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Abstract. A two-dimensional free boundary transmission problem arising
in the modeling of an electrostatically actuated plate is considered and
a representation formula for the derivative of the associated electrostatic
energy with respect to the deflection of the plate is derived. The latter
paves the way for the construction of energy minimizers and also provides
the Euler–Lagrange equation satisfied by these minimizers. A by-product
is the monotonicity of the electrostatic energy with respect to the deflec-
tion.
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1. Introduction

We consider a model for a microelectromechanical system (MEMS) featuring
an elastic, electrostatically actuated plate with positive thickness as introduced
in [3]. More precisely, given a finite interval D := (−L,L) with L > 0, let the
function u ∈ C(D̄, [−H,∞)) with u(±L) = 0 measure the deflection from
rest of the lower part of an elastic plate with thickness d > 0, clamped at its
boundaries and suspended above a fixed ground plate, the latter being located
at z = −H with H > 0 and represented by D × {−H} (see Fig. 1). The
deflected elastic plate is then

Ω2(u) := {(x, z) ∈ D × R : u(x) < z < u(x) + d} ,

while the region between the ground plate and the deflected elastic plate is

Ω1(u) := {(x, z) ∈ D × R : −H < z < u(x)} .
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Figure 1. Geometry of Ω(u) for a state u ∈ S with empty
coincidence set

The two regions are separated by the interface

Σ(u) := {(x, z) ∈ D × R : z = u(x) > −H} ,

and the subdomain of D × (−H,∞) spanned by the MEMS device is

Ω(u) := {(x, z) ∈ D × R : −H < z < u(x) + d} = Ω1(u) ∪ Ω2(u) ∪ Σ(u) .

The deflection of the plate being triggered by electrostatic actuation, the total
energy of the device is

E(u) := Em(u) + Ee(u) (1.1a)

with mechanical energy Em(u) and electrostatic energy Ee(u). The former is
given by

Em(u) :=
β

2
‖∂2

xu‖2
L2(D) +

(τ

2
+

a

4
‖∂xu‖2

L2(D)

)
‖∂xu‖2

L2(D) (1.1b)

with β > 0 and a, τ ≥ 0, taking into account bending and external stretching
effects of the elastic plate. The electrostatic energy

Ee(u) := −1
2

∫

Ω(u)

σ|∇ψu|2 d(x, z) (1.1c)

involves the electrostatic potential ψu in the domain Ω(u) with ψu being the
solution to the transmission problem

div(σ∇ψu) = 0 in Ω(u) , (1.2a)

�ψu� = �σ∇ψu� · nΣ(u) = 0 on Σ(u) , (1.2b)

ψu = hu on ∂Ω(u) , (1.2c)

where �·� denotes the (possible) jump across the interface Σ(u); that is,

�f�(x, u(x)) := f |Ω1(u)(x, u(x)) − f |Ω2(u)(x, u(x)) , x ∈ D ,

whenever meaningful for a function f : Ω(u) → R. Moreover,

σ := σ11Ω1(u) + σ21Ω2(u) (1.3)

involves the material dependent constant permittivities σ2, σ1 > 0. The unit
normal vector field to Σ(u) (pointing into Ω2(u)) is

nΣ(u) :=
(−∂xu, 1)√
1 + (∂xu)2

.
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Figure 2. Geometry of Ω(u) for a state u ∈ S̄ with non-
empty coincidence set

As for the boundary values in (1.2c) we assume the particular form

hu(x, z) := ζ(z − u(x) + 1) , (x, z) ∈ D̄ × [−H,∞) , (1.4a)

where

ζ ∈ C2(R) , ζ|(−∞,1] ≡ 0 , ζ|[1+d,∞) ≡ V , (1.4b)

with V > 0. For instance, ζ(r) := V min{1, (r − 1)m/dm} for r > 1 and m > 2
and ζ ≡ 0 on (−∞, 1] is a possible choice. Note that

hu(x,−H) = 0 , hu(x, u(x) + d) = V , x ∈ D ;

that is, the ground plate and the top of the elastic plate are kept at different
constant potentials. Let us emphasize that we explicitly allow that the elastic
plate touches upon the ground plate when u reaches the value −H somewhere,
a situation corresponding to a non-empty coincidence set

C(u) := {x ∈ D : u(x) = −H} , (1.5)

as depicted in Fig. 2. In this case, the region Ω1(u) is not connected and its
boundary features cusps, so that its connected components are not Lipschitz
domains.

In this research we shall be interested in minimizers of the total energy
E which correspond to stationary states of the MEMS device. More precisely,
we shall show the existence of minimizers and derive the corresponding Euler–
Lagrange equation they satisfy, which, due to the nature of the problem, is a
variational inequality. Obviously, the main difficulty in this regard is related
to the electrostatic energy Ee and the associated transmission problem (1.2)
for the electrostatic potential. The latter was investigated in [5] for deflections
belonging to the set

S̄ := {u ∈ H2(D) ∩ H1
0 (D) : u ≥ −H in D and ± �σ�∂xu(±L) ≤ 0}

with �σ� = σ1 − σ2. More precisely, the following result is shown in [5].

Theorem 1.1. [5, Theorem 1.1] Suppose (1.4).
(a) For each u ∈ S̄, there is a unique variational solution ψu ∈ hu+H1

0 (Ω(u))
to (1.2). Moreover,

ψu,1 := ψu|Ω1(u) ∈ H2(Ω1(u)) and ψu,2 := ψu|Ω2(u) ∈ H2(Ω2(u)),
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and ψu is a strong solution to the transmission problem (1.2).
(b) Given κ > 0, there is c(κ) > 0 such that ψu satisfies

‖ψu‖H1(Ω(u)) + ‖ψu,1‖H2(Ω1(u)) + ‖ψu,2‖H2(Ω2(u)) ≤ c(κ)

for every u ∈ S̄ with ‖u‖H2(D) ≤ κ.

The H2-regularity of the electrostatic potential ψu provided by Theo-
rem 1.1 is then the basis for deriving the existence of minimizers of the total
energy E. We shall look for minimizers with clamped boundary conditions;
that is, minimizers in the closed convex subset

S̄0 := {u ∈ H2(D) ∩ H1
0 (D) : u ≥ −H in D and ∂xu(±L) = 0}

of H2(D). We denote by ∂IS̄0
the subdifferential of the indicator function IS̄0

.
Our main result then reads:

Theorem 1.2. Assume a > 0 or �σ� < 0, and let (1.4) be satisfied. Then, the
total energy E has at least one minimizer in S̄0. Moreover, any minimizer
u∗ ∈ S̄0 of E in S̄0 with

E(u∗) = min
S̄0

E (1.6)

is an H2-weak solution to the variational inequality

β∂4
xu∗ − (τ + a‖∂xu∗‖2

L2(D))∂
2
xu∗ + ∂IS̄0

(u∗) � −g(u∗) in D ; (1.7)

that is,∫

D

{
β∂2

xu∗ ∂2
x(w − u∗) +

[
τ + a‖∂xu∗‖2

L2(D)

]
∂xu∗ ∂x(w − u∗)

}
dx

≥ −
∫

D

g(u∗)(w − u∗) dx

for all w ∈ S̄0. For u ∈ S̄0, the function g(u) ∈ L2(D) is given by

g(u) := − �σ�

2(1 + (∂xu(x))2)
(
∂xψu,2 + ∂xu∂zψu,2

)2(x, u(x))

− �σ�σ2

2σ1(1 + (∂xu(x))2)
(
∂xu∂xψu,2 − ∂zψu,2

)2(x, u(x))

+
σ2

2

∣∣∇ψu,2(x, u(x) + d)
∣∣2 .

(1.8)

Finally, if �σ� < 0, then u∗ ≤ 0 in D.

Even though the total energy E consists of two competing terms with
different signs, it is not difficult to see that it is H2-coercive if a > 0 in
(1.1b), see [4], and the existence of a minimizer for E in S̄0 follows directly.
When a = 0, the coercivity of E is no longer obvious without additional
assumptions. In fact, we are not able to prove directly that E is bounded
below and thus have to proceed differently. In this case, the coercivity of the
functional can be enforced by adding a penalty term which vanishes when
u is bounded, an idea already used in [2]. The minimizers of the penalized
energy functional on S̄0 then satisfy the Euler–Lagrange equation (1.7) with
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an additional term. The assumption �σ� < 0 now guarantees that g(u) ≥ 0 in D
according to (1.8) which, in turn, yields an a priori bound on the minimizers by
a comparison argument. This then implies that the minimizers of the penalized
energy actually minimize the total energy E. It is worth emphasizing that the
non-negative sign of g(u) — read off from the explicit formula (1.8) when
�σ� < 0 — is essential for this approach.

The main motivation of this research is thus the derivation of an explicit
formula for the electrostatic force g(u) as the (directional) derivative of the
electrostatic energy Ee(u). By definition of Ee(u), such a computation corre-
sponds to that of a shape derivative and thus follows the guidelines of classical
results [1,6,7]. In fact, a computation in the same spirit is performed in [4] for
a related MEMS model but with a flat transmission interface. As we shall see
in Sect. 2, the non-flat transmission interface Σ(u) in (1.2b) leads to additional
terms in the electrostatic force, making the computation of the latter notice-
ably more involved. We first establish in Sect. 2 differentiability properties of
the electrostatic potential ψu with respect to u which then ensure the Fréchet
differentiability of the electrostatic energy Ee on S0. The subsequent identifi-
cation of g(u) as the (directional) derivative of the electrostatic energy Ee(u)
is the main contribution of Sect. 2. It is worth already pointing out here that
the derivation of the explicit formula (1.8) of g(u) does not require the explicit
computation of the derivative of the electrostatic potential ψu with respect to
u. Once the formula (1.8) is established, the existence of minimizers of E in
S̄0 follows along the lines of [2] as described above.

As already pointed out, the electrostatic force g(u) has a sign if one
assumes that �σ� < 0; that is, if σ2 > σ1. For instance, this is a natural
assumption when the region between the two plates is vacuumed or filled with
air. We also point out that this assumption implies the monotonicity of the
electrostatic energy Ee as stated explicitly in Corollary 2.7.

Remark 1.3. The total energy E can also be minimized in S̄ leading then to
weak solutions to (1.7) with IS̄ instead of IS̄0

which satisfy pinned boundary
conditions u(±L) = ∂2

xu(±L) = 0 instead of the clamped boundary condi-
tions involved in S̄0. In this case, however, one has to be slightly more careful
when computing the shape derivative of the electrostatic energy Ee due to the
different constraints on the boundary.

2. Shape derivative of the electrostatic energy

The heart of the proof of Theorem 1.2 is the differentiability of the electrostatic
energy Ee and, in particular, the identification of g(u) as its derivative at
u ∈ S̄0. On a formal level, this derivative is computed in [3] (in a three-
dimensional setting). Here we provide a rigorous proof. Actually, we shall show
that the electrostatic energy Ee is Fréchet differentiable on

S0 := {u ∈ H2(D) ∩ H1
0 (D) : u > −H in D and ∂xu(±L) = 0} ,
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i.e., for points with empty coincidence set, while it admits a directional deriv-
ative at u ∈ S̄0 in the directions −u + S0. Here and in the following, S0 and
S̄0 are endowed with the H2(D)-topology. The precise result reads as follows:

Theorem 2.1. Assume (1.4). The electrostatic energy Ee : S0 → R is continu-
ously Fréchet differentiable with

∂uEe(u)[ϑ] =
∫

D

g(u)(x)ϑ(x) dx

for u ∈ S0 and ϑ ∈ H2(D) ∩ H1
0 (D), where g(u) is defined in (1.8). Moreover,

if u ∈ S̄0 and w ∈ S0, then

lim
t→0+

1
t

(
Ee(u + t(w − u)) − Ee(u)

)
=

∫

D

g(u)(x) (w − u)(x) dx .

The function g : S̄0 → Lp(D) is continuous for each p ∈ [1,∞).

The proof of Theorem 2.1 follows from Proposition 2.5 and Corollary 2.7
below. We will need the following result which is contained in [5].

Proposition 2.2. [5, Theorem 1.3, Proposition 3.3] Assume (1.4). Let u ∈ S̄0

and consider a bounded sequence (un)n≥1 in S̄0 such that

lim
n→∞ ‖un − u‖H1(D) = 0 .

Then, for any p ∈ [1,∞),

lim
n→∞

∥∥∇ψun,2(·, un) − ∇ψu,2(·, u)
∥∥

Lp(D,R2)
= 0 , (2.1a)

lim
n→∞

∥∥∇ψun,2(·, un + d) − ∇ψu,2(·, u + d)
∥∥

Lp(D,R2)
= 0 . (2.1b)

Moreover,

lim
n→∞ Ee(un) = Ee(u) . (2.2)

Finally, setting

M := d + max
{‖u‖L∞(D) , sup

n≥1
{‖un‖L∞(D)}

}
,

one has

lim
n→∞ ‖(ψun

− hun
) − (ψu − hu)‖H1

0 (D×(−H,M)) = 0 . (2.3)

The first step of the proof of Theorem 2.1 is to show that the electrostatic
energy Ee is Fréchet differentiable on S0. The next lemma is adapted from [1,
Theorem 5.3.2], see also [4, Lemma 4.1]. We include the proof for the reader’s
ease.

Lemma 2.3. Assume (1.4). Let u ∈ S0 be fixed and define, for v ∈ S0, the
transformation

Θu,v = (Θu,v,1,Θu,v,2) : Ω(u) → Ω(v)
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by

Θu,v,1(x, z) :=
(

x, z +
v(x) − u(x)
H + u(x)

(z + H)
)

, (x, z) ∈ Ω1(u) , (2.4a)

Θu,v,2(x, z) := (x, z + v(x) − u(x)) , (x, z) ∈ Ω2(u) . (2.4b)

Then there exists a neighborhood U of u in S0 such that the mapping

U → H1
0 (Ω(u)), v → ξv :=

(
ψv − hv

) ◦ Θu,v

is continuously differentiable, recalling that S0 and thus also U are endowed
with the H2(D)-topology.

Remark 2.4. Lemma 2.3 is only an intermediate step in the computation of
the Fréchet derivative of the electrostatic energy Ee. As we shall see later
in the proof of Proposition 2.5, the computation does not require an explicit
formula for the derivative of v → ξv. Moreover, we do not strive for optimal
assumptions (e.g., the topology of S0 can be weakened, as long as it is stronger
than that of W 1

∞(D)).

Proof of Lemma 2.3. The differentiability property relies on a classical
approach: we shall first identify a suitable C1-function

F : S0 × H1
0 (Ω(u)) → H−1(Ω(u))

which vanishes at (v, ξv) whenever v ∈ S0. We then show that the implicit
function theorem applies to F near (u, ξu).

To this end, set χv := ψv − hv for v ∈ S0. Owing to Theorem 1.1, the
function χv belongs to H1

0 (Ω(v)) and satisfies the integral identity∫

Ω(v)

σ∇χv · ∇θ d(x̄, z̄)=−
∫

Ω(v)

σ∇hv · ∇θ d(x̄, z̄) , θ ∈ H1
0 (Ω(v)), (2.5)

which we next shall write as integrals over Ω(u). To this end, we first note
that, due to Θu,u = id,

ξu = χu , ∇ξv = DΘT
u,v∇χv ◦ Θu,v , (2.6)

where

DΘu,v,1(x, z) =

⎛
⎜⎜⎝

1 0

(z + H)∂x

(
v − u

H + u

)
(x)

H + v(x)
H + u(x)

⎞
⎟⎟⎠ , (x, z) ∈ Ω1(u) ,

and

DΘu,v,2(x, z) =

⎛
⎝

1 0

∂x(v − u)(x) 1

⎞
⎠ , (x, z) ∈ Ω2(u) .

For φ ∈ H1
0 (Ω(u)) we set

φv := φ ◦ Θ−1
u,v ∈ H1

0 (Ω(v))

and note that

∇φv =
(
(DΘT

u,v)−1∇φ
) ◦ Θ−1

u,v .
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Performing the change of variables (x̄, z̄) = Θu,v(x, z) in (2.5) with θ = φv and
using (1.3) give

∫

Ω(u)

σ Jv(DΘu,v)−1(DΘT
u,v)−1∇ξv · ∇φ d(x, z)

= −
∫

Ω(u)

σ Jv (DΘu,v)−1∇hv ◦ Θu,v · ∇φ d(x, z) ,

(2.7)

where the Jacobian Jv := |det(DΘu,v)| is given by

Jv,1 =
H + v

H + u
in Ω1(u) , Jv,2 = 1 in Ω2(u) . (2.8)

Introducing the notations

A(v) := σ Jv (DΘu,v)−1(DΘT
u,v)−1

and

B(v) := div
(
σ Jv (DΘu,v)−1∇hv ◦ Θu,v

)
,

we define the function

F : S0 × H1
0 (Ω(u)) → H−1(Ω(u)) , (v, ξ) → −div

(
A(v)∇ξ

) − B(v)

and observe that (2.7) is equivalent to

F(v, ξv) = 0 , v ∈ S0 . (2.9)

We then shall use the implicit function theorem to show that ξv depends
smoothly on v. For that purpose, let us first show that F is Fréchet differen-
tiable in S0 × H1

0 (Ω(u)). Indeed, by (1.4), it is readily checked that

∇hv ◦ Θu,v(x, z) = 1Ω2(u)ζ
′(z − u(x) + 1

) (−∂xv(x)
1

)

is linear in v, so that its Fréchet derivative with respect to v is

∂v

(∇hv ◦ Θu,v

)
[ϑ](x, z) = 1Ω2(u)ζ

′(z − u(x) + 1
) (−∂xϑ(x)

0

)
(2.10)

for ϑ ∈ H2(D) ∩ H1
0 (D). Thus,

[
v → ∇hv ◦ Θu,v

] ∈ C1
(S0, L2(Ω(u),R2)

)
.

Moreover, v → Jv and v → (DΘu,v)−1 are continuously differentiable from S0

to L∞(Ω(u)) and L∞(Ω(u),R2×2), respectively, and we conclude that

v → σ Jv (DΘu,v)−1∇hv ◦ Θu,v

is continuously differentiable from S0 to L2(Ω(u),R2). Hence

B ∈ C1(S0,H
−1(Ω(u))).

The C1-smoothness of (v, ξ) → div(A(v)∇ξ) is proven as in [1, Theorem 5.3.2]
and we have thus established that

F ∈ C1
(S0 × H1

0 (Ω(u)),H−1(Ω(u))
)
.
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The Lax–Milgram theorem and the open mapping theorem imply that the
mapping

ω → ∂ξF(u, ξu)[ω] = −div(σ∇ω)

is an isomorphism from H1
0 (Ω(u)) to H−1(Ω(u)). Consequently, by the implicit

function theorem there is a neighborhood W of (u, ξu) in S0 × H1
0 (Ω(u)), a

neighborhood U of u in S0, and a function Ξ ∈ C1(U ,H1
0 (Ω(u))) with Ξ(u) =

ξu such that
(
(v, ξ) ∈ W with F(v, ξ) = 0

)
⇐⇒

(
v ∈ U and ξ = Ξ(v)

)
.

By (2.3), we may assume that (v, ξv) ∈ W for v ∈ U . Hence, ξv = Ξ(v) for
v ∈ U and the proof is complete. �

We next compute the Fréchet derivative of the electrostatic energy on S0

and thereby provide a proof of the first part of Theorem 2.1. This computation
follows the classical approach developed in [1,6,7] for shape derivatives and is
performed in a similar way in [4] for a geometry with a flat interface instead of
Σ(u). It is worth pointing out that the non-flat transmission interface consid-
ered herein leads to additional terms. The concise formula (1.8) that we derive
for the derivative g(u) of Ee(u) reveals the importance of these contributions
to the electrostatic force, as it involves terms that counteract the contributions
from the top of the elastic plate when �σ� > 0. As the identification of these
additional terms and the derivation of the concise formula (1.8) do not seem
to be straightforward, we give a detailed proof (see also Remark 2.6 below).

Proposition 2.5. Assume (1.4). The electrostatic energy Ee : S0 → R is con-
tinuously Fréchet differentiable with

∂uEe(u)[ϑ] =
∫

D

g(u)(x)ϑ(x) dx

for u ∈ S0 and ϑ ∈ H2(D) ∩ H1
0 (D), where g(u) is defined in (1.8).

Proof. The proof is quite technical and basically includes three steps. As a
starting point, we shall use Lemma 2.3 which guarantees the differentiabil-
ity of Ee and yields an abstract formula for its derivative, see (2.11) below.
Computing then this derivative explicitly, we first derive in (2.20) an expres-
sion involving only the trace of the gradient of ψu on the top of the elastic
plate and the jumps of σ and the partial derivatives of ψu on the interface.
Finally, we write the interface integrals in terms of ψu,2 only and thus obtain
the desired formula (1.8).

To be more precise, we fix u ∈ S0 and use the notation introduced
in Lemma 2.3. Recall that, according to Lemma 2.3, there is a neighborhood
U of u in S0 such that the mapping

v → ξv =
(
ψv − hv

) ◦ Θu,v

belongs to C1(U ,H1
0 (Ω(u))), the transformation Θu,v : Ω(u) → Ω(v) being

defined in (2.4). Now, for v ∈ U , we use (2.6), the relation χv = ψv − hv,
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and the change of variable (x̄, z̄) = Θu,v(x, z) in the integral defining Ee(v) to
obtain

Ee(v) = −1
2

∫

Ω(v)

σ|∇ψv|2 d(x̄, z̄) = −1
2

∫

Ω(u)

σ|j(v)|2Jv d(x, z) ,

where

j(v) := (DΘT
u,v)−1∇ξv + ∇hv ◦ Θu,v .

Owing to the differentiability of v → ξv in U , we deduce that the Fréchet
derivative of Ee at u applied to some ϑ ∈ H2(D) ∩ H1

0 (D) is given by

∂uEe(u)[ϑ] = ∂vEe(v)[ϑ]
∣∣
v=u

= −
∫

Ω(u)

σj(u) · (∂vj(v))[ϑ]
∣∣
v=u

Ju d(x, z)

− 1
2

∫

Ω(u)

σ|j(u)|2 (∂vJv)[ϑ]
∣∣
v=u

d(x, z) .

Taking the identity j(u) = ∇χu + ∇hu = ∇ψu into account, we infer from
(2.8) that

∂uEe(u)[ϑ] = −
∫

Ω(u)

σ∇ψu · (
∂vj(v)[ϑ]

∣∣
v=u

)
d(x, z)

− 1
2

∫

Ω1(u)

σ1|∇ψu,1|2 ϑ

H + u
d(x, z) .

(2.11)

We next use that Θu,u is the identity on Ω(u) and that ξu = χu to compute
from the definition of j(v) that

∂vj(v)[ϑ]
∣∣
v=u

= − ∂v(DΘT
u,v)[ϑ]

∣∣
v=u

∇χu + ∂v(∇ξv)[ϑ]
∣∣
v=u

+ ∂v(∇hv ◦ Θu,v)[ϑ]
∣∣
v=u

.
(2.12)

Now, χu,1 = ψu,1 in Ω1(u) due to (1.4), so that

− ∂v(DΘT
u,v)[ϑ]

∣∣
v=u

∇χu = −∂zψu∇
(

ϑ(z + H)
H + u

)
in Ω1(u) , (2.13)

while

− ∂v(DΘT
u,v)[ϑ]

∣∣
v=u

∇χu = −
(

∂zχu∂xϑ
0

)
in Ω2(u) . (2.14)

Also note that

∂v(∇ξv)[ϑ]
∣∣
v=u

= ∇(
∂vξv[ϑ]

∣∣
v=u

)
in Ω(u) . (2.15)

Consequently, gathering (2.11)–(2.15) and recalling (2.10) lead us to

∂uEe(u)[ϑ] = I0(u)[ϑ] + I1(u)[ϑ] + I2(u)[ϑ] , (2.16)
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where

I0(u)[ϑ] := −
∫

Ω(u)

σ ∇ψu · ∇(
∂vξv[ϑ]

∣∣
v=u

)
d(x, z) ,

I1(u)[ϑ] :=
∫

Ω1(u)

σ1 ∂zψu,1 ∇ψu,1 · ∇
(

ϑ(z + H)
H + u

)
d(x, z)

−1
2

∫

Ω1(u)

σ1 |∇ψu,1|2 ϑ

H + u
d(x, z) ,

and

I2(u)[ϑ] :=
∫

Ω2(u)

σ2 ∂xψu,2 ζ ′(z − u + 1
)
∂xϑ d(x, z)

+
∫

Ω2(u)

σ2 ∂xψu,2 ∂zχu,2 ∂xϑ d(x, z) .

We are left with simplifying these three integrals and begin with I0(u)[ϑ]. We
use Gauß’ theorem and (1.2a) to get

I0(u)[ϑ] = −
∫

∂Ω(u)

(
∂vξv[ϑ]

∣∣
v=u

)
σ∇ψu · n∂Ω(u) dS

−
∫

Σ(u)

�∂vξv[ϑ]
∣∣
v=u

σ∇ψu� · nΣ(u) dS .

Now, recall that ∂vξv[ϑ]
∣∣
v=u

belongs to H1
0 (Ω(u)) according to Lemma 2.3.

On the one hand, this entails that ∂vξv[ϑ]
∣∣
v=u

vanishes on ∂Ω(u), so that the
first integral on the right-hand side of the above identity is zero. On the other
hand, the H1-regularity of ∂vξv[ϑ]

∣∣
v=u

also implies that �∂vξv[ϑ]
∣∣
v=u

� = 0 on
Σ(u), so that

�∂vξv[ϑ]
∣∣
v=u

σ∇ψu� · n∂Σ(u) = ∂vξv[ϑ]
∣∣
v=u

�σ∇ψu� · nΣ(u) = 0 on Σ(u)

due to (1.2b). Therefore,

I0(u)[ϑ] = 0 . (2.17)

We next deal with I1(u)[ϑ]. Since σ1Δψu,1 = div(σ∇ψu) = 0 in Ω1(u) by
(1.2a), it follows from Gauß’ theorem that

I1(u)[ϑ] =
∫

Ω1(u)

σ1 ∂zψu,1 div
((

ϑ(z + H)
H + u

)
∇ψu,1

)
d(x, z)

− 1
2

∫

Ω1(u)

σ1 |∇ψu,1|2 ϑ

H + u
d(x, z)

=
∫

∂Ω1(u)

σ1
ϑ(z + H)
H + u

∂zψu,1∇ψu,1 · n∂Ω1(u) dS

−
∫

Ω1(u)

σ1 ∇ψu,1 · ∇ (∂zψu,1 )
ϑ(z + H)
H + u

d(x, z)

− 1
2

∫

Ω1(u)

σ1 |∇ψu,1|2 ϑ

H + u
d(x, z) .
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Recalling that ϑ ∈ H1
0 (D) and noticing that

∇ψu,1 · ∇ (∂zψu,1 ) = ∂z

(|∇ψu,1|2)/2 ,

we further obtain

I1(u)[ϑ] =
∫

D

σ1 ∂zψu,1(x, u(x))
( − ∂xu∂xψu,1 + ∂zψu,1

)
(x, u(x))ϑ(x) dx

− 1
2

∫

D

σ1 |∇ψu,1(x, u(x))|2ϑ(x) dx .

Hence,

I1(u)[ϑ] = − 1
2

∫

D

σ1

(|∂xψu,1|2 − |∂zψu,1|2
)
(x, u(x))ϑ(x) dx

−
∫

D

σ1 ∂xu(x)
(
∂xψu,1∂zψu,1

)
(x, u(x))ϑ(x) dx .

(2.18)

Finally, using (1.4a), χu = ψu − hu, and ϑ ∈ H1
0 (D), it follows from Green’s

formula that

I2(u)[ϑ] =
∫

Ω2(u)

σ2 ∂xψu,2∂zψu,2∂xϑ d(x, z)

= −
∫

D

σ2

(
∂xψu,2∂zψu,2

)
(x, u(x) + d)∂xu(x) dx

+
∫

D

σ2

(
∂xψu,2∂zψu,2

)
(x, u(x))∂xu(x) dx

−
∫

Ω2(u)

σ2 ∂x

(
∂xψu,2∂zψu,2

)
ϑ d(x, z) .

Owing to (1.2a), we have σ2∂
2
xψu,2 = −σ2∂

2
zψu,2 in Ω2(u) from which we

deduce that
∫

Ω2(u)

σ2 ∂x

(
∂xψu,2∂zψu,2

)
ϑ d(x, z)

=
∫

Ω2(u)

σ2

(
∂2

xψu,2∂zψu,2 + ∂xψu,2∂x∂zψu,2

)
ϑ d(x, z)

=
∫

Ω2(u)

σ2

( − ∂zψu,2∂
2
zψu,2 + ∂xψu,2∂x∂zψu,2

)
ϑ d(x, z)

=
1
2

∫

Ω2(u)

σ2 ∂z

(|∂xψu,2|2 − |∂zψu,2|2
)
ϑ d(x, z)

=
1
2

∫

D

σ2

(|∂xψu,2|2 − |∂zψu,2|2
)
(x, u(x) + d)ϑ(x) dx

− 1
2

∫

D

σ2

(|∂xψu,2|2 − |∂zψu,2|2
)
(x, u(x))ϑ(x) dx .
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Consequently,

I2(u)[ϑ] = −
∫

D

σ2

(
∂xψu,2∂zψu,2

)
(x, u(x) + d)∂xu(x) dx

+
∫

D

σ2

(
∂xψu,2∂zψu,2

)
(x, u(x))∂xu(x) dx

− 1
2

∫

D

σ2

(|∂xψu,2|2 − |∂zψu,2|2
)
(x, u(x) + d)ϑ(x) dx

+
1
2

∫

D

σ2

(|∂xψu,2|2 − |∂zψu,2|2
)
(x, u(x))ϑ(x) dx .

We finally note that

∂xψu,2(x, u(x) + d)) = −∂xu(x)∂zψu,2(x, u(x) + d) ,

since ψu,2(x, u(x) + d) = V owing to (1.2c) and (1.4b). This identity allows us
to simplify further the formula for I2(u)[ϑ], so that we end up with

I2(u)[ϑ] =
1
2

∫

D

σ2 |∇ψu,2(x, u(x) + d)|2 dx

+
∫

D

σ2

(
∂xψu,2∂zψu,2

)
(x, u(x))∂xu(x) dx

+
1
2

∫

D

σ2

(|∂xψu,2|2 − |∂zψu,2|2
)
(x, u(x))ϑ(x) dx .

(2.19)

Collecting (2.16), (2.17), (2.18), and (2.19) gives

∂uEe(u)[ϑ] = − 1
2

∫

D

�σ(∂xψu)2 − σ(∂zψu)2�(x, u(x))ϑ(x) dx

−
∫

D

∂xu(x) �σ∂xψu∂zψu�(x, u(x))ϑ(x) dx

+
1
2

∫

D

σ2

∣∣∇ψu,2(x, u(x) + d)
∣∣2 ϑ(x) dx .

(2.20)

Finally, we shall write (2.20) only in terms of ψu,2. To this end, we set

Fu := ∂xψu + ∂xu∂zψu , Gu := −∂xu∂xψu + ∂zψu , (2.21)

and observe that differentiating the transmission condition �ψu� = 0 on Σ(u),
along with the second transmission condition in (1.2b), ensures that

�Fu� = �σGu� = 0 on Σ(u) .

These properties in turn imply that

�σF 2
u�=�σ�F 2

u,2 , �σFuGu�=0 , �σG2
u�=�

1
σ

�σ2
2G2

u,2 on Σ(u) . (2.22)

Guided by (2.22), we next express the jump terms in (2.20) using Fu and Gu.
Since
[
1 + (∂xu)2

]
∂xψu = Fu − Gu∂xu and

[
1 + (∂xu)2

]
∂zψu = Fu∂xu + Gu ,
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we compute
[
1 + (∂xu)2

]2 [
(∂xψu)2 − (∂zψu)2 + 2∂xu∂xψu∂zψu

]

= (Fu − Gu∂xu)2 − (Fu∂xu + Gu)2 + 2∂xu(Fu − Gu∂xu)(Fu∂xu + Gu)

=
[
1 + (∂xu)2

] (
F 2

u − 2FuGu∂xu − G2
u

)
.

Therefore, by (2.22),
[
1 + (∂xu)2

]
�σ(∂xψu)2 − σ(∂zψu)2 + 2σ∂xu∂xψu∂zψu�

= �σF 2
u − 2σFuGu∂xu − σG2

u� = �σ�F 2
u,2 − �

1
σ

�σ2
2G2

u,2

= �σ�F 2
u,2 + �σ�

σ2

σ1
G2

u,2 .

Consequently, plugging this formula into (2.20) and recalling (2.21) yield

∂uEe(u)[ϑ]

= −�σ�

2

∫

D

1
1 + (∂xu(x))2

(
∂xψu,2 + ∂xu(x)∂zψu,2

)2(x, u(x))ϑ(x) dx

− �σ�σ2

2σ1

∫

D

1
1 + (∂xu(x))2

(
∂xu(x)∂xψu,2 − ∂zψu,2

)2(x, u(x))ϑ(x) dx

+
1
2

∫

D

σ2

∣∣∇ψu,2(x, u(x) + d)
∣∣2 ϑ(x) dx ;

that is,

∂uEe(u)[ϑ] =
∫

D

g(u)(x)ϑ(x) dx

for u ∈ S0 and ϑ ∈ H2(D) ∩ H1
0 (D) with g(u) being defined in (1.8). It then

readily follows from (2.1) that

∂uEe : S0 → L(
H2(D) ∩ H1

0 (D),R
)

is continuous. �

Remark 2.6. Compared to the proof of [4, Proposition 4.2], the main difference
in the proof of Proposition 2.5 is the term I1(u) stemming from the non-
flatness of the interface Σ(u). Additionally, even though the terms I0(u) and
I2(u) already appear in the flat geometry considered in [4, Proposition 4.2],
they give herein different contributions to g(u) due to the specific choice (1.4)
of the boundary values (1.2c).

The final step of the proof of Theorem 2.1 is to show that the electrostatic
energy Ee admits directional derivatives in the directions −u + S0.

Corollary 2.7. Assume (1.4). Let u0 ∈ S̄0 and u1 ∈ S0. Then

lim
t→0+

1
t

[
Ee(u0 + t(u1 − u0)) − Ee(u0)

]
=

∫

D

g(u0)(x) (u1 − u0)(x) dx .

Moreover, the function g : S̄0 → Lp(D) is continuous for each p ∈ [1,∞).
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Proof. The stated continuity of g is a straightforward consequence of (2.1).
Next, given u0 ∈ S̄0 and u1 ∈ S0, we set

us := u0 + s(u1 − u0) = (1 − s)u0 + su1 ∈ S0 , s ∈ (0, 1] .

Since us ∈ S0 for s ∈ (0, 1], we deduce from Proposition 2.5 that

d
ds

Ee(us) =
∫

D

g(us)(x) (u1 − u0)(x) dx , s ∈ (0, 1] . (2.23)

Therefore, letting s → 0, the continuity of g entails

lim
s→0+

d
ds

Ee(us) =
∫

D

g(u0)(x) (u1 − u0)(x) dx . (2.24)

Now (2.2) guarantees that Ee(us) → Ee(u0) as s → 0, so that

Ee(ut) − Ee(u0) =
∫ t

0

d
ds

Ee(us) ds , t ∈ (0, 1] , (2.25)

and we conclude from (2.24) that

lim
t→0+

1
t

(
Ee(ut) − Ee(u0)

)
= lim

t→0+

1
t

∫ t

0

d
ds

Ee(us) ds

=
∫

D

g(u0)(x) (u1 − u0)(x) dx

as claimed. �

If �σ� < 0, then an obvious consequence of (1.8) is that g is non-negative
on S̄0. This yields the monotonicity of the electrostatic energy Ee.

Corollary 2.8. Assume �σ� < 0 and (1.4). If u0 ∈ S̄0 and u1 ∈ S0 are such
that u0 ≤ u1 in D, then Ee(u0) ≤ Ee(u1).

Proof. The assumption �σ� < 0 implies that g(us) ≥ 0 for s ∈ (0, 1] according
to (1.8), where us = (1 − s)u0 + su1 as in the proof of Corollary 2.7. Hence,
(2.23) and (2.25) with t = 1 imply the assertion. �

3. Proof of Theorem 1.2

The proof of Theorem 1.2 now follows from Theorem 2.1 as in [2]. Indeed,
Theorem 2.1 guarantees that any minimizer of the total energy E on S̄0 satisfies
the Euler–Lagrange equation (1.7). In case that a > 0, the total energy E is
coercive and thus the existence of a minimizer of E in S̄0 can be shown as
in [2, Section 7]. In the more complex case a = 0, the total energy E need
not be coercive. But, as pointed out in the introduction, one may enforce
its coercivity by adding a penalizing term and proceed along the lines of [2,
Section 6], recalling that the assumption �σ� < 0 guarantees that g(u) ≥ 0 in
D, which is essential in this case (see, in particular, [2, Equation (6.4)]).
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Université de Toulouse, CNRS
31062 Toulouse Cedex 9
France
e-mail: laurenco@math.univ-toulouse.fr

Christoph Walker
Institut für Angewandte Mathematik
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover
Germany
e-mail: walker@ifam.uni-hannover.de

Received: 18 February 2022.

Accepted: 25 September 2022.


	Stationary states to a free boundary transmission problem for an electrostatically actuated plate
	Abstract
	1. Introduction
	2. Shape derivative of the electrostatic energy
	3. Proof of Theorem 1.2
	Acknowledgements
	References




