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In rigidly supersymmetric quantum theories, the Nicolai map allows one to turn on a coupling constant 
(from zero to a finite value) by keeping the (free) functional integration measure but subjecting the 
fields to a particular nonlocal and nonlinear transformation. A recursive perturbative construction of the 
Nicolai-transformed field configuration expresses it as a power series in the coupling, with its coefficient 
function at order n being a sum of particular tree diagrams. For a quantum-mechanical example, the size 
of these tree diagrams (under a certain functional norm) is estimated by the (n+1)st power of the field 
size, and their number grows like n−3/2 × 4.967 n . Such an asymptotic behaviour translates to a finite 
convergence radius for the formal perturbative expansion of the Nicolai map, which establishes its non-
perturbative existence. The known factorial growth of the number of Feynman diagrams for quantum 
correlators is reproduced by the combinatorics of free-field Wick contractions as usual. We expect our 
results to extend to higher dimensions, including super Yang–Mills theory.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Supersymmetry improves the ultraviolet behaviour of quantum field theory. Technically, this is realised by systematic cancellations of 
the leading UV divergences between boson and fermion loops in Feynman diagrams. This feature has been exploited systematically by 
reshuffling perturbation theory in terms of the inverse Nicolai map T −1

g via

〈
X[φ]〉g = 〈

X[T −1
g φ]〉0 ∀ X , (1)

where φ denotes a collection of bosonic fields, g is a coupling constant, and the correlators (at coupling g) are taken in an off-shell (rigid) 
supersymmetric theory after integrating out anticommuting and auxiliary degrees of freedom. The right-hand side inserts a tree expansion 
(in powers of g) into the functional X and performs free-boson (g=0) contractions among all the leaves φ of the ensuing tree diagrams. 
Since the tree branches are just chains of free fermion propagators, the resulting ‘Nicolai rules’ thereby remove any fermion loop from 
the perturbative expansion of 〈X〉g . It has been demonstrated that this alternative technique is comparable in effort to the conventional 
Feynman one. For an early review, see [1]. Recent advances on the Nicolai map are [2–13].

In an attempt to gain nonperturbative information it is revealing to study the behaviour of perturbation theory in large order. One 
may therefore wonder whether the Nicolai-map technique can also restructure the asymptotic properties of supersymmetric perturbative 
expansions. In fact, this question comes in two parts. Firstly, one should elucidate the perturbative construction of the map φ �→ T gφ (and 
its inverse) in powers of g , i.e. the convergence properties of its tree expansion. Secondly, one must analyze the magnitude of the free-
boson contractions 〈. . .〉0 on the right-hand side of (1). In this two-stage process, the second stage reduces to the well-known free-field 
combinatorics of Wick’s theorem. On the other hand, the first stage encodes the entire perturbative expansion of the interacting theory. 
This vision was already raised in 1982 [14].

To address the convergence properties of the perturbative construction of the Nicolai map, we must go beyond its formal power-
series definition and focus not only on the proliferation of tree diagrams with increasing power of g , but also on the ‘size’ of each such 
diagram. Since T g is a map in a certain field space, we should be able to compare its image to its pre-image under a suitable functional 
norm. Furthermore, the Nicolai-map and Feynman techniques still share the evaluation of gamma-matrix traces (along the tree branches 
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and around the fermion loops, respectively), which adds to the combinatorial complexity in roughly the same amounts. Both issues are 
considerably simpler in 0+1 spacetime dimensions, i.e. for quantum mechanical models.

2. Nicolai map for supersymmetric quantum mechanics

In this letter, we therefore study the large-order behaviour of a Nicolai map for the test case of supersymmetric quantum mechanics 
with a single bosonic particle coordinate x(t) and velocity ẋ(t) ≡ d

dt x(t), a pair 
(
ψ(t), ψ̄(t)

)
of Grassmann coordinates, and a superpotential

V (x) = 1
2 mx2 + 1

3 gx3 (2)

as well as a topological theta term iθ d
dt V in the Lagrangian

L = 1
2 ẋ2 − 1

2 m2x2 − mgx3 − 1
2 g2x4 + ψ̄

[
i d

dt − m − 2gx
]
ψ + iθ (mx + gx2) ẋ . (3)

We shall keep the parameters m and θ fixed and investigate a Nicolai map linking the free theory (g=0) to the interacting one (g>0). For 
more details, see [13]. Denoting compositions of n ∈ N by a multiindex

n = (n1,n2, . . . ,ns) with ni ∈N and
∑

i

ni = n , (4)

the universal formula for the Nicolai map yields a power series in g [6],

T g(m, θ) x = −→P exp
{
−g

1∫
0

dλ Rλg(m, θ)
}

x = x +
∑

n

gn cn Rns (m, θ) . . . Rn2(m, θ)Rn1(m, θ) x , (5)

with coefficients

cn = (−1)s[n1 · (n1 + n2) · · · (n1 + n2 + . . . + ns)
]−1 ∈ (−1)s [ 1

n! ,
1
n

]
. (6)

Here, 
−→P indicates standard path ordering, and the coupling flow operator

R g(m, θ) =
∫

dt′′ dt′ x(t′′)2 [ 1+θ
2 S g(m; t′, t′′) + 1−θ

2 S g(m; t′′, t′)
]

δ
δx(t′) =:

∞∑
k=1

gk−1 Rk(m, θ) (7)

gets his g and m dependence from the fermion propagator S g(m; t, t′) defined via
[
idt − m − 2g x(t)

]
S g(m; t, t′) = δ(t−t′) . (8)

One must expand

S g(m; t, t′) = S0(m; t−t′) + 2g

∫
du S0(m; t−u) x(u) S0(m; u−t′) + O (g2) (9)

to read off the power series in (7) whose terms enter the series in (5). For the free massive fermion propagator S0(m; t−t′) we may 
choose the retarded one and Wick rotate to Euclidean time, so that

S0(m; t−t′) = �(t−t′) e−m(t−t′) (10)

enters as a building block in (7). It is customary to graphically represent S0(m; t−t′) by a solid line connecting vertices representing the 
instances t and t′ and to depict factors of x(u) by a wavy leaf attached to u. Here is the picture:

R g(m, θ) =
{

1+θ
2 + 1−θ

2

}
+ g

{
1+θ

2 + 1−θ
2

}

+ g2
{

1+θ
2 + 1−θ

2

}
+ O(g4) ,

(11)

where the arrows at the end of the fermion lines indicate a functional derivative with respect to x. For the precise graphical rules see [13]. 
In this way, Rk acts derivatively on functionals of x by successively replacing each ‘leaf’ x(t) with a tree of ‘height’ k (the number of S0
factors) rooted at t and containing k+1 leaves of its own: a leaf x(u) at each S0 juncture and a double leaf x(t′′)2 at the tree top. All times 
except at the root are integrated over. Ignoring the leaves, we have a propagator ‘skeleton’ which is unbranched.

The repeated action of Rni on each other in (5) then successively grafts s such trees on each other, creating also branched skeletons. 
More explicitly, grafting at the top of a tree simply extends it while grafting at the stem creates a new branch extending from a then 
leafless vertex. In this fashion, the alternating infinite sum (5) generates all possible (unordered) rooted trees of a certain kind, with 
n vertices (excluding the root), n free fermion lines, and n+1 leaves. If we include the leaves into the set of 2n+1 nodes, then such trees 
are named ‘strictly binary’ because every node has exactly two (in case of a vertex) or zero (in case of a leaf) children. They are also 
known as ‘Otter trees’. If we strip off the leaves and consider only the skeleton, then such trees are called ‘weakly binary’ since each 
vertex has at most two children, namely zero for a branch terminal, two for a branch point, and one otherwise. The number of distinct 
such trees without labelling is the (n+1)st ‘Wedderburn–Etherington number’ WE(n+1).
2
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Finally, the tree diagrams carry certain weights w[tree], and each of the fermion lines is oriented. The flow operator (7) is a sum of two 
terms, the first one containing a ‘top-directed’ full propagator (weighted with 1+θ

2 ), and the second one a ‘root-directed’ full propagator 
(weighted with 1−θ

2 ). From (9) it follows that this orientation is uniform from root to top along any of the two unbranched skeletons 
from Rk . The grafting process, however, produces trees with any distribution of orientations for the free fermion propagators making up 
their skeleton. This is already clear from the Rn

1 term at order gn in (5). Since a tree with a particular ‘orientation dressing’ usually appears 
in more than one grafting sequence encoded by n, its weight w[tree](θ) is a sum of products of s factors of 1+θ

2 or 1−θ
2 multiplied by the 

corresponding cn coefficients (6) in (5). The result is 1/(2n)!! times a polynomial of order n in θ with integral coefficients. It is convenient 
to absorb the factors of 2 for each non-terminal vertex (see (9)) into the graphical ‘Nicolai rules’ for the vertices, just like the integrations 
over all times but the root one. We display the tree expansion with proper weights up to order g3:

T g(m, θ) x(ω) = x(ω) − g
2

{
(1+θ) + (1−θ)

}

− g2

8 (1+θ)(1−θ)
{

+ − −
}

− g3

48 (1+θ)(1−θ)
{
(3−θ) − (1+θ)

− (1−θ) − (3+θ) + (1+θ)

+ 2θ + (1−θ) + (
θ ↔ −θ,

→
S 0↔

←
S 0

)} + O(g4) ,

(12)

where 
→
S 0↔

←
S 0 indicates a reversal of the orientation of each fermion propagator. Note that the first diagram in the last line appears in 

two ways (permuted by the two branches), which yields the ‘2’ in the weight. For the count of orientation-dressed graphs we thus have to 
consider Z2 labelled trees. Multiplying the previous WE(n+1) by a factor of 2n only slightly overcounts their number, since like branches 
with different orientations may be related by permutation symmetry, but this is compensated by the weight factors.

The inverse Nicolai map has an analogous representation, which is obtained from (5) by reversing the path ordering and the sign in 
the exponent. Its graphical representation can be found in [13]. The effect on the power series is to replace the coefficients cn with [6]

dn = [
ns · (ns + ns−1) · · · (ns + ns−1 + . . . + n1)

]−1 ∈ [ 1
n! ,

1
n

]
, (13)

so it is no longer alternating.

3. Estimating the size of a tree diagram

Let us consider a generic tree graph Gn,b(t) with n free fermion propagators in b branches and rooted at time t . We also fix a 
distribution of propagator orientations. Then, b of its n vertices are terminal (with two leaves attached), b−1 of them are branch points 
(without a leaf), and the remaining n−2b+1 are stem vertices (carrying a single leaf). We like to estimate firstly a suitable norm of Gn,b(t)
as a function of the norm of the functional variable x(t) and secondly the weight w[Gn,b](θ). For the first goal we should try to bound the 
graph by a product of vertex contributions. According to (10), S0 is bounded from above by the constant function 1, so we can estimate 
by unity all free-fermion lines of our graph, except for the one connected to the root. Then, for the different vertices we are left with 
factors less than

∫du
∣∣x(u)2

∣∣ = ||x2||1 for a terminal vertex ,

2∫du
∣∣x(u)

∣∣ = 2 ||x||1 for a stem vertex ,

2∫du 1 = 2 ||1||1 for a branchpoint vertex ,

(14)

where we introduced the Lp norm

|| f ||p =
(∫

du
∣∣ f (u)

∣∣p
)1/p

. (15)

Integrating u over the whole real axis lets the branchpoint contribution diverge, but in this case the function x(u) is absent so we can do 
better by explicitly integrating

2
∫
D

du eε1m(t1−u) eε2m(t2−u) eε3m(u−t3) ≤ 2

m
, (16)

where the εi ∈ {+1, −1} encode the orientation of the three attached lines, and D is the domain where all exponents are nonpositive. If 
the first vertex attached to the root is not a branch point, we then obtain that
3
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∣∣Gn,b(t)
∣∣ ≤ (||x2||1

)b ( 2
m

)b−1 (
2 ||x||1

)n−2b
2
∫
D

du
∣∣x(u)

∣∣ eεm(u−t) (17)

with ε and D as above. It follows that

∣∣∣∣Gn,b
∣∣∣∣

1 ≤ 2n−b m−b ||x||n−2b+1
1 ||x2||b1 . (18)

If the first vertex attached to the root is a branch point, then the L1 norm diverges since the u integral equals 1
m independent of t . A 

more careful consideration retaining also the next propagator into the branch shows, however, that the same bound can be achieved for 
this case.

A drawback of (18) is that we need the norm of x2, which is not directly related to the one of x itself. When replacing free propagators 
by unity, we partially forfeited the infrared suppression given by the finite mass m. This can be repaired by replacing the infinite time 
integration domain by a finite one, say of length 1/m, which acts as an infrared regulator and renders the unit function measurable. 
Equivalently, we could demand x(t) to be of finite support on R. With such a cut-off, Hölder’s inequality implies that

|| f ||p ≤ m
1
q − 1

p || f ||q for 1 ≤ p < q . (19)

Since | |x2| |1 = | |x| |22, we better pass to the L2 norm and use the bound | |x| |1 ≤ 1√
m

| |x| |2 provided by our infrared cut-off. In this way we 
arrive at

∣∣Gn,b(t)
∣∣ ≤ 2n−b m1− n

2 ||x||n2
∫
D

du
∣∣x(u)

∣∣ eεm(u−t) , (20)

focusing on the (more common) case of a stem vertex next to the root. Inserting this expression into the L2 norm, we obtain (without 
further infrared regulators)

∣∣∣∣Gn,b
∣∣∣∣2

2 ≤ 22n−2b m2−n ||x||2n
2

∫
R

dt

∫
D

du

∫
D ′

du′ ∣∣x(u)
∣∣ ∣∣x(u′)

∣∣ eεm(u−t) eεm(u′−t)

= 22n−2b m2−n ||x||2n
2

∫
R

dt

∞∫
0

du

∞∫
0

du′ ∣∣x(t−εu)
∣∣ ∣∣x(t−εu′)

∣∣ e−m(u+u′)

= 22n−2b m2−n ||x||2n
2

1
2

∞∫
0

d(u+u′) e−m(u+u′)
∫
R

dt′
+(u+u′)∫

−(u+u′)

d(u−u′)
∣∣x(t′)

∣∣ ∣∣x(t′+ε(u−u′))
∣∣

≤ 22n−2b m2−n ||x||2n
2

1
2m ||x||21 ≤ 22n−2b m2−n ||x||2n

2
1

2m2 ||x||22 ,

(21)

thus ending with

∣∣∣∣Gn,b
∣∣∣∣

2 ≤ 2n−b− 1
2 m− n

2 ||x||n+1
2 ≤ 1√

2
(2/

√
m)n ||x||n+1

2 . (22)

As before, graphs with a branch point immediately above the root yield the same bound.
For the second goal, approximating the weight w[Gn,b](θ), we recall that, at the ‘magical values’ θ = ±1, all weights for T g(m, θ) x van-

ish for n > 1, and those for T −1
g (m, θ) x are unity divided by a symmetry factor. Let us estimate the weight for a generic tree contributing 

to T g(m, θ) x. It is easy to see that the largest weight at order gn in the power series (5) belongs to the two (b=1) trees generated by 
1
n Rn x. All its lines have the same orientation. All grafting sequences contribute to them, and the coefficients add up to

max
∣∣w[Gn,b](θ)

∣∣ = 1
(2n)!!

∣∣(1∓θ)(1±θ)(3±θ) · · · (2n−3±θ)
∣∣ →

⎧⎨
⎩

|θ |n
(2n)!! ∼ 1√

2πn

∣∣ e
2 θ

∣∣n
n−n for θ → ∞

(2n−3)!!
(2n)!! ∼ 1√

πn
1

2n for θ → 0
(23)

with the sign depending on the orientation of the entire tree. The expressions after the ∼ sign describe the large-n asymptotics. So for θ
of the order of unity, we can safely bound 

∣∣w[Gn,b]
∣∣ ≤ 1. This bound is supported by the observation that the weights for T −1

g (m, θ≈±1)

are of the order of unity and cannot vary too wildly with θ .

4. Asymptotic growth of the power series

Combining the considerations above and employing the triangle inequality to the L2 norm of (5) we arrive at

∣∣∣∣T g(m, θ) x
∣∣∣∣

2 ≤
(

1 +
∞∑

n=1

gn
∑
Gn,b

1√
2

(
2 ||x||2/

√
m

)n
) ∣∣∣∣x∣∣∣∣2 for θ = O (1) . (24)

The m dependence is dictated by dimensional analysis: With g of dimension mass
3
2 and | |x| |2 of dimension mass−1, the 1/

√
m factor 

makes the large bracket dimensionless. The inner sum still runs over all orientation-dressed tree graphs with n+1 leaves. To extract 
4
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the asymptotic growth of the power-series coefficients, we thus still have to determine the large-order growth of the number of the 
Z2-labelled Otter trees. The known large-n behaviour of the Wedderburn-Etherington numbers yields the count1

2n WE(n+1) ∼ 0.7916 × n− 3
2 × 4.967 n for n → ∞ . (25)

Inserted into (24) we finally arrive at

∣∣∣∣T g(m, θ) x
∣∣∣∣

2 �
(

1 + 0.5597
∞∑

n=1

n− 3
2

(
9.934 ||x||2/

√
m

)n
gn

) ∣∣∣∣x∣∣∣∣2 for θ = O (1) . (26)

Since the coefficient growth is not faster than exponential, the power series has a finite radius of convergence given by |g| � 0.1 
√

m
/| |x| |2. 

The same should apply to the inverse map T −1
g x.

5. Alternative counting

Alternatively, we may treat separately all grafting sequences of order gn in the sum of (5). Each such summand is uniquely characterized 
by the composition n of n and an assignment of an orientation to each of its s parts ni . Its weight is simply

w(n,orientation) = cn
( 1+θ

2

)s+( 1−θ
2

)s− with s++s− = s , (27)

where s± are the number of top- and root-directed Rni operations in the grafting sequence. However since the grafting acts as a derivation, 
any such sequence produces a multitude of different trees. Every oriented Rni can act on the n1+n2+ . . .+ni−1 + 1 leaves created by the 
previous grafting actions and thus will multiply the number of trees by at most n1+n2+ . . .+ni−1 (as there is at least one two-leaf 
terminal). Therefore, an oriented sequence Rns · · ·Rn2 Rn1 x generates not more than n1·(n1+n2) · · · (n1+n2+ . . .+ns−1) tree diagrams with 
some orientation distribution. Also conversely, a given tree generically arises from several sequences, but here we simply do not lump 
them together (which avoids having to add the weights). The size of any such diagram can be estimated with (22). So we need to bound 
their numbers weighted with (27). Denoting with n(n) the multiindices of a fixed length n, taking into account the sum over 2s orientation 
distributions, and using |1±θ | ≤ 1+|θ |, an upper bound is

∑
n(n)

2s |cn| ( 1+|θ |
2

)s
n1·(n1+n2) · · · (n1+n2+ . . .+ns−1) = 1

n

n∑
s=1

(n−1
s−1

) (
1+|θ |)s

= 1
n

(
1+|θ |)(2+|θ |)n−1 →

⎧⎨
⎩

1
n |θ |n for θ → ∞
1
n 2n−1 for θ → 0

(28)

where in the first step we used that fact that the number of compositions of n into s parts is given by
(n−1

s−1

)
, and the second step perfoms 

the binomial sum. Carrying over the norm estimate (22), we collect

∣∣∣∣T g(m, θ) x
∣∣∣∣

2 �
(

1 + 1√
8

∞∑
n=1

n−1 (
4 ||x||2/

√
m

)n
gn

) ∣∣∣∣x∣∣∣∣2 for θ = O (1) . (29)

6. Convergence of the Nicolai map expansion

It is reassuring that both counting methods give the qualitatively similar results (26) and (29), i.e.

∣∣∣∣T g(m, θ) x
∣∣∣∣

2 �
(

1 + γ

∞∑
n=1

n−β
(
α ||x||2/

√
m

)n
gn

) ∣∣∣∣x∣∣∣∣2 for θ = O (1) , (30)

with some constants α, β and γ . Their numerical values should not be taken very seriously here, because we have not been too careful 
with the bounds. The key issue is the exponential growth of the power-series coefficients, which renders the radius of convergence finite
(for m>0 and | |x| |2<∞). Since the inverse Nicolai map is obtained by a formal power-series inversion, this result applies just as well 
to T −1

g x. Therefore, (at least in quantum mechanics) the expression X[T −1
g φ] inside the free-theory brackets on the right-hand side of (1)

is not only formally defined, but exists beyond the perturbative expansion for sufficiently small values of g as a functional of the input 
variable φ (and not merely as a function of a spacetime point). Therefore, T g and its inverse are well-defined operators in a suitable 
function space, which we haven’t been too careful in defining it precisely here. We note that no renormalization is required at this stage, 
since the trees are classical objects without any loops.

On the other hand, it is known that the number of Feynman diagrams contributing to an p-point function grows factorially, i.e. super-
exponentially, with the order of the coupling constant. Of course, this is reproduced in the Nicolai-map approach, but it only happens in 
the final step of performing the free-field correlation of the composite operator X[T −1

g φ]. To see this, consider the p-point function in our 
quantum-mechanical model, i.e. take X[x] = x(t1) x(t2) . . . x(tp). In the perturbative expansion of X[T −1

g x] at order gn we find a collection 
of composite operators, which are homogeneous of degree p+n in x. The free correlator then simply applies Wick’s theorem to them, 

1 The Otter trees proliferate more slowly than the number of ordered (strict) binary trees (given by the Catalan numbers).
5



O. Lechtenfeld Physics Letters B 835 (2022) 137507
producing all possible free two-point contractions of the p+n leaves shared by the p trees. (An odd number of leaves yields a vanishing 
correlator of course.) At this stage we generate also loops (but no purely fermion ones), and renormalization may be required as usual. 
The number of such contractions is simply

(p+n−1)!! = 21− p+n
2

(p+n−1)!
(

p+n
2 −1)! ∼ √

2
( p+n

e

) p+n
2 ∼ √

2 e− p+n
2 np/2 nn/2 for n → ∞ . (31)

It is the final 
√

n
n factor which destroys the convergence and renders the series asymptotic.

7. Conclusions and outlook

The Nicolai map of supersymmetric theories allows one to split the computation of quantum correlators into two steps. The first step, 
the perturbative construction of the inverse Nicolai map in terms of tree diagrams, is purely classical. We showed that, for a sufficiently 
small coupling, it converges to a mathematically well-defined functional. Even though we had to resort to some infrared regularization for 
the norm estimate of individual tree diagrams, the crucial point for the convergence of the perturbation series was the merely exponential 
proliferation of unlabelled tree diagrams with an increasing number of nodes. This growth rate is a hallmark of the recursive construction, 
which prevents “long-distance correlations” along a tree. The second step, a free-field correlation, introduces the quantum loops and 
factorial growth of the final perturbation expansion of the correlator. In this way, the interaction characteristics of the theory have been 
pushed into the classical domain (tree diagrams!).

One may wonder about renormalization in this scheme. It is known, however, that in globally supersymmetric theories all coupling 
renormalization factors are suitable powers of the wave-function renormalization Zφ in such a way that the superpotential V is unrenor-
malized. Therefore, upon renormalization, the flow operator R g picks up the same Zφ power as ∂

∂ g , and the map T g takes precisely the 
same form in the renormalized quantities. In other words, the original and the Nicolai-transformed field are renormalized by the same 
factor. Subtractions or counterterms need only to be introduced in the second step of the correlator computation.

The considerations of this note also apply, mutatis mutandis, to higher-dimensional field theory including gauge theory. With a few 
exceptions, however, the presence of gamma-matrix traces complicates the situation there. These are akin to an additional loop structure 
(in spinor space) attached to the tree diagrams and lead to Lorentz-index contractions between partial derivatives distributed all over
the tree. Their combinatorics produces a factorial growth already for the number of traced-out terms in the Nicolai map construction. 
However, this additional complexity is comparable to the one in ordinary Feynman perutrbation theory. Since it obstructs the existence of 
a polynomial Nicolai map, it would be very nice to find a way to extend our strategy also to the spin degrees of freedom.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

We acknowledge illuminating discussions with Hermann Nicolai.

References

[1] H. Nicolai, Supersymmetric functional integration measures, in: K. Dietz, et al. (Eds.), Lectures Delivered at the NATO Advanced Study Institute on Supersymmetry, Bonn, 
Germany, 20–31 Aug 1984, Plenum Press, 1984, pp. 393–420.

[2] S. Ananth, H. Nicolai, C. Pandey, S. Pant, Supersymmetric Yang–Mills theories: not quite the usual perspective, J. Phys. A 53 (2020) 174001, arXiv:2001.02768 [hep -th].
[3] H. Nicolai, J. Plefka, N = 4 super-Yang–Mills correlators without anticommuting variables, Phys. Rev. D 101 (2020) 125013, arXiv:2003 .14325 [hep -th].
[4] S. Ananth, O. Lechtenfeld, H. Malcha, H. Nicolai, C. Pandey, S. Pant, Perturbative linearization of supersymmetric Yang–Mills theory, J. High Energy Phys. 10 (2020) 199, 

arXiv:2005 .12324 [hep -th].
[5] S. Ananth, H. Malcha, C. Panday, A. Pant, Supersymmetric Yang–Mills theory in D =6 without anticommuting variables, Phys. Rev. D 103 (2021) 025010, arXiv:2006 .02457

[hep -th].
[6] O. Lechtenfeld, M. Rupprecht, Universal form of the Nicolai map, Phys. Rev. D 104 (2021) L021701, arXiv:2104 .00012 [hep -th].
[7] H. Malcha, H. Nicolai, Perturbative linearization of super-Yang–Mills theories in general gauges, J. High Energy Phys. 06 (2021) 001, arXiv:2104 .06017 [hep -th].
[8] O. Lechtenfeld, M. Rupprecht, Construction method for the Nicolai map in supersymmetric Yang–Mills theories, Phys. Lett. B 819 (2021) 136413, arXiv:2104 .09654

[hep -th].
[9] O. Lechtenfeld, H. Nicolai, A perturbative expansion scheme for supermembrane and matrix theory, J. High Energy Phys. 02 (2022) 114, arXiv:2109 .00346 [hep -th].

[10] M. Rupprecht, The coupling flow of N = 4 super Yang–Mills theory, J. High Energy Phys. 04 (2022) 004, arXiv:2111.13223 [hep -th].
[11] O. Lechtenfeld, The Nicolai map for super Yang–Mills theory and application to the supermembrane, in: Proceedings of CORFU2021, 2021, arXiv:2204 .02094 [hep -th].
[12] H. Malcha, Two loop ghost free quantisation of Wilson loops in N=4 supersymmetric Yang–Mills, Phys. Lett. B 833 (2022) 137377, arXiv:2206 .02919 [hep -th].
[13] O. Lechtenfeld, M. Rupprecht, Is the Nicolai map unique?, J. High Energy Phys. 09 (2022) 139, arXiv:2207.09471 [hep -th].
[14] H. Nicolai, On the functional integration measure of supersymmetric Yang-Mills theories, Phys. Lett. B 117 (1982) 408.
6

http://refhub.elsevier.com/S0370-2693(22)00641-4/bib9DFD13C5618F8ABD2BE6330DF37CE385s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib9DFD13C5618F8ABD2BE6330DF37CE385s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib9A2E3F9FC5A38F5831065088EE9A75BFs1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib8BC2AFE7028C861AFFC259B1C8A17640s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bibF5AF0102773A154716B068CA66FD0C42s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bibF5AF0102773A154716B068CA66FD0C42s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib2DF5E93CD19E2E599CB4EA878C4C4522s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib2DF5E93CD19E2E599CB4EA878C4C4522s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib4789A7A1743684F71B8CA054B6359413s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib943AFAF25AC17FE7BC39FDAAE916E3A4s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bibAF1BE0AB21AA4ABFF58B2E239F42FF30s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bibAF1BE0AB21AA4ABFF58B2E239F42FF30s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bibFACCF5FBECE5D95182FAE0726DDADD4Bs1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib1C16507920DC32A476E40C638319D533s1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib69691C7BDCC3CE6D5D8A1361F22D04ACs1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bibC239E050444CEE195F91DD9A530FB88Ds1
http://refhub.elsevier.com/S0370-2693(22)00641-4/bib5BED4251700C4854BDC10A40F72997F3s1

	Supersymmetric large-order perturbation with the Nicolai map
	1 Introduction
	2 Nicolai map for supersymmetric quantum mechanics
	3 Estimating the size of a tree diagram
	4 Asymptotic growth of the power series
	5 Alternative counting
	6 Convergence of the Nicolai map expansion
	7 Conclusions and outlook
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


