S intoM1 given by (7). Suppose now that
(πn)n∈N is a sequence of permutationswherewe assume for simplicity thatπn ∈ Sn for
all n ∈ N. AsM1 is compactwith respect toweak convergence this sequence has a limit
pointμ∞, and convergence would follow from the uniqueness ofμ∞. For this we first
note that the marginals of any such limit point are the uniform distributions on the unit
interval, as weak convergence implies the convergence of the marginal distributions.
Hence any limit point μ∞ has as its distribution function a copula C . Next we argue
that (10) holds: Let σ ∈ Sk be given and let the function hσ on ([0, 1] × [0, 1])k

indicate whether or not the order-relating permutation for the marginal rank vectors
of ((x1, y1), . . . , (xk, yk)) is equal to σ . Then

t(σ, πn) = 1
(n

k

)
∑

1≤i1<···<ik≤n

hσ

(
(xi1 , yi1) . . . , (xik , yik )

)
. (11)

Uniformmarginals implies that the set of discontinuities of hσ is aμ∞-null set, and the
weak convergence ofμ(πn) toμ∞ implies the weak convergence of the respective kth
measure-theoretic powers. Taken together this shows (10). The desired uniqueness now
follows from the fact that a copulaC is determined by its functionσ → t(σ, C). For (b)
we use that weak convergence of copulas is equivalent to pointwise convergence of the
associated functions on S. Finally, part (c) is immediate from the representation (11)
of pattern frequencies asU -statistics, and the classical consistency result for the latter.

4 Dynamics

Generating randompermutations is an important applied task. In linewith the history of
probabilitywe recall a standard gaming example: Cardmixing requiresΠn ∼ unif(Sn)

for some fixed n. Many shuffling algorithms may be modeled as random walks on Sn

and can then be analyzed using the representation theory for this group; see also
Sect. 6.2 below.

Here we are interested in sequences (Πn)n∈N with Πn ∈ Sn for all n ∈ N, and a
Markovian dynamic. A classical example is the Markov chain ΠF = (ΠF

n )n∈N which
starts at ΠF

1 ≡ (1) and then uses independent random variables In ∼ unif([n + 1]),
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independent of ΠF
1 , . . . , ΠF

n , to construct ΠF
n+1 from ΠF

n = (π(1), . . . , π(n)) as
follows,

Π F
n+1 = (

π(1), . . . , π(In − 1), n + 1, π(In), . . . , π(n)
)
. (12)

In words: We insert the new value n + 1 at a position in a gap chosen uniformly at
random. This appears, for example, on p.132 in Feller (1968). A second possibility,
whichwewill relate toHoppen et al. (2013), andwhichwe denote byΠH = (ΠH

n )n∈N,
uses ‘double insertion’ instead. This means that the step from n to n + 1 is based on
two independent random variables I = In and J = Jn , both uniformly distributed on
[n + 1], and

ΠH
n+1(i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ΠH
n (i), if i < I and ΠH

n (i) < J ,

ΠH
n (i) + 1, if i < I and ΠH

n (i) ≥ J ,

J , if i = I ,

ΠH
n (i − 1), if i > I and ΠH

n (i) < J ,

ΠH
n (i − 1) + 1, if i > I and ΠH

n (i) ≥ J .

(13)

Inwords:We insert J at position I and increase the appropriate values by 1. Obviously,
this process is a Markov chain, again with start at the single element σ = (1) of S1.
We collect some properties of this process. The notion of a permutation sequence
generated by a copula is explained in Theorem 1(c).

Lemma 1 Let ΠH be as defined above.
(a) ΠH is equal in distribution to the permutation sequence generated by the

independence copula C(x, y) = x · y.
(b) The transition probabilities of ΠH are given by

pH(σ, τ ) := P(ΠH
n = τ |ΠH

k = σ) = k!
n! t(σ, τ ) (14)

for all k, n ∈ N with k ≤ n, and all σ ∈ Sk and τ ∈ Sn.
(c) ΠH

n ∼ unif(Sn) for all n ∈ N.

Proof (a) Let Π = (Πn)n∈N be generated by the independence copula. Then the
step from Πn to Πn+1 is based on the component ranks I and J of the next pair
(Xn+1, Yn+1) in the sequence (X1, Y1), . . . , (Xn+1, Yn+1). It is well known that I and
J are both uniformly distributed on [n + 1]. Here they are also independent, hence
Πn+1 arises from Πn as in (13).

(b) The transition from σ ∈ Sn to τ ∈ Sn+1 is based on independent random
variables I and J , both uniformly distributed on [n + 1]. If I = i then, with φi :
[n] → [n + 1], φi (k) = k if k ≤ i and φi (k) = k + 1 if k > i , we must have
σ(l) < σ(m) if and only if τ(φi (l)) < τ(φi (m)) for all l, m ∈ [n]. The number of
such i’s is (n+1) t(σ, τ ), and in each case we additionally need J = τ(I ). This proves
the one-step version of (14).

To obtain the general case we now use induction, the Markov property, and (9).
(c) This is immediate from (14) with k = 1 and σ = 1. ��
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Fig. 2 The transition graphs for the Markov chains ΠF (top) and ΠH (bottom)

Hence both ΠF and ΠH consist of uniformly distributed variables. A trivial third
possibility to achieve this is to use independent Πn’s with Πn ∼ unif(Sn). The tran-
sition graph for these chains has S as its set of nodes and an edge {σ, τ } for each
pair σ ∈ Sn , τ ∈ Sn+1, n ∈ N, with the property that P(Πn+1 = τ |Πn = σ) > 0.
Figure2 shows the first four levels of the transition graphs for ΠF and ΠH. These
graphs are the Hasse diagrams associated with two specific partial orders on S. In the
first, σ <F ρ for σ ∈ Sk and ρ ∈ Sn with k < n means that the one-line notation for σ
arises from the one-line notation for ρ by simply deleting all values greater than k in
the latter, whereas in connection with ΠH we have σ <H ρ if and only if σ appears as
a pattern in ρ. Clearly, the graph for ΠF is a tree: All previous states are deterministic
functions of the current state. Informally speaking, all three chains eventually leave
the state space S, and this is what provides the connection to the previous section.

We need an excursion. The Markov property is often stated informally as ‘the
future development depends on the history of the process only via its present state’.
It may be instructive to carry out a simple calculation: If X1, X2, . . . , Xn are random
variables on some probability space with values in some countable set, then their joint
distribution can always be evaluated step by step via

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) ·
n∏

i=2

P(Xi = xi |Xi−1

= xi−1, . . . , X1 = x1),

whenever the probability on the left hand side is positive. If the tuple has the Markov
property then elementary manipulations of conditional probabilities lead to

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) ·
n∏

i=2

P(Xi = xi |Xi−1 = xi−1)
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= P(X1 = x1) ·
n∏

i=2

P(Xi−1 = xi−1|Xi = xi )
P(Xi = xi )

P(Xi−1 = xi−1)

= P(Xn = xn)

1∏

i=n−1

P(Xi = xi |Xi+1 = xi+1).

Hence the Markov property then also holds ‘in the other direction’. Moreover, the
converse statement follows on reading the above from bottom to top. For a sequence
(Xn)n∈N, and with Gn,Hn the σ -fields generated by the variables X1, . . . , Xn

and Xn, Xn+1, . . . respectively, the Markov property can formally be written as
L (Xn+1|Gn) = L (Xn+1|Xn), n ∈ N, and the above argument shows that this implies
L (Xn−1|Hn) = L (Xn−1|Xn), n ∈ N, a procedure that may be interpreted as time
reversal. In fact, a somewhat neutral statement would be that, for a Markov process,
past and future are conditionally independent, given the present.

The distribution of a Markov chain is specified by the distribution of the first vari-
able and the (forward) transition probabilities; for the reverse chain we speak of the
cotransition probabilities. The tree structure of its transition graph implies that forΠF

the cotransitions are degenerate in the sense only the values 0 and 1 occur. For ΠH

we use Lemma 1 to obtain

P(ΠH
n = σ |ΠH

n+1 = τ) = P(ΠH
n = σ)

P(ΠH
n+1 = τ)

pH(σ, τ ) = t(σ, τ ) (15)

for all n ∈ N, σ ∈ Sn and τ ∈ Sn+1. The decomposition (9) can now be interpreted as
describing the backwardsmovement ofΠH: Pattern frequencies arise as cotransitions
for this chain.

Next we sketch Markov chain boundary theory, which grew out of the historically
very important probabilistic approach to classical potential theory. For the highly
transient chains considered here, where no state can be visited twice and where the
time parameter is a function of the state and thus time homogeneity is implicit, this
takes on a particularly simple form. Suppose that X = (Xn)n∈N is a Markov chain
with graded state space S = ⊔

Sn , that X is adapted to the grading in the sense that
Xn ∈ Sn for all n ∈ N, and that S is minimal in the sense that P(Xn = x) > 0 for all
x ∈ Sn , n ∈ N. The Martin kernel K : S × S → R+ for X is then given by

K (x, y) := P(Xn = y|Xm = x)

P(Xn = y)
for all x ∈ Sm, y ∈ Sn (16)

if n ≥ m, and K (x, y) = 0 otherwise. For each x ∈ Sm let fx : S → [0, 1] be defined
by

fx (y) = P(Xm = x) K (x, y) = P(Xm = x |Xn = y) (17)

and let F := { fx : x ∈ S}. The Doob-Martin compactification S̄ and the Martin
boundary ∂S of the state space are the results of the procedure outlined at the beginning
of Sect. 3, with this choice of F as space of separating functions.

We give two central results.
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Theorem 2 In the Doob-Martin compactification, Xn converges almost surely to a
random variable X∞ with values in the Martin boundary.

Proof Let f = fx ∈ F with some x ∈ Sk . In view of the above remarks on the
Markov property and time reversal,

f (Xn) = P(Xk = x |Xn) = E[1{x}(Xk)|Hn] for all n ≥ k,

so that, asHn+1 ⊂ Hn ,

E[ f (Xn)|Hn+1] = E
[
E[1{x}(Xk)|Hn]

∣
∣Hn+1

] = E[1{x}(Xk)|Hn+1] = f (Xn+1).

This shows that
(

f (Xn),Hn
)

n≥k is a reverse martingale, hence f (Xn) converges
almost surely. As x ∈ S was arbitrary, the first statement follows by construction of
the compactification.

As P(X∞ ∈ ⋃n
k=1 Sk) = 0 for all n ∈ N, we also get P(X∞ ∈ ∂S) = 1. ��

The general compactification procedure implies that the Martin kernel can be
extended continuously from S × S to S × S̄ via K (x, α) = limn∈N K (x, yn) where
(yn)n∈N is such that yn → α ∈ ∂S in the Doob-Martin topology. The following is a
special case of Doob’s h-transform.

Theorem 3 Let X , S, S̄, ∂S be as above and let p(x, y) = P(Xn+1 = y|Xn = x),
x ∈ Sn, y ∈ Sn+1, be the transition function of the Markov chain X. For α ∈ ∂S let
pα be defined by

pα(x, y) = K (y, α)

K (x, α)
p(x, y) for all n ∈ N, x ∈ Sn, y ∈ Sn+1.

Then pα is the transition function for a Markov chain Xα = (Xα
n )n∈N, and Xα

n con-
verges almost surely to α in the Doob-Martin topology.

The picture that emerges from these results is that of an exit boundary and, with
K (·, α) as basis for an h-transform, of the resulting transformed chain as the process
conditioned on the value α ∈ ∂S for the limit X∞. Further, the relation to time reversal
and the two-sidedness of the Markov property outlined above shows that convergence
yn → α ∈ ∂S in the Doob-Martin topology is equivalent to the convergence in
distribution of the initial segments of the conditioned chain,

L [X1, . . . , Xk |Xn = yn] →distr L [X1, . . . , Xk |X∞ = α] for all k ∈ N.

Finally, we note that the topological construction depends on the chain via the associ-
ated cotransitions only. In the familiar forward case, the distribution of X is specified
by the distribution of the first variable X1 and the transition function p. Here we may
consider the distribution of X∞ as given, and then use the cotransitions to obtain the
distribution of X as a mixture of the distributionsL [X |X∞ = α], α ∈ ∂S.

We now return to processes (Πn)n∈N of permutations. This is a special case of the
above framework, with S = S and Sn = Sn . First, forΠF it is clear from the transition
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mechanism that, for σ ∈ Sk andπ ∈ Sn , the conditional probability P(ΠF
k = σ |ΠF

n =
π) has value 1 if the (order) restriction of π to [k] is equal to σ , and that it is 0
otherwise. As functions on S these are the same as the functions that generate the
projective topology, see Sect. 3. Of course, convergence in the projective topology
also follows directly from the fact that ΠF is consistent in the sense that, for all
n ∈ N, the restriction of ΠF

n+1 to [n] is equal to ΠF
n . At the other end of the spectrum,

with the chain consisting of independent random variables, we obtain the one-point
compactification, where each sequence of permutations that does not have a limit
point in S itself converges to the single point ∞. An intermediate case is ΠH or, more
generally, the copula-based process introduced in part (c) of Theorem 1. Recall that
ΠH appears with the independence copula C(x, y) = x · y.

Theorem 4 The process Π = (Πn)n∈N generated by a copula C is a Markov chain
with transition probabilities

P(Πn+1 = τ |Πn = σ) = (n + 1) t(τ, C)

t(σ, C)
pH(σ, τ ), n ∈ N, σ ∈ Sn, τ ∈ Sn+1,

(18)
and the associated Doob-Martin topology is the same as the pattern frequency topol-
ogy. Further, Π is an h-transform of ΠH.

Proof WeconsiderΠH first. By (15) the functions in (17) evaluate to fσ (π) = t(σ, π),
which implies that the Doob-Martin topology coincides with the pattern frequency
topology.

For an arbitrary copula C the permutations are generated by a sequence of inde-
pendent random vectors (Xi , Yi ), i ∈ N, with distribution function C , and Πn is a
deterministic function of the first n pairs. The conditional distribution of Πn given all
Πk , k > n, thus depends only on Πn+1 and the pair (i, j) in the permutation plot of
Πn+1 that has been generated by (Xn+1, Yn+1). As the initial segments are invariant
in distribution under permutations, each i ∈ [n + 1] is equally likely. Taken together
this shows that (Πn)n∈N is a Markov chain with cotransitions that do not depend on
C . This completes the proof of the topological assertion.

In order to obtain the expression for the one-step transition probabilities we note
that, by definition of t(·, C),

P(Πk = σ) = t(σ, C) for all k ∈ N, σ ∈ Sk .

Using this together with (14), (15) and some elementary manipulations leads to (18).
For the proof of the last assertion we need the extended Martin kernel K (·, ·)

associated with ΠH. First, by the familiar arguments,

K (σ, π) = P(ΠH
k = σ |ΠH

n = π)

P(ΠH
k = σ)

= k! t(σ, π)
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for all σ ∈ Sk, π ∈ Sn with k ≥ n. Suppose now that (πn)n∈S is such that πn → C ∈
∂S. As the extension of K (σ, ·) to S̄ is continuous, it follows that

K (σ, C) = lim
n→∞ K (σ, πn) = k! lim

n→∞ t(σ, πn) = k! t(σ, C),

where we have used Theorem 1(a) in the last step. Using this (18) can be written as

P(Πn+1 = τ |Πn = σ) = K (τ, C)

K (σ, C)
P

(
ΠH

n+1 = τ |ΠH
n = σ

)

for all n ∈ N, σ ∈ Sn and τ ∈ Sn+1. ��
We presented a purely topological approach to state space augmentation that is

based on an embedding of S into [0, 1]F with a suitable family F of functions
f : S → [0, 1] and the subsequent use of Tychonov’s theorem. This is a variant of the
famous Stone-Čech compactification; see e.g. (Kelley 1955, p.152). Alternatively, we
could endow S with a metric d and then pass to the completion of (S, d). A suitable
choice of d, based on the Martin kernel, leads to a totally bounded metric space that
is topologically homeomorphic to the compactification discussed above.

5 Applications

We give a range of examples where permutations and their limits are important, from
classical statistics to stochastic modeling to theoretical computer science.

5.1 Tests for independence

If the X - and Y -variables are independent then we obtain the copula C(x, y) = x · y,
0 ≤ x, y ≤ 1. For the asymptotic frequencies this means that, for all k ∈ N and
σ ∈ Sk ,

t(σ, C) = k! P(X1 < X2 < . . . < Xk, Y1 < Y2 < . . . < Yk),

as a permutation of the Y -variables alone does not change the joint distribution of the
pairs (X1, Y1), . . . , (Xn, Yn). In particular, all patterns of the same length have the
same asymptotic frequencies, so that t(σ, C) = 1/k! for all σ ∈ Sk .

This may be used for testing independence. A famous classical procedure is based
on Kendall’s τ -statistic which, in the notation introduced in Sect. 3, may be written
as τ = (

t(12,Πn) − t(21,Πn)
)
/
(n
2

)
and thus makes use of the two complementary

patterns of length two. A central limit theorem for U -statistics leads to a test for
independence with asymptotically correct level, see e.g. Example 12.5 in van der
Vaart (1998). In our running data example a total of 61 of the 120 pairs are concurrent:
Clearly, the test based on Kendall’s τ would not reject the hypothesis of independence
for these data.
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An analogous procedure based on longer patterns requires a multivariate cen-
tral limit theorem for vectors of U -statistics. We consider patterns of length three,
with a view towards the values given in Table 1. For the asymptotic covariances we
use Theorem 12.3 in van der Vaart (1998) and thus have to compute ζ(σ, τ ) :=
32 cov(hσ (Z1, Z2, Z3), hτ (Z1, Z ′

2, Z ′
3)) for σ, τ ∈ S3, where Z1, Z2, Z3, Z ′

2, Z ′
3 are

independent and uniformly distributed on the unit square. For this we first determine
the conditional distribution L [Π3|X1 = x, Y1 = y] under the assumption of inde-
pendence of horizontal and vertical positions. If π = 123, for example, we either have
X2 < x, Y2 < y, X3 > x, Y3 > y or X3 < x, Y3 < y, X2 > x, Y2 > y if (x, y) is ‘in
the middle’ of the rank plot, and similar conditions apply in the other two cases. With
φσ (x, y) := P(Π3 = σ |X1 = x, Y1 = y) elementary calculations along these lines
lead to

φ123(x, y) = 2x(1 − x)y(1 − y) + x2y2/2 + (1 − x)2(1 − y)2/2,

φ132(x, y) = x2y(1 − y) + x(1 − x)y2 + (1 − x)2(1 − y)2/2,

φ213(x, y) = x(1 − x)(1 − y)2 + (1 − x)2y(1 − y) + x2y2/2,

φ231(x, y) = x(1 − x)y2 + (1 − x)2y(1 − y) + x2(1 − y)2/2,

φ312(x, y) = x(1 − x)(1 − y)2 + x2y(1 − y) + (1 − x)2y2/2,

φ321(x, y) = 2x(1 − x)y(1 − y) + x2(1 − y)2/2 + (1 − x)2y2/2.

Note that φσ (x, y) = φσ−1(y, x) for all σ ∈ S, 0 < x, y < 1. With these conditional
probabilities we get

cov(hσ (Z1, Z2, Z3), hτ (Z1, Z ′
2, Z ′

3))

= E
(
hσ (Z1, Z2, Z3)hτ (Z1, Z ′

2, Z ′
3)

) − (
Ehσ (Z1, Z2, Z3)

)(
Ehτ (Z1, Z2, Z3)

)

=
∫ 1

0

∫ 1

0
φσ (x, y)φτ (x, y) dx dy

−
(∫ 1

0

∫ 1

0
φσ (x, y) dx dy

) (∫ 1

0

∫ 1

0
φτ (x, y) dx dy

)

.

The observed value 0.228 for σ = 312 deviates notably from the theoretical 1/6. For
this permutation the asymptotic variance is ζ = 9(19/600 − 1/36) = 7/200. The
corresponding asymptotic p-value for the observation would be the probability that a
standard normal variable exceeds the value

√
16

√
200

7

(

0.228 − 1

6

)

≈ 1.311,

which is about 0.094 and thus significant at the level 0.1. This, of course, is an act
of ‘data snooping’, but it should be clear from the above how to obtain the 6 × 6
asymptotic covariance matrix for the vector (t(σ,Πn))σ∈S3 of pattern frequencies
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under the hypothesis of independence, and how then to apply an appropriate test with
the full data set in Table 1.

The use of ever longer patterns is a straightforward if computationally demanding
generalization. In this context another interesting connection between discrete mathe-
matics and statistics appears: A (deterministic) sequence (πn)n∈N of permutationswith
|πn| → ∞ is said to be quasirandom if t(σ, πn) converges to 1/|σ |! for all σ ∈ S. The
(random) sequence (Πn)n∈N generated by the independence copula has this property
with probability one, so such sequences exist (there is an obvious parallel with normal
numbers). Is it enough for quasirandomness if the limit statement holds for all permu-
tations of some fixed length k? It follows from (9) that this ‘forcing property’ would
then automatically hold for all j ≥ k and, clearly, k = 2 is too small. This question
has been answered in Král and Pikhurko (2013), who showed that quasiramdomness
follows with k = 4, but not with k = 3. Their proof of the sufficiency part is based
on the permuton approach discussed in Sect. 3. In fact, as every limit point C must
satisfy t(σ, C) = 1/4! for all σ ∈ S4, the statement boils down to a characterization
property of the independence copula. Remarkably, in a statistical context, such a char-
acterization had been obtained much earlier in Yanagimoto (1970), and it leads to an
extension of Kendall’s τ that is consistent against all alternatives. In both areas, related
questions are active fields of research. In connection with quasirandomness we refer
to Crudele et al. (2023), for the statistical side see e.g. Shi et al. (2022).

5.2 Delaymodels

Objects arrive at a system at timesU1, U2, . . . and leave at timesU1+X1, U2+X2, . . .,
where we assume that the arrivals are independent and uniformly distributed on the
unit interval, that the delay times are independent with distribution function G, and
that arrival and delay times are independent. Let Πn be the random permutation that
connects the orders of the first n arrivals and departures. For example, in a queuing
context, arriving customers might receive consecutively numbered tickets which they
return on departure, and the tickets are put on a stack.

In Baringhaus and Grübel (2022) the resulting permutons, the delay copulas, are
discussed. From a probabilistic and statistical point of view the information about
the delay distribution contained in the permutations is of interest, together with the
question of how to estimate (aspects of) the delay distribution. Another point of interest
are second order approximations or, in general terms, the transitions from a strong law
of large number to a central limit theorem. For the set of patterns of a fixed size this
has already been important in Sect. 5.1. In Baringhaus and Grübel (2022) this is taken
further by considering

√
n(Πn(σ ) − t(σ, C))σ∈S as a stochastic process with σ ∈ S

as ‘time parameter’ and then establishing a functional central limit theorem.

5.3 Sparseness

The delay models considered in Sect. 5.2 can be related to the M/G/∞ queue where
customers arrive at the times of a Poisson process with intensity λ. There are infinitely
many servers so, strictly speaking, there is no queuing. The limits refer to an increasing
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arrival rate and thus generate a ’dense’ sequence of permutations as the service time
distribution is kept fixed. Here we regard the standard M/G/1 model with only one
server and fixed arrival rate; for convenience we start with an empty queue at time 0.
From the first n ∈ N arrivals and departures we still obtain a sequence (Πn)n∈N of
random permutations, with Πn ∈ Sn for all n ∈ N. We argue that this sequence is
‘sparse’, and that the pattern frequency topology does not provide much insight.

We assume that the service time distribution has finite first moment μ and that
ρ < 1, where ρ := λμ is known as the traffic intensity. The queue is then stable
and the queue length process Q = (Qt )t≥0, with Qt the number of customers in the
system at time t , can be decomposed into alternating busy and idle periods. These are
independent, and the individual sequences of busy and idle pieces of Q are identically
distributed. Obviously, arrival and departure times of any particular customer belong
to the same busy period. Let Ki be the number of customers in the i th period. We
recall the definition of the direct sum of finite permutations: For σ ∈ Sk , τ ∈ Sl , we
obtain the sum σ ⊕ τ ∈ Sl+k in one-line notation as

σ ⊕ τ = (σ1, σ2, . . . , σk, τ1 + k, τ2 + k, . . . , τl + k).

Suppose now that K1 = k. Then, for all n ≥ k, Πn(i) ≤ k if i ≤ k, and Πn(i) > k
if k < i ≤ n, hence Πn = σ ⊕ τ with some σ ∈ Sk . Iterating this argument we see
that, as n → ∞,Πn decomposes into subpermutations related to the sequence of busy
cycles. Also, for any given i , Πn(i) remains constant as soon as n exceeds the number
of the first customer no longer in the same busy period as customer i . Taken together
this leads to the following result.

Proposition 1 Let (Πn)n∈N be the sequence of permutations generated by an M/G/1
queue with traffic intensity ρ < 1. Then Πn → Π∞ almost surely in the projective
topology, with Π∞ =distr

⊕∞
i=1 Ψi , where Ψi ∈ S, i ∈ N, are independent and

identically distributed and |Ψi | = Ki .

The distribution L (Π∞) of the limit Π∞ is fully characterized by L (Ψ1), which
may in turn be specified byL (K1) and the conditional distributionL (Ψ1|K1). Noth-
ing is known (to me) about the latter, apart from the obvious fact that it is concentrated
on the subset of SK1 of permutations that cannot be written as a direct sum.

The sequence (Πn)n∈N in Proposition 1 is contained in the compactification of S
that we used in the ‘dense’ situation. Under a mild moment condition we obtain the
corresponding set of limit points.

Proposition 2 Suppose that, in addition to the assumptions in Proposition 1, the service
time distribution has finite third moment. Then, in the pattern frequency topology,
Πn → C∞ almost surely, where the permuton C∞ is given by C∞(u, v) = min{u, v}
for all u, v ∈ [0, 1].
Proof The path-wise argument used for Proposition 1 shows that for any pair (i, j)
with i < j and Πn(i) > Πn( j) customers i and j must belong to the same busy
period. In particular,

#
{
1 ≤ i < j ≤ n : Πn(i) > Πn( j)

} ≤ n Mn, with Mn := max{K1, . . . , Kn},
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so that the relative frequencyof the inversion τ = 21 satisfies t(τ,Πn) ≤ 2 Mn/(n−1).
It follows from Section 5.6, p158 in Cox and Smith (1961) that E K 3

1 < ∞ under the
above moment assumption. By a standard argument this implies Mn/n → 0 almost
surely.

Now letσ be apermutation that contains an inversion.The relative frequency t(σ, π)

of σ in π ∈ Sn , n ≥ k := |σ |, can be interpreted as the probability that π [A] = σ ,
if A ⊂ [n] with #A = k is chosen uniformly at random; see also the remarks at
the beginning of Sect. 3. Further, choosing {i, j} ⊂ [k] leads to an inversion with
probability p > 0, where p does not depend on n. In the two-stage experiment, with
independent steps, we would thus find an inversion inΠn with probability p · t(σ,Πn).
This is bounded fromabove by t(σ,Πn), and the first step of the proof therefore implies
that t(σ, C) = limn→∞ t(σ,Πn) = 0 for all permutations that contain an inversion.
As the subsampling must lead to some element of Sk we see that any limit permuton
C must assign the value 1 to each identity permutation. This holds for the copula in
the assertion of the theorem, and an appeal to uniqueness of the limit completes the
proof. ��

Thus, from the pattern frequency point of view, there is asymptotically no difference
between M/G/1 and the queue where customers depart in order of their arrival, such
as in a system with immediate service and constant service times.

5.4 Pattern avoiding and stack sorting

In Bassino et al. (2018) the authors deal with separable permutations, which are those
that avoid the two patterns 2413 and 3142. This class is of interest as it appears in
connection with stack sorting, for example. (The permutation in our data example is
not separable; see the red dots in Fig. 1).

Starting with the sets AVn := {π ∈ Sn : t(2413, π) = 0, t(3142, π) = 0} the
main question is the limit distribution (in the weak topology related to the pattern
frequency topology) of Πn ∼ unif(AVn) as n → ∞. Whereas we often obtain a
limit that is concentrated at one point, such as the independence copula in connection
with the unrestricted case where Πn = unif(Sn) in Sect. 5.1, or in the delay context
in Sect. 5.2, it turns out that the limit distribution for uniformly distributed separable
permutations is ‘truly random’; in fact, this distribution is an interesting object on
its own. The analysis in Bassino et al. (2018) is based on the fact that separable
permutations may be coded by a specific set of trees, where the operation⊕mentioned
in Sect. 5.3 together with its ‘skew’ variant� plays a key role. I do not know at present
if this fits into the Markovian framework. Is there a Markov chain adapted to S with
marginal distributions uniform on AVn and such that the Doob-Martin approach leads
to the pattern frequency topology?

Again, this is an active area of research. We refer the reader to Janson (2020) for a
recent contribution, which is of particular interest in the context of the present paper
because of its use of a variety of probabilistic techniques.
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6 Complements

We sketch some related developments, restricting references essentially to those that
can serve as entry points for a more detailed study.

6.1 Other combinatorial families

As pointed out in Hoppen et al. (2013) the construction of permutons as limits of
permutations via pattern frequencies has been influenced by the earlier construction
of graphons as limits of graphs via subgraph frequencies; see Lovasz (2012) for a def-
inite account and, in addition, Diaconis and Janson (1988) for a probabilistic view. It
was observed in Grübel (2015) that, with a suitable Markov chain, the topology based
on subgraph frequencies is the same as the Doob-Martin topology arising from the
associated boundary, in analogy to Theorem 4 above. A notable difference between
the permutation and the graph situation is that graphs are considered modulo isomor-
phisms. InGrübel (2015) a randomization stepwas used to take care of this, Hagemann
(2016) showed that one can work directly with the equivalence classes.

Markov chain boundary theory has been used in connection with limits of random
discrete structures in a variety of combinatorial families other than S; see Grübel
(2013) for an elementary introduction and references. We single out the case of binary
trees, where Bn is the set of binary trees with n (internal) nodes and B = ⊔∞

n=1 Bn

is the graded state space. Processes X = (Xn)n∈N with values in B arise naturally
in two different situations. First, if we apply the BST (binary search tree) algorithm
sequentially to a sequence of independent and identically distributed real random
variables with continuous distribution function, and secondly, in the context of Rémy’s
algorithm, where Xn is uniformly distributed onBn . Both processes areMarkov chains
adapted to B, but the associated transition graphs and, consequently, the cotransitions
and the Doob-Martin compactifications of B, are quite different. For search trees the
role of pattern or subgraph frequencies is taken over by relative subtree sizes, and the
permuton or graphon analogues are the probability distributions on the set of infinite
0-1 sequences; see Evans al. (2012). In the Rémy case a class of real trees appears,
together with a specific sampling mechanism; see Evans et al. (2017).

Another combinatorial family that is related in several ways to the topics discussed
in the present paper is the family Y = ⊔

n∈NYn of (number) partitions. Here λ =
(λ1, . . . , λk) ∈ Yn is a partition of n if λi ∈ N, λ1 ≥ · · · ≥ λk , and

∑k
i=1 λi = n.

We abbreviate this to λ � n. Each σ ∈ Sn defines a partition λ � n via the length
of its cycles, in decreasing order. The right hand side of (1), for example, leads to
λ = (5, 3, 1). OnY a partial order can be defined as follows: Ifλ = (λ1, . . . , λk) ∈ Ym

and (η1, . . . , ηl) ∈ Yn with m ≤ n then λ ≤ η means that k ≤ l and λ j ≤ η j for
1 ≤ j ≤ k. Figure3 shows the first five levels of the associated Hasse diagram. We
obtain weights for the edges of the graph by ‘atom removal’: For example, to go from
(3, 2) to the two predecessors (3, 1) and (2, 2) respectively there are two possibilities
to decrease 2 to 1 in the first and three to decrease 3 to 2 in the second case. Normalizing
these values so that they sum to 1 we obtain the cotransitions for a family of Markov
chains adapted to Y.

123



R. Grübel

Fig. 3 The transition graph for integer partitions

Suppose now that (λ(n))n∈N is a sequence inYwhere we again assume for simplic-
ity that λ(n) ∈ Yn for all n ∈ N. It turns out that the Doob-Martin topology associated
with these cotransitions is equivalent to the convergence of the normalized partition
parts λ(n)i/n as n → ∞, for all i ∈ N, and that ∂Y =: ∂Yc is homeomorphic to the
space of weakly decreasing sequences (αi )i∈N with

∑∞
i=1 αi ≤ 1, endowed with the

trace of the product topology on [0, 1]∞.

6.2 The cycle view

Above we worked with the order isomorphism aspect of permutations and the asso-
ciated partial order on S given by pattern containment. Using cycles instead leads to
another partial order on S where, for σ ∈ Sm and τ ∈ Sn with m ≤ n, the relation
σ ≤ τ means that in the cycle notation, σ arises from τ by deleting all numbers greater
than m (some rearrangement may be necessary to obtain the standard notation). As
an example we consider the two sides of (1) again: The order restriction to the set [4]
in the one-line notation on the left leads to 3241 ∈ S4, which is (134)(2) in standard
cycle notation. The cycle restriction to [4] of the permutation on the right hand side is
(1)(432) in standard notation, which is 1423 in one-line notation. In particular, Foata’s
correspondence is not consistent with the two notions of restriction.

Nevertheless, the correspondence, together with the construction of ΠF on the left
hand side, can be used to motivate a Markov chain Πc = (Πc

n)n∈N that is adapted to S
and compatible with this order, and has Πc

n ∼ unif(Sn) for all n ∈ N. In this construc-
tion, known as the Chinese restaurant process, cycles are interpreted as circular tables
and customer n + 1 selects one of the n already seated customers as right neighbor
(successor in the cycle notation), or starts a new table, where the n +1 possibilities are
chosen with the same probability. Note that Πc is projective in the sense that previous
values are functions of the present state.

The cycle view is closely related to number partitions: Mapping a permutation to
its ordered cycle lengths leads to a function Ψ : S → Y that preserves the grading
and the respective partial orders. Let Λc = (Λc

n)n∈N be defined by Λc
n := Ψ (Πc

n) for
all n ∈ N. Then Λc is again a Markov chain, and it has the cotransitions introduced in
Sect. 6.1 for the familyY. Hence, almost surely as n → ∞,Λc

n converges to an element
(αi )i∈N of ∂Yc in the sense that limn→∞(Λc

n)i/n = αi for all i ∈ N. The distribution
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of the limit, which is not concentrated at one point of the boundary, can be obtained by
stick breaking: Starting with independent and unif(0, 1)-distributed random variables
Ui , i ∈ N, let (Vi )i∈N be defined by V1 = U1 and Vn+1 = (1− Vn)Un+1 for all n ∈ N.
Putting these in decreasing order provides a random element of ∂Yc that has the same
distribution as Λc∞.

Note that this approach refers to the big cycles. Locally, at the small end, the limit
can be obtained from (3): For i ∈ N fixed, the counts of cycles of length k, 1 ≤ k ≤ i ,
are asymptotically independent and Poisson distributed with parameters 1/k.

The cycle notation displays a permutation as a product of cyclic permutations that
act on disjoint parts of the base set. In contrast to the general case such products are
commutative. The cycle view is closely connected to the group aspects of permuta-
tions, in particular to the representation theory of finite groups. Many probabilists
and statisticians became aware of this connection and the resulting ‘non-commutative
Fourier analysis’ through Diaconis (1988); more recent and extensive presentations
are Ceccherini-Silberstein et al. (2008) andMéliot (2017).We briefly summarize some
aspects that are relevant to the asymptotics of large permutations. All representations
below refer to base fieldC, GL(V ) denotes the general linear (or automorphism) group
of the complex vector space V , and U (n) is the group of unitary n × n-matrices.

As with compactifications, we begin with an embedding: We regard the elements
g of a finite group G as elements of the vector space C

G of functions f : G → C

via σ �→ δσ , where δσ (σ ) = 1 and δσ (τ ) = 0 if τ �= σ . With the composition of
σ, τ ∈ G written as στ we then define convolution on C

G by

f �g(σ ) =
∑

τ∈G

f (στ−1) g(τ ), σ ∈ G.

Seen as multiplication, convolution makes CG an algebra, the group algebra C[G]
associated with G. Also, (σ, f ) �→ σ. f := δσ � f defines an action of G on V , and the
function ρ : G → GL(V ), ρ(σ)( f ) := σ. f , is a group homomorphism. With respect
to the canonical basis {δσ : σ ∈ G} the values ρ(σ) are all represented by unitary
matrices. Thus, somewhat reminiscent of the fact that every finite group G with n
elements is a subgroup of Sn , every such G is a subgroup of U (n), both up to group
isomorphism. This is known as the (left) regular representation of G. More generally,
a representation (ρ, W ) of G consists of a vector space W and a homomorphism
ρ from G to GL(W ). For example, representing permutations by their permutation
matrices as in (4), we obtain the permutation representation of G = Sn .

In a representation (ρ, W ) of G a subspace U of W is invariant if ρ(σ)(U ) = U
for all σ ∈ G, and the representation is irreducible if only U = {0} and U = W
are invariant. Necessarily, the range of ρ is then the full group GL(U ). It is a crucial
fact that the regular representation (ρ,C[G]) can be decomposed into the direct sum
(
⊕

i∈I ρi ,
⊕

i∈I Wi ) of irreducible representations (ρi , Wi ). Let di := dim Wi . For
later use we note that, with n the size of G, counting dimensions leads to

∑
i∈I d2

i = n.
The character χ : G → C of a representation ρ is given by χ(σ) := Tr(ρ(σ )), where
Tr denotes the trace (which does not depend on the basis chosen to represent ρ(σ) by
a matrix). For the permutation representation χ(σ) is easily seen to be the number of
fixed points of σ .
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We recall that general groups can be decomposed into conjugacy classes, which
are the equivalence classes obtained when σ, τ are equivalent if σπ = πτ for some
π ∈ G. A function f ∈ C[G] is a class function or central if it is constant on
conjugacy classes. The characters of representations are such class functions, and
it turns out that the characters of the irreducible representations constitute a basis
for the space (in fact, a convolution algebra) of class functions. Moreover, different
irreducible representations lead to different characters. For G = Sn the conjugacy
classes correspond to cycle structures and may thus be represented by partitions of n,
i.e. elements ofYn . Remarkably, the characters of irreducible representations can also
be parametrized by such partitions.

This finishes our excursion, andwe return to permutation asymptotics. The algebraic
point of viewmainly refers to characters and thus to partitions, where it leads to a close
relative of theMarkov chainΛc = (Λc

n)n∈N discussed above. For this, ourmain source
is the book Kerov (2003); see also the references given there.

It is convenient to augment the permutations of [n] by fixed points so that a bijection
of N is obtained that leaves all k > n invariant. We continue to write Sn for these
‘padded’ versions, and regard them as an increasing sequence of subgroups of the
group S∞ that consists of all finite bijections σ : N → N, meaning that #{k ∈ N :
σ(k) �= k} < ∞. A representation ρn+1 of Sn+1 then leads to a representation ρn of Sn

by restriction.Thiswill in general destroy irreducibility, but the character ofρn is a class
function and may thus be written as a linear combination of the irreducible characters
on level n. It turns out that the non-zero coefficients are all equal to one. Consider now
the graph on Y with edges connecting the character of an irreducible representations
on level n +1 to the contributing characters of the irreducible representations on level
n. This is the same graph as the transition graph obtained above for number partitions,
see Fig. 3, but the edge weights are now all equal to 1. The resulting cotransitions
then amount to the rule that, from a current state η ∈ Yn , a state λ ∈ Yn−1 is chosen
uniformly at random from its predecessors. The dimension numbers dλ, λ ∈ Y, turn
out to be equal to the number of paths in the diagram that lead from its root to λ. As a
consequence the cotransition associated with an edge {λ, η}, λ < η, of the transition
graph is given by dλ/dη.

When does a sequence of characters (χn)n∈N of irreducible representations or,
equivalently, a sequence of partitions (λ(n))n∈N, converge in the Doob-Martin topol-
ogy associated with these cotransitions? Or, in other words, what is the cycle view
analog of the pattern frequency topology? The answer requires one more defini-
tion: The conjugate (or transpose) of a partition λ = (λ1, . . . , λk) is given by
λ� = (λ�

1, . . . , λ
�
j ) with j = λ1 and λ�

l = #{m ∈ [k] : λm ≥ l}. Convergence
then means that the normalized partition components of λ(n) ∈ Yn and λ�(n) con-
verge as elements of the unit interval: λ(n)i/n → αi , λ�(n)i/n → βi as n → ∞, for
all i ∈ N. The boundary is known as the Thoma simplex,

∂YT =
{

(α, β) ∈ [0, 1]N × [0, 1]N : αi ≥ αi+1, βi ≥ βi+1 for all i ∈ N,

∞∑

i=1

(αi + βi ) ≤ 1

}

,

together with the topology of pointwise convergence. The boundary ∂Yc for the par-
tition chain obtained above in connection with the Chinese restaurant process can be
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identified with the compact subset of ∂YT that arises if all β-values are equal to zero.
A specific combinatorial Markov chain adapted to Y is given by the Plancherel

growth process ΛP = (ΛP
n)n∈N, with transition probabilities

P(ΛP
n+1 = η|ΛP

n = λ) = dη

(n + 1)dλ

, for all λ ∈ Yn, η ∈ Yn+1 with λ < η,

and marginal distributions P(ΛP
n = λ) = d2

λ/n!, n ∈ N, λ ∈ Yn . It follows from
the above dimension counting that the latter are indeed probability mass functions on
Yn , and the calculation between Lemma 1 and Theorem 2 confirms that ΛP has the
cotransitions associated with character restrictions. In contrast to the partition chain
(Λc

n)n∈N arising in the cycle length context, the limit distribution for the Plancherel
chain (ΛP

n)n∈N is concentrated at the one point of the boundary ∂YT given by αi =
βi = 0 for all i ∈ N. The analysis of this chain leads to some quite spectacular results,
such as the arcsine law for the limit shape of Young diagrams, and the solution of
Ulam’s problem on the longest increasing subsequences in Πn ∼ unif(Sn). We refer
to Kerov (2003) again, for Ulam’s problem see also Romik (2015).

In connectionwith trees we had two different graph structures onB. Here the graphs
on Y are the same, but the weights are different. A generalization that includes both
the cycle model and the Plancherel process is given in Kerov et al. (1998). There, an
important aspect is the appearance of classical families of symmetric polynomials in
the context of the respective extended Martin kernel.

6.3 Exchangeability

In Sect. 4 we worked with a general Markov chain X = (Xn)n∈N that is adapted to
a graded state space S = ⊔

n∈N Sn and we used the cotransitions of X to obtain a
compactification S̄ = S � ∂S of the state space, together with a limit variable X∞ for
the Xn’s as n → ∞. Each boundary value α ∈ ∂S induces a probability measure Pα ,
which is the model for X conditioned on X∞ = α. Further, an arbitrary distribution μ

on the Borel subsets of ∂S may be used to construct a Markov chain that has the same
cotransitions as X and limit distributionL (X∞) = ∫

Pα μ(dα), theμ-mixture of the
Pα’s. We note that this is the time reversal version of the familiar ‘forward’ situation
where the distribution of a Markov chain is specified by the distribution of the first
variable and the (forward) transition probabilities. Here, however, the distribution of
X∞ is usually defined on a non-discrete space, and there is of course no step from ∞
to ‘∞ − 1’.

The above shows some similarities to the archetypical exchangeability result, de
Finetti’s theorem: We start with a sequence X = (Xn)n∈N of real random variables
that is exchangeable in the sense that the distribution L (X) of X is invariant under
all σ ∈ S∞, the set of finite permutations of N introduced in Sect. 6.2. We then
obtain a limit M∞ for the empirical distributions Mn := 1

n

∑n
i=1 δXi and it holds

that L (X |M∞ = μ) = L (X̃) where X̃ = (X̃i )i∈N with X̃i , i ∈ N, independent
random variables with distribution μ. This area has developed into a major branch
of modern probability, dealing with structural results for distribution families with
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certain invariance properties. Kallenberg (2005) is a standard reference, but see also
Aldous (1985) and Austin (2008). An excellent introduction is also given in the first
part of the lecture notes Austin (2013).

Exchangeability may provide an approach to the asymptotics of random discrete
structures; see e.g. Section 11.3.3 in Lovasz (2012) for graphs and Evans et al. (2017)
for Rémy trees. (In the other direction, a proof for the classical de Finetti theorem can
be given using Markov chain boundary theory; see Gerstenberg et al. (2016)). In their
treatment of random permutations and permutons Hoppen et al. (2013) emphasize
the connection to random graphs and graphons. Our aim here is to extend this to the
exchangeability aspect.

In the subgraph frequency topology for sequences of (random) graphs the limits
are described by a (possibly random) graphon, a measurable and symmetric function
W : [0, 1]×[0, 1] → [0, 1]. Given W , we use a sequenceU = (Ui )i∈N of independent
uniforms to construct a random binary N × N-matrix Z by choosing Zi j = Zi j = 1
with probability W (Ui , U j ), 1 ≤ i < j < ∞, independently for different pairs,
and Zii = 0 for all i ∈ N. This matrix is jointly exchangeable in the sense that,
for all σ ∈ S∞, Zσ := (Zσ(i),σ ( j))i, j∈N has the same distribution as Z . The upper
n × n-corner of Z is the incidence matrix of a random graph Gn . As n → ∞, these
converge in the subgraph frequency topology, and the limit is represented by W . The
graphon may be regarded as an analogue of the measure M∞ in the classical case of
exchangeable sequences, and the second step as an analogue of sampling from M∞.

Is there a similar representation for random permutations, specifically for the
copula-based models in part (c) of Theorem 1? We need an infinite matrix that repre-
sents the complete sequence, with the upper left n × n-corner for the result of the first
n steps. Starting with independent random vectors (Xi , Yi ), i ∈ N, with distribution
function C , we define an infinite random binary array Z = (Zi j )i, j∈N by

Zi j =

⎧
⎪⎨

⎪⎩

1, if i < j and Yi < Y j ,

1, if i > j and Xi < X j ,

0, else.

For example, if the cities in our data set arrive in order of decreasing population size
(Berlin, Hamburg, Munich, Cologne . . .) then the upper left 4 × 4-corner of Z is

(Zi j )
4
i, j=1 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 0
0 1 0 1
0 0 0 0

⎞

⎟
⎟
⎠ .

Within this group, there is one city with more citizens than Munich that is further to
the east, and none of them is further to the south. The permutation Πn can be obtained
from (Zi j )1≤i, j≤n as follows: With

#
{
1 ≤ i ≤ n : X j ≤ Xi

} =
j−1∑

i=1

Zi j + (n − j − 1) −
n∑

i= j+1

Zi j , 1 ≤ j ≤ n,
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we get the absolute ranks of the variables Xi , 1 ≤ i ≤ n, within {X1, . . . , Xn}, and a
similar formula holds for the Y -components. ThenΠn can be determined from the two
rank vectors as in (6). Equivalently, we may work with an array Z̃ indexed by subsets
{i, j} of N of size two, i < j , by using the values 0, 1, 2, 3 for indicating the relative
position of (X j , Y j ) with respect to (Xi , Yi ) through the four quadrants North-East
(NE), SE, SW, and NW.

If σ : N → N is strictly increasing, then the matrix Zσ with entries Zσ(i),σ ( j)

depends on (Xσ(i), Yσ(i)), i ∈ N, in the same (deterministic) way as Z depends on
(Xi , Yi ), i ∈ N. As the subsequence (Xσ , Y σ ) is equal in distribution to the original
sequence (X , Y ), the arrays Zσ and Z are then equal in distribution, which shows
that Z is contractable. An analogous statement holds for the corresponding array
Z̃ indexed by size two subsets of N. It follows from the general Aldous-Hoover-
Kallenberg representation theorem that a contractable array can be extended to an
exchangeable array; see Corollary 7.16 in Kallenberg (2005).

In order to construct a suitable graphon analogue W we note that the copula C
represents a distribution on the unit square and thus may be written as a composition
of the distribution function of the first variable and the conditional distribution function
G(x, ·) of the second variable, given the value x for the first. Let

W (x, y) := inf{z ∈ [0, 1] : G(x, z) ≥ y}, 0 ≤ y ≤ 1,

be the corresponding quantile function. Further, let (Ui )i∈N and (Vi )i∈N be two
independent sequences of independent unif(0, 1)-distributed random variables. By
construction, (Xi , Yi ) =distr (Ui , W (Ui , Vi )) for all i ∈ N, and by independence, this
even holds for the two sequences. Thus the random binary matrix Z̃ = (Z̃i j )i, j∈N
given by

Z̃i j =

⎧
⎪⎨

⎪⎩

1, if i < j and W (Ui , Vi ) < W (U j , Vj ),

1, if i > j and Ui < U j ,

0, else,

has the same distribution as Z . Of course, the conditional construction could have
been done in the other direction. It is indeed quite common in these constructions that
uniqueness of the representation only holds up to some equivalence, which may be
difficult to describe.

It is of interest to knowwhether an exchangeable array is ergodic. For exchangeable
sequences (Xi )i∈N this means that M∞ ≡ μ for some fixed distribution μ, so that the
Xi ’s are independent. In the permuton situation such extreme points correspond to a
fixed copula, and this is always the case for the models in Theorem 1(c). One of the
interesting aspects of the results in Bassino et al. (2018) is the fact that, for separable
permutations, the limit object is not degenerate.

Above we have used randommatrices in order to point out the similarity to random
graphs and graphons. A more abstract and more general approach has been developed
in Gerstenberg (2018), where cartesian products of total orders on N are considered
and ergodicity is discussed in some detail.
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6.4 Some connections to statistical concepts

Markov chain boundaries and exchangeable sequences both lead to parametrized fam-
ilies of probability distributions, where the parameter is the value of X∞ in the first
case and the value of M∞ in the second. A relationship between the Martin boundary
of Markov chains and parametric families has been pointed out early by Abrahamse
(1970), together with a connection to exponential families which, roughly, appear as
h-transforms in certain situations. Section 18 in Aldous (1985) deals with sufficiency
and mixtures in the context of exchangeable random structures. In the framework of
combinatorial Markov chains (Xn)n∈N discussed above, where we regard the value
of X∞ in the Doob-Martin compactification as a parameter θ and the values of the
first n variables X1, . . . , Xn as data, it is clear that Xn is a sufficient statistic for θ as
the conditional law of the data given Xn can be reconstructed from the cotransitions,
and these do not depend on θ . Lauritzen (1974) used this as a basis for his concept of
total sufficiency; the paper also discusses a variety of related aspects. Lauritzen (1988)
emphasizes the role of the Martin boundary as a basic concept.

Further, both the set of distributions on the boundary and the set of directing
measures are convex, and ‘pure parameters’ or ‘extreme models’ correspond to the
ergodic case, which are extremal elements of the respective convex set. This aspect has
appeared repeatedly in the above examples. Dynkin (1978) introduced H-sufficiency,
dealing with the question of whether the convex set is a simplex (in a barycentric
sense). The latter points to a connection with geometry; see Baringhaus and Grübel
(2021) for a recent contribution.

Two final comments may be in order, both are somewhat loose. First, as seen above,
large random discrete structures can be investigated through the Doob-Martin bound-
ary of Markov chains, or through the representation of exchangeable distributions.
The first is based on the topological approach of constructing a limit for a sequence of
growing objects, the second is based on the construction of an ‘asymptotic template’
from which the sequence can be obtained by sampling, and is of a more measure-
theoretical nature. (Poisson boundaries, which we did not discuss, may be seen as a
measure-theoretical variant of the former.) A similar distinction appears in connec-
tion with convex sets, with Choquet’s theorem for topological vector spaces, and the
barycenter approachmotivated by potential theory. As a second comment, we note that
permutations appear naturally in classical nonparametric statistics, where ranks are a
basic tool, but that other combinatorial families may similarly be analyzed with a view
towards statistical applications. Often the results on the discrete structures themselves
can serve as a basis for obtaining asymptotics for a variety of specific aspects, in some
resemblance to using functional limit theorems to obtain distributional limit theorems
for a variety of specific statistics.
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