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All-optical coherent quantum-noise cancellation in cascaded optomechanical systems
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Coherent quantum-noise cancellation (CQNC) can be used in optomechanical sensors to surpass the standard
quantum limit (SQL). In this paper, we investigate an optomechanical force sensor that uses the CQNC strategy
by cascading the optomechanical system with an all-optical effective negative-mass oscillator. Specifically,
we analyze matching conditions and losses and compare the two possible arrangements in which either the
optomechanical or negative-mass system couples first to light. While both of these orderings yield a sub-SQL
performance, we find that placing the effective negative-mass oscillator before the optomechanical sensor will
always be advantageous for realistic parameters. The modular design of the cascaded scheme allows for better
control of the subsystems by avoiding undesirable coupling between system components while maintaining a
performance similar to the integrated configuration proposed earlier. We conclude our work with a case study of
a micro-optomechanical implementation.
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I. INTRODUCTION

Achieving force measurements at the quantum limit has
been a significant focus for several decades [1,2] and has
fueled the development of optomechanics [3–5]. Optome-
chanical sensors exploit the interaction of a light field with
the motion of a mechanical oscillator to measure its displace-
ment with high precision. Force measurements based on these
schemes are subject to shot noise and quantum radiation-
pressure back-action noise [6,7]. Shot noise is caused by the
uncertainty in the number of photons over time and can be
decreased relative to the signal by increasing the intensity of
the optical field. In contrast, the back-action noise arises from
the fluctuation in the radiation pressure of the optical field,
which will increase with its intensity. The trade-off between
these competing processes then sets a lower bound to the
precision of the measurement, which is called the standard
quantum limit (SQL) [7–9].

The SQL is not a fundamental limit, and many differ-
ent approaches have been suggested to achieve measure-
ments with sub-SQL accuracy. These approaches include
frequency-dependent squeezing [10–12], variational measure-
ments [13–15], dual mechanical resonators [16–19], and
optical spring effects [20–22]. In essence, these ideas go be-
yond the SQL by measuring a quantum nondemolition (QND)
variable of the probe, that is, a variable that commutes with
itself for different moments in time. In a QND measurement,
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the back-action is transmitted to the canonically conjugate
observable and thus avoided. A more general approach to
QND measurements is gained by introducing another system
that acts like a reference frame with an effective negative
mass [23]. By measuring with respect to this reference system,
a QND measurement is realized. When the reference system
is a harmonic oscillator, an effective negative mass amounts to
a negative eigenfrequency. This idea was first experimentally
utilized in demonstrating Einstein-Podolsky-Rosen states of
two atomic spin oscillators of positive and negative mass [24].
Based on this, back-action cancellation was demonstrated by
Wasilewski et al. [25] in the context of magnetometry. Extend-
ing this idea, several proposals have been made in a hybrid
setting of a mechanical oscillator and atomic spin ensem-
bles [23,26], and the evasion of back-action noise in these spin
ensembles was experimentally verified in [27]. Independently,
Tsang and Caves [28,29] developed this idea in a more general
context, called quantum-mechanics-free subsystems. In the
context of optomechanics, the main idea is to introduce an
“antinoise” path to the dynamics of the optomechanical sensor
upon coupling to an ancillary resonator that acts as an effec-
tive negative mass. In this way, the back-action noise can be
canceled coherently, and sub-SQL force sensing is achieved
for all measurement frequencies. Appropriately, this approach
is called coherent quantum-noise cancellation (CQNC). The
details and experimental feasibility of this all-optical effective
negative-mass oscillator were discussed in more detail by
Wimmer et al. [30].

Within the area of CQNC force sensing, many other
possible negative-mass oscillators and setups have been
considered. Other setups include the use of ultracold atoms
inside a separate cavity [31,32], hybrid optomechanical
cavities (i.e., implementing an atomic ensemble inside the op-
tomechanical sensor) [33,34], and employing Bose-Einstein
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condensates [35]. Even a new all-optical setup was suggested
using two detuned optical modes inside the force sensor [36].
These approaches can be categorized into integrated setups,
where the effective negative mass is introduced directly into
the optomechanical force sensor, and cascaded setups [37,38],
where the effective negative-mass oscillator is a separate
system. Recently, Zeuthen et al. [39] considered a broad class
of effective negative-mass oscillators in a cascaded setting
and even considered a possible coupling between the positive
and negative-mass oscillator in a parallel topology.

Inspired by this, we want to discuss a cascaded version of
the original all-optical setup [28,30]. Instead of implementing
the antinoise path directly into the optomechanical sensor,
an all-optical effective negative-mass oscillator is built as a
separate system. The back-action is then canceled by coupling
the force sensor to the effective negative-mass oscillator via
a strong coherent field. This approach will give more free-
dom in the experimental design and simplify reaching the
challenging conditions for a CQNC experiment. The main
challenge before canceling quantum back-action noise is to
measure the back-action noise. Due to the modular nature of
the cascaded approach, this can be tackled entirely separately
from the effective negative-mass oscillator. We will see that
under some modifications to the matching conditions, our cas-
caded setup recovers the ideal CQNC performance described
in [30], and the additional degrees of freedom from expanding
the dimension of the system lead to different phenomena for
sub-SQL force sensing. This includes the recovery of ideal
CQNC around an off-resonant frequency and possible CQNC
performance in the low- or high-frequency regime, even for
unmatched CQNC conditions.

This paper is organized as follows. In Sec. II, we describe
the model of our cascaded CQNC scheme and derive the
quantum Langevin equations of motion. In Sec. III, we dis-
cuss force sensing in optomechanical sensors and derive the
optimal parameters for ideal CQNC. In Sec. IV, we analyze
possible deviations from the ideal conditions and their im-
pact on the performance of coherent quantum-noise reduction.
Then, in Sec. V, a case study is provided. Finally, we summa-
rize our findings in Sec. VI.

II. MODEL

Figure 1(a) illustrates a possible schematic realization of
our setup. We refer to [40] for details on the experimental
implementation of all-optical CQNC. An optomechanical sen-
sor (OMS), subject to an external force and radiation-pressure
noise, is connected to an effective negative-mass oscillator
(NMO) by a coherent light field. The force is then measured
by detecting outgoing light after the second system. The order
of subsystems can be chosen freely, and the two possible
arrangements are depicted in Fig. 1(b). In the first case, the
light travels through the NMO, followed by the OMS. We will
refer to this case as NMO �→ OMS. In the second case, the
order is reversed; hence, the light will travel through the OMS
first, and we will refer to this case as OMS �→ NMO. The
effects of these different arrangements on the performance of
the back-action cancellation will be discussed later.

The OMS is modeled by an optical cavity with resonance
frequency ωom, containing a damped mechanical positive-
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FIG. 1. (a) Sketch of the cascaded setup. The optomechanical
sensor (green) consists of a mechanical oscillator inside an optical
cavity, depicted in a membrane-in-the-middle setup. The effective
negative-mass oscillator (blue) comprises two optical modes, cou-
pled via a beam-splitter and down-conversion process. A nonlinear
periodically poled potassium titanyl phosphate (PPKTP) crystal ex-
emplifies the coupling for the down-conversion and a wave plate for
the beam-splitter coupling. (b) Simplified depiction of the possible
arrangements of the cascaded scheme.

mass oscillator (PMO) with resonance frequency ωm and
linewidth γm, coupled to the cavity field via radiation-pressure
interaction and subjected to an external force F. Following the
standard treatment of these force sensors [5], we move to a
rotating frame with respect to the frequency ωL of the strong
driving laser field and arrive at the linearized Hamiltonian

HOMS = �omc†
omcom + ωm

2

(
x2

m + p2
m

) + gxm√
2

(com + c†
om ).

(1)

Here, �om = ωom − ωL is the detuning of the optomechanical
cavity to the incoming field, com (c†

om) are the annihilation
(creation) operators of the optical mode, and xm = X/xZPF and
pm = PxZPF/h̄ are the position and momentum operators of
the mechanical oscillator normalized to the zero-point fluc-
tuation xZPF = √

h̄/mωm, such that [xm, pm] = i. The last term
in Eq. (1) describes the radiation-pressure interaction of the
cavity mode and the mechanical oscillator. Its strength is given
by g = √

2ωcxZPFαc/L, where L is the cavity length and αc ∝√
P is the field amplitude of the cavity mode, proportional

to the input power P. Introducing dimensionless amplitude
and phase quadratures com = (xom + ipom )/

√
2, the Hamilto-

nian (1) implies the quantum Langevin equations (QLEs)

ẋm = ωm pm, (2a)

ṗm = −ωmxm − γm pm − gxom + √
γmF, (2b)

ẋom = −κom

2
xom + �om pom + √

κomxin
om, (2c)

ṗom = −κom

2
pom − �omxom − gxm + √

κom pin
om. (2d)

Here, κom is the decay rate of the cavity mode, and cin
om =

(xin
om + ipin

om )/
√

2 is its vacuum input noise. The noise pro-
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cess fulfills 〈cin
om(t )cin†

om(τ )〉 = δ(t − τ ). In Eq. (2) we have
defined the scaled force operator F = F/

√
h̄mγmωm with di-

mension
√

Hz. It consists of the to-be-detected force signal
Fsig acting on the mechanical oscillator and Brownian thermal
noise Fth of the oscillator. The scaled thermal noise satisfies
〈Fth (t )Fth (τ )〉 = nthδ(t − τ ), where nth = kBT/h̄ωm is the aver-
age phonon number of the mechanical oscillator.

The NMO consists of two optical modes cc and a, with
resonance frequencies ωc and ωa, coupled with a beam-splitter
and down-conversion process. In analogy to [30,40], we refer
to ωc as the meter cavity and ωa as the ancilla cavity. The
Hamiltonian of this system (see Appendix A for details) is
given by

HNMO = �cc†
ccc + �aa†a + gBS(ac†

c + a†cc)

+ gDC(acc + a†c†
c ), (3)

with the detunings �c,a = ωc,a − ωL, the beam-splitter cou-
pling strength gBS, and the coupling strength of the down-
conversion process gDC. As above, we introduce amplitude and
phase quadratures associated with the meter and ancilla cavity.
Then the Hamiltonian (3) implies the following QLEs for the
NMO:

ẋc = −κc

2
xc + �c pc + (gBS − gDC)pa + √

κcxin
c , (4a)

ṗc = −κc

2
xc − �cxc − (gBS + gDC)xa + √

κc pin
c , (4b)

ẋa = −κa

2
xa + �a pa + (gBS − gDC)pc + √

κaxin
a , (4c)

ṗa = −κa

2
pa − �axa − (gBS + gDC)xc + √

κa pin
a , (4d)

with the cavity linewidths κc and κa and the input noise
processes ain and cin

c . Under the condition gBS − gDC = 0, the
QLEs (4) generate an interaction similar to that in Eqs. (2).
Additionally, driving the meter cavity on resonance �c = 0
results in �a = ωa − ωc. Thus, the detuning between the me-
ter and ancilla cavity can be used to generate an effective
negative-mass oscillator.

III. FORCE SENSING AND IDEAL CQNC

To solve the dynamics of both systems, we turn to the
frequency domain. Introducing the Fourier domain operators

O(ω) = 1√
2π

∫
dt O(t )eiωt ,

Eqs. (2)–(4) can be solved using the standard input-output
formalism [41]

xout = √
κx − xin, (5)

pout = √
κ p − pin. (6)

We consider the systems separately, first the OMS. On reso-
nance, �om = 0, the output quadratures read

xout
om = eiφxin

om,

pout
om = eiφ pin

om − χmg2κomχ2
omxin

om + χm
√

κomgχom
√

γmF,

(7)

where eiφ = ( κom
2 − iω)/( κom

2 + iω). We have defined the sus-
ceptibilities for the optomechanical cavity and the mechanical
oscillator as

χom(ω) =
[
iω + κom

2

]−1
, (8)

χm(ω) = ωm
[(

ω2 − ω2
m

) − iγmω
]−1

. (9)

The mechanical oscillator is susceptible to the external force
F , which contains the force signal Fsig and thermal noise Fth.
By measuring with light, the force signal can be estimated via
a phase measurement, which also introduces additional noise
due to the radiation pressure. From the measured phase pout

om in
Eq. (7) we can give an unbiased estimator F̂ of the force F as

F̂ = 1√
γmχm g

√
κomχom

pout
om = F + Fadd, (10)

where the additional force noise, added by the measurement
light, is defined as

Fadd = Fth + eiφ

√
γmχm g

√
κomχom

pin
om − g

√
κomχom√

γm
xin

om. (11)

To characterize the sensitivity of the force measurement, we
use the (power) spectral density of the added noise, defined by

SF (ω)δ(ω − ω′) = 1
2 (〈Fadd(ω)Fadd(−ω′)〉 + c.c.). (12)

Assuming uncorrelated amplitude and phase quadratures, the
added-noise spectral density is

SF = kBT

h̄ωm
+ 1

2Gomγm|χm|2 + Gom

2γm
, (13)

where we defined the frequency-dependent measurement
strength as

Gom(ω) = g2κom|χom(ω)|2 = �om

(
κom
2

)2

ω2 + (
κom
2

)2 , (14)

with a Lorentzian shape and maximum �om = 4 g2

κom
. In this

form, the noise spectral density (13) is dimensionless. To
arrive at a force-noise spectral density in units of N2/Hz, one
has to rescale it such that SF (ω) = h̄mγmωmSF (ω) for a given
optomechanical force sensor [30]. The terms in Eq. (13) are
thermal noise due to Brownian motion of the mechanical os-
cillator (first term), shot noise in the phase quadrature (second
term), and back-action noise from the amplitude quadrature
(third term). The thermal noise adds a flat background to the
force sensitivity, which is independent of the measurement
rate Gom and frequency. Throughout this paper, we will as-
sume that the thermal noise either is dominated by back-action
noise [30] or is suppressed by cooling of the mechanical mode
and therefore neglect this term.

The shot noise term is proportional to the inverse of the
measurement rate Gom and thus proportional to the inverse of
the power, as Gom ∝ P. Additionally, the back-action noise
is proportional to Gom. This implies that an optimal power
value, which minimizes Eq. (13), exists for each frequency.
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Minimizing Eq. (13) with respect to Gom for all frequencies
gives the achievable lower bound

SF (ω) � 1

γm|χm(ω)| ≡ SSQL(ω), (15)

which is the SQL. The optimal measurement rate required is

GSQL(ω) = 1

|χm(ω)| . (16)

Next, we consider the NMO. On resonance, �c = 0, and
for gBS = gDC = 1

2 ga the output quadratures read

xout
c = eiθ xin

c ,

pout
c = eiθ pin

c − χag2
aκcχ

2
c xin

c

+ χa
√

κcgaχc
√

κa

(
κa/2 + iω

�a
xin

a + pin
a

)
, (17)

where eiθ = ( κc
2 − iω)/( κc

2 + iω). We have defined suscepti-
bilities of the meter cavity χc and the ancilla cavity χa as

χc =
[
iω + κc

2

]−1
, (18)

χa = �a

[(
ω2 − �2

a − κ2
a

4

)
− iκaω

]−1

. (19)

The aim of our setup is to couple the two systems in a manner
that the back-action noise in the force spectrum will cancel,
hence allowing for a sub-SQL performance. In our dual-cavity
setup, this is done by cascading the two systems and matching
the parameters of the NMO accordingly.

As seen in Fig. 1(b), the whole scheme has two possible
arrangements. Thus, to cascade the systems, we choose xout

c =
xin

om and pout
c = pin

om for the case NMO �→ OMS and xout
om = xin

c
and pout

om = pin
c for OMS �→ NMO. For ideal CQNC, the order

will not matter. We will discuss cases that depend on the order
further below. After cascading the two systems, we can again
identify the additional force noise as in Eq. (10) and derive the
added noise spectral density

SF = 1

2Gomγm|χm|2

+ G2
a |χa|2 + G2

om|χm|2 + 2 GaGomRe(χmχ∗
a )

2Gomγm|χm|2

+ Gaκa|χa|2
2Gomγm|χm|2

(
ω2 + κ2

a /4

�2
a

+ 1

)
; (20)

see Appendix B for details. Like we did for the measure-
ment strength of the OMS in Eq. (14), we have defined the
frequency-dependent measurement strength of the NMO,

Ga(ω) = g2
aκc|χc(ω)|2 = �a

(
κc
2

)2

ω2 + (
κc
2

)2 , (21)

with �a = 4 g2
a

κc
. The terms in Eq. (20) are the shot noise (first

term), back-action noise (second term), and shot noise from
the ancilla cavity (last term). The back-action noise is then
canceled if the conditions are such that

gBS = gDC = 1

2
ga, (22)

Gom(ω) = Ga(ω), (23)

χm(ω) = −χa(ω) (24)

for all ω. This means that the ancilla cavity should couple to
the light with the same strength as the PMO, but the response
to the force signal should be opposite to the PMO; hence, it
behaves as an effective negative mass. Considering the explicit
form of Eqs. (9) and (19), condition (24) entails further restric-
tions:

(1) The detuning of the ancilla cavity to the meter cavity is

�a = −ωm, (24a)

which effectively moves the ancilla cavity to the negative-
mass frame.

(2) The linewidth of the ancilla cavity κa should match the
damping rate of the mechanical oscillator

κa = γm (24b)

to mimic the oscillating behavior of the PMO.
(3) The susceptibilities χm and χa differ by a factor κ2

a /4.
To alleviate this, the detuning |�a| � κa, and together with
the forgoing points, this implies the resolved sideband limit of
the ancilla cavity.

ωm � κa, (24c)

and a large quality factor of the mechanical oscillator,

Qm = ωm

γm
� 1. (24d)

These conditions are similar to the integrated setup [30],
but instead of the coupling strengths ga and g, the measure-
ment strengths Ga and Gom need to match.

Assuming conditions (22)–(24) are met, the back-action
term in Eq. (20) will vanish, and we arrive at

SF = 1

2Gomγm|χm|2 + 1

2

(
ω2 + γ 2

m/4

ω2
m

+ 1

)
, (25)

which contains only shot-noise contributions of the measured
phase quadrature and the ancilla cavity. The contribution of
the OMS is sometimes referred to as the fundamental quan-
tum limit [9], energetic quantum limit [42], or the quantum
Cramér-Rao bound [43–45]. In the limit of large measurement
strength, we arrive at the lower bound

SF (ω) � 1

2

(
ω2 + γ 2

m/4

ω2
m

+ 1

)
≡ SCQNC(ω). (26)

Combining Eqs. (15) and (26), we find

SCQNC = SSQL × 1

2Qm

⎛
⎝ ω2 + γ 2

m/4 + ω2
m√(

ω2 − ω2
m

)2 + γ 2
mω2

⎞
⎠. (27)

Thus, for Qm � 1, we can summarize

SCQNC = SSQL ×
{

1 on resonance ω = ωm,

1/(2Qm ) off resonance ω �� ωm.
(28)

In conclusion, under the additional condition that Gom = Ga,
the cascaded setup reproduces the same findings as in [30],
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TABLE I. Parameters of the optomechanical sensor used in
Figs. 2–5.

Parameter Normalized value Value

ωm mechanical resonance frequency 1 500 kHz
γm mechanical linewidth 10−3 ωm 500 Hz
Qm mechanical quality factor ωm

γm
1000

κom optomechanical cavity linewidth 10 ωm 5 MHz

leading to an enhancement in performance up to a factor of
2Qm off resonance and SQL performance on resonance.

IV. IMPERFECT CQNC

Conditions (22)–(24) are the ideal case for a perfect cancel-
lation of back-action noise and will not be satisfied in an actual
experiment. Therefore, we will discuss possible imperfections
and their impact on the performance of our cascaded scheme.
These imperfections include mismatches to the parameters in
Eqs. (22)–(24) and possible losses. Another degree of freedom
of our setup is the order in which the light passes through
the subsystems (i.e., NMO �→ OMS or OMS �→ NMO), but
this will affect the force-sensing only for imperfections that
directly affect the force signal. Hence, we split our discus-
sion into order-dependent and -independent categories. Data
shown in the figures in this section refer to an OMS given by
the parameters in Table I.

A. Order-independent imperfections

The parameters discussed in this section will impede the
cancellation of back-action noise and, as a result, limit the
CQNC performance but will not affect the force signal.
Hence, the possible CQNC performance in the face of these
imperfections will not depend on the system order.

1. Nonideal ancilla cavity linewidth κa �= γm

The strictest requirement for an all-optical CQNC setup is
to match the ancilla cavity linewidth to the damping rate of
the mechanical oscillator. Assume that all conditions for ideal
CQNC are matched, except κa 
= γm. Since the measurement
strengths Gom = Ga are matched for all frequencies and we
assume no propagation losses in the system, this effectively
reduces to the integrated CQNC setup [30]. The spectral den-
sity of added noise (20) in this case becomes

SF = 1

2Gomγm|χm|2 + Gom

2γm

∣∣∣∣χm + χa

χm

∣∣∣∣2

+ κa|χa|2
2γm|χm|2

(
ω2 + κ2

a /4

ω2
m

+ 1

)
. (29)

For an optimal Gom, we find the minimal spectral density
for the added noise,

SF = |χm + χa|
γm|χm| + κa|χa|2

2γm|χm|2
(

ω2 + κ2
a /4

ω2
m

+ 1

)
. (30)

This is composed of measurement shot and back-action noise
(first term) and noise introduced by the ancilla cavity (sec-
ond term). The second term will dominate the first one for

10−2 10−1 100 101 102

100

103

106

ω (units of ωm)

S
F

(u
ni

ts
of

�
m

γ
m

ω
m

) κa < ωm

κa � ωm

FIG. 2. Force noise for a mismatch between the ancilla cav-
ity linewidth κa and the damping rate of the mechanical oscillator
γm. For κa < ωm an improvement of κa/2ωm can be achieved off
resonance (solid green line). For κa � ωm, the effect of CQNC is
completely canceled for low frequencies, and the sensitivity is worse
than the SQL for high frequencies (red dashed line). The shaded areas
mark the bounds for sub-SQL sensitivity, from below the fundamen-
tal limit given by Eq. (26) and from above the SQL given by Eq. (15).
Parameters are given in Table I.

frequencies off resonance, setting a bound to the achievable
performance. The ratio between the spectral density (30) and
the SQL is

SF = κa

2 ωm
× SSQL (31)

for κa < ωm. For κa � ωm, the effect of CQNC will vanish
for low frequencies, converging to the SQL, while for large
frequencies, the added noise is larger than the SQL. This is
illustrated in Fig. 2.

2. Unequal measurement strengths Gom �= Ga

Next, we consider a mismatch of the measurement
strengths Ga 
= Gom while matching the other CQNC condi-
tions. This entails unmatched cavity linewidth κc 
= κom and
unmatched couplings ga 
= g. Introducing parameters for the
linewidth mismatch κc = ε κom and coupling mismatch ga =√

δg, we find for the spectral density

SF = 1

2Gomγm|χm|2 + Gom

2γm

∣∣∣∣1 − δε
|χc|2
|χom|2

∣∣∣∣2

+ δε
|χc|2
|χom|2

1

2

(
ω2 + γ 2

m/4

ω2
m

+ 1

)
. (32)

For suitable couplings g and cavity linewidth κ , we can find
a frequency at which the back-action term in Eq. (32) will
vanish, and ideal CQNC is possible. This is the case when the
Lorentzians Ga and Gom are such that they will intersect at a
frequency ω 
= 0. We find that

ω∗ = ±
√

δ ε − ε2

1 − δ ε

κom

2
(33)

is a real-valued frequency for the following parameters:

ga = g ⇒ κc < κom or κc > κom, (34a)

ga < g ⇒ ε >
1

δ
or ε < δ, (34b)
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ga > g ⇒ ε > δ or ε <
1

δ
. (34c)

Consequently, a cavity linewidth mismatch can compen-
sate for every possible matching condition of the couplings,
and ideal CQNC can be achieved at ω∗.

For nonvanishing back-action, we can again minimize the
spectral density (32) with an optimal Gom. Turning to the
low-frequency limit (κc,om � ω), the measurement strengths
become frequency independent, Gom,a → �om,a, and the ratio
|χc|2/|χom|2 → 1/ε2. The minimal noise spectral density is
then

SF =
∣∣∣∣1 − δ

ε

∣∣∣∣ × SSQL +
(

δ

ε

)
× SCQNC. (35)

Ideal CQNC can be recovered for ε = δ, which means �om =
�a. Hence, as long as the rate at which the back-action in-
formation leaks out of the system is matched, ideal CQNC is
possible.

For the converse case (κc,om � ω) the cavity susceptibil-
ities |χc|2 ≈ |χom|2, effectively canceling in Eq. (32). The
optimal spectral density becomes

SF = |1 − δ ε| × SSQL + (δ ε) × SCQNC. (36)

In this case, ideal CQNC can be recovered for δ = 1/ε, which
entails g2

aκc = g2κom. We depict our main findings in Fig. 3.
We also considered a combination of the imperfections

discussed in this section. If, for example, Gom 
= Ga and,
additionally, κa 
= γm, the noise spectral density will be a com-
bination of Eqs. (29) and (32). In this case, the cancellation of
back-action noise is possible for the cases discussed above,
but the ancilla cavity noise floor is higher because of the
linewidth mismatch γm 
= κa. Thus, our findings will remain

10−2 10−1 1 10 102ω∗

100

103

106

ω (units of ωm)

S
F

(u
ni

ts
of

�
m

γ
m

ω
m

) Γa = Γom, δ = ε

ga > g, κc = κom

g = ga, κc > κom

FIG. 3. Force noise for imperfect matching of measurement
strength. For mismatched coupling strength compensated by
linewidth mismatch, perfect noise cancellation can be recovered at
low frequencies (solid green line for ε = δ = 0.9). For matched
linewidth but mismatched coupling strength, noise cancellation is
limited, but sub-SQL performance is possible (dashed red line for
δ = 0.9). In the case of matched coupling strength but mismatched
linewidth, we find a frequency (33) where perfect noise cancellation
is possible (dash-dotted purple line, with ε = 0.9). The shaded areas
mark the bounds for sub-SQL sensitivity, from below the fundamen-
tal limit given by Eq. (26) and from above the SQL given by Eq. (15).
Parameters are given in Table I.

the same, but the achievable performance off resonance is
given by the noise spectral density (31).

B. Order-dependent imperfections

The parameters discussed in this section, namely, losses,
not only hamper the cancellation of back-action noise but also
affect the force signal directly.

1. Losses

We first consider propagation losses, which occur between
the first and second systems. The propagation losses are mod-
eled by mixing the output signal of the first system with
vacuum in a beam-splitter-like interaction. This leads to a
modified output signal [8],

x′
out = √

η xout +
√

1 − η xvac, (37)

where xvac represents the vacuum field and η ∈ [0, 1] is the effi-
ciency of the process. Due to this additional noise, information
about the back-action interaction of the first system is lost to
the vacuum; hence, perfect cancellation of back-action noise
is not possible. As before, we can find an optimal coupling
strength to minimize the additional noise. For the system order
NMO �→ OMS, we achieve a minimal spectral density off
resonance,

SF =
√

1 − η × SSQL. (38)

In the opposite order OMS �→ NMO, in addition to the loss of
back-action information, some force signal will be lost due to
propagation losses. Hence, the added noise will increase for
this topology. We find

SF =
√

1 − η

η
× SSQL (39)

for the minimal spectral density off resonance. The spectral
density is increased by 1/η compared to the case NMO �→
OMS and hence directly proportional to the lost force signal.
Losses after the second system constitute the detection effi-
ciency and can be modeled similarly. Since this will not affect
the cancellation of back-action noise, we will omit detection
losses for now.

Apart from propagation losses, we take intracavity losses
into account. Introducing a Markovian bath for each cavity,
with coupling rates κ bath

c and κ bath
om , the intracavity losses can be

described in terms of the escape efficiencies

ηesc
om,c = κ in

om,c

κ in
om,c + κ bath

om,c

= κ in
om,c

κom,c
. (40)

Similar to propagation losses, introducing intracavity losses
will always impede the cancellation of back-action noise, and
depending on the order of the systems, the available force sig-
nal information will differ. For the case NMO �→ OMS, with
optimal measurement strength, we find the minimal spectral
density

SF =
√

ηesc
c + ηesc

om − 2ηesc
c ηesc

om

ηesc
om

× SSQL. (41)

This encompasses both cases with propagation loss; for
ηesc

om → 1 we retrieve Eq. (38), and for ηesc
c → 1 we get
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FIG. 4. Flow chart between the mode of the ancilla and the meter
cavity. The solid line shows the original back-action flow, and the
dashed line shows the noise introduced by the relative mismatch gr

of the beam-splitter and down-conversion coupling.

Eq. (39). Thus, for the configuration NMO �→ OMS, the in-
tracavity loss can be handled similarly to propagation loss.

For the case OMS �→ NMO, we lose additional force sig-
nal due to intrinsic loss in the meter cavity. Moreover, the
signal also picks up additional information about the phase
quadrature. We arrive at the minimal spectral density,

SF =
√

ηesc
c + ηesc

om − 2ηesc
c ηesc

om

ηesc
om |1 − ηesc

c κcχc|2 × SSQL. (42)

The term |1 − ηesc
c κcχc|2 describes the meter cavity’s phase

and noise contribution. Due to its dependence on the meter-
cavity susceptibility χc, this difference is frequency dependent
and will vanish for frequencies ω > κc. For low frequencies, it
will be at a maximal value of |1 − 2ηesc

c |2, making intracavity
losses extra punishing for the configuration OMS �→ NMO.
We see that introducing losses is detrimental to the possible
noise reduction. As losses will never be avoidable, the sys-
tem order NMO �→ OMS should always be preferable since
higher levels of noise reduction are achieved.

2. Relative mismatch of gBS and gDC

In addition to losses, a relative mismatch between the
beam-splitter coupling gBS and down-conversion coupling gDC

will also affect the noise cancellation depending on the system
order. So far, we have assumed gBS = gDC = 1/2 ga in order
to mimic the back-action interaction of the OMS. We will
now fix gBS + gDC = g and introduce a mismatch between the
beam-splitter and down-conversion couplings

gBS − gDC

gBS + gDC

= gr 
= 0. (43)

As shown in Fig. 4, the relative mismatch gr allows the phase
quadratures to couple back into the amplitude quadrature and
thus deviate from the back-action interaction of the OMS.
This introduces a noise path and will limit the cancellation
of back-action noise. It also affects the force noise differently
for the different system orders. For the case OMS �→ NMO,
the force signal is imprinted on the output phase quadrature of
the OMS, and with the introduced mismatch, it is possible for
the signal to couple to the amplitude quadrature. In contrast,
for NMO �→ OMS, the force signal will remain fully in the
output phase quadrature. Thus, this results in different spec-
tral noise densities for our phase measurement. For general
mismatches, this will not reduce to a simple expression. The
resulting spectral densities were calculated numerically and
are shown in Fig. 5. The CQNC performance is limited for low
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FIG. 5. Force noise for relative mismatch of beam-splitter and
down-conversion coupling (a) for gr = 0.2 and (b) for gr = −0.2.
The relative mismatch introduces additional noise by modifying the
effective back-action term of the NMO. Perfect noise cancellation
is not possible, but sub-SQL levels are achievable for low frequen-
cies. For high frequency, no noise reduction is possible. Traversing
through the OMS first seems advantageous for noise cancellation.
The shaded areas mark the bounds for sub-SQL sensitivity, from
below the fundamental limit given by Eq. (26) and from above the
SQL given by Eq. (15). Parameters are given in Table I.

frequencies, but sub-SQL levels are still possible. Contrary
to losses, the order OMS �→ NMO seems advantageous for a
relative mismatch of the couplings. CQNC will vanish entirely
in the high-frequency limit, and no sub-SQL performance is
possible.

V. CASE STUDY

After discussing ideal CQNC and the most relevant devi-
ations from the ideal parameters, we now turn to a realistic
situation one would expect in an actual experiment. For an in-
tegrated setup, reasonable parameters were discussed in [30],
which were revised in [40] for a cascaded setup, and two rea-
sonable sets of parameters were given. From there, we found
a different set of parameters which achieve broadband noise
reduction for frequencies below the mechanical resonance of
the oscillator. Losses are of particular interest in our case
study, as they influence the noise reduction depending on the
system order. Our set of parameters is shown in Table II.

The OMS must be limited by quantum back-action noise
to measure the possible cancellation of back-action noise.
For this, the quantum back-action noise in Eq. (13) must be
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TABLE II. Proposed set of parameters.

Parameter Normalized value Value/2π

ωm mechanical resonance frequency 1 500 kHz
γm mechanical linewidth 10−8 ωm 5 mHz
κc meter-cavity linewidth 4 ωm 2 MHz
�a ancilla cavity detuning −0.99 ωm −495 kHz
κa ancilla cavity linewidth 2

5 ωm 200 kHz

gBS beam-splitter coupling strength 1.01 g
2 253 kHz

gDC down-conversion coupling strength 0.97 g
2 243 kHz

ηesc
c escape efficiency NMO 0.9

κom optomechanical cavity linewidth 0.99 κc 1.98 MHz
g optomechanical coupling strength ωm 500 kHz
ηesc

om escape efficiency OMS 0.9
ηprop propagation efficiency 0.97
ηdet detection efficiency 0.97

much larger than the thermal noise. In the low-frequency limit
(κom � ω), this can be expressed in terms of the quantum
cooperativity as

Cq = �om

γm

h̄ ωm

kBT
= 4g2 h̄

κomkBT
Qm � 1. (44)

Modern silicon nitride membranes have exceeded quality fac-
tors of Qm = 108 [46]; thus, the OMS would be quantum
back-action limited for a temperature T = 4 K, a temperature
achievable with cryogenics. For higher temperatures, the qual-
ity factor must be increased to elevate the back-action effects
over the thermal noise floor, and similarly, lower temperatures
allow for a lower quality factor. In order to account for this
and compare all OMSs of frequency ωm, once they can resolve
the quantum back-action, we normalize our force noise by the
quality factor Qm.

Matching most parameters, such as ancilla cavity detuning
�a and the cavity linewidth κc and κom, should not be a
problem; we assume they are closely matched. More delicate
to match are the coupling strengths. A down-conversion cou-
pling of gDC = 2π × 250 kHz and a beam-splitter coupling
of gBS � 2π × 235 kHz were readily achieved [40]; thus,
we set the optomechanical coupling strength to g = 2π ×
500 kHz. Optomechanical coupling strengths of g = 2π ×
440 kHz have been reported in micromechanical setups [27],
and higher couplings on the order of megahertz should be
possible [47]. Hence, our assumed coupling strength should
be reasonable. If these levels cannot be reached for the op-
tomechanical coupling strength, one could still compensate
for this mismatch by the cavity linewidths, as described in
Eq. (30), and increase the performance for low frequencies.

For a negative-mass oscillator, where the two modes are not
spatially separated, as depicted in Fig. 1(a), the escape effi-
ciency will also dictate the achievable linewidth of the ancilla
cavity. An escape efficiency of 90% should be achievable [48],
which, with a meter-cavity linewidth of κc = 2 MHz, makes
an ancilla cavity linewidth of κa = 200 kHz possible. For
the OMS, similar escape efficiencies should be achievable.
Detection efficiencies over 97% were already realized [49].
Similarly, propagation losses between the systems should not
be an issue. We assume 3% losses from both propagation and
detection.
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integrated setup

FIG. 6. Force noise normalized to Qm for the parameters given
by Table II and temperature T = 4 K. For low frequencies, sub-SQL
performance is possible for the integrated setup (solid green line)
and the case NMO �→ OMS (dashed blue line). No sub-SQL levels
are possible for the case OMS �→ NMO (dash-dotted orange line).
The shaded area shows levels above the SQL.

The achievable sensitivities for the parameters in Table II
are shown in Fig. 6. In the low-frequency regime, the config-
uration NMO �→ OMS shows a reduction of 20% below the
SQL and results almost comparable to the integrated setup.
No sub-SQL sensitivity can be achieved for the other system
order, OMS �→ NMO. This is not surprising, as we saw in
Sec. IV B that this configuration suffers additional penalties
from losses. We see that instead of matching the parame-
ters (22)–(24), the limiting factor for noise reduction in a
realistic case will be losses. Additionally, as losses will never
be entirely avoidable, choosing the right system ordering,
NMO �→ OMS, is of utmost importance.

VI. CONCLUSION

In this work, we discussed a cascaded version of the all-
optical coherent quantum-noise-cancellation setup proposed
by Tsang and Caves [28,30]. Instead of introducing the
antinoise path directly into the optomechanical cavity, we
considered an all-optical effective negative-mass oscillator as
a stand-alone system and removed the back-action noise of
the positive-mass oscillator by coupling both systems coher-
ently via a strong drive field. Under the conditions (22)–(24),
we then rediscovered the perfect cancellation of back-action
noise. Afterwards, we discussed deviations from the ideal
conditions, including losses and the influence of the system
order. We saw that for mismatched measurement strengths,
by choosing the cavity linewidth and coupling strength in
a specific way, CQNC can be recovered in the high- or
low-frequency regime or even at a specific frequency ω∗ 
=
ωm. For losses and a relative mismatch of beam-splitter and
down-conversion coupling, the system order will also affect
the noise-cancellation performance. Finally, we discussed the
performance of our setup for a set of realistic parameters
and showed that a quantum-noise reduction of 20% below
the SQL is possible for the order NMO �→ OMS in the low-
frequency regime.
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APPENDIX A: DETAILS ON THE HAMILTONIAN HNMO

Here, we give some more details on the Hamiltonian HNMO

in Eq. (3). The effective negative-mass oscillator consists
of two optical modes with different frequencies ωc and ωa,
coupled by a beam-splitter and down-conversion process. The
whole Hamiltonian reads

HNMO = H0 + Hdrive + HDC + HBS, (A1)

where the first term represents the free Hamiltonian of the
optical modes,

H0 = ωcc†
ccc + ωaa†a. (A2)

The second term describes the laser drive, which drives the
meter-cavity mode cc, and is given by

Hdrive = iE (e−iωLt c†
c − eiωLt cc). (A3)

Here, ωL denotes the laser frequency, and E describes the
laser-field amplitude, which is given by |E | = √

κcP/h̄ωL,
with the laser power P and cavity linewidth κc. The third term
describes a two-mode squeezing process. In this, a pump field
impinges on a nonlinear crystal, and a pump photon of fre-
quency ωP is converted into two photons of lower frequency.
In the usual treatment of such processes, the pump is assumed
to be a strong coherent field. In a rotating frame with respect
to the pump frequency and linearized pump field [50], the
Hamiltonian is then

HDC = gDC(acc + a†c†
c ). (A4)

The coupling strength of the down-conversion process is given
by gDC = �l c

L , where l is the length of the crystal, L is the cav-
ity length, c is the speed of light, and � is the gain parameter.
We refer to [30,51] for more details on the gain parameter. The
last term describes the beam-splitter interaction. It is given by

HBS = gBS(a†cc + c†
ca), (A5)

where gBS denotes the coupling strength of this process. For
a generic beam splitter, the strength is defined by gBS = rc/L,
with r being the reflectivity of the beam splitter. Alternatively,
for the setup considered in Fig. 1(a), where the two modes
are not spatially separated, the beam-splitter interaction can
be achieved with a wave plate [40]. The strength is then given
by

gBS = c

L

θ

2
sin 2τ, (A6)

with θ being the wave plate angle and τ being the delay.
Moving to a rotating frame with respect to the laser frequency
ωL and assuming a strong driving field, the Hamiltonian can
be linearized, and we arrive at Eq. (3).

APPENDIX B: CALCULATION OF NOISE SPECTRAL
DENSITIES

We consider a general linear quantum system consisting of
n system variables, k inputs and outputs, and m bath variables.
The input-output relations can be written as

xout = K�
in x − xin, (B1)

with a vector x containing the n system variables and xin and
xout vectors for the k inputs and outputs. The whole system is
governed by the equations of motion

ẋ(t ) = Msysx(t ) + Kinxin(t ) + Kbathxbath (t ), (B2)

where we have introduced the system matrix Msys and input
matrices Kin and Kbath for the input and bath quadratures. The
equations of motion (B2) can be solved in the Fourier domain,
where ẋ(t ) = iωx(ω). It follows that

x = (iω1 − Msys )
−1 (Kinxin + Kbathxbath ). (B3)

Together with Eq. (B1), we derive the output quadratures as

xout = K�
in x − xin

= (
K�

in (iω1 − Msys )
−1Kin − 1

)
xin

+ K�
in (iω1 − Msys )

−1Kbathxbath

= Tinxin + Tbathxbath

= T x̃in, (B4)

where

x̃in =
(

xin

xbath

)
, (B5)

T = (Tin, Tbath ). (B6)

From this, we can calculate the (symmetrized) spectral density
matrix as

δ(ω − ω′)Sout (ω) = 1
2 〈xout (ω)x†

out (ω
′)〉 + c.c.

= 1
2 〈T (ω)x̃inx̃†

inT †(−ω′)〉 + c.c.

= 1
2 〈T (ω)SinT †(−ω′)〉 + c.c., (B7)

with Sin being the input spectral density matrix. Every sub-
system in our setup has four system variables. Hence, the
system matrices Msys and bath input matrices Kbath are all
4 × 4 dimensional. The input and output variables are the
two quadratures of the laser light, making the input matrices
Kin 4 × 2 dimensional.

To model losses, the output quadratures are mixed with
vacuum noise via a beam-splitter interaction, which are then

x′
out =

(
1 0 0 0
0 1 0 0

)
η4×4

(
T 0
0 1

)
︸ ︷︷ ︸

Tloss

(
x̃in

xvac

)
. (B8)

The second matrix mixes the cavity output with vacuum, and
the first matrix is the partial trace over the lost output port of
the beam splitter.
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Finally, we need to cascade the two subsystems. For this we choose xin,2 = x′
out,1, where subscripts 1 and 2 stand for the first

and second systems. The total output quadratures are then given by

x′
out,2 = T loss

2

⎛
⎝T loss

1 0 0
0 14×4 0
0 0 12×2

⎞
⎠

⎛
⎜⎜⎜⎜⎝

xin

xbath,1

xvac,1

xbath,2

xvac,2

⎞
⎟⎟⎟⎟⎠ = Ttotalxin,total. (B9)

The equations of motion (2) for the optomechanical sensor imply the following matrices:

MOMS
sys =

⎛
⎜⎜⎝

− κom
2 �om 0 0

−�om − κom
2 −g 0

0 0 0 ωm

−g 0 −ωm −γm

⎞
⎟⎟⎠, (B10a)

KOMS
in =

⎛
⎜⎜⎜⎝

√
κ in

om 0

0
√

κ in
om

0 0
0 0

⎞
⎟⎟⎟⎠, (B10b)

KOMS
bath =

⎛
⎜⎜⎝

√
κ bath

om 0
0

√
κ bath

om

0 0
0

√
γm

⎞
⎟⎟⎠. (B10c)

Similarly, the equations of motion (4) for the effective negative-mass oscillator imply

MNMO
sys =

⎛
⎜⎜⎝

− κc
2 �c 0 (gBS − gDC)

−�c − κc
2 −(gBS + gDC) 0

0 (gBS − gDC) − κa
2 �a

−(gBS + gDC) 0 −�a − κa
2

⎞
⎟⎟⎠, (B11a)

KNMO
in =

⎛
⎜⎜⎜⎝

√
κ in

c 0

0
√

κ in
c

0 0
0 0

⎞
⎟⎟⎟⎠, (B11b)

KNMO
bath =

⎛
⎜⎜⎝

√
κ bath

c 0
0

√
κ bath

c√
κa 0
0

√
κa

⎞
⎟⎟⎠. (B11c)

From these expressions, we calculate the total transfer matrix in Eq. (B9), and together with the input spectral density,

Sin =
{ 1

2 diag(1, 1, 1, 1, 1, 1, 1, 1, 0, 2SF ) for NMO �→ OMS,
1
2 diag(1, 1, 1, 1, 0, 2SF , 1, 1, 1, 1) for OMS �→ NMO,

(B12)

we obtain the output spectral density with Eq. (B7). The spectral density of the added noise is then estimated from the phase
component Spp

out by dividing it by the coefficient of SF .
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