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1 Introduction, summary and outlook

Any off-shell supersymmetric field theory (with coupling parameters g) admits a particular
nonlinear and nonlocal field transformation of the bosonic fields φ, the Nicolai map φ 7→ Tgφ.
In terms of the (inversely) transformed fields, any correlation function of the interacting
theory reduces to a free-field (g=0) correlator,〈

X[φ]
〉
g

=
〈
X[T−1

g φ]
〉

0 (1.1)

for any functional X[φ], where near the identity Tg can always be inverted perturbatively.
This formalism was developed by Nicolai, Flume, Dietz and one of the authors in the
1980s [1–7]. Recently, the subject has been revisited, extended and freshly illuminated [8–
17], mostly in the context of supersymmetric Yang-Mills theories. Aspects that so far have
not received much attention are multiple couplings and topological theta terms in the action.
These will be elucidated in this work.

Regarding the question in the title, the answer is a resounding ‘No’! Almost from its
inception, it has been clear that the Nicolai map is not unique for gauge theories because it
is gauge dependent. However, additional freedom was noticed in [7] for extended (N= 2)
supersymmetry and in four-dimensional super Yang-Mills theory due to the optional ∫ FF̃
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term in the action.1 The first kind of ambiguity has recently been understood to originate
from the R-symmetry part of extended supersymmetry, as was demonstrated in [16] for
N = 4 super Yang-Mills in four dimensions, whose Nicolai map features an su(4) ambiguity
in any gauge. The second kind of ambiguity arises because a topological term introduces
an additional coupling into the theory. In fact, this is just the tip of an iceberg!

We shall argue that, in supersymmetric theories with more than one coupling, there is
functional freedom in the Nicolai map. We generalize our universal formula [12] in terms of
a path-ordered exponential to the multi-coupling setting g ≡ (g1, . . . , gk),

Tg[h]φ=−→P exp
{
−
∫ g

0
d~h· ~R(h)

}
φ for ~h= (h1, . . . ,hk)≡h and ~Rg = (Rg1 , . . . ,Rgk) ,

(1.2)
where Rgi generates the coupling flow in the direction of gi, and the line integral runs along
a contour (also called h) connecting 0 and g in coupling space. It will be seen that the map
in general depends on the chosen contour. More concretely, in case of k couplings there is a
freedom of k−1 functions. Partial Nicolai maps are defined by flowing only with respect to
a subset of couplings while keeping the remaining ones fixed. In such a setting, the map
will of course still depend on the fixed couplings (in addition to the path for the variable
ones). Still, it can happen that the Nicolai map is unique, and we shall provide a sufficient
condition for it in terms of the coupling flow operator ~Rg. Incidentally, the same condition
lets the power-series expansion (1.2) collapse to a linear (in g) expression, i.e. a polynomial
(in the fields) Nicolai map. This can never happen for the inverse map.

The theta parameter θ multiplying a topological term in the action is a special kind of
coupling, because it does not affect correlation functions perturbatively. However, it turns
out that for special ‘magical’ values of θ the uniqueness condition is met, and hence the
map image Tg[h]φ is a unique linear function of g for any contour h. In such cases, the
(exact) Nicolai map is related to the existence of ‘instantons’ and carries nonperturbative
information about its critical points in field space and spontaneous supersymmetry breaking.
For the example of supersymmetric quantum mechanics (SQM), we show that θ interpolates
between two elementary fermion propagators. At the magical values θ = ±1 only one of
these is present in the expansion of the Nicolai map, which then can be summed up exactly.
Unfortunately, outside these special θ values we cannot yet access the nonperturbative
knowledge of Tg, but still we may dial θ to simplify perturbative computations employing
the Nicolai map.

While for more than one variable coupling the map is path dependent, correlation
functions cannot be. We verify this for free massive SQM with a theta term. Furthermore,
we support our arguments by an explicit one-loop computation of the bosonic one-, two-
and three-point correlators in interacting massive SQM, matching the results from Feynman
perturbation theory. Reassuringly, the explicit θ dependence of the inverse Nicolai map
always cancels out in the correlation functions. It is interesting to compare the Nicolai and
Feynman perturbation series. There seem to be separate notions of 1PI diagrams, since the
amplitudes agree only when adding all contributions, including the 1PR diagrams.

1A further possible ambiguity has been noted in [11] where two distinct maps in six-dimensional super
Yang-Mills were found.
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A natural next step is explicit computations for more complicated theories, such as sigma
models or gauge theories. Perhaps the Nicolai perturbation theory may even contribute to a
better understanding of scattering amplitudes in general, as it offers a calculational method
distinct from the Feynman perturbation series. Moreover, it will be of great interest to see
whether the theta-modified Nicolai map can somehow access nonperturbative (instanton)
effects away from the magical θ values.

The paper is structured as follows. In section 2 we generalize the Nicolai map to theories
with multiple couplings and compare its evaluation for different integration contours. The
condition for possible uniqueness of the map is formulated and related to the collapse
of the path-ordered exponential. section 3 discusses the special role of a topological
term, in the context of N = 1 SQM and highlights the magical θ values where one can
glimpse beyond perturbation theory. We exemplify our findings in section 4 by performing
explicit computations in SQM models with a theta term, firstly for a general superpotential
(producing the coupling flow operators), secondly for free massive SQM (giving exact Nicolai
maps for different contours), and thirdly for an interacting massive SQM (fixing θ and
the mass and setting up the perturbative flow in one coupling). For the latter setting we
finally provide a diagrammatic perturbation expansion (dubbed ‘Nicolai rules’) and write
down a graphical representation for Tg and for T−1

g up to order g4, which reveals the magic
happening at θ = ±1. In section 5 the one-, two- and three-point correlation function to one-
loop order are computed for the same model, using Wick-rotated Nicolai rules. The outcomes
are indeed independent of θ and exactly match the results obtained with conventional
(Feynman) perturbation theory, which is performed in appendix C. Appendices A and B
present a more explicit formula for Tg[h]φ for a straight contour in coupling space and
prove the characteristic (infinitesimal free-action and determinant-matching) properties of
the general SQM Nicolai map, respectively.

2 The Nicolai map for multiple couplings

Here, we follow the modern definition of the Nicolai map from [12], generalizing the
arguments to multiple couplings in a straightforward fashion. We consider a scalar super-
symmetric theory and integrate out the fermionic degrees of freedom. The action then takes
the form

Sg[φ] = Sbg[φ] + ~Sfg [φ] , (2.1)

where g = (g1, . . . , gk) are coupling constants, which can be seen as local coordinates of
some k-dimensional coupling space, while Sbg and Sfg denote the local and nonlocal parts of
the action, respectively. Expectation values of bosonic observables X[φ] are obtained by
path integration2 〈

X[φ]
〉
g

=
∫
Dφ exp

{
i
~Sg[φ]

}
X[φ] . (2.2)

Any supersymmetric field theory allows for a (generically nonlinear and nonlocal) field
transformation, called the Nicolai map

Tg : φ(x) 7→ φ′(x; g, φ) (2.3)
2The vanishing of the vacuum energy in supersymmetric theories properly normalizes 〈1〉g = 1.
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invertible at least as a formal power series in g. Its defining property is〈
X[φ]

〉
g

=
〈
X[T−1

g φ]
〉

0 ∀X , (2.4)

relating the interacting theory (at couplings g) to the free one (at couplings g=0).

Coupling flow operator and Nicolai maps. Differentiating (2.4) with respect
to gi yields

∂i
〈
X[φ]

〉
g

=
〈(
∂i +R(i)(g)

)
X[φ]

〉
g

for i = 1, . . . , k and ∂i ≡ ∂
∂gi

, (2.5)

with k functional differential operators3

R(i)(g) ≡ Rgi =
∫

dx
(
∂iT

−1
g ◦ Tg

)
φ(x) δ

δφ(x) =:
∫

dx Ki[φ; x] δ

δφ(x) . (2.6)

The map Tg may be found from the relations(
∂i +R(i)(g)

)
Tgφ = 0 , (2.7)

which immediately follow from (2.4) for X[φ] = Tgφ. The solution is the path-
ordered exponential

Tg[h]φ = −→P exp
{
−
∫ 1

0
ds h′i(s) R(i)(h(s)

)}
φ for hi(0) = 0 and hi(1) = gi , (2.8)

generalized to multiple variables g = {gi} and depending on a path h(s) =
(
h1(s), . . . , hk(s)

)
in coupling space. It can also be formally inverted in a straightforward fashion, by reversing
the path-ordering and the sign in the exponential. We may integrate over any path from 0
to g. It is important to understand the path dependence of the Nicolai map indicated in
the notation. For correlation functions, we surely conclude

∂i∂j〈X〉g = ∂j∂i〈X〉g ⇒
〈
∂i
(
R(j)X

)
− ∂j

(
R(i)X

)
+
[
R(i), R(j)

]
X
〉
g

= 0 , (2.9)

which for X = 1 yields 〈
∂iR

(j) − ∂jR(i) +
[
R(i), R(j)

]〉
g

= 0 . (2.10)

This may be interpreted as a weak flatness property for a ‘flow one-form’ field

R(g) =
k∑
i=1

dgiR(i)(g) . (2.11)

By a generalized Stokes theorem this implies that the averaged holonomy of R(g) is trivial.
In other words, expectation values such as (2.4) do not depend on the integration contour h.
However, this does not imply that the Nicolai map itself is path-independent, on the
contrary! We will see explicitly in subsection 4.2 that this is not the case. Hence, for

3We suppress the functional dependence of R(i) on φ but exhibit its dependence on the collection g

of couplings.
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theories with multiple couplings, we encounter a large ambiguity for the Nicolai map,
parametrized by a curve in coupling space.

This ambiguity can be used to define ‘partial Nicolai maps’. The composition

Tgg̃
[
h̃−1 ◦ h

]
φ := Tg [h] T−1

g̃

[
h̃−1

]
φ for h̃i (1) = g̃i and hi (1) = gi (2.12)

allows us to connect any two values in coupling space and, in particular, to flow inside a
coupling subspace only. Rather than using the above composition, for such a situation it is
preferable to employ adapted coordinates in coupling space and exponentiate only the flow
operators inside the subspace, while keeping fixed the external couplings. The resulting
partial Nicolai map will turn on just the couplings in the subspace (along some path inside
it) but will still depend on the fixed values of the external couplings. For the full Nicolai
map (which controls all couplings), two special cases will be investigated more closely in
the following,

sequential flow:
(0, 0, 0, . . . , 0) 7→ (g1, 0, 0, . . . , 0) 7→ (g1, g2, 0, . . . , 0) 7→ . . . 7→ (g1, g2, g3, . . . , gk) ,

straight flow:
hi(s) = s gi for s ∈ [0, 1] .

(2.13)
In the later parts of this work, we mostly consider one-variable Nicolai maps in the presence
of two or three couplings.

For completeness, we note the characteristic properties which follow from the defining
relation (2.4) of the Nicolai map. In terms of path integrals and collecting powers of ~, one
finds (for any path h!) that

Sb
0 [Tgφ] = Sb

g [φ] and Sf
0[Tgφ]− i tr ln δTgφ

δφ = Sf
g[φ] , (2.14)

the ‘free-action’ and ‘determinant-matching’ property, respectively. The equivalent infinites-
imal conditions for the coupling flow operator follow from (2.5) [18],

(
∂i +R(i)(g)

)
Sb
g [φ] = 0 and

(
∂i +R(i)(g)

)
Sf
g [φ] = i

∫
dx δKi [φ; x]

δφ(x) . (2.15)

Explicit integration contours. Let us expand the universal formula (2.8) in obvious
shorthand notation,

Tg[h]φ=−→P exp
{
−
∫ 1

0
ds ~h′(s)· ~R

(
h(s)

)}
φ

=
∞∑
n=0

(−)n
∫ 1

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1

[
~h′(sn)· ~R

(
h(sn)

)]
· · ·
[
~h′(s1)· ~R

(
h(s1)

)]
φ.

(2.16)
For simplicity, we temporarily restrict to two couplings g1 and g2, but provide a formula for
a general straight flow in appendix A.
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Integrating along the straight contour

h1

h2 g

with
h1(s) = s g1 and h2(s) = s g2 , (2.17)

and expanding the operators

R(1)(g) =
∞∑
k=1

∞∑
l=0

gk−1
1 gl2R(1)

k,l = R(1)
1,0 + g1 R(1)

2,0 + g2 R(1)
1,1 + g1g2R(1)

2,1 + . . . ,

R(2)(g) =
∞∑
k=0

∞∑
l=1

gk1g
l−1
2 R(2)

k,l = R(2)
0,1 + g2 R(2)

0,2 + g1 R(2)
1,1 + g1g2R(2)

1,2 + . . . ,

(2.18)

the final formula for the two couplings and in case of a straight flow can be written as (see
appendix A)

Tg[ ] φ =
∞∑
n=0

2∑
i1,...,in=1

∑
α

cα g
α R(in)

αn · · ·R
(i1)
α1 φ , (2.19)

where α = (α1, . . . , αn) is a multi-index of n pairs (i = 1, . . . , n)

αi =
((
αi
)

1
,
(
αi
)

2

)
(2.20)

that takes values

(αp)iq ≥ 0 for p 6= q , (αp)ip ≥ 1 , (2.21)

and
gα = gα

1 · · · gαn = g

∑n

l=1(αl)1
1 g

∑n

l=1(αl)2
2 . (2.22)

One finds for the first few terms

Tg [ ] φ = φ− g1R(1)
1,0 φ− g2R(2)

0,1 φ− 1
2g

2
1

(
R(1)

2,0 − R(1)
1,0R(1)

1,0

)
φ− 1

2g
2
2

(
R(2)

0,2 − R(2)
0,1R(2)

0,1

)
φ

− 1
2g1g2

(
R(1)

1,1 + R(2)
1,1 − R(1)

1,0R(2)
0,1 − R(2)

0,1R(1)
1,0

)
φ+ . . . .

(2.23)
Consider instead the sequential contour

h1

h2 g
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one can again write down the first few terms of the expansion and carry out the integrals.
Here we do not need the g2-dependence of R(1), as can be expected intuitively from the
integration contour. Expanding the operators as in (2.18), we obtain

Tg[ ]φ = φ− g1R(1)
1,0 φ− g2R(2)

0,1 φ− 1
2g

2
1
(
R(1)

2,0 − R(1)
1,0R(1)

1,0
)
φ− 1

2g
2
2
(
R(2)

0,2 − R(2)
0,1R(2)

0,1
)
φ

− g1g2
(
R(2)

1,1 − R(2)
0,1R(1)

1,0
)
φ+ . . . .

(2.24)
Clearly, the two maps (2.23) and (2.24) start to differ at order g1g2. The weak flatness (2.9)
however implies that〈(

R(1)
1,0R(2)

0,1 − R(2)
0,1R(1)

1,0

)
φ
〉
g

=
〈(

R(1)
1,1 − R(2)

1,1

)
φ
〉
g
, (2.25)

so that the difference does not matter inside correlation functions.

A condition for contour independence. Is it possible that the integration contour
ambiguity of the Nicolai map disappears, rendering the map unique after all? Let us look into
this again for the case of two couplings g1 and g2 and compare the two different sequential
contours. From the structure of the leading path dependence (2.25) and higher-order
analogs, one sees that a sufficient condition is

R(1)
k,l R(1)

1,0 φ = R(1)
k+1,l φ and R(1)

k,l R(2)
0,1 φ = R(1)

k,l+1 φ ,

R(2)
k,l R(1)

1,0 φ = R(2)
k+1,l φ and R(2)

k,l R(2)
0,1 φ = R(2)

k,l+1 φ
(2.26)

for all possible values of k and l. If these relations are met, however, the map becomes
unique, because all terms in the expansions (2.23) and (2.24) beyond the linear part will
vanish! To see this, pair up all terms whose R-strings end like the two sides in the above
relations but are equal otherwise. The two multiple s-integrals for any pair turn out to be
equal, and so the factor (−)n in (2.16) lets the two terms in any pair cancel each other. In
this way, all contributions except for those from a single action of R(1)

1,0 or R(2)
0,1 disappear,

and one is left with
Tg φ = φ− g1R(1)

1,0 φ− g2R(2)
0,1 φ , (2.27)

which constitutes an exact Nicolai map linear in the couplings! Usually R(i)(g=0) is
polynomial in the fields φ, and then this map is also just polynomial. The generalization to
more than two couplings is obvious.

We learn that the criterion for uniqueness (at more than one coupling) is also sufficient
for polynomiality of the map. For a single coupling, the Nicolai map is always unique, but
the analog of the expansions (2.18),

Rg(g) =
∞∑
k=0

gk Rk+1 = R1 + g R2 + g2 R3 + . . . , (2.28)

and of the relations (2.26),

Rk R1 φ = Rk+1 φ for k ≥ 1 , (2.29)

– 7 –
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still truncates the power series (2.16) to its linear part in g,

Tg φ = φ− gR1 φ . (2.30)

Note that this can never happen for the inverse map, because all contributions come with
the same sign. We will demonstrate this mechanism explicitly in section 4 for the magical
theta values θ=±1 in SQM.

The uniqueness condition (2.29) has a graphical interpretation: every action of the
coupling-flow operator grafts a linear tree, i.e. one with an unbranched fermion line. Hence,
R2φ produces all kinds of trees with one or two fermion branches. Truncating this to the
unbranched (linear) trees and remembering (2.28) we may rewrite (2.29) as

R2
g(g) φ

∣∣
linear = ∂gRg(g) φ . (2.31)

3 The special role of theta

Sometimes the action may be amended by a so-called topological term, with its own coupling
θ, which captures topologically nontrivial field configurations and becomes relevant non-
perturbatively. Such a ‘theta term’ in the Lagrangian takes the form of a total derivative
and therefore contributes to the action only when the field has nontrivial structure ‘at
infinity’. In the Euclidean path integral, this happens when the field makes excursions
to critical points of the action other than the perturbative vacuum. Such ‘instanton’
configurations are suppressed by a factor of exp(−|k| c/g2), where c is a fixed positive
coefficient and k ∈ Z characterizes the field topology. A theta term in the action will
modify the coefficient c in the weight factor above. Perturbation theory around a stable
vacuum can only access the k=0 sector, hence will not produce any θ dependence in
quantum correlation functions. Prominent examples are (super) Yang-Mills theory and
(supersymmetric) quantum mechanics.

In this section we shall investigate the special role of a theta term for the Nicolai map.
As any coupling parameter does, θ comes with its own theta flow operator Rθ but also
modifies the other coupling flow operators Rg. We will show that the theta flow is trivial in
perturbation theory, thus perturbative correlators are θ-independent. However, the other
coupling flows, and thus the Nicolai map, turn out to depend on θ in an interesting fashion.
Employing the inverse Nicolai map in the computation of N -point functions must then
conspire to cancel all θ-dependent contributions.

For definiteness, we will elucidate these properties in the example of one-dimensional
supersymmetric quantum mechanics, whose action is given by

S[x; g, θ] =
∫

dt
{

1
2 ẋ

2 − 1
2V
′(x)2 + ψ̄

[
i d
dt − V

′′(x)
]
ψ + iθ d

dtV (x)
}

(3.1)

with d
dtV (x) = ẋ V ′(x) for the (0+1)-dimensional ‘field’ x(t), where one or more couplings g

are hiding in the superpotential V (x). For a review, see [19]. Early important papers
are [20–23]. The simplest nontrivial superpotential is given by

V ′(x) = mx+ g x2 = g
(
x+ m

2g

)2
− m2

4g (3.2)
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with two couplings g and m. We note that this action has two involution symmetries,(
x,ψ, ψ̄;g,m,θ

)
7→

(
−x,ψ, ψ̄;−g,m,θ

)
and

(
x,ψ, ψ̄;g,m,θ

)
7→

(
−x,ψ̄,ψ;g,−m,−θ

)
.

(3.3)
The corresponding bosonic potential 1

2V
′2 is of the double-well type, with minima at

x=0 and x= − m/g. This is the simplest instance of non-perturbative supersymmetry
breaking [20]. The ground state remains doubly degenerate, and its energy is lifted from zero
by instanton-antiinstanton contributions and thus of the order exp(−2 c/g2) with c=m3/6
for θ=0.

As explained in the previous section, we may flow from vanishing coupling to a point
(g,m, θ) in coupling space along any path we like. Let us choose

(0, 0, 0) 7→ (0, 0, θ) 7→ (g,m, θ) , (3.4)

so that θ is turned on in the free (massless) theory first. However, since

∂θS[x; g,m, θ] = i
[

1
2mx

2 + 1
3gx

3
]t=+∞

t=−∞
(3.5)

vanishes for g=m=0, the theta flow operator Rθ vanishes there, and hence the finite Nicolai
transformation remains the identity until (0, 0, θ). We note that this feature does not occur
for standard couplings, which may be turned on in the absence of other parameters, i.e. in
the free theory. However, this does not yet imply that the further flow to (g,m, θ) remains
θ independent. On the contrary, via Rg,m(g,m, θ) it will introduce a definite θ dependence
into the final Nicolai map.

We can actually be slightly more explicit, because turning on m brings us from the free
massless to a free massive theory, where everything is still computable analytically. In the
following section, before turning to the interacting model, we will show that moving along

(0, 0, 0) 7→ (0,m, θ) (3.6)

in different ways creates closed-form expressions for the m and θ dependence of all quantities
and establishes θ-independence of all (free massive) correlators. Verifying the latter property
for the interacting theory is nontrivial but nevertheless true perturbatively, as we shall
then demonstrate.

Let us return to a general superpotential V (x) depending on one or more couplings g
and hold the special parameter θ at a fixed value (no θ flow). Since any flow operator
R(i)(g, θ) is linear in θ, the Nicolai map Tg[h, θ] and its inverse (for a given contour h
in g-space) are power series in g, where the order gn term (in a multi-index sense) is a
polynomial of degree n in θ. When θ= ± 1 (and only for these two values), some magic
happens: for any choice h of integration contour, the series for Tg[h,±1] truncates to become
linear in V ′! Concretely, one finds that4

i d
dtTg[h,±1] x(t) = Tg[h,±1] iẋ(t) = iẋ(t) ∓ V ′

(
x(t)

)
. (3.7)

It may be disturbing that this map is complex, but it still leads to real correlation functions.

4The full justification will be presented in section 4 together with a proof of (2.27).
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The magical values θ = ±1 allow for a direct connection to instantons and tell us about
the range of invertibility of the Nicolai map. The solutions x̄(t) to

Tgx̄(t) = constant ⇒ i ˙̄x(t) ∓ V ′
(
x̄(t)

)
= 0 (3.8)

represent instantons or antiinstantons (depending on the sign) interpolating between neigh-
boring zeros of V ′, after a Wick rotation to imaginary time. It is well known that the
velocity ˙̄x is a zero mode of the fermion fluctuation operator about the instanton configura-
tion, the Goldstone mode of broken time translation invariance:

[
i d
dt − V

′′(x̄)
]

˙̄x = 0 . (3.9)

But for θ = +1, the fluctuation operator agrees with the Jacobian of the Nicolai map,5

i d
dt
δTgx(t)
δx(t′) =

[
i d
dt − V

′′(x(t))
]
δ(t−t′) , (3.10)

and thus this Jacobian develops a zero eigenvalue for x = x̄. In other words, the trivial
invertibility of the Nicolai map for configurations x near the vacuum x≡0 breaks down (for
θ=±1) when x grows to an instanton x̄ if not earlier. This is in tune with the interpretation of
the Witten index as the mapping degree of the Nicolai map, which is obtained from counting
its critical points (with sign). It also shows that there is nonperturbative information in
the full Nicolai map, even though its extraction requires summing up its series, which we
currently can manage only for the magical θ values.

4 Nicolai maps for supersymmetric quantum mechanics

In section 2, we established how the Nicolai map (with multiple couplings) can be obtained
perturbatively through the coupling flow operators. We can construct the latter canoni-
cally [7, 12] from the off-shell supersymmetric action. In the following, we first introduce
D-dimensional supersymmetric quantum mechanics (SQM) for a generic superpotential
in 4.1, deducing from it the coupling flow operators for θ and regular couplings g. Next, we
specialize to a free massive theory (couplings m and θ) in 4.2, where we can find explicit
expressions for the flow operators Rm and Rθ as well as the corresponding (inverse) Nicolai
maps in frequency space. As a more complex model, we then consider a massive interacting
theory with a cubic term ∼ g x3 in the superpotential in 4.3. This theory is controlled by
the parameters g,m and θ. To avoid infrared divergences in the computation of correlators
later on, we find it most convenient to work with the one-variable inverse Nicolai map T−1

g

at fixed mass m 6= 0 and θ. Finally, we express this map in a compact graphical notation,
which we christian ‘Nicolai rules’, in 4.4.

5Up to a trivial i d
dt factor. For θ = −1, we can flip the sign of V ′′ by applying the second involution

in (3.3).
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4.1 General superpotential

Construction of the SQM action. The off-shell action of D-dimensional SQM theory
with a topological theta term reads

S̊ =
∫

dt
{

1
2 ẋ

2
i + 1

2A
2
i −AiVi (x) + ψ̄i

[
i d
dtδij − Vij (x)

]
ψj + iθ d

dtV (x(t))
}
, (4.1)

with bosonic variables xi(t), fermionic variables ψi(t) and ψ̄i(t) as well as bosonic auxiliary
variables Ai(t), for i = 1, . . . , D. The theory is determined by a superpotential V (x), with
derivatives Vi = ∂V/∂xi and Vij = ∂2V/(∂xi ∂xj). The off-shell supervariations can be
written in terms of two fermionic operators δ̊ and ¯̊

δ,

δ̊xi = ψi , δ̊ψi = 0 , δ̊ψ̄i = iẋi −Ai , δ̊Ai = iψ̇i ,
¯̊
δxi = ψ̄i ,

¯̊
δψi = iẋi +Ai ,

¯̊
δψ̄i = 0 , ¯̊

δAi = −i ˙̄ψi .
(4.2)

The Lagrangian in (4.1) may be obtained through a superspace formalism as the last
component of a superfield, and thus is a supervariation of the penultimate components of
this superfield. The off-shell action integral may therefore be written as

S̊ = 1
2

(
δ̊

¯̊∆ + ¯̊
δ∆̊
)

+ θ
2

(
δ̊

¯̊∆− ¯̊
δ∆̊
)

= 1+θ
2 δ̊

¯̊∆ + 1−θ
2

¯̊
δ∆̊ , (4.3)

with the integrated superfield components

∆̊ =
∫

dt
{

1
2 (Ai − iẋi)− Vi (x)

}
ψi and ¯̊∆ =

∫
dt
{

1
2(−Ai − iẋi) + Vi(x)

}
ψ̄i .

(4.4)
After eliminating the auxiliary field via its equation of motion Ai = Vi, the on-shell
action reads

S =
∫

dt
{

1
2 ẋ

2
i − 1

2Vi (x)2 + ψ̄i
[
i d
dtδij − Vij (x)

]
ψj + iθ d

dtV (x(t))
}
. (4.5)

Contrary to the full action,6 the θ term may be generated on-shell,

∂θS = 1
2

(
δ̊

¯̊∆− ¯̊
δ∆̊
)

= 1
2

(
δ∆̄β − δ̄∆β

)
=
∫

dt Vi (x) ẋi = iV (x(t))
∣∣+∞
−∞ (4.6)

with the on-shell variations δ and δ̄ (obtained from δ̊ and ¯̊
δ by setting Ai = Vi in (4.2)) as

well as

∆β =
∫

dt {(β−1) iẋi − βVi (x)} ψi and ∆̄β =
∫

dt {(β−1) iẋi + βVi (x)} ψ̄i (4.7)

including an ambiguity β ∈ R. We note that ∆β= 1
2 = ∆̊

∣∣
Ai=Vi

and that ∆β=1∣∣
V=0 = 0.

6The correct on-shell action (4.5) requires taking the off-shell supervariations δ̊ and ¯̊
δ of the off-shell

integrals ∆̊ and ¯̊∆, and then imposing Ai = Vi. The other way around yields a wrong coefficient for the
fermion term.
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Construction of the g- and θ-flow operators. We consider an arbitrary superpotential
V that depends on a coupling g.7 The g-derivative of the action can, just like the action
itself, be written as a supervariation, but we may go on-shell now:

∂gS =
(
∂gS̊

) ∣∣
Ai=Vi

= 1+θ
2 δ∆̄g + 1−θ

2 δ̄∆g (4.8)

with the simpler integrals

∆g ≡ ∂g∆̊ = −
∫

dt
{
ψi ∂gVi

}
and ∆̄g ≡ ∂g

¯̊∆ =
∫

dt
{
ψ̄i ∂gVi

}
. (4.9)

Employing the supersymmetric Ward identity as usual [7], this leads to the g-flow operator

Rg(g, θ) = 1+θ
2 i∆̄g δ + 1−θ

2 i∆g δ̄

=
∫

dt dt′ i
2(∂gVi)(t)

{
(1+θ) ψ̄i(t)ψj(t′)− (1−θ) ψi(t) ψ̄j(t′)

}
δ

δxj(t′) ,
(4.10)

where the contractions indicate the fermion propagators

ψi(t) ψ̄j(t′) = iSij(t, t′) , with
(
iδik d

dt − Vik
)
Skj(t, t′) = δ(t−t′)δij , (4.11)

and ψ̄i(t)ψj(t′) = −iSij(t′, t). Hence, we can write

Rg(g, θ) = 1
2

∫
dt dt′ (∂gVi)(t)

[
(1+θ)Sij(t′, t) + (1−θ)Sij(t, t′)

]
δ

δxj(t′) . (4.12)

It is useful to define
θ± := 1

2(1± θ) , (4.13)

which allows us to write the g-flow operator compactly as

Rg(g, θ) = θ+R+
g (g) + θ−R−g (g) with R+

g (g) =
∫

dt dt′ (∂gVi)(t) Sij(t′, t) δ
δxj(t′)

and R−g (g) =
∫

dt dt′ (∂gVi)(t) Sij(t, t′) δ
δxj(t′) .

(4.14)
The θ-flow operator can be derived similarly. Employing (4.6) it becomes

Rβθ (g) = i
2 ∆̄βδ − i

2 ∆β δ̄ = β
2

∫
dt dt′ Vi(t) [Sij(t′, t)− Sij(t, t′)] δ

δxj(t′)

+ β−1
2

∫
dt dt′ iẋi(t) [Sij(t′, t) + Sij(t, t′)] δ

δxj(t′) ,
(4.15)

indicating the ambiguity β. Note that it does not depend on θ. In appendix B we prove
that Rg (4.14) and Rβθ (4.15) satisfy their respective free-action and determinant-matching
condition (2.15).

7If V depends on multiple couplings, the following discussion can be applied to each of the couplings
separately.
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4.2 Free massive theory

Here, we consider the simple one-dimensional superpotential

V = 1
2mx

2 , (4.16)

giving rise to a free, yet massive Lagrangian

L0 = 1
2 ẋ

2 − 1
2m

2x2 + ψ̄
[
i d
dt −m

]
ψ + iθmxẋ . (4.17)

In this case, the fermion propagators can be read off from[
i d
dt −m

]
S0(t, t′) = δ(t−t′) ⇒ ψ(t) ψ̄(t′) = iS0(t, t′) = 1

2 sgn(t−t′) e−im(t−t′)

(4.18)
(with an integration constant fixed by antisymmetry for m=0), and the flow operators take
the form

Rm(m,θ) = θ+R+
m(m)+θ−R−m(m) , with R+

m(m) =
∫

dt dt′ x(t) S0(t′, t) δ
δx(t′)

and R−m(m) =
∫

dt dt′ x(t) S0(t, t′) δ
δx(t′) ,

Rβθ (m) = 2β−1
2 m

∫
dt dt′ x(t)

[
S0
(
t′, t
)
−S0

(
t, t′
)]

δ
δx(t′) = 2β−1

2 m
[
R+
m(m)−R−m(m)

]
,

(4.19)
where for the θ flow we used integration by parts making use of the fact that V

(
x(t)

)∣∣+∞
−∞ = 0

for finite-action trajectories in the harmonic potential (4.16). Note that for β=1
2 the θ flow

can be made to vanish.
We find it convenient to Fourier transform to frequency space, using the convention

x(t) =
∫

dω
2π eiωt x̃(ω) ⇒ δ

δx(t) =
∫

dω e−iωt δ
δx̃(ω) . (4.20)

The fermion propagators get transformed as follows,

S0(t, t′) =
∫

dω
2π S̃0(ω) eiω(t−t′) ⇒ S̃0(ω) = − 1

ω+m . (4.21)

The flow operators (4.19) then are expressed via

R±m(m) =
∫

dω
2π x̃(ω) S̃0(∓ω) δ

δx̃(ω) , (4.22)

and their action on x̃(ω) is simply multiplicative,

Rm(m, θ) x̃(ω) = m−θ ω
ω2−m2 x̃(ω) and Rβθ (m) x̃(ω) = (1−2β) m ω

ω2−m2 x̃(ω) . (4.23)

Nicolai maps. Since in the free massive model, all flow operators are seen to commute with
one another, the path ordering in the universal formula (2.8) (or its expanded form (2.16))
trivializes.8 Therefore, given an arbitrary path

h(s) =
(
m(s), θ(s)

)
with

(
m(0), θ(0)

)
= (0, 0) and

(
m(1), θ(1)

)
= (m, θ) , (4.24)

8Still, the one-form R(m, θ) is only weakly flat since ∂θRm − ∂mRβθ does not vanish.
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we can derive an explicit expression for the Nicolai map or its inverse

T−1
m,θ [h] x̃(ω) = exp

{ 1
∫
0

ds
[
m′ (s)Rm (m(s) ,θ (s))+θ′ (s)Rβθ (m(s) ,θ (s))

]}
x̃(ω)

= exp
{
m

∫
0

dµ Rm (µ,θ (µ))
}

exp
{
θ

∫
0

dϑ Rβθ (m(ϑ) ,ϑ)
}
x̃(ω)

= exp
{
m

∫
0

dµ µ
ω2−µ2

}
exp

{
−ω

m

∫
0

dµ θ(µ)
ω2−µ2

}
exp

{
(1−2β) ω

θ

∫
0

dϑ m(ϑ)
ω2−m(ϑ)2

}
x̃(ω)

=
√

ω2

ω2−m2 eω θf(ω
2) x̃(ω)

(4.25)
for some function f depending on the contour, where after the first line we assumed, for
simplicity, that the parametrizations m(s) and θ(s) are monotonous, so that we may pass
to a global ‘coupling-coordinate parametrization’

(
µ, θ(µ)

)
with µ ∈ [0,m] and

(
m(ϑ), ϑ

)
with ϑ ∈ [0, θ], respectively.9

It is now straightforward to evaluate this expression for the contour of choice. Let us
do this for three cases. The sequential flow ‘first m then θ’ produces

T−1
m,θ[ ] x̃ = exp

{
(1−2β)

θ
∫
0

dϑ mω
ω2−m2

}
exp

{
m
∫
0

dµ µ
ω2−µ2

}
x̃ =

√
ω2

ω2−m2 e(1−2β) θmω
ω2−m2 x̃ .

(4.26)
On the other hand, for ‘first θ then m’ the θ flow is trivial, and we obtain

T−1
m,θ

[ ]
x̃= exp

{
m
∫
0

dµ µ−θω
ω2−µ2

}
x̃=

(
1+m

ω

)−1+θ
2
(
1−m

ω

)−1−θ
2 x̃=

√
ω2

ω2−m2

(
ω−m
ω+m

)θ/2
x̃ .

(4.27)
These two versions may be contrasted with the direct-contour flow, via m(ϑ) = m

θ ϑ

and θ(µ) = θ
mµ:

T−1
m,θ[ ] x̃= exp

{[(
1− θ

mω
)

+(1−2β) θ
mω

]m
∫
0

dµ µ
ω2−µ2

}
x̃=

√
ω2

ω2−m2

(
ω2

ω2−m2

)−β θmω
x̃ .

(4.28)
The obvious lesson is that the (inverse) Nicolai map really depends on the chosen path for
the coupling flow. There occur simplifications for β = 1

2 or 0, and for θ = 0. One may
check though that the condition (2.26) for contour independence is not met, and thus it
was expected to encounter Nicolai maps highly nonlinear in the coupling and depending on
the integration contour. However, the contour is special, since it trivializes the θ flow
(performed at m=0) and hence yields the partial Nicolai map for the m flow alone with θ
fixed as an external parameter: Tm,θ[ ] = Tm(θ). And indeed, at the two special values
θ = ±1, a drastic simplification occurs:

T−1
m (±1) x̃(ω) = ω

ω±m x̃(ω) ⇒ Tm(±1) x̃(ω) =
(
1± m

ω

)
x̃(ω) . (4.29)

Fourier-transforming back to the time domain, this implies that

Tm(θ=±1) iẋ(t) = iẋ(t) ∓ mx(t) (4.30)

which corraborates (3.7) and just relates the massive to the massless fermion propagator.
9If this is not the case, the path may be composed of piecewise monotonous parts.
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Correlators. Using the Nicolai map formalism, we can deduce from the massless
boson propagator 〈

x̃(ω) x̃(ω′)
〉

0,0 = 2πδ(ω + ω′)
/
ω2 (4.31)

the massive boson propagator〈
x̃(ω) x̃(ω′)

〉
m,θ

=
〈
T−1
m,θ[h]x̃(ω) T−1

m,θ[h]x̃(ω′)
〉

0,0 = 2πδ(ω + ω′)
/ (
ω2 −m2

)
, (4.32)

for any choice of the contour h. Clearly, the dependencies on θ or β of the Nicolai map
cancel out in the correlator, due to energy conservation ω′ = −ω. This generalizes to
arbitrary N -point functions via Wick’s theorem.

We end this subsection with two remarks. Firstly, even for θ = ±1 the Nicolai map
depends on the integration contour h when θ is a variable coupling. However, when θ is
fixed at the outset (no θ flow) then the collapse of the power series for T occurs for any
choice of h, as we shall argue in the end of this section. Secondly, if one Fourier transforms
back to the time domain, one can explicitly check the flatness condition (2.10) of Rm and
Rθ. We find that only the expectation value of the curvature vanishes, but not the curvature
itself. This is expected since we have demonstrated above that the full Nicolai map is
path dependent. However, this dependence can only affect terms that have a vanishing
expectation value. All possible Nicolai maps lead to the same correlation functions.

4.3 Interacting theory

As compared to the previous subsection, we now add a cubic term to the superpotential,

V = 1
2mx

2 + 1
3gx

3 , (4.33)

so that the Lagrangian becomes

L = 1
2 ẋ

2 − 1
2m

2x2 −mgx3 − 1
2g

2x4 + ψ̄
[
i d
dt −m− 2gx

]
ψ + iθ

(
mx+ gx2

)
ẋ . (4.34)

The fermion propagators follow from[
i d
dt −m− 2gx(t)

]
S(t, t′) = δ(t−t′) , (4.35)

while the flow operators read

Rg(g,m, θ) = θ+R+
g (g,m) + θ−R−g (g,m) ,

Rm(g,m, θ) = θ+R+
m(g,m) + θ−R−m(g,m) ,

(4.36)

with R±g (g,m) and R±m(g,m) as in (4.14) but for D=1. In the following, we will always
first move to a finite θ value (at g=m=0) before turning on the other couplings along some
contour h in (g,m) space. This (and taking β=1) trivializes the θ flow, so we drop the
θ subscript on T . The choice of θ = ±1 implies that (2.27) holds which renders the full
Nicolai map linear in g and m for any path h,

Tg,m[h, θ=±1] iẋ(t) = iẋ(t) ∓ mx(t) ∓ g x(t)2 , (4.37)
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and generates the bosonic Lagrangian via 1
2(Tm,gẋ)2 (free-action condition), whereas the

inverse map never truncates. The generalization to an arbitrary superpotential V is
completely straightforward, which justifies (3.7).

However, we find it more useful to start already with the massive free theory and work
with the one-variable g-flow map, since in this way we avoid the infrared divergences of the
massless propagators. Hence, we investigate the (inverse) partial map Tg(m, θ) at fixed m
and θ, which has no contour ambiguity any more. Again, the map is linear in the variable
coupling g for θ = ±1:

Tg(m,θ=±1) iẋ(t) = iẋ(t) ∓ gx(t)2−gm
∫

dt′ 1
2i sgn(t−t′) e±im(t−t′) x(t′)2

⇔ Tg(m,θ=±1)
[
i d
dt±m

]
x(t) =

[
i d
dt∓m

]
x(t)∓ gx(t)2 .

(4.38)
Indeed, composing this with Tm(θ=±1) from (4.30) for a sequential contour is consistent
with (4.37),

Tg,m[ , θ=±1] iẋ(t) = Tg(m, θ=±1) Tm(g=0, θ=±1) iẋ(t) = iẋ(t) ∓ mx(t) ∓ g x(t)2 .

(4.39)
Here, it is also straightforward to verify the free-action condition.

For the perturbative expansion of the inverse Nicolai map, we transform the g-flow
operator to frequency space and expand à la (2.28) to obtain the O(gk−1) term

Rk =

θ+2k−1
∫

dν1
2π · · ·

dνk+1
2π x̃(ν1)

[
x̃(−ν1+ν2) S̃0 (+ν2)

]
· · ·
[
x̃(−νk+νk+1) S̃0 (+νk+1)

]
δ

δx̃(νk+1)

+θ−2k−1
∫

dν1
2π · · ·

dνk+1
2π x̃(ν1)

[
x̃(−ν1+ν2) S̃0 (−ν2)

]
· · ·
[
x̃(−νk+νk+1) S̃0 (−νk+1)

]
δ

δx̃(νk+1)
.

(4.40)
We now have all the ingredients for the map [12]

Tgx̃(ω) =

x̃(ω)−gR1x̃(ω)− 1
2g

2
(
R2−R2

1

)
x̃(ω)− 1

6g
3
(
2R3−2R2R1−R1R2+R3

1

)
x̃(ω)

− 1
24g

4
(
6R4−6R3R1−3R2R2+3R2R2

1−2R1R3+2R1R2R1+R2
1R2−R4

1

)
x̃(ω)+O

(
g5
)
(4.41)

and its inverse

T−1
g x̃(ω) =

x̃(ω)+gR1x̃(ω)+ 1
2g

2
(
R2+R2

1

)
x̃(ω)+ 1

6g
3
(
2R3+2R1R2+R2R1+R3

1

)
x̃(ω)

+ 1
24g

4
(
6R4+6R1R3+3R2R2+3R2

1R2+2R3R1+2R1R2R1+R2R2
1 +R4

1

)
x̃(ω)+O

(
g5
)
.

(4.42)
Next, we will give an appropriate diagrammatic notation for the interacting theory. In the
following section, this will be employed to compactly write expressions for Tgx̃(ω) and for
T−1
g x̃(ω) to order g3 for arbitrary θ and to order g4 for θ = ±1.
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4.4 Nicolai rules

We introduce a graphical Feynman-like notation, which we call Nicolai rules. We find it
useful to work in frequency space, dropping the tildes from here onward. This gives the
following rules:

• External boson lines with a frequency ω give a factor x(ω).

• Free fermion propagators are

S0(ω) = = −1
ω +m

, S0(−ω) = = 1
ω −m

.

(4.43)

• Free boson propagators are

G0(ω) = = 1
ω2 −m2 . (4.44)

• Vertices (implicit of order g) give factors

= 1 , = 2 , = 2 . (4.45)

• At every vertex, energy conservation is enforced. We take all frequencies to be oriented
towards the root of the tree, which carries the frequency ω of the transformed field
Tg x(ω). Each remaining frequency ν comes with an integral

∫ dν
2π .

Using these rules, we can represent the g-flow operator in a graphical notation (cf. (4.40))

Rg(g,m, θ) =
{
θ+ + θ−

}
+ g

{
θ+ + θ−

}

+ g2
{
θ+ + θ−

}
+O

(
g4
)
,

(4.46)

where the arrows at the end of the fermion lines indicate a functional derivative with respect
to x. For arbitrary θ, the map contains all possible combinations of fermion propagators in
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each topology:

Tg(m, θ) x(ω) = x(ω)− g
{
θ+ + θ−

}
− g2

2 θ+θ−
{

+ − −
}

− g3

6 θ
+θ−

{
(1+θ−) − θ+

− θ− − (1+θ+) + θ+

+ (θ+−θ−) + θ− +
(
θ+ ↔ θ−,

→
S↔

←
S
)}

+O
(
g4
)
,

(4.47)
where

→
S↔

←
S indicates a reversal of the arrow on each fermion propagator. From this

representation, it is easy to see that for θ = ±1 the map truncates after O(g), since all
higher-order terms are multiplied with θ+θ− = θ+(1−θ+) = θ−(1−θ−). In these cases, Tg
becomes linear in g, polynomial (quadratic) in x, and only one of the elementary propagators
is present. The latter fact implies the identity RkR1x = Rk+1x (2.29) so that we find

Tg(m,±1) x = x− gR1 x = x− g , (4.48)

with an implicit arrow on the fermion propagator to the right (or left) for θ = +1 (or −1).
We argue that, even for an arbitrary superpotential V which depends on multiple couplings
g, the identity (2.26) must hold whenever θ = ±1, so that the power series truncates for
any integration contour in (2.8) (see the end of section 2). If one inverts (4.48) iteratively,
one finds the expansion

T−1
g (m,±1) x(ω) =x(ω) + g + g2 + g3

{
+ 1

2

}

+ g4
{

+ + 1
2

}
+O

(
g5
)
.

(4.49)
Interestingly, a recursive argument shows that every topology comes with a weight of unity
times a symmetry factor, see e.g. the diagrams with the coefficient 1

2 above. For arbitrary
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θ, the first few terms of the inverse map are

T−1
g (m, θ) x(ω) =

x(ω) + g

{
θ+ + θ−

}

+ g2

2

{
θ+(1+θ+) + θ−(1+θ−) + θ+θ−

(
+

)}

+ g3

6

{
θ+(1+θ+)(2+θ+) + θ+θ+(2+θ+)

+ θ+θ−
[
(2+θ+) + (1+θ−) + θ+

+ 2(1+θ+) + θ−
]

+
(
θ+ ↔ θ−,

→
S↔

←
S
)}

+O(g4) .

(4.50)
It appears to be difficult to derive a formula for the θ polynomial multiplying a general
tree. We now turn to computing bosonic correlation functions using the characteristic
property (2.4) of the Nicolai map.

5 Amplitudes in supersymmetric quantum mechanics

In this section, we compute the one-, two-, and three-point function for the interacting SQM
theory from 4.3. In order to compute the loop integrals, we use analytic continuation and
Wick rotate to Euclidean space (ω → iω), so that the free Euclidean propagators become

S0(ω) = = iω −m
ω2 +m2 , S0(−ω) = = −iω −m

ω2 +m2 ,

(5.1)
and

G0(ω) = = −1
ω2 +m2 . (5.2)

One-point function. We need to contract the open boson lines of (4.50). At one-loop
order, this gives two diagrams,

〈
x(ω)

〉
g

=gθ+ + gθ− +O
(
g3
)

=2πδ(ω) g (θ++θ−) −m
m2

∫
dl
2π

−1
l2+m2 +O(g3) = g πδ(ω)

m2 +O
(
g3
)
,

(5.3)

where we used the loop integral∫
l
G0(l) =

∫
dl
2π

−1
m2+l2 = − 1

2m . (5.4)
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The final result is independent of θ as expected. It further matches the expression (C.7)
from conventional Feynman perturbation theory, see appendix C.

Two-point function. For the two-point function we need to multiply the inverse map
expansion with itself and then contract the open boson lines. We find the following
(connected) diagrams:〈
x (ω) x

(
ω′
)〉
g

=2πδ
(
ω+ω′

)
G0 (ω)

+ 2g2
{
θ+2 + θ+θ− +

(
θ+ ↔ θ−,

→
S↔

←
S
)}

+ g2

2

{
θ+
(
1+θ+

)(
2 +

)

+ θ+θ−
(

2 +
)

+
(
θ+ ↔ θ−,

→
S↔

←
S
)}

+ g2

2
{
ω ↔ ω′

}
+O

(
g4
)
.

(5.5)
With the loop integrals∫

l
G0(l)G0(ω − l) =

∫
dl
2π

−1
m2+l2

−1
m2+(ω−l)2 = 1

4m3+mω2 , (5.6)
∫
l
G0(l)S0(ω + l) =

∫
dl
2π

−1
m2+l2

i(ω+l)−m
m2+(ω+l)2 = 1

2
2m−iω

4m3+mω2 (5.7)

we find〈
x(ω) x(ω′)

〉
g

= 2πδ (ω+ω′) G0 (ω)

+ 2g2 2πδ(ω+ω′)
(ω2+m2)2

{
θ+2(iω′−m)(iω−m)+θ+θ−(−iω′−m)(iω−m)

4m3+mω2 +
(
θ+↔ θ−,ω↔ω′

)}
+ g2

2
2πδ(ω+ω′)
(ω2+m2)2

{
θ+ (1+θ+)(−4 1

2
(iω−m)(2m−iω)

4m3+mω2 −2 iω−m
2m2

)
+θ+θ−

(
−4 1

2
(−iω−m)(2m−iω)

4m3+mω2 −2 iω−m
2m2

)
+
(
θ+↔ θ−,ω↔ω′

)}
+ g2

2
2πδ(ω+ω′)
(ω2+m2)2 {ω→−ω}+O

(
g4) .

(5.8)
Simplifying this yields
〈
x (ω) x

(
ω′
)〉
g

= 2πδ
(
ω + ω′

)
G0 (ω) + 2g2 2πδ(ω+ω′)

(ω2+m2)2

(
θ+2+θ−2)(m2+ω2)+2θ+θ−(m2−ω2)

4m3+mω2

+ g2

2
2πδ(ω+ω′)
(ω2+m2)2

{[
1 + θ+2 + θ−

2] (4 2m2−ω2

4m3+mω2 + 2
m

)
+ 2θ+θ−

(
4 2m2+ω2

4m3+mω2 + 2
m

)}
+O

(
g4
)
,

(5.9)
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and finally (using θ+ + θ− = 1 and θ+ − θ− = θ)〈
x(ω) x(ω′)

〉
g

= 2πδ(ω + ω′)G0(ω) + g2 2πδ(ω+ω′)
(m2+ω2)2

18m2

4m3+mω2 +O
(
g4
)
, (5.10)

again matching the expression obtained from Feynman diagrams (C.14).

Three-point function. For simplicity, here we restrict ourselves to the cases θ = ±1, so
we can use (4.49) as the inverse map with the fermion propagator S0(±ω) (5.1) for θ = ±1.
For the three-point function, one needs to determine〈

x(ω1) x(ω2) x(ω3)
〉
g

=
〈
T−1
g x(ω1) T−1

g x(ω2) T−1
g x(ω3)

〉
0 . (5.11)

At order g3 one needs to evaluate (free) correlators of six bosonic fields. Using Wick’s
theorem, each of them gives 15 diagrams, of which some are disconnected, which we
ignore, and many others are equivalent. Naturally, everything will be totally symmetric in
(ω1, ω2, ω3). Up to permutations of the frequencies, there are 11 diagrams, of which 4 are
one-particle irreducible (1PI). We label the latter four as

N1 = , N2 = ,

N3 = , N4 = .

(5.12)

Furthermore, there are five one-particle reducible (1PR) diagrams that combine to give the
2-point function on one leg. We collect them under the label

N5 =

2-point

. (5.13)

Finally, there are two more reducible diagrams,

N6 = , N7 = . (5.14)

To represent the various contributions, we pull out an overall factor of

g3 2πδ (ω1+ω2+ω3)
∏

i=1,2,3

(
m2 + ω2

i

)−2 (
4m2 + ω2

i

)−1
(5.15)
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and express the remainder of all contributions in terms of the symmetric polynomials

t1 = ω1 + ω2 + ω3 ≡ 0 , t2 = ω1ω2 + ω1ω3 + ω2ω3 , t3 = ω1ω2ω3 . (5.16)

We find for the 1PI contributions:

N1→ 96m10−296m8t2+312m6t22−120m4t32+8m2t42±96im7t3∓200im5t2t3±112im3t22t3∓8imt32t3
+96m4t23−104m2t2t

2
3+8t22t23±96imt33∓8im−1t2t

3
3 ,

N2→ 576m10−1200m8t2+672m6t22−48m4t32∓288im7t3±600im5t2t3∓336im3t22t3±24imt32t3

+576m4t23−48m2t2t
2
3∓288imt33±24im−1t2t

3
3 ,

N3→ 384m10−608m8t2+48m6t22+192m4t32−16m2t42±96im7t3∓200im5t2t3±112im3t22t3∓8imt32t3
+384m4t23+160m2t2t

2
3−16t22t23±96imt33∓8im−1t2t

3
3 ,

N4 =N3 .

(5.17)
Summing these up, the (θ-dependent) imaginary terms drop out, and we are left with

N1PI =N1+N2+N3+N4

→ 1440m10−2712m8t2+1080m6t22+216m4t32−24m2t42+1440m4t23+168m2t2t
2
3−24t22t23 .

(5.18)
Similarly, the reducible contributions yield:

N5→ 3456m10−5760m8t2+2952m6t22−720m4t32+72m2t42∓2160im7t3±1620im5t2t3

∓360im3t22t3±36imt32t3−1080m4t23+288m2t2t
2
3±108imt33 ,

N6→ 384m10−128m8t2−312m6t22+48m4t32+8m2t42±1392im7t3∓980im5t2t3

±184im3t22t3∓20imt32t3−1128m4t23+352m2t2t
2
3−16t22t23∓120imt33±4im−1t2t

3
3 ,

N7→ 384m10−448m8t2+24m6t22+48m4t32−8m2t42±768im7t3∓640im5t2t3

±176im3t22t3∓16imt32t3−378m4t23+188m2t2t
2
3−26t22t23±12imt33∓4im−1t2t

3
3−6m−2t43 ,

(5.19)
which adds up to

N1PR =N5+N6+N7

→ 4224m10−6336m8t2+2664m6t22−624m4t32+72m2t42−2586m4t23+828m2t2t
2
3−42t22t23

−6m−2t43 .

(5.20)
The final result (multiplying the prefactor (5.15)) reads

N =N1PI+N1PR

→ 5664m10−9048m8t2+3744m6t22−408m4t32+48m2t42−1146m4t23+996m2t2t
2
3

−66t22t23−6m−2t43 .

(5.21)

Consulting appendix C we confirm perfect agreement with the result (C.23) from Feyn-
man diagrams.
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While these calculations are quite technical, we can make some interesting observations,
in particular from the computation of the three-point function. It is curious that the
irreducible contributions N1PI and the reducible contributions N1PR are θ-independent
separately.10 Moreover, the θ-dependent terms that appear in the single diagrams are all
imaginary and all proportional to an odd power of t3 = ω1ω2ω3. Finally, the notion of
one-particle irreducibility differs from that for Feynman diagrams. The diagrams N6 and
N7 naively appear to be 1PR, but they do not decompose into 1PI subdiagrams, because
the Nicolai rules do not allow for fermion lines connecting external points of a diagram.
For Nicolai diagrams the reducibility notion thus is restricted to cutting boson lines only,
whence N6 and N7 should be counted as 1PI as well.
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A Nicolai map for a multi-coupling straight contour

Here, we give an explicit perturbative expansion for the multi-coupling Nicolai map

Tg[h] φ =
∞∑
n=0

(−)n
∫ 1

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1

[
~h′(sn) · ~R

(
h(sn)

)]
· · ·
[
~h′(s1) · ~R

(
h(s1)

)]
φ

(A.1)
in the case of the straight contour, h = ,

~h(s) = s ~g for ~g =
(
g1, g2, . . . , gk

)
. (A.2)

We start by expanding

giR
(i)(s g) =

∑
α

s|α|−1gα R(i)
α , (no sum over i) (A.3)

where α is a multi-index (α1, . . . , αk) with αi ≥ 1 and αl ≥ 0 for l 6=i. Using n such
multi-indices α1, . . . , αn, we can express the Nicolai map as

Tg[ ]φ=

∞∑
n=0

k∑
i1,...,in=1

∑
α1,...,αn

(−)n
∫ 1

0
dsn

∫ sn

0
dsn−1 · · ·

∫ s2

0
ds1 s

|αn|−1
n . . .s

|α1|−1
1 gα

n

· · ·gα
1
R(in)
αn · · ·R(i1)

α1 φ.

(A.4)
Carrying out the integrals, one obtains the coefficients

cα :=(−)n
∫ 1

0
dsn s|α

n|−1
n · · ·

∫ s3

0
ds2 s

|α2|−1
2

∫ s2

0
ds1 s

|α1|−1
1

=(−)n
[
|α1| ·

(
|α1|+ |α2|

)
· · ·
(
|α1|+ . . .+ |αn|

)]−1
,

(A.5)

10The same holds for the two-point function.
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a natural generalization of the coefficients for the map with only one coupling [12]. The
final formula can be written compactly as

Tg[ ] φ =
∞∑
n=0

k∑
i1,...,in=1

∑
α

cα g
α R(in)

αn · · ·R
(i1)
α1 φ , (A.6)

where α = (α1, . . . , αn) is a multi-index of n multi-indices (i = 1, . . . , n)

αi =
(
(αi)1, . . . , (αi)k

)
(A.7)

that takes values

(αp)iq ≥ 0 for p 6= q , (αp)ip ≥ 1 , (A.8)

and
gα = gα

1 · · · gαn = g

∑n

l=1(αl)1
1 · · · g

∑n

l=1(αl)k
k . (A.9)

B Proof of free-action and determinant-matching property

Free action. Here we check whether our flow operators satisfy their respective infinitesimal
free-action conditions

(∂g +Rg) Sb = 0 , (∂θ +Rθ) Sb = 0 , (B.1)

for the bosonic action

Sb =
∫

dt
{1

2 ẋ
2
i − 1

2Vi(x)2 + iθ d
dtV (x(t))

}
. (B.2)

Beginning with the g flow, we have

R+
g S

b = −
∫

dt dt′ ∂gVi(t)Sij(t′, t)(ẍj + VjkVk)(t′) , (B.3)

and R−g Sb with the reversed arguments in Sij . Now we use (4.11) to replace

Sij(t′, t)Vjk(t′)−→−iSik(t′, t)dt′−δikδ(t−t′) , Sij(t, t′)Vjk(t′)−→+iSik(t, t′)dt′−δikδ(t−t′)
(B.4)

under the integrals. Doing this once leads to

R+
g S

b = −
∫

dt dt′ ∂gVi(t)Sij(t′, t)ẍj(t′) + i
∫

dt dt′ ∂gVi(t)Sij(t′, t)Vjk(t′)ẋk(t′)

+
∫

dt (∂gVi)Vi ,

R−g S
b = −

∫
dt dt′ ∂gVi(t)Sij(t, t′)ẍj(t′) + i

∫
dt dt′ ∂gVi(t)Sij(t, t′)Vjk(t′)ẋk(t′)

+
∫

dt (∂gVi)Vi ,

(B.5)
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and doing it once more cancels most terms, leaving us with

R+
g S

b = −i
∫

dt (∂gVi) ẋi +
∫

dt (∂gVi)Vi ,

R−g S
b = +i

∫
dt (∂gVi) ẋi +

∫
dt (∂gVi)Vi .

(B.6)

We conclude that as expected,

(∂g +Rg)Sb =
(
∂g + θ+R+

g + θ−R−g

)
Sb =

∫
dt
[
−Vi∂gVi + iθ d

dt (∂gV )
]

+
∫

dt
[
Vi∂gVi − iθ d

dt (∂gV )
]

= 0 .
(B.7)

Let us proceed with the θ flow in the form (4.15). From a similar calculation, we find

RβθS
b = −β

2

∫
dt dt′ Vi(t)[Sij(t′, t)− Sij(t, t′)](ẍj + VjkVk)(t′)

− i β−1
2

∫
dt dt′ ẋi(t)[Sij(t′, t) + Sij(t, t′)](ẍj + VjkVk)(t′) .

(B.8)

Again we can insert the replacements (B.4) twice and end up with

RβθS
b = −iβ

∫
dt Viẋi + i(β−1)

∫
dt ẋiVi = −i

∫
dt ẋiVi . (B.9)

This shows that, for arbitrary β,

(∂θ +Rβθ )Sb = 0 . (B.10)

Determinant matching. Now we check the infinitesimal determinant-matching
condition

(∂g +Rg)Sf [x] = i
∫

dt dt′ δKi[x,t]δxj(t′) δijδ(t− t′) , (B.11)

with

R±g =
∫

dt K±i [x,t] δ
δxi(t) , K+

i [x,t] =
∫

dτ ∂gVk(τ)Ski(t,τ) , K−i [x,t] =
∫

dτ ∂gVk(τ)Ski(τ, t)
(B.12)

and the nonlocal part of the action,

Sf [x] =−i ln det
[
−i(i d

dtδij−Vij)δ(t−t
′)
]

=−i
∫

dt dt′ ln
[
−i(i d

dtδij−Vij)δ(t−t
′)
]
δij δ(t−t′) .

(B.13)
With

δSki(τ,t)
δxj(t′) = Skl(τ, t′)Vljm(t′)Smi(t′, t) and δSki(t,τ)

δxj(t′) = Skl(t′, τ)Vljm(t′)Smi(t, t′)
(B.14)

we find on the right-hand side of (B.11) that

i
∫

dt dt′ δKi[x,t]
δxj(t′) δijδ(t− t′) = i

∫
dt ∂gVij(t)Sji(t, t)

+ i
∫

dt dt′ ∂gVk(t)[Skl(t′, t) + Skl(t, t′)]Vlim(t′)Smi(t′, t′)

+ θ i
∫

dt dt′ ∂gVk(t)[Skl(t′, t)− Skl(t, t′)]Vlim(t′)Smi(t′, t′) .
(B.15)

Using the chain rule it is easy to check that this indeed matches the left hand side of (B.11).
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We can perform the analogous check for the theta flow,

(∂θ +Rβθ )Sf [x] = i
∫

dt dt′ δK
θ
i [x,t]

δxj(t′) δijδ(t− t′) , (B.16)

where ∂θSf [x] = 0 and

Kθ
i [x, t] = β

2

∫
dτ Vk(τ)[Ski(t, τ)− Ski(τ, t)] + i β−1

2

∫
dτ ẋk(τ)[Ski(t, τ) + Ski(τ, t)] .

(B.17)
In a calculation similar to the one for the g flow, we find

i
∫

dt dt′ δK
θ
i [x,t]

δxj(t′) δijδ(t− t′) = i β
2

∫
dt dt′ Vk(t)[Skl(t′, t)− Skl(t, t′)]Vlim(t′)Smi(t′, t′)

−β−1
2

∫
dt dt′ ẋk(t)[Skl(t′, t) + Skl(t, t′)]Vlim(t′)Smi(t′, t′) .

(B.18)
It is again straightforward to see that this matches the left-hand side of (B.16).

C Amplitudes from conventional Feynman perturbation theory

After Wick rotating to Euclidean space, one finds the following Feynman rules in fre-
quency space.

• The free fermion propagator is

= iω −m
ω2 +m2 . (C.1)

• The free boson propagator is

= −1
ω2 +m2 . (C.2)

• The vertices are

= 3! mg , = 4!
2 g2 , = 2 g .

(C.3)

• We need to enforce momentum conservation at every vertex. For each fermion loop,
one has to include a factor of −1. Each loop frequency l comes with an integral

∫ dω
2π .

Lastly, one has to divide by the symmetry factor of the diagram, i.e. the number of
permutations of internal lines that leave the diagram invariant.

• We use the convention where all external frequencies are outgoing.
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One-point function. At order g there are two connected diagrams contributing to the
bosonic one-point function. Pulling out the prefactor

− g 2πδ(ω)
m2 , (C.4)

they are

→ 3!
2 m

∫
dl
2π

−1
l2+m2 = −3

2 , (C.5)

→ −2
∫

dl
2π

−m
l2+m2 = 1 , (C.6)

so that 〈
x̃(ω)

〉
g

= g πδ(ω)
m2 +O(g3) . (C.7)

Two-point function. At order g2 there are five connected diagrams contributing to the
bosonic two-point function. Pulling out the prefactor

g2 2πδ(ω+ω′)
(ω2+m2)2 , (C.8)

there are three 1PI contributions,

→ 0 , (C.9)

→ 3! 3!
2 m2

∫
dl
2π

1
l2+m2

1
(l+ω)2+m2 = 18m2

m(4m2+ω2) , (C.10)

→ 4!
2·2

∫
dl
2π

−1
l2+m2 = − 3

m , (C.11)

and two 1PR contributions known from the one-point function,

→ 3! 3!
2 m2 −1

m2

∫
dl
2π

−1
l2+m2 = 9

m , (C.12)

→ −3! 2
1 m−1

m2

∫
dl
2π

−m
l2+m2 = − 6

m . (C.13)

Adding all the contributions, we obtain〈
x̃(ω)x̃(ω′)

〉
g

= 2πδ(ω + ω′)G0(ω) + g2 2πδ(ω+ω′)
(m2+ω2)2

18m2

4m3+mω2 +O
(
g3
)
. (C.14)
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Three-point function. At order g3 there are three 1PI connected diagrams contributing
to the bosonic three-point function. The amputated diagrams are

F1 = −→
(3!m)3 ∫

lG0(l)G0(l − ω3)G0(l − ω3 − ω2)

= −
216m2

[
12m2+ 1

2 (ω2
1+ω2

2+ω2
3)
]

(4m2+ω2
1)(4m2+ω2

2)(4m2+ω2
3) ,

(C.15)

F2 = −→ − 23
∫
l
S0(l)S0(l − ω3)S0(l − ω3 − ω2) = 0 , (C.16)

F3 = −→ m1
2

4!
2 3!

∫
lG0 (l)G0 (l − ω3) + (ω3 → ω2) + (ω3 → ω1)

= 36 48m4+8m2(ω2
1+ω2

2+ω2
3)+ω2

1ω
2
2+ω2

1ω
2
3+ω2

2ω
2
3

(4m2+ω2
1)(4m2+ω2

2)(4m2+ω2
3) .

(C.17)

The remaining 1PR contributions can be taken from the results of the two- and three-
point functions,

F4 =
2-point

−→ 3!m −18m2

(4m3+mω2
3)(m2+ω2

3) + (ω3 → ω2) + (ω3 → ω1) ,

(C.18)

F5 =
1-point

−→ 6
m2 . (C.19)

We write down the contributions in the same way as we did for the Nicolai calculation,
pulling out the prefactor (5.15) and writing the remaining contributions in terms of the
symmetric polynomials t2 and t3 (5.16):

F1 → 2592m10 − 5400m8t2 + 3024m6t22 − 216m4t32 + 2592m4t23 − 216m2t2t
2
3 ,

F2 → 0 ,

F3 → −1728m10 + 4032m8t2 − 2916m6t22 + 648m4t32 − 36m2t42 − 1728m4t23

+ 576m2t2t
2
3 − 36t22t23 ,

F4 → 5184m10 − 8640m8t2 + 4428m6t22 − 1080m4t32 + 108m2t42 − 1620m4t23 + 432m2t2t
2
3 ,

F5 → −384m10 + 960m8t2 − 792m6t22 + 240m4t32 − 24m2t42 − 390m4t23 + 204m2t2t
2
3

− 30t22t23 − 6m−2t43 .
(C.20)
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The 1PI and 1PI sums become

F1PI = F1 + F2 + F3

→ 864m10 − 1368m8t2 + 108m6t22 + 432m4t32 − 36m2t42 + 864m4t23 + 360m2t2t
2
3

− 36t22t23 , (C.21)
F1PR = F4 + F5

→ 4800m10 − 7680m8t2 + 3636m6t22 − 840m4t32 + 84m2t42 − 2010m4t23 + 636m2t2t
2
3

− 30t22t23 − 6m−2t43 , (C.22)

respectively. The final result (modulo the prefactor) reads

F = F1PI + F1PR

→ 5664m10 − 9048m8t2 + 3744m6t22 − 408m4t32 + 48m2t42 − 1146m4t23 + 996m2t2t
2
3

− 66t22t23 − 6m−2t43 .
(C.23)

This exactly matches the result from the Nicolai computation (5.21).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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