
This work attempts to predict the long-term outcome of total hip 
arthroplasty based on available patient-specific information and 
possible installation positions of the prosthesis. For this purpose, a 
holistic modeling approach for the numerical simulation of osseoin-
tegration and long-term stability of endoprostheses, including 
possible prosthesis positions, is developed. In addition, new, 
efficient, and reliable methods for the numerical description of adap-
tive bone remodeling and osseointegration are proposed: 
The adaptive bone remodeling is described as a geometric-linear, 
material-nonlinear finite element model, following thermodynamical-
ly consistent material modeling guidelines. The resulting constitutive 
equations are expanded to describe osseointegration and transfer-
red into a contact interface between bone and prosthesis. Finally, 
the results are projected to an imaging format that is easier to 
interpret for medical professionals, using a newly developed simula-
tion for X-ray images. 
The inclusion of possible prosthesis positions spans an infinite-di-
mensional event space. Therefore, the model is reduced to a 
finite-dimensional surrogate model sampled with an adaptive 
sparse-grid collocation method. 
Without clinical validation, reliable statements cannot be made, and 
therefore the numerical examples given in this thesis can be regar-
ded as proof of correct implementation and feasibility studies. This 
dissertation thus provides an answer to how much computational 
effort is required to provide a real digital decision aid in orthopedic 
surgery.
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Zusammenfassung

Computerassistierte Planung und Durchführung orthopädischer Eingriffe konnten sich trotz un-
bestreitbarer Vorteile wie die übersichtlichere Visualisierung des Operationsbereiches und die
damit einhergehende bessere Planbarkeit sowie die durch Roboterassistenz gegebene Möglichkeit
der präziseren Durchführung bis zum heutigen Tage nicht vollends durchsetzen. Dies liegt zum
einen in den hohen Kosten begründet, zum anderen ist es fraglich, ob die meist längere Operati-
onszeit und das damit verbundene höhere Infektionsrisiko durch ein besseres Operationsresultat
und dem damit einhergehenden kleineren Revisionsrisiko aufgewogen wird.
Ein weiterer Grund für die mangelnde Akzeptanz dieser Methoden ist, dass diese meist rein
visueller Natur sind. Das bedeutet, der Operateur bekommt besser aufgelöste Informationen,
auf deren Grundlage er seine Operationstaktik begründen kann, sowie die Möglichkeit, diese
genauer umzusetzen; eine Entscheidungshilfe bieten solche Systeme meist nicht oder in bisher
nur unzureichender Form. Das Resultat ist, dass das Ergebnis der Operation ebenso wie vor
der Einführung digitaler Hilfssysteme maßgeblich von der Erfahrung des Operateurs abhängig
bleibt.
In dieser Arbeit wird deshalb versucht, am Beispiel der Hüftendoprothetik auf Grundlage
verfügbarer patientenindividueller Informationen sowie möglicher Einbaupositionen der Pro-
these eine Vorhersage über das Langzeitresultat der Operation zu treffen. Dazu wird ein ganz-
heitliches Modellierungskonzept zur numerischen Simulation der Osseointegration und Lang-
zeitstabilität von Endoprothesen unter Einbeziehung möglicher Prothesenpositionen entwickelt.
Hierfür werden neue, effiziente und verlässliche Methoden zur numerischen Beschreibung des
adaptiven Knochenumbaus und der Osseointegration vorgeschlagen:
Der adaptive Knochenumbau wird als geometrisch-lineares, materiell-nicht-lineares Finite-Ele-
ment-Modell unter Beachtung der Richtlinien für thermodynamisch konsistente Materialm-
odellierung beschrieben. Die so erhaltenen Konstitutivgleichungen werden zur Beschreibung
der Osseointegration erweitert und in ein Kontaktinterface zwischen Knochen und Prothese
übertragen. Die Ergebnisse werden mithilfe einer neu entwickelten Simulation für Röntgenbilder
in ein Format übertragen, welches für medizinisches Personal leichter zu interpretieren ist.
Das Einbeziehen möglicher Prothesenpositionen spannt einen unendlich-dimensionalen Ereig-
nisraum auf. Deshalb wird das Modell mithilfe von Dimensionsreduktion in ein endlich-dimen-
sionales Ersatzmodell überführt, welches anschließend mit einer adaptiven Kollokationsmethode
für dünne Gitter abgetastet wird.
Jede einzelne der hier vorgestellten Methoden sowie das gesamte Modellierungskonzept wurde
im Hinblick darauf entwickelt, dass diese der klinischen Validierung leicht zugänglich sein sollen.
Ohne klinische Validierung können verlässliche Aussagen nicht getroffen werden, weshalb die
in dieser Arbeit angeführten numerischen Beispiele als Beweis der korrekten Implementierung
beziehungsweise als Machbarkeitsstudie angesehen werden können. Diese Dissertation gibt also
eine Antwort auf die Frage, wie viel numerischer Aufwand betrieben werden muss, um für einen
orthopädischen Eingriff eine echte digitale Entscheidungshilfe bereitzustellen.
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Abstract

To this day, computer-aided orthopedic surgery has not been able to fully establish itself in
clinical routine, despite obvious advantages, such as digital visualizations of the operational
field and the resulting better planning, as well as more precise execution provided by robot as-
sistance. On the one hand, this is due to the higher costs; on the other hand, it is questionable
whether the usually longer operation time and the associated higher risk of infection will be
outweighed by a better operation result and the associated lower risk of revision.
Another reason for the lack of acceptance of these methods is that they are highly visual in
nature. This means that the surgeon receives better-resolved information based on which he
can justify his surgical tactics, as well as the possibility of implementing them more precisely,
but such systems usually do not offer a decision aid or, if they do, only to an insufficient ex-
tent. This results in a major dependency of the outcome of the operation, just as before the
introduction of digital auxiliary systems, on the surgeon’s experience.
Therefore, this work attempts to predict the long-term outcome of the operation using the
example of total hip arthroplasty based on available patient-specific information and possible
installation positions of the prosthesis. For this purpose, a holistic modeling approach for the
numerical simulation of osseointegration and long-term stability of endoprostheses, including
possible prosthesis positions, is developed. In addition, new, efficient and reliable methods for
the numerical description of adaptive bone remodeling and osseointegration are proposed:
The adaptive bone remodeling is described as a geometric-linear, material-nonlinear finite el-
ement model, following thermodynamically consistent material modeling guidelines. The re-
sulting constitutive equations are expanded to describe osseointegration and transferred into a
contact interface between bone and prosthesis. Using a newly developed simulation for X-ray
images, the results are projected to an imaging format that is easier to interpret for medical
professionals.
The inclusion of possible prosthesis positions spans an infinite-dimensional event space. There-
fore, the model is reduced to a finite-dimensional surrogate model sampled with an adaptive
sparse-grid collocation method.
Each of the methods presented here and the entire modeling concept have been developed with
regard to them being accessible for clinical validation. Without clinical validation, reliable
statements cannot be made, and therefore the numerical examples given in this thesis can be
regarded as proof of correct implementation and feasibility studies. This dissertation thus pro-
vides an answer to the question of how much computational effort is required to provide a real
digital decision aid in orthopedic surgery.
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Chapter 1

Introduction

This work addresses the numerical modeling of adaptation phenomena in biomechanical tissue,
or more precisely, the ingrowth of bone substance into implanted hip prostheses and the sub-
sequent remodeling of bone structure within the femur as a consequence of predefined patients
individual characteristics, altered internal physiological conditions, and different prosthesis po-
sitions. This ultimately results in a comprehensive modeling approach for predicting change in
bone mass following a hip replacement, which could be used to design a surgical guidance tool.

1.1 Motivation

Hip replacement is by far the most common of all orthopedic surgeries. In the year 2015, a total
of 1.8 million hip replacement surgeries were performed worldwide. Projective studies suggest
that there will be an increased demand for hip arthroplasty with presumably up to 2.8 million
surgeries in 2050 [Pabinger et al., 2018]. Albeit also being one of the most successful orthopedic
procedures performed nowadays [Gwam et al., 2017], with stated revision rates from 5 − 10%
within five years [Labek et al., 2011, Kandala et al., 2015, Bayliss et al., 2017], preliminary
failure of hip prostheses amounts to great numbers with costs for revisions of 3.8 billion U.S.
dollars in 2015 in the United States of America alone [Rajaee et al., 2018].
The age group with the fastest growth rate are persons aged 45-64 years [Chidambaram and
Cobb, 2009, Rajaee et al., 2018], which in the medium-term will create a significant number
of individuals outliving the expected lifetime of their prostheses by far [Schreurs and Hannink,
2017]. The increased risk of revision after a first prosthesis had been replaced due to failure
[Ong et al., 2010] renders high-durable hip prostheses even more important.
Although surgical techniques have improved, the experience of surgeons and their proper plan-
ning of prostheses position remains a crucial factor in successful hip arthroplasty [Zenk et al.,
2014, Shaikh, 2018, Jolbäck et al., 2018]. While computer-aided surgery was shown to increase
the accuracy of the mounting position of prostheses [Chang et al., 2017], the efficient applica-
tion thereof is questionable, and to this day, computer-aided systems are not prevalent in hip
replacement surgery [Zagra, 2017].
For the surgeon to exploit the increased accuracy in the mounting position, two different con-
ditions have to be fulfilled: (1) patient individual characteristics like geometry, age, bone
condition, and weight would have to be included in the surgical planning in addition to the
prosthesis position, all with an accuracy in the same order of magnitude and (2) the planning
tool must be able to create and evaluate changes in the prosthesis position without additional
modeling effort. Consequently, the need for a surgical guidance tool can be deduced, which
predicts the secondary and long-term stability depending on the parameters mentioned above.
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1.2 Problem description

Bone remodeling, bone growth, and bone healing are highly complex phenomena for the de-
scription of which different relevant length scales with associated dominant reaction processes
have to be identified first. This includes, in descending order of length scale, mechanical, bio-
logical, and chemical processes as well as processes of physical chemistry at the molecular level,
all of which are ongoing research topics in the scientific community, and some of these processes
are not fully understood yet [Sabet et al., 2016].
Whilst not being impossible, the latter at least aggravates a bottom-up modeling approach,
starting from the micro- or nanoscale and its efficient numerical treatment. This could have
potentially resulted in the impracticability of the numerical description of bone growth pro-
cesses if it had not been shown in the past that even phenomenological models based only on
macroscopic observation lead to simulation results which were in good agreement with clinical
studies [Huiskes, 1993]. It can be noted that even these macroscopic observations cannot be
made to any degree of accuracy in vivio since they have to be measured indirectly from X-ray
or CT scan. However, insights gained from these models led to a better understanding of the
preliminary failure of hip prosthesis, such as aseptic loosening caused by stress-shielding [Inaba
et al., 2016].
From this, it can be stated that one objective of this thesis is not to describe bone growth
processes following hip surgery with the help of the most in-detail model possible, but rather to
create a model which takes readily available patient individual data into account and provides
a result of an expected bone-mass density distribution in which each input parameter has a rel-
ative error contribution in the same order of magnitude while being computational efficient at
the same time. As a result, the presented framework should be applicable to address individual
patient issues, like a patient-specific optimal prosthesis position.

1.3 State of the art

Computer-aided surgery is a widespread topic in the scientific community, and there are plenty
of approaches trying to provide guidance in surgical planning. However, most of these ap-
proaches are purely visual in nature and mostly do not include any information about the
biomechanical compatibility of the planned surgery.
First attempts of patient individual generation of finite element models from CT-data were
provided by, amongst others, Keyak et al. [1990], Merz et al. [1991], Kang et al. [1993], or Vice-
conti et al. [1998a]; however, at this point, without any prospect of being integrated into clinical
workflow. Only O’Toole III et al. [1995] carried out a first attempt in improving patient-specific
preoperative planning by the use of two-dimensional models to analyze the altered stress distri-
bution due to hip arthroplasty. A significant drawback of this early approach is the complexity
of the application that made configuration, operation, and evaluation only possible by experts
in numerical mechanics. A more user-friendly approach was stated in Lattanzi et al. [2002],
where user-interface and visualization were designed along the lines of already established med-
ical applications like radiographic projection software. This approach was found to improve the
accuracy of preoperative planning [Viceconti et al., 2003], and even a first attempt incorporating
the prediction of subject-specific primal stability was made [Reggiani et al., 2007]. Independent
of the latter, a similar approach was stated in [Bah et al., 2011], by which different prosthesis
positions can be generated through mesh-morphing, and subsequently, micro-motions between
prosthesis and bone are used as an indicator for primal stability. Lutz [2011] was the first to
provide a more comprehensive model by investigating both secondary and long-term stability
in a joint approach. Concerning preoperative planning, a drawback here was that changes in
individual patient characteristics are combined with great modeling effort.
As mentioned before, there are plenty of purely geometrical preoperative planning approaches,
such as Davila et al. [2006] or Steinberg et al. [2010], where radiographic images combined with
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CAD-models are used to improve preoperative planning. In Palit et al. [2019] a two-dimensional
representation of the hip movement is stated, and thus an attempt is made to establish a rela-
tionship of the acetabular cup position and different failure modes of hip prostheses.
In Dick et al. [2008] and Dick et al. [2009] advanced three-dimensional visualization techniques
are used to visualize the stress tensor field before and after hip replacement under the same
loading condition in order to improve prostheses positioning.
In conclusion, it can be stated that a holistic approach in preoperative planning, which indicates
the biomechanical compatibility of different prosthesis positions that is secondary and long-term
stability, depending on available patient data and physical admissible prosthesis positions, is
still missing.

1.4 Aims and objectives

The objective of this thesis is to provide a comprehensive modeling approach in the prediction of
secondary and long-term stability in total hip arthroplasty, including different patient individual
characteristics as well as all possible protheses position within a physical admissible range
presuming primary stability is achieved during the surgery. This will be done with the aim
of moving one step closer to the genuinely beneficial introduction of digital tools into the
operational planning process.
Within this thesis, it can be distinguished between two different biomechanical processes that
are osseointegration and bone remodeling, resulting in indicators for secondary and long-term
stability, respectively, of implanted hip prostheses, which will be modeled in close analogy but
still as separate processes. The tool of choice will be the finite element method because its
application is tried and tested. Most methods and ideas used throughout this thesis were
originally formulated using finite elements. Another important aspect here was the robust
and efficient modeling of these biomechanical processes since they are subject to model order
reduction, a concept introduced at a later stage.
The results will be transferred to a medical imaging format to be readily understandable for
medical professionals. To this end, a new approach in virtual X-ray imaging will be proposed,
operating directly onto finite element results, respecting element formulation of higher-order.
Another advantage of this approach is the compression of the result format from complex three-
dimensional finite element post-processing results to only two-dimensional radiographic images.
Including all possible prosthesis positions, this problem is rendered computationally unfeasible.
As already mentioned, to be computable, a surrogate model by hands of model order reduction
has to be introduced. A simple discrete surrogate model using the response surface methodology
will be sufficient. This approach was chosen because of its general applicability and its inherent
interpolation property.
Concluding, it can be noted that all concepts used throughout this thesis should be constructed
modularly, that is independent of each other, to be exchangeable in case a better solution for
any subproblem in terms of accuracy, robustness, or efficiency is available, and in addition, to
be readily a subject to clinical validation.

1.5 Structure of this thesis

Chapter 2 should give a brief introduction to the biomechanical foundations and processes.
In this, the objective is not to explain all facts and figures comprehensively, since that is
better done by specialists, but rather to introduce all necessary terms and concepts which are
covered in this thesis. In chapter 3, the continuum mechanic fundamentals are outlined first
to introduce a notation, which will be used throughout this thesis. As a next step, the balance
laws within the framework of open thermodynamic systems are introduced, which will serve
as a basis for consistent thermodynamic modeling. Concluding this chapter, a constitutive
theory for bone remodeling is established. In chapter 4, the finite element approach used here



16 CHAPTER 1. INTRODUCTION

is introduced, which will serve as a basis for consistent linearizations and the incorporation
of the constitutive relations and material responses into the global Newton-Raphson scheme.
The automatic modeling approach is introduced in chapter 5, followed by the virtual X-ray
imaging approach in chapter 6. Virtual X-ray imaging is used to facilitate the results and
for the results to be comparable with DEXA images from clinical studies. In chapter 7 and
chapter 8, bone remodeling and the numerical simulation of osseointegration are described.
While the former is modeled as a finite element material model, the latter is described by a
node-to-node contact interface. Both methods are developed with great care, especially the
consistent thermodynamic modeling and the consistent incorporation into the global Newton-
Raphson scheme. Proof of the functionality of the methods is given by numerical examples.
In chapter 9, the theory for the adaptive sparse-grid collocation method is re-stated, and
a numerical example is provided to verify the implementation. In chapter 10, the overall
modeling approach for the prediction of biomechanical compatibility in total hip arthroplasty
is stated. Hereby, a fully abstract model is defined first to derive a reduced model thereof. In
chapter 11, the function of the modeling approach is demonstrated by two numerical examples.
Finally, chapter 12 concludes the presented work.



Chapter 2

Biomechanical foundations

In the following chapter, biomechanical foundations required to describe a hip replacement
surgery are briefly aggregated. The following summary does not claim completeness.

2.1 Anatomy of hip region

The term hip region refers to an anatomical region consisting out of hip bone and femur. The
hip bone (see figure 2.1) consists of three parts: ilium, ischium, and pubis. While separated at
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Figure 2.1: Human pelvis [based upon: c

Fred the Oyster, 2014]: 1. Sacrum, 2. Il-
ium, 3. Ischium, 4. Pubis, 5. Acetabulum,
6. Pubic symphysis, 7. Coccyx

Figure 2.2: Femur and patella [c Open-
Stax College, 2013]

birth, these three parts will have fused to one region as an adult. The left and the right hip
bone together with pubic symphysis, sacrum, and coccyx form the pelvis.
The femur or thigh bone (see figure 2.2) is the longest bone in human body and can be divided

17
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in upper part, body, and lower part. The upper part consists of head, neck, greater trochanter,
and lesser trochanter. The body or so-called shaft of the femur is a long, slender, and almost
cylindrical bone. Part of it is the linea apera, which gives attachment to the preterm muscula-
ture (adductors). The lower femur consists out of two parts: the medial condyle and the lateral
condyle which together forms one part of the knee joint.
The hip joint is formed by the rounded head of the femur and a concave surface of the pelvis,
the so-called acetabulum. The acetabulum itself is shaped by parts of the ilium, ischium, and
pubis. A comprehensive description of the anatomy of the hip region can be found, for example,
in Netter et al. [1989] or Byrd [2012].

2.2 Hip replacement

Ultima ratio treatment for a painful hip is a hip replacement surgery. Hip replacement surg-
eries can be roughly separated into total hip arthroplasty (THA), where both parts of the hip
joint, that is, the femoral head and acetabulum, are replaced by prosthetic implants and hemi-
arthroplasty, where in general, only the femoral head is replaced. The main reason for hip
replacement is a painful hip due to osteoarthritis, a joint disease where the cartilage of the
hip joint is worn out. An illustration of a hip with osteoarthritis can be found in figure 2.3.
There is a variety of causes for osteoarthritis, including, for example, obesity, joint injury, or

Figure 2.3: Left picture: healty hip; right picture: hip with osteoarthritis [c OpenStax, 2016]

misalignment [Felson, 1988]. Conservative treatment of a painful hip is not yet possible apart
from preventive measures to reduce risk factors such as weight or pain [Lühmann et al., 2000].
In hip replacement we can further subdivide treatment by fixation of the implant in cemented
and uncemented hip replacement surgery, neglecting hybrid approaches here. Which method
is superior is still an ongoing topic in medical research [Abdulkarim et al., 2013], but it can be
stated that cemented implants were mostly revised due to aseptic loosening, while the major
causes for revision in uncemented implants were infection and dislocation [Abdulkarim et al.,
2013, Tyson et al., 2019]. Furthermore, it can be stated that cemented hip prostheses are more
likely to outperform uncemented prostheses in elderly patients (>60 years). In contrast, the
opposite seems to be true for younger patients [Zhang et al., 2017]. In figure 2.4 an X-ray
picture of the hip region after THA with an uncemented prosthesis can be seen. In THA,
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Figure 2.4: X-ray of hip region after THA [c Monfils, 2011]

it can be distinguished between primary stability, which should be achieved immediately after
surgery, secondary stability, which is usually established in a period of several weeks or months,
and long-term stability, which determines the overall durability of the prosthesis. In cemented
hip prostheses, primary and secondary stability is achieved collectively when the cement has
hardened. In uncemented hip prostheses, primary stability is achieved through a press-fit of the
prosthesis within the femur, which has to be established during surgery. Secondary stability is
achieved through osseointegration, a process where bone substance grows into the roughened
surface of the prosthesis. In order for this to proceed properly, primary stability is required
[Parithimarkalaignan and Padmanabhan, 2013]. The process of osseointegration is discussed
briefly in section 2.4.
The overall objective in most THAs performed is to retain physiological conditions within the
hip region despite the presence of the implanted prosthesis. An important aspect here is pros-
thesis selection and positioning, which can, for example, directly affect the angle of the femoral
head and acetabulum. Any change in that angle will result in a shift of the femoral offset and
therefore results in an adaption of hip joint reaction forces [Van Houcke et al., 2017]. The latter
and the prosthesis itself, which is much stiffer than the surrounding bone, can reduce long-term
stability significantly since the bone is subject to bone remodeling.

2.3 Biomechanics of bone

Bone can be represented as a calcified composite tissue that exhibits a complex hierarchical
structure. The extracellular matrix consists of organic as well as inorganic components. The



20 CHAPTER 2. BIOMECHANICAL FOUNDATIONS

organic part consists mainly of collagen, while the inorganic part consists primarily of hydrox-
yapatite [Feng, 2009]. The third major part is water. On the macroscopic level, bone can
be subdivided into compact and cancellous bone. Compact or cortical bone forms the exte-
rior layer of the skeleton, is much more dense and stiffer than cancellous bone, and accounts
for approximately 80% of the total bone mass in an adult’s skeleton. Cancellous bone, also
known as spongy or trabecular bone, forms the internal tissue of the skeleton, is more flexi-
ble compared with cortical bone, and consists of an open-cell porous network [cf. Ott, 2018].
The hierarchical structure will not be discussed here, and instead, reference will be made to
Reznikov et al. [2014]. Many attempts have been carried out to describe bone as an anisotropic
composite material, first, as a two-phase composite with different volume fractions of collagen
and hydroxyapatite [Katz, 1971, Currey, 1969]. Later, more sophisticated attempts were made,
such as bone modeled as a platelet reinforced composite [Wagner and Weiner, 1992], or by
the inclusion of the hierarchical structure of bone, first proposed by Katz [1980] including two
hierarchical layers, or following in Porter [2004] as a multi-scale model representing bone as a
natural hybrid nano-composite. A more comprehensive review of material modeling of bone
can be found in Mellon and Tanner [2012]. However, it can be stated that if bone remodel-
ing is addressed, to date, no material model is available significantly outperforming a simple
macroscopic constitutive modeling approach with a phenomenological isotropic material law
[Peng et al., 2006, Baca et al., 2008, Yosibash et al., 2010], directly connecting bone mineral
density and Young’s modulus [see, e.g. Haba et al., 2012, Nobakhti and Shefelbine, 2018]. Fur-
thermore, it can be stated that there is consensus in the scientific community that the small
strain assumption is sufficient to describe bone in a structural mechanics approach [cf. Hege-
dus and Cowin, 1976, Cowin and Doty, 2007, Viceconti, 2012, Currey, 2014] since it seldomly
experiences strain above 0.4%.

Bone remodeling. Julius Wolff was among the first to postulate a direct relation between
the structure of a bone and the load under which it is placed. This is referred to as Wolffs
law [Wolff, 1892]. Willhelm Roux did a similar postulate by observations in his theory of
functional adaption [Roux, 1881]. Pauwels did further refinement to Wolffs law [Pauwels,
1965] and was the first to cross the line of pure research and applied knowledge obtained from
biomechanical considerations in clinical routine, e.g. the introduction of tension flanges for
the treatment of bone fractures [cf. Regling, 2011]. In the following, many more researchers
contributed to the theory of bone remodeling or experimental validation thereof, including Frost
[1960] and Moffett Jr et al. [1964], for example. To conclude this historical outline, Cowin and
Hegedus [1976] should be stated as the first to provide a closed mathematical description of
bone remodeling.
From a biochemical point of view, four types of cells control bone metabolism: osteoblasts,
osteoclasts, osteocytes, and bone lining cells. For more information on cellular mechanisms of
bone remodeling the reader is referred to Eriksen [2010] or Mellon and Tanner [2012].
To outline the basic ideas shared by most researchers, bone can be considered self-adapting
to some functional stimulus related to local stresses and strains. This process of self-adaption
can be displayed as an optimization process where bone is a least-weight structure with respect
to the mechanical loading [cf. American Society of Mechanical Engineers, 2001, Reiter, 1996,
Wolff, 1892, Pauwels, 1965, Reiter, 1995].

2.4 Osseointegration

In cementless THA, most prostheses are equipped with a coated area, whereby the coating
consists of bioinert or bioactive material with a surface configuration that is attractive for bone
deposition [Schenk and Buser, 1998]. The success of cementless THA, which is the achievement
of secondary stability, is determined by the biomechanical properties of the bone-implant inter-
face [Gao et al., 2019]. The evolution of the mechanical properties of the bone-implant interface
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as a function of healing time, also referred to as osseointegration, were first described by Brane-
mark [1977]. The term osseointegration can be further specified by the process of bony ingrowth
of bone substance into this roughened surface and was characterized as “a direct structural and
functional connection between ordered, living bone and the surface of a load-bearing implant”
by Listgarten et al. [1991]. Prerequisite for osseointegration is precise fitting of the implant,
primary stability, and adequate loading during the healing process [Schenk and Buser, 1998].
In a broadly simplified representation, osseointegration can be subdivided into (1) formation
of woven bone at the bone-implant interface and (2) remodeling of woven bone to mature bone
[cf. Gao et al., 2019, Schenk and Buser, 1998]. Precise information on the duration of each in-
dividual process is difficult to find; however, in the first 4-6 weeks, the formation of woven bone
seems to be dominant at the interface, while bone remodeling starts around the third month
after the surgery with a peak in process speed around the fourth month [Schenk and Buser,
1998, Haga et al., 2009]. Afterward, the speed of the process slows down, but bone remodeling
at the interface continues for the rest of life and is a prerequisite for the bone-implant interface
to remain stable as the cells within the interface are renewed by this process [Schenk and Buser,
1998].
Finally, it can be stated that low amplitude micromotions at the bone-implant interface stimu-
late osseointegration [Mori and Burr, 1993, Szmukler-Moncler et al., 1998], while high amplitude
micromotions result in the formation of fibrous tissue [Duyck et al., 2006].





Chapter 3

Continuum mechanics fundamentals

Continuum mechanics is a mathematical framework for studying the transmission of force
through and deformation of materials of all types [Klausner, 2012]. In the following chapter,
the continuum mechanical relations and formulas are stated as far as it is needed for the rest
of this thesis. In chapter 3.1-3.3, the kinematics of bodies in R3 and all necessary measures for
stress and strain for the infinitesimal strain theory are derived. In chapter 3.4, balance laws for
open systems are outlined. Finally, in chapter 3.5, constitutive equations for bone remodeling
are provided. This ultimately results in a closed set of governing equations describing thermo-
dynamically consistent bone remodeling.
An attempt has been made to use a notation that is familiar to most readers; however, in case
of ambiguity, reference is made to chapter 13, where symbols and the syntax of operations
acting on vectors and tensors are introduced.

3.1 Kinematics

In order to describe the deformation of a continuum body, we assume the existence of a stress-
free reference configuration B0. The deformation can then be measured by a function φt : B0 →
Bt , which maps B0 to a current configuration Bt (see figure 3.1). Consequently, a particle xxx ∈ Bt

B0

Bt

φt

eee1

eee2
eee3

XXX xxx

uuu

Figure 3.1: Reference body B0 and deformed body Bt

can be described with the help of its initial position XXX by xxx := xxx(XXX , t) = φ(XXX , t). That allows
for the definition of a displacement vector uuu as

uuu(XXX , t) = xxx(XXX , t)−XXX . (3.1)
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Alternatively, the inverse map φ−1 : Bt → B0 can be used to define

ũuu(xxx , t) = xxx −XXX (xxx , t) . (3.2)

Throughout this thesis, the assumption is made that uuu itself and derivations of uuu are small,
that is

O(ε) =

∣∣∣∣
∂ui

∂Xj

∣∣∣∣≪ 1 . (3.3)

Rearranging (3.1) and differentiating with respect to xxx yields

∂Xi

∂xj
= δij −

∂ui

∂xj
. (3.4)

The partial derivative ∂ui/∂xj can be expanded by ∂Xk/∂Xk , providing for a recursive defini-
tion of ∂Xi/∂xj as

∂Xi

∂xj
= δij −

∂ui

∂Xk

∂Xk

∂xj
(3.5)

∂Xi

∂xj
= δij −

∂ui

∂Xk

(
δkj −

∂uk

∂Xl

(
δlj − · · ·

))
. (3.6)

Since ∂ui/∂Xj is small, higher order derivatives ∂nui/∂Xj
n with n > 1 are negligible resulting

in

∂Xi

∂xj
≈ δij −

∂ui

∂Xj
. (3.7)

Using the above and the relation φt◦φ−1
t = Id.⇔ ũuu(xxx , t) = uuu(XXX , t), it can be shown that for the

small strain case, it isn’t necessary to distinguish between reference and current configuration

∂ũi

∂xj
=

∂ui

∂Xk

∂Xk

∂xj
≈ ∂ui

∂Xk

(
δkj −

∂uk

∂Xj

)
≈ ∂ui

∂Xj
(3.8)

if derivations of uuu are derived.

3.1.1 Deformation gradient F

In order to derive the deformation gradient F, the deformation of an infinitesimal material
line element dXXX is considered first. Therefore it is convenient to re-write relation (3.1) for a
material point XXX and its infinitesimal surrounding dXXX as

xxx + dxxx = XXX + dXXX + uuu(XXX + dXXX ) , (3.9)

or in component form as

xi + dxi = Xi + dXi + ui (XXX + dXXX ) . (3.10)

The term ui (XXX + dXXX ) can be expanded by a Taylor series

ui (XXX + dXXX ) ≈ ui (XXX ) +
∂ui

∂Xj
dXj , (3.11)
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which is truncated after the partial derivative of order one, yielding the expression

xi + dxi = Xi + dXi + ui (XXX ) +
∂ui

∂Xj
dXj . (3.12)

Now we can simply deduct the relation (3.1) in component form xi = Xi + ui (XXX ) from the
latter equation and finally obtain

dxi = dXi +
∂ui

∂Xj
dXj , (3.13)

the transformation of an infinitesimal line element component dXi in the reference configuration
to dxi in the current configuration. By re-writing this equation as

dxi =

(
δij +

∂ui

∂Xj

)
dXj , (3.14)

it is possible to identify the deformation gradient as

F = Fijeeei ⊗ eeej with Fij =
∂xi

∂Xj
= δij +

∂ui

∂Xj
, (3.15)

illustrating that a line element dXXX gets transformed to the deformed current configuration by
the deformation gradient:

dxi = FijdXj → dxxx = FdXXX . (3.16)

3.1.2 Green-Lagrange strain tensor E

In order to derive the Green-Lagrange strain tensor E, we start with the squared length (dxxx)2 =
dxi · dxi of an infinitesimal line segment. Inserting (3.14) yields

(dxxx)2 =

(
δij +

∂ui

∂Xj

)
dXj

(
δik +

∂ui

∂Xk

)
dXk . (3.17)

After some algebraic manipulations, the latter equation can be written as [see e.g. Singh, 2007]

(dxxx)2 =

(
δjk +

∂uk

∂Xj
+
∂uj

∂Xk
+
∂ui

∂Xj

∂ui

∂Xk

)
dXjdXk . (3.18)

As a next step, the difference of the squared length of an infinitesimal line segment dxxx in the
current configuration and dXXX in the reference configuration is derived:

(dxxx)2 − (dXXX )2 =

(
δjk +

∂uk

∂Xj
+
∂uj

∂Xk
+
∂ui

∂Xj

∂ui

∂Xk

)
dXjdXk − dXjdXj . (3.19)

By the identity dXjdXj = δjkdXjdXk , it is easy to see that following simplification holds true:

(dxxx)2 − (dXXX )2 =

(
∂uk

∂Xj
+
∂uj

∂Xk
+
∂ui

∂Xj

∂ui

∂Xk

)
dXjdXk . (3.20)

In the latter equation the components of the Green-Lagrange strain tensor can be identified by

(dxxx)2 − (dXXX )2 = 2EjkdXjdXk with Ejk =
1

2

(
∂uk

∂Xj
+
∂uj

∂Xk
+
∂ui

∂Xj

∂ui

∂Xk

)
. (3.21)

Here the multiplication factor 1/2 has been introduced artificially for the components of the
tensor to match the definition of the Green strain 1/2(λ− 1).
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3.1.3 Linearization of Green-Lagrange strain

For the linearized version ε of the Green-Lagrange strain tensor, the term (∂ui/∂Xj )(∂ui/∂Xk )
in equation (3.21) is assumed to be negligible, resulting in the small strain tensor

εjk =
1

2

(
∂uk

∂Xj
+
∂uj

∂Xk

)
. (3.22)

As a note, it is stated that the components of the strain tensor fulfill compatibility equations
of the form

∂2εij

∂Xk∂Xm
+

∂2εkm

∂Xi∂Xj
+

∂2εik

∂Xj ∂Xm
+

∂2εjm

∂Xi∂Xk
= 0 . (3.23)

For more information, the reader is referred to Slaughter [2012], for example.

3.2 Stress vector

In general, there are two different kinds of forces acting on continuum bodies; body forces and
surface forces. Here, only surface forces should be considered as they give rise to the Cauchy
stress tensor defined in the following chapter.

x3

x1

x2

nnn

dFFF

ttt

nnn

dFFF

ttt
dA

dA
A

A

FFF ext

Figure 3.2: A body Bt subject to external load FFF ext.

Let Bt be a continuum body subject to an external load FFF ext, as shown in figure 3.2. The
stress vector ttt , also called traction or traction vector, is defined as the limit value

ti (nnn) = lim
A→0

Fi

A(nnn)
=

dFi

dA(nnn)
(3.24)

of the force dFFF acting onto the dividing surface area dA, defined by surface normal nnn.
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3.3 Cauchy stress tensor

For a one-dimensional load case, the stress σ is defined as the fraction of the force F and
the cross-sectional area A, which coincides with the definition of the surface tractions. An
illustration of an uniaxial stress state is given in figure 3.3. For an arbitrary point P within
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Figure 3.3: Infinitesimal volume element
under uniaxial stress.
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Figure 3.4: Stress components of an arbi-
trary combined stress state.

a deformed continuum body in three dimensions, the general stress state, that is a triaxial
stress state, can be defined by all existing traction vectors, each acting onto one of the infinite
number of planes passing through P . Cauchy’s theorem shows [see, e.g. Hjelmstad, 2007] that
the complete stress state is known if the traction vectors of three mutually perpendicular planes
passing through P are known. All other traction vectors can be found by means of coordinate
transformation. A convenient choice is the three planes defined by the normal vectors nnni = eeei
with i = 1, 2, 3, resulting in three traction vectors

ttt(eee1) = t1(eee1)eee1 + t2(eee1)eee2 + t3(eee1)eee3 = σ11eee1 + σ12eee2 + σ13eee3 , (3.25)

ttt(eee2) = t1(eee2)eee1 + t2(eee2)eee2 + t3(eee2)eee3 = σ21eee1 + σ22eee2 + σ23eee3 , and (3.26)

ttt(eee3) = t1(eee3)eee1 + t2(eee3)eee2 + t3(eee3)eee3 = σ31eee1 + σ32eee2 + σ33eee3 , (3.27)

from which the components of σ are known. An illustration of the stress components of an
infinitesimal volume element is given in figure 3.4. Cauchy’s theorem generalizes the above by
stating that the traction ttt(nnn) is a linear function of nnn and there exists a second order tensor σ
independent of nnn, such that

ttt(nnn) = σT · nnn ⇔ tj (nnn) = σijni (3.28)

holds. Usually, the above is stated as ttt(nnn) = σ · nnn since the stress tensor is symmetric, which
follows from the balance of angular momentum (c.f. chapter 3.4.3).
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3.4 Balance laws

To derive conservation laws or, more generally, balance laws in continuum mechanics, we
classically start with the assumption of a thermodynamically closed system that does not
transfer mass with its surroundings. However, this isn’t a valid assumption for biomechanical
systems as matter and energy can vary throughout a biological process like bone remodeling,
and therefore matter and energy needs to be exchanged with the environment. Consequently,
biomechanical systems fall within the class of thermodynamically open systems as first described
as a continuum approach in Cowin and Hegedus [1976], named the theory of adaptive elasticity.
Subsequently, many other models were based on the incorporation of an additional mass source
into the common set of balance equations, see e.g. Beaupré et al. [1990b], Weinans et al. [1992],
or Harrigan and Hamilton [1992]. More comprehensive approaches to open system continuum
thermodynamics were provided by Epstein and Maugin [2000], Kuhl and Steinmann [2003], or
Kuhl [2004], for example. Balance equations enhanced by mass sources and mass fluxes are
described herein, ultimately resulting in a set of constitutive equations for biomechanical tissue.
In the following, the works mentioned above will be used as a basis to re-state all necessary
balance laws in their mass-specific version, which is beneficial in the modeling of growth, as
stated in Kuhl et al. [2003].

3.4.1 Balance of mass

The local version of the balance of mass for open systems can be stated

Dtϱ = R (3.29)

as the equality of the rate of chance of the spatial mass density ϱ and a mass source R, which is
left to be defined in section 3.5.2. As mentioned before, many other bone tissue models with a
balance of mass of type (3.29) can be found in the literature by, amongst others, Beaupré et al.
[1990b], Weinans et al. [1992], or Harrigan and Hamilton [1992]. The incorporation of a mass
flux into the balance of mass, as shown in Kuhl and Steinmann [2003], is omitted here. In doing
so, the resulting set of governing equations would require a numerical discretization scheme,
the solution of which would be much more costly. To the author, this additional expenditure
does not seem to be justified since, for bone remodeling, both approaches lead to the same
basic results, as shown in Kuhl et al. [2003].

3.4.2 Balance of linear momentum

The total linear momentum of a continuum body is defined by

LLL =

∫

B

ϱvvv dv . (3.30)

In 1776, Euler stated that for a continuum body, or equally a portion of a continuum body,
within a closed system, the rate of change of linear momentum is equal to the total applied
force in any inertial frame, which is known as the principle of linear momentum. Starting with
the above, the volume-specific version of the local balance of linear momentum for an open
system can be derived as

Dt (ϱvvv) = Div(σ) + ϱbbb + vvvR , (3.31)

where vvv is the spatial velocity, σ is the Cauchy stress tensor, also referred to as momentum flux,
bbb are volume forces, also referred to as momentum sources, and vvvR is the momentum carried
by the mass entering or leaving the open system. It is noted, that detailed derivations can be
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found in most basic continuum mechanic books [see e.g. Basar and Weichert, 2013]. Inserting
the time-derivative Dt (ϱvvv) = ϱDtvvv + vvvDtϱ into (3.31) yields:

ϱDtvvv + vvvDtϱ = Div(σ) + ϱbbb + vvvR . (3.32)

It is then possible to deduct the velocity-weighted version of the mass balance

vvv Dtϱ = vvv R (3.33)

from (3.32) and the result is the mass-specific version of the momentum balance

ϱDtvvv = Div(σ) + ϱbbb , (3.34)

as shown in Kuhl [2004], for example. In the following, the restriction to the the quasi-static
case (Dtvvv = 0) and the omission of body forces (bbb = 0) is assumed.

3.4.3 Balance of angular momentum

The angular momentum

HHH =

∫

B

aaa × (ϱvvv) dv (3.35)

is defined by the cross-product of a position vector aaa ∈ B and the momentum density ϱvvv .
According to Kuhl et al. [2003], the mass-specific version of the local balance of angular mo-
mentum then follows simply from the cross product of the mass-specific version of the balance
of linear momentum (3.34) and the position vector a as

aaa ×Divσ = 0 . (3.36)

By the use of the balance of angular momentum, the symmetry of the Cauchy stress tensor can
be derived. However, this is omitted here and instead reference is made to Basar and Weichert
[2013], where a detailed derivation can be found.

3.4.4 Balance of internal energy

According to Malvern [1965], the volume-specific balance of energy states that the rate of
change of energy

Dt (ϱE) = Dt (ϱK + ϱU ) = Pext +Q (3.37)

is equal to the sum of the external mechanical power input Pext and the non-mechanical input
Q . The total energy E = K +U can be displayed as the sum of the kinetic energy K and the
internal energy U . The balance of kinetic energy can be stated as the rate of change of kinetic
energy

Dt (ϱK ) = Pext − P int (3.38)

is equal to the difference of external and internal power. Deducting equation (3.38) from
equation (3.37) provides the balance of internal energy as

Dt (ϱU ) = P int +Q . (3.39)

The internal power

P int = σ : Dtε (3.40)
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is defined by the stress power, which for small strain elasticity is defined by the the double
contraction of the cauchy stress tensor σ and the linearized strain rate Dtε [Hjelmstad, 2007].
For systems with non-constant mass, the non-mechanical input

Q = Div (−QQQ) +Q+UR (3.41)

can be defined as the divergence of a heat flux QQQ , a heat source Q, and an energy source UR
due to the changing mass. Since heat is not assumed to be generated for bone remodeling, the
heat flux (QQQ = 0) and the heat source (Q = 0) both vanish identically. Inserting (3.40) and
(3.41) into (3.39) yields

Dt (ϱU ) = σ : Dtε+UR (3.42)

the volume-specific version of the balance of internal energy for open continuum systems in the
regime of small deformations with changing mass but without mass flux. For the mass-specific
version of the balance of internal energy, an energy-weighted version of the balance of mass

UDtϱ = UR (3.43)

is deducted from (3.42), resulting in

ϱDtU = σ : Dtε (3.44)

the mass-specific version of the balance of internal energy [cf. Kuhl and Steinmann, 2003].

3.4.5 Dissipation inequality

Respecting the non-constant mass in an open system results in an additional entropy source
S, as shown in Schrödinger [1944], Malvern [1965], or Epstein and Maugin [2000], for example.
Against this background, Kuhl and Steinmann [2003] provided a free-energy density-based
version of the Clausius-Duhem inequality for open systems of the form

σ : Dtε− ϱDtψ − ϱ(S +Dθψ)Dtθ − Sθ −QQQ · ∇XXX ln θ ≥ 0 , (3.45)

where ψ is the specific Helmholtz free energy function, S is the entropy, and θ is the absolute
temperature. The Clausius-Duhem inequality can be decomposed into a local term d loc, typi-
cally referred to as Clausius-Planck inequality, and a conductive term dcond, typically referred
to as Fourier inequality. Both terms are required to hold separately:

{
d loc = σ : Dtε− ϱDtψ − ϱ(S +Dθψ)Dtθ − Sθ ≥ 0

dcon = −QQQ · ∇XXX ln θ ≥ 0
. (3.46)

Here, the assumption is made that all processes in this thesis are modeled as isothermal pro-
cesses. This is done mainly for three reasons: (1) The temperature in the human body can be
assumed as constant, especially for long-term processes. (2) There is little knowledge available
of heat transfer and heat production between bone and prosthesis, and (3) in this thesis, the
thermal dissipation is assumed to be much smaller than the mechanical dissipation. Due to that
assumption, the Clausius-Duhem inequality reduces itself to the local part d loc, since dcon ≥ 0
holds if ∇XXX ln θ = 0 .
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3.5 Constitutive theory

The kinematic equations and balance laws described above hold for any solid that deforms
under external forces. However, they do not form a complete set of governing equations since,
for 15 unknowns, that are three displacements, six stresses, and six strains, there are only six
kinematic equations and three equilibrium equations from the balance of linear momentum.
As a consequence, six additional equations are needed, and these are the material describing
constitutive equations relating stress to strain.
There is a set of basic principles of material theory, which has to be fulfilled by any constitutive
model, for example, the principle of determinism or the principle of objectivity. For a complete
description of constitutive modeling, the reader is referred to Ottosen and Ristinmaa [2005] or
de Souza Neto et al. [2011].

3.5.1 A thermodynamically consistent constitutive law for bone remodeling

Following de Souza Neto et al. [2011], it will be assumed that the set of state variables

{ϱ, ε} (3.47)

determines the thermodynamic state for any time t at a point XXX ∈ B0, where ε is the linearized
strain and ϱ is reinterpreted as the bone mineral density. Consequently, the Helmholtz specific
free energy ψ = ψ(ϱ, ε) is dependent on the state variables. The material time derivative then
follows as

Dtψ(ϱ, ε) = ∂ϱψDtϱ+ ∂εψ : Dtε = ∂ϱψR+ ∂εψ : Dtε . (3.48)

Inserting the above into the Clausius-Planck inequality (3.46)1 yields

d loc = (σ − ϱ ∂εψ) : Dt ε− ϱ ∂ϱψR− ϱ(S +Dθψ)Dtθ − Sθ ≥ 0 , (3.49)

from which the constitutive equations

σ = ϱ ∂ε ψ , S = −Dθ ψ = 0, and S = −ϱ1
θ
∂ϱψR (3.50)

are implied. By that procedure, the fulfillment of the Clausius-Planck inequality is guaranteed
a priori. Thus, concluding the above, the thermodynamically consistent constitutive law for
isothermal bone remodeling can be stated as





ψ = ψ(ϱ, ε)

σ = ϱ∂ε ψ

Dt ϱ = R

S = −ϱ 1
θ
∂ϱψR

. (3.51)

Since the constitutive model described above only depends on the history of the linearized
strain ε and bone mineral density, it is possible to define the constitutive initial value problem:
presuming the history of linearized strain ε(t), t ∈ [t0,T ] and the initial value of the bone
mineral density ϱ(t0) are known, find the history of σ(t) and ϱ(t), such that the constitutive
equations

{
σ(t) = ϱ(t) ∂ε ψ(ϱ(t), ε(t))

Dt ϱ(t) = R(ϱ(t), ε(t))
(3.52)

hold for every t ∈ [t(0),T ] [c.f. de Souza Neto et al., 2011].
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3.5.2 Density-weighted generalized Hooke’s law

For isothermal processes, the strain energy density function

Ψ(ϱ, ε) = ϱψ(ϱ, ε) (3.53)

is defined by the product of the bone mineral density ϱ and the specific Helmholtz free energy ψ
[see e.g. Wriggers, 2008]. In bone remodeling, a quite common choice for the specific Helmholtz
free energy

ψ =

[
ϱ

ϱ0

]n
ψLE , ψLE =

1

ϱ

[
λ

2
(tr(ε))2 + µtr(ε2)

]
(3.54)

is based on a classical linear-elastic-type free energy function ψLE weighted by a relative density
(ϱ/ϱ0)n , where the exponent n is allowed to vary between 1 ≤ n ≤ 3.5, and λ and µ are
Lamé constants, as shown in Carter and Hayes [1977], Gibson and Ashby [1982] or Kuhl and
Steinmann [2003], for example. This provides a redefinition of the Cauchy stress tensor as the
density-weighted Cauchy stress tensor as

σ = ∂εΨ = ϱ ∂εψ =

[
ϱ

ϱ0

]n
σLE =

[
ϱ

ϱ0

]n
(λtr(ε)I+ 2µε) . (3.55)

The density-weighted material tensor can then be derived as

CCC = ∂εσ =

[
ϱ

ϱ0

]n
CCCLE =

[
ϱ

ϱ0

]n
(λI⊗ I+ 2µI) . (3.56)

Finally, analogous to the generalized Hooke’s law for continuous media, the density-weighted
generalized Hooke’s law can be stated using (3.55), (3.56), and (3.22), as

σ(ϱ) = CCC(ϱ) : ε . (3.57)



Chapter 4

Finite element modeling

The finite element method has proven itself particularly useful for efficient analyses of partial
differential equations arising in the context of mathematical and engineering problems. Thereby,
an approximate numerical solution to a weak form of the original problem is found, which is
a weak solution in the sense of distributions. Weak forms can be constructed by multiplying
a partial differential equation with so-called test functions from the space of smooth functions
with compact support and subsequently integrating the latter over a domain. The existence
and uniqueness of the solution of a weak form are established by the help of the famous Lax-
Milgram theorem [Lax and Milgram, 1954]. The calculus of variations is the standard tool for
constructing weak forms, and several approaches can be applied in order to find weak forms of
different kinds. Applying the Ritz-Galerkin method [cf. Ern and Guermond, 2013], or a derivate
thereof, to a weak form converts the continuous problem into a discrete problem, the solution
of which can be found by solving a set of algebraic equations. The discretized solution is known
to be quasi-optimal, a result provided by Céa’s lemma [Céa, 1964]. The discrete problem is
usually defined by a discretization strategy, which is a mesh assembled of finite elements with
associated basis functions. The type of element and the definition of the basis function can
be chosen freely, except for requirements arising from the weak form and boundary conditions.
This ultimately results in a zoo of finite elements and among them: Lagrangian -, mixed -,
or discontinuous Galerkin finite elements, for example. As a note, it is mentioned that the
pioneering work of Arnold et al. [2006] assembles all of the above finite elements, and many
more, into a unified framework.
In the context of elasticity problems, the standard procedure to construct a weak form is
known as the principle of virtual work, which is then solved for the coefficients of the finite
element interpolation of the displacement field. More information about finite elements and
finite element modeling can be found in Zienkiewicz et al. [1977], Bathe [2006], Braess [2013],
or Wriggers [2008], for example.

4.1 Weak form

In chapter 3, a closed set of governing equations with respect to the initial configuration of a
continuum body B0 was introduced:





Div(σ) = 0 (Equilibrium equation) ,

ε = 1
2

(
Grad(uuu) + Grad(uuu)T

)
(Kinematic equation) ,

σ = CCC(ϱ) : ε (Constitutive equation) .

(4.1)

Furthermore, the existence and uniqueness of a solution [cf. Truesdell et al., 1975] to the strong
form (4.1) is only guaranteed with a suitable set of boundary conditions prescribed on ∂B0,

33
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namely Dirichlet boundary conditions on Γu ⊆ ∂B0 and Neumann boundary conditions on
Γσ = ∂B0 \ Γu :

uuu(XXX , t) = ūuu(XXX ) ∀XXX ∈ Γu and ttt(XXX , t) = t̄tt(XXX ) ∀XXX ∈ Γσ . (4.2)

Equation (4.2) is equivalent with demanding uuu to be a kinematically admissible displacement
field and σ to be a statically admissible stress field [cf. Truesdell et al., 1975].
A first weak form can be found by multiplying the equilibrium equation (4.1)1 with a test
function ηηη, which is left to be defined in the following and applying integration by parts:

∫

B0

Div(ηηη · σ) dV −
∫

B0

Grad(ηηη) : σ dV = 0 . (4.3)

As a next step, the divergence theorem can be applied to the first term of the above equation,
yielding

∫

Γσ

ηηη · ttt dA−
∫

B0

Grad(ηηη) : σ dV = 0 , (4.4)

where use has been made of the relation σ · nnn = ttt .

Principle of virtual work. Consider a continuum body B with an arbitrary but kinemat-
ically admissible virtual displacement field δuuu, i.e., the virtual displacements δuuu = ūuu satisfy
the Dirichlet boundary conditions on Γu . The principle of virtual work then states that for
all possible virtual displacements δuuu, the virtual work δΠ = δU − δW vanishes if and only if
the body is in static equilibrium. Hereby, δU is called internal virtual work and δW external
virtual work.

The principle of virtual work, also called the principle of virtual displacements, can be used to
specify the test function as ηηη = δuuu. Consequently, Grad(ηηη) = δε can be identified from the
kinematic equation (4.1)2 as virtual strain and

δU =

∫

B0

δε : σ dV and δW =

∫

Γσ

δuuu · ttt dA (4.5)

can be identified as virtual internal work and virtual external work, respectively. As a last step,
the constitutive equation (4.1)3 is inserted into the virtual internal work. The resultant weak
form can then be stated as follows:

δΠ = δU − δW =

∫

B0

δε : CCC(ϱ) : ε dV −
∫

Γσ

δuuu · ttt dA = 0 . (4.6)

4.2 Material non-linearities

Presuming a constant material tensor CCC, the weak form (4.6) is a linear boundary value problem
which, in a finite element framework, ultimately results in a linear system of algebraic equations.
Obviously, the latter does not hold here, since in bone remodelingCCC = CCC(ϱ) is a density-weighted
material tensor (see section 3.5.2). The evolution of the bone mineral density is described by the
constitutive initial value problem given in equation (3.52), a constraint that has to be fulfilled
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in addition to the weak form. Therefore, the problem becomes a non-linear initial boundary
value problem:

{
δΠ(ϱ(t),uuu(t)) = 0

Φ(ϱ(t),uuu(t)) = Dt ϱ(t)−R(ϱ(t), ε(t)) = 0
, (4.7)

with the prescribed history of Dirichlet boundary conditions

uuu(XXX , t) = ūuu(XXX , t) ∀XXX ∈ Γu , ∀t ∈ [t0,T ] , (4.8)

the prescribed history of Neumann boundary conditions

ttt(XXX , t) = t̄tt(XXX , t) ∀XXX ∈ Γσ , ∀t ∈ [t0,T ] , (4.9)

and the initial internal bone mineral density field

ϱ(XXX , t0) = ϱ0(XXX ) ∀XXX ∈ B0 . (4.10)

In general, the constitutive model is path-dependent, and for the problem (4.7), a closed-form
solution is not available. However, choosing a backward Euler numerical integration scheme
for the constitutive initial value problem (3.52) results in the definition of an incremental
constitutive function for the bone mineral density

ϱ(n+1) = ϱ(n) +∆tR̂(ϱ(n), ε(n+1)) = ϱ(n) +∆ϱ (4.11)

with ∆t = t(n+1) − t(n) and an incremental constitutive function for the stress tensor

σ(n+1) = σ̂(ϱ(n), ε(n+1)) = CCC(ϱ(n) +∆ϱ) : ε(n+1) . (4.12)

As a next step, the above is reintroduced into the weak form (4.6), resulting in an incremen-
tal boundary value problem. Because within one time-step the bone mineral density is held
constant, we can think of δΠ(n+1) = δΠ(uuu(n+1)) as a function of the unknown displacements
uuu(n+1) alone, which makes the constitutive model path-independent within one time-step:

δΠ(n+1) = δU(n+1) − δW(n+1)

=

∫

B0

δε : CCC(ϱ(n) +∆ϱ) : ε(n+1) dV −
∫

Γσ

δuuu · ttt(n+1) dA = 0 . (4.13)

The above equation is non-linear and needs consistent linearization to be solved via a Newton-
Raphson scheme.

4.3 Linearization

Presuming the displacement field uuu(n) is known, and δΠ is sufficiently smooth in t , an expression
for the unknown virtual work

δΠ(n+1) = δΠ(uuu(n+1)) = δΠ(uuu(n) +∆uuu) (4.14)

can be derived at time-step t(n+1) = t(n)+∆t with uuu(n+1) = uuu(n)+∆uuu and ttt(n+1) = ttt(n)+∆ttt
by truncating a Taylor series expansion

δΠ(uuu(n) +∆uuu) ≈ δΠ(ϱ(n),uuu(n)) + ∆(δΠ(ϱ(n),uuu(n),∆uuu)) . (4.15)
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Although δΠ only exhibits a variation in uuu, δΠ was written as a function of ϱ and uuu to indicate
the used time-step of each quantity. The same Taylor expansion is applied to the incremental
constitutive function which, by defining ∆ε = Grad(∆uuu), can be stated as

σ̂(ϱ(n), ε(n+1)) ≈ σ̂(ϱ(n), ε(n)) + ∆σ̂(ϱ(n), ε(n),∆ε) . (4.16)

The variation of the incremental constitutive function can be found by defining the trial strain
ε∗
(n+1)

= ε(n) +∆ε and applying the chain rule:

∆σ̂(ϱ(n), ε(n),∆ε) =

[
CCC(ϱ(n) +∆ϱ)

∂ε∗
(n+1)

∣∣∣∣∣
t

: ε∗(n+1) +CCC(ϱ(n) +∆ϱ)

]
: ∆ε (4.17)

= C̄CC(n+1) : ∆ε , (4.18)

where C̄CC is the consistent tangent modulus. We can then further define the known principle of
virtual work at time-step t(n) as

δΠ(ϱ(n),uuu(n)) = δU(n) − δW(n) , (4.19)

and the variation of the virtual work at time-step t(n) as

∆(δΠ(ϱ(n),uuu(n),∆uuu)) = ∆δU(n) −∆δW(n) . (4.20)

In the above, the internal virtual work is defined as

δU(n) =

∫

B0

δε : σ(n) dV =

∫

B0

δε : σ̂(ϱ(n), ε(n)) dV , (4.21)

the external virtual work as

δW(n) =

∫

Γσ

δuuu · ttt(n) dA , (4.22)

the increment of the internal virtual work as

∆δU(n) =

∫

B0

δε : C̄CC(n+1) : ∆ε dV , (4.23)

and the increment of the external virtual work as

∆δW(n) =

∫

Γσ

δuuu ·∆ttt dA , (4.24)

with ∆ttt = ttt(n+1) − ttt(n). Summarizing all of the above, the resultant linearized weak form can
be stated as

∫

B0

δε : C̄CC(n+1) : ∆ε dV =−
∫

B0

δε : σ(n) dV +

∫

Γσ

δuuu · ttt(n+1) dA . (4.25)
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4.4 Finite element interpolation: the Lagrangian finite element

Let e be a generic finite element, defined by the nodes x̂xx i , i = 1, ...,nnodes, each node associated
with one shape function Ni . The shape functions {Ni}i=1,...,nnodes

assemble a basis for Be by
the fulfillment of the delta property:

Ni (x̂xx
j ) = δij . (4.26)

Given a generic field a(xxx), defined over Be , the finite element interpolation ā(xxx) of a(xxx) is given
by

a(xxx) ≈ ā(xxx) = a(x̂xx i )Ni (xxx) . (4.27)

4.4.1 The isoparametric concept

Since x̂xx i are global coordinate vectors for nodal positions of a generic finite element e, equation
(4.26) would have to be solved once for each finite element for all shape function to be known.
Instead, we define the shape functions on a reference element (see figure 4.1) and consequently

x̂1

x̂2

x̂3

x̂4

x2

x1

J−1

J

ξ1

ξ2

1 1

1

1

1 2
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Figure 4.1: Isoparametric mapping to a reference element.

use the shape function for approximating the displacement field as well as the geometry:

uuu(ξ) ≈ Ni (ξ)ûuu
i and xxx(ξ) ≈ Ni (ξ)x̂xx

i , (4.28)

where ξ is the coordinate system of the reference element and ûuui = uuu(x̂xx i ) is the nodal displace-
ment. Derivatives of the shape functions with respect to global coordinates can be expressed
as

∂Ni

∂xj
=
∂Ni

∂ξα

∂ξα

∂xj
, (4.29)

and the derivative of global coordinates with respect to the convective coordinates as

∂xi

∂ξj
=
∂Nα

∂ξj
x̂α
i . (4.30)

The above can be assembled into the Jacobi matrix J and its inverse J−1, with their components
given by:

Jij =
∂xi

∂ξj
and J−1

ji =
∂ξj

∂xi
. (4.31)
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The Jacobi matrix provides a connection between integration in global coordinates and inte-
gration on the reference element defined by the identity

dVxxx = detJ dVξ . (4.32)

This approach is usually referred to as the isoparametric concept. The finite elements used
throughout this thesis are mostly quadratic Lagrangian triangles and quadratic Lagrangian
tetrahedrons. For specific examples of shape functions and more information about the finite
element interpolation and the isoparametric concept, the reader is referred to Zienkiewicz et al.
[1977] or Braess [2013].

4.5 Discretization in space

In this section, the discretization of the weak form is carried out. First, the discretization on the
element level is introduced and subsequently on the global level. For convenience, symmetric
tensors a are now denoted in Voigt notation ã (see appendix 13.2.5).
The isoparametric ansatz (4.28) for the displacement field of a finite element e can be written
in matrix notation

uuu(ξ) = Ni (ξ)ûuu
i = H(ξ)ˆ̃uuue =

[
N1(ξ) 0 0 ··· Nn (ξ) 0 0

0 N1(ξ) 0 ··· 0 Nn (ξ) 0
0 0 N1(ξ) ··· 0 0 Nn (ξ)

]




û1
1

û1
2

û1
3
...
ûn
1

ûn
2

ûn
3 ,




, (4.33)

where H is the shape function interpolation matrix. By notational abuse, the element-vector
ˆ̃uuue has been introduced, such that multiplying ˆ̃uuue with the B-matrix results in Voigt-notated
strains:

ε̃ ≈ Grad(Ni (ξ))ûuu
i = DHˆ̃uuue = Bˆ̃uuue , (4.34)

where

D =




∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

0 ∂
∂x3

∂
∂x2

∂
∂x1

0 ∂
∂x1




(4.35)

is the matrix with the suitable partial derivatives to construct the discretized linearized dis-
placement gradient. Inserting (4.33) and (4.34) into (4.25) yields the discretized version of the
linearized weak form as

(δũuue)T
∫

Be

BT ¯̃CCC(n+1) BdV

︸ ︷︷ ︸
Ke

(n+1)

∆ˆ̃uuue =(δũuue)T

[
−
∫

Be

BT σ̃(n) dV

︸ ︷︷ ︸
fff
e,int
(n)

+

∫

Γσe

HTˆ̃ttte(n+1) dA

︸ ︷︷ ︸
fff
e,ext
(n+1)

]
. (4.36)
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Since this equation has to hold for arbitrary admissible virtual displacement fields (δuuu)T, the
equivalent system of equations for a generic element e can be denoted as

Ke
(n+1) ∆

ˆ̃uuu = fff e,ext
(n+1)

− fff e,int
(n)

. (4.37)

It is noted that for the integration of the matrices a suitable numerical integration scheme has
to be introduced [see, e.g., Zienkiewicz et al., 1977].

x̂xx1 x̂xx2 x̂xx3

x̂xx4 x̂xx5 x̂xx6

x̂xx7

x̂xx8

e1

e2

e3

e4 e5

e6

Figure 4.2: Rectangular domain meshed by linear triangles.

Now consider a domain B0, discretized by a set of finite elements {ei}i=1,...,nelems
(see figure

4.2), such it can be stated that

B0 ≈
nelems⋃

e=1

Be . (4.38)

Subsequently, the global system of equations can then be stated as

K(n+1) ∆ˆ̃uuu = fff ext(n+1) − fff int(n) , (4.39)

where ∆ˆ̃uuu is the global displacement increment vector at the nodal positions. The global
stiffness matrix can be assembled, presuming a local-to-global mapping κ : {i} → {ig} of the
degrees of freedom, such that

Kig j g =

nelems∑

e=1
ig=κ(i)∧j g=κ(j)

Ke
κ(i)κ(j) . (4.40)

Furthermore, we can define the global internal force vector and global external force vector as

f intig =

nelems∑

e=1
ig=κ(i)

f e,int
κ(i)

and f extig =

nelems∑

e=1
ig=κ(i)

f e,ext
κ(i)

, (4.41)

respectively.

4.6 Non-linear solution: the Newton-Raphson scheme

In order to solve the non-linear equation (4.13), the iterative Newton-Raphson method is em-
ployed. The Newton-Raphson iteration counter will be denoted by a superscript (k) in paren-
theses, with the first iteration starting at k = 1. In contrast global time increments will be
denoted by a subscript (t) in parentheses.
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For the first global time step, the global displacement vector and the bone mineral density
vector have to be initialized, that is

ˆ̃uuu(0) = 0 and ϱ(0) = ϱ0 . (4.42)

Note that the displacement field is initialized at the nodal positions while the bone mineral
density is initialized at the integration point level. Presuming the solution ˆ̃uuu(n) is known, it is
possible to obtain the next solution vector

ˆ̃uuu(n+1) ≈ ˆ̃uuu
(m−1)
(n+1)

+∆ˆ̃uuu(m) = ˆ̃uuu(n) +

m−1∑

i=1

∆ˆ̃uuu(i) +∆ˆ̃uuu(m) (4.43)

from the increments ∆ˆ̃uuu(k) of a converged Newton-Raphson procedure with (m) iterations. An

incremental version of the weak form (4.36) at t̄ = t(n) +
∑k−1

i=1 ∆t(i) can be stated as

(δũuue)T
∫

Be

BT ¯̃CCC(k)
(n+1)

BdV

︸ ︷︷ ︸
K

e(k)
(n+1)

∆ˆ̃uuue (k) =− (δũuue)T

[ ∫

Be

BT σ̃
(k)
(n+1)

dV

︸ ︷︷ ︸
fff
e,int(k)
(n+1)

+

∫

Γσe

HTˆ̃ttte(n+1) dA

︸ ︷︷ ︸
fff
e,ext
(n+1)

]
.

(4.44)

In the above, the algorithmic consistent material tangent can be found by the following deriva-
tion

¯̃CCC(k)
(n+1)

=
C̃CC(ϱ(n) +∆ϱ(k))

∂ε̃∗(n+1)

∣∣∣∣∣
t̄

: ε̃
tr,(k)
(n+1)

+ C̃CC(ϱ(n) +∆ϱ(k)) , (4.45)

where the iterative trial strains

ε̃
tr,(k)
(n+1)

= ε̃(n) +

k−1∑

i=1

∆ε̃(i) (4.46)

have been defined at the integration points, and the residual stresses are given by

σ̃
(k)
(n+1)

= σ̃(n) +

k−1∑

i=1

∆σ̃
(i)
(n+1)

. (4.47)

Note that the increment of the bone mineral density

∆ϱ(k) = ∆tR̂(ϱ(n), ε̃
tr,(k)
(n+1)

) (4.48)

still depends only on the last converged bone mineral density ϱ(n) and the trial strains ε̃
tr,(k)
(n+1)

.

Assembling the element weak form (4.44) results in the system of equations

K
(k)
(n+1)

∆ˆ̃uuu(k) = fff ext(n+1) − fff
int(k)
(n+1)

, (4.49)

which can be solved for the unknown increment ∆ˆ̃uuu(k). The Newton-Raphson iterations are
repeated until for some time-step (m) the procedure is said to be converged if the following
condition is fulfilled:

||∆ˆ̃uuu(m) −∆ˆ̃uuu(m−1)||
||∆ˆ̃uuu(1)||

< ϵtol , (4.50)

where ϵtol is a user-defined parameter. The bone material density can only be updated once
convergence has been achieved

ϱ(n+1) = ϱ(n) +∆ϱ(m) . (4.51)



Chapter 5

Automated model generation

The successful introduction of numerical methods into clinical routine depends largely on the
ability to readily convert available patient-individual data, such as CT data or X-ray images,
into discrete geometric models onto which numerical analysis can be performed reliably.
Around 1970 computed tomography (CT) was established as a quantitative measure for non-
invasive determination of bone mineral density [see among others Cameron et al., 1968, Abols
et al., 1978, Bradley et al., 1978, Cann and Genant, 1980]. A first approach using CT scans as
input for subject-specific finite element analysis was carried out by Huang et al. [1980]. Keyak
et al. [1990] were among the first to provide an automated approach thereof. In the follow-
ing, many more researchers contributed to semi-automated [see, e.g., Cattaneo et al., 2001] or
fully-automated approaches [Viceconti et al., 1998a, Taddei et al., 2003, Lavecchia et al., 2018,
among others] in patient-specific model generation in biomechanics. Despite the fact that it
was shown early that subject-specific finite element models are capable of predicting strains
accurately in the human femur [Guldberg et al., 1998, Schileo et al., 2007], to this day, there is
a lack of knowledge in how different scanner types, resolutions, setting, and different anatomic
locations contribute to the overall error of a finite element analysis [Knowles et al., 2016].
Also, an approach in automatic model generation in two-dimensions from dual-energy x-rays
absorptiometry (DEXA) was proposed in Luo et al. [2018]. In Grassi et al. [2017] statisti-
cal shape and appearance models were used to create three-dimensional models from a single
DEXA-image, and in Ahmad et al. [2010] and Humbert et al. [2016], the generation of three-
dimensional finite element models from multiple DEXA-images were proposed. However, fully
automated model generation from DEXA-images in three dimensions is not yet available.
Comparing both approaches, Viceconti et al. [2018] concluded that while subject-specific finite
element models from CT scans seem to be more accurate compared with the DEXA approach,
it is not guaranteed that CT-based finite element analyses are, in fact, cost-efficient.
Streamlined software solutions that create finite element meshes efficiently mostly depend on a
boundary representation of the geometry as an input. In order to take advantage of that kind of
software, it is necessary to transfer the stack of CT images to such a boundary representation.
A solution to that problem was provided by Viceconti et al. [1998b]. Since this is stated to be
beyond the scope of this thesis, it will be assumed that a boundary representation of CT data
is available in the following.
It is noted that Young et al. [2008] provided an approach for creating a finite element mesh
directly from CT data, which is not applicable here since an intermediate representation, where
geometric operations can be performed efficiently, is preferable.
Finally, taking Pavarino et al. [2013] as an example, where free tools and strategies are exploited
in order to create a model of the cardiac structure, in the following, only open-source software
shall be used in order to create the finite element model from CAD geometry, automatically.
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5.1 Geometric manipulations

CAD models of a femur and a prosthesis, adopted from Lutz [2011], serve as input for the
finite element model generation (see figure 5.1a). These CAD models were generated from CT
data with the help of the commercial software ICEM Surf. Still, they could have been created
with the approach stated in Viceconti et al. [1998b] as well, to be in line with the open-source
software approach emphasized in the following. The femur and prosthesis possess an initial
position that is equivalent to a physiologically suitable installation position. Along with the

(a) Input CAD models of human femur and
prosthesis.

l
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(b) CAD models after geometric
manipulations.

Figure 5.1: CAD models of femur and prosthesis.

geometries, there are seven further user-definable parameters; the first six describe a deviation
from the initial position (see figure 5.2 for a simplified schematic representation):

• θ1 ∈ I1, I1 = [θ1,min, θ1,max] is a longitudinal shift in millimeters. The longitudinal axis
is oriented along the medial axis of the coated area of the prosthesis (compare with red
arrow in figure 5.2).

• θ2 ∈ I2, I2 = [θ2,min, θ2,max] is a transversal shift in millimeters. The transversal axis
is oriented perpendicular to the longitudinal axis as indicated in figure 5.2 by the green
arrow.

• θ3 ∈ I3, I3 = [θ3,min, θ3,max] is a sagittal shift in millimeters. The sagittal axis is
perpendicular to both the longitudinal and the transversal axis.

• θ4 ∈ I4, I4 = [θ4,min, θ4,max] is the pitch angle in degrees (compare with blue arrow in
figure 5.2). The pitch angle rotates around the sagittal axis with origin in the centre of
gravity of the prosthesis.
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• θ5 ∈ I5, I5 = [θ5,min, θ5,max] is the yaw angle in degrees. The yaw angle rotates around
the transversal axis with origin in the centre of gravity of the prosthesis.

• θ6 ∈ I6, I6 = [θ6,min, θ6,max] is the roll angle in degrees. The roll angle rotates around
the longitudinal axis with origin in the centre of gravity of the prosthesis.

The last parameter θ7 ∈ I7, I7 = [θ7,min, θ7,max] defines the length l of the coating area of
the prosthesis as indicated in figure 5.1b. The first six parameters are assembled in the vector
θM = {θi}i=1,...,6.

Figure 5.2: Simplified schematic representation of parameterized implant position.

The actual geometric manipulations are performed with the help of the open-source software
FreeCAD [Riegel et al., 2016], a general-purpose parametric 3D CAD modeler and building
information modeler [see, e.g., Azhar, 2011], which in turn is based on the open-source software
project Open Cascade [Bedaka and Lin, 2018], which provides the geometric modeling kernel.
FreeCAD itself is accessible on a programmatic level through the in-built FreeCAD python
interpreter, which allows for the repeated execution of a constant set of instructions taking
into account a varying set of parameters θM.
The set of instructions can be summarized into the following three steps:

1. Model smoothing: to not introduce singularities within the osseointegration interface,
the CAD model of the prosthesis is smoothed with the help of so-called fillets (cf. figure
5.1b).

2. Model positioning: the prosthesis is positioned and configured according to the set of
parameters θM.

3. Boolean operations: the bone and prosthesis are fused by an operation called boolean
fragments, deriving all single fragments that can result from applying boolean operation
between two input shapes. Finally, an incision is made to separate the head of the femur
from the rest of the model. This is also done based on the set of modeling parameters
θM.
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All parts of the resulting geometry are displayed in figure 5.1b. The output of this modeling
step is a united geometric model of the whole femur with inserted prosthesis.

5.2 Mesh generation

As a meshing tool for the resultant geometry from the last step, Gmsh [Geuzaine and Remacle,
2009] was chosen. Gmsh is an open-source 3D finite element mesh generator with its own in-
build geometry kernel as well as access to Open Cascade, but neither provides the same extend
of functionality as provided by FreeCAD. Interfacing with Gmsh can be realized by using a
proprietary scripting language, where features of the mesh, such as characteristic lengths of
different parts of the geometry, can be conveniently configured. The resultant mesh for an ex-
emplary discretization can be seen in figure 5.3, where different colors refer to separate physical
entities of the mesh. Since all geometric operations are done within FreeCAD this interface is

Figure 5.3: Resultant mesh.

mainly used to control the mesh size in different areas of the model.

It shall be stated here once again that the modeling approach proposed in this thesis relies only
on freely accessible software and is, in fact, fully automated, while the input geometry, all
parameters θ as well as the mesh density at different locations within the geometry are exposed
to the top level as user-definable inputs.



Chapter 6

Virtual X-ray imaging

Finite element analyses in orthopedic biomechanics provide deep insights into the physics of
the human body. For such analyses to represent a meaningful complement to purely medical
research, it can be helpful to transfer the results into a medical imaging format, such as a
radiographic or tomographic image. In computational bone remodeling, there are two major
advantages to this approach: (1) the internal bone mineral density distribution is hard to
infer from finite element post-processing results since only the boundary of the specimen is
immediately visible and (2) also people without a technical background in finite elements, e.g.,
medicines, can evaluate the results in that way.
The simulation of X-ray images from a polygonal mesh is a well-researched topic, and there
are several simulation codes available, such as described in Freud et al. [2006], Baro et al.
[1995] and Sujar et al. [2017], for example. Baro et al. [1995] use Monte Carlo simulation to
generate realistic images, while Freud et al. [2006] and Sujar et al. [2017] use fast ray casting
algorithms for that purpose. Whilst Sujar et al. [2017] account for density distribution with
higher polynomial order, to the author’s knowledge, there is no work available that operates
directly onto finite element results and accounts for higher polynomial orders in both density
distribution and geometry representation. For this purpose, a novel approach will be presented
in this chapter.

6.1 Method description

To obtain an x-ray image of an arbitrary finite element result, the approved method of sending
rays through the finite element mesh and subsequently integrating the quantity of interest along
these rays will be used in this approach. Since the intersection test of each ray with every finite
element is computationally expensive, as a first step and for a given ray, the number of finite
element candidates for the intersection test has to be reduced. For this purpose, a tree structure
of nested bounding boxes is employed, whereby the elements contained in a bounding box are
bisected in the next hierarchical level. Since intersection tests with bounding boxes are very
cheap, the tree of bounding boxes can be efficiently used to reduce the number of candidate
elements. Since, even with this method, the determination of the exact points of intersection
of the ray and the finite element will be computationally expensive if performed for a large
number of rays or a huge finite element mesh, numerical integration is introduced at this point.
Using this method, it is only necessary to test whether a discrete point is inside a finite element.
As soon as the positional relationship of the point and the finite element is known in terms of
element coordinates, it is simple to obtain the quantity of interest at the discrete point with
the help of shape functions from an element-wise finite element post-processing result.
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6.2 Hierarchical-structured oriented bounding boxes

Figure 6.1: AABBs (upper pictures) vs. OBBs (lower pictures).

A bounding box for a collection of objects, such as an axis-aligned bounding box (AABB) or
an oriented bounding box (OBB), is a closed volume that completely contains the collection
of objects. In Gottschalk et al. [1996], a tree structure of hierarchical OBB’s is introduced.
Therein, principal component analysis [Jolliffe, 2011] is used to create a set of nested tight-
fitting bounding boxes. This method could also be used efficiently for contact detection in the
finite element method [Gottschalk et al., 1996].

6.2.1 Principal component analysis

Let k = 1, ...,n and sk be a linear triangle or so-called 2-simplex with vertices p̂ppk , q̂qqk , and r̂rrk

in R3. The centroid and the area of each simplex sk in R3 may be calculated by

ccck =
1

3

(
p̂ppk + q̂qqk + r̂rrk

)
and (6.1)

Ak =

√
γk
(
γk − ||p̂ppk − q̂qqk ||

)(
γk − ||q̂qqk − r̂rrk ||

)(
γk − ||r̂rrk − p̂ppk ||

)
, (6.2)
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subsequently, with

γk =
1

2

(
||p̂ppk − q̂qqk ||+ ||q̂qqk − r̂rrk ||+ ||r̂rrk − p̂ppk ||

)
. (6.3)

The (area-)weighted center of all simplices sk can then be given by

µ =

∑
k

Akccck

∑
k

Ak
, (6.4)

which is independent of the distribution of the vertices in space. Using zero-centered centroids

c̄cck =
√

Ak
(
ccck − µ

)
, (6.5)

the definition of the covariance matrix is given by

Cij =
1

n − 1

∑

k

c̄ki c̄
k
j , (6.6)

which is a symmetric positive (semi-)definite 3× 3-matrix and thus owns real eigenvalues and,
due to spectral theorem, an orthonormal basis B′ in R3 consisting of the three eigenvectors
out of which two point in the direction of maximum and minimum variance [Jolliffe, 2011]. A
change of basis T B

B′ can be performed by

T B
B′ = (B′)−1B = (B′)−1I = (B′)−1 = TB′ , (6.7)

with identity matrix I, since B is the standard basis for a Euclidean space. This procedure is
easily extendable to higher dimensions or different primitives by specifying suitable definitions
for ck and Ak for the n-simplex with n > 2 or e.g., the n-cube.

6.2.2 Oriented bounding boxes

Let S = {sk}k=1,..,n be a set of 2-simplices or triangles and

V =
⋃

sk∈S

{
p̂ppk , q̂qqk , r̂rrk

}
(6.8)

the set of 0-simplices or vertices contained in S . A convenient way to define a bounding box as
an axis-aligned rectangular cuboid is given by the tuple

B(V ) =
(
Pmin(V ), Pmax(V )

)
, with (6.9)

Pmin(V ) = (minx1 (V ),minx2 (V ),minx3 (V )) and (6.10)

Pmax(V ) = (maxx1 (V ),maxx2 (V ),maxx3 (V )) . (6.11)

Obviously, Pmin and Pmax depend on the choice of the coordinate system. Choosing the
standard basis in R3 leads to the class of axis-aligned bounding boxes (see figure 6.2). Allowing
for different bases B′, an oriented bounding box

BB′ (V ) =
(
Pmin(TB′V ), Pmax(TB′V )

)
. (6.12)

can be defined.
Applying principal component analysis, shown in section 6.2.1, to the triangulation T = (V ,S)
of the convex hull [Barber et al., 1996] of a body in R3 and using the obtained basis BT as an
input for the orientated bounding box

BBT (V ) =
(
Pmin(TBT V ), Pmax(TBT V )

)
, (6.13)

the result will most likely fit the body tightly.



48 CHAPTER 6. VIRTUAL X-RAY IMAGING

z

x

y

Pmin

Pmax

Figure 6.2: Axis aligned bounding box.

6.2.3 Hierarchical decomposition

In the latter, an algorithm was defined for the creation of tight-fitting OBBs around a body in
R3. A top-down hierarchy is used for the generation of a series of nested OBBs with gradually
smaller volumes. Therefore, a parent OBB BP

(⋆)
including the complete body, is computed.

The subdivision rule implemented then splits the bounding box with a plane orthogonal to the
longest axis of the box in the center of mass. If the longest axis cannot be subdivided, the

second-longest axis is chosen. For the resulting two distinct regions, two children OBBs BC1
(⋆)

and BC2
(⋆)

can be computed. This procedure may be repeated as long as a dividable convex hull

of the fraction of the underlying geometry can be calculated. The parent and child OBBs can
be organized efficiently in a binary tree structure. In figure 6.1, two steps of this procedure for
AABBs and OBBs are shown using the example of an endoprosthesis. As can been seen, the
OBBs converge faster than AABBs to the shape of the underlying geometry.

6.3 Ray casting geometric primitives in R3

In computer graphics, the use of ray-surface or line-surface intersection tests, needed in a variety
of related problems such as volume rendering, is termed ray casting [Pfister et al., 1999]. A
Ray can be defined by the tuple

R = (ooo,ddd) , ooo,ddd ∈ R3 , (6.14)

with the origin ooo and the direction ddd of the Ray.
In the following section, the intersection of a ray with two different classes of geometric primi-
tives is outlined: (1) the rectangular cuboid and (2) the tetrahedron.

6.3.1 Intersection of ray and rectangular cuboid

The class of rectangular cuboids is congruent with the class of oriented bounding boxes. There-
fore we restrict ourselves to the determination of the intersection of a ray with an oriented
bounding box. Via the map

R⋆ = TB′R = (TB′ooo, TB′ddd) , (6.15)

the ray R can easily be transformed into the coordinate system of the OBB, reducing the model
problem to the collision of a ray R⋆ with an AABB. For this problem class, the slab method,
first proposed in Kay and Kajiya [1986], is an easy and fast solution.
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Slab method.

For the explanation of the slab method, the two-dimensional example shown in figure 6.3 will
be used. However, the procedure itself can be easily extended to three or more dimensions.
A ray R can also be expressed with the following equation

RRR(t) = ooo + t · ddd , t ∈ R+ , (6.16)

which is a simple linear equation. The bounding box can be represented as the intersection of

AABB

y = Pmax
y

y = Pmin
y

x = Pmin
x

x = Pmax
x

RRR2RRR1

x

y

tmax
y (RRR2)

tmin
x (RRR2)tmin

x (RRR1)

tmax
y (RRR1)

tmax
x (RRR1)

tmin
y (RRR1)

x-slab

y-slab

Pmin

Pmax

Figure 6.3: Intersection-test of two Rays RRR1 and RRR2 with a 2D-AABB.

two slabs, the x-slab, defined by two parallel lines y = Pmin
y and y = Pmax

y , both perpendicular

to the y-axis, and the y-slab, defined by two parallel lines x = Pmin
x and x = Pmax

x , both
perpendicular to the x-axis. The minimal and maximal points of intersection of the ray with
the x-slab can be calculated by

tmin
x =

(Pmin
y − oy )

dy
and tmax

x =
(Pmax

y − oy )

dy
. (6.17)

Accordingly, the intersection of the ray with the y-slab is calculated by

tmin
y =

(Pmin
x − ox )

dx
and tmax

y =
(Pmax

x − ox )

dx
. (6.18)
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The ray then intersects with the bounding box if and only if

max(tmin
x , tmin

y ) < min(tmax
x , tmax

y ) (6.19)

the largest minimum is smaller than the smallest maximum, which holds forRRR1, and in contrast,
does not hold for RRR2; both depicted in figure 6.3. Thus, this algorithm allocates no memory,
and if 1

di
is pre-computed, it is division-free, in addition.

6.3.2 Intersection of ray and tetrahedron

A tetrahedron can be decomposed into its set of four two-dimensional faces. Therefore we
restrict ourselves to the intersection of a ray with a two-simplex. To determine the intersection
of a ray with a two-simplex in R3, the Möller–Trumbore intersection algorithm [Möller and
Trumbore, 2005] can be used as follows.

Möller–Trumbore intersection algorithm. A representation based on barycentric coor-
dinates of a triangle s with vertices p̂pp, q̂qq, and r̂rr can be given by the set of equations:

s(u, v) = (1− u − v) · p̂pp + u · q̂qq + v · r̂rr , u, v ∈ R ,
u ≥ 0 , v ≥ 0 , and u + v ≤ 1 . (6.20)

The intersection of a ray RRR(t) with a triangle s(u, v) can be found by solving the equation

p̂pp

q̂qq

r̂rr
RRR

q̂qq − p̂pp

r̂rr − p̂pp

RRR − p̂pp

u

t

v

1

1

M−1 [RRR − p̂pp]

translate M−1

Figure 6.4: Translation and change of basis of the ray and the triangle [cf. Möller and Trumbore,
2005].

RRR(t) = s(u, v)

⇒ ooo + t · ddd = (1− u − v) · p̂pp + u · q̂qq + vr̂rr . (6.21)

Rearranging the terms

−t · ddd + u · (q̂qq − p̂pp) + v · (r̂rr − p̂pp) = ooo − p̂pp , (6.22)

which can be seen as the translation of p̂pp to the origin (see figure 6.4), yields the linear system
of equations

[
−ddd , q̂qq − p̂pp, r̂rr − p̂pp

]
︸ ︷︷ ︸

M



t
u
v


 = ooo − p̂pp , (6.23)

where M−1 can be seen as the transformation of RRR and s, such that s is the unit-triangle shown
in figure 6.4.
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Denoting EEE1 = q̂qq − p̂pp, EEE2 = r̂rr − p̂pp and TTT = ooo − p̂pp, the solution to (6.23) can be obtained using
Cramer’s rule



t
u
v


 =

1

(ddd ×EEE2) ·EEE1



(TTT ×EEE1) ·EEE2

(DDD ×EEE2) ·TTT
(TTT ×EEE1) · ddd


 . (6.24)

The ray RRR(t) then intersects with the triangle s(u, v) at ooo + t · ddd if and only if u > 0, v > 0,
t > 0, and u + v ≤ 1.

6.4 Positional relationship of a discrete point with a finite element

Finding the points of intersection for a ray and a finite element with higher polynomial order is
not trivial. Only a few sources are available that provide a solution. For example, Wiley et al.
[2004] and Üffinger et al. [2010] describe ray casting algorithms for high-quality visualization
of finite elements. Since we are not interested in visualizing finite elements in this work, the
problem is reduced to the detection of the positional relationship of a discrete point xxx and a
finite element, as mentioned earlier. With this simplification, the problem reduces to the search
of the local coordinates ξ(xxx) dependent on the point xxx , given in the global coordinate system.

6.4.1 Global-to-local iteration

For a given finite element with nodal coordinates x̂xx i , i = 1, ...,nnodes, associated shape functions
Ni (ξ), and a point xxx , given in global coordinates, the element-local coordinates ξ need to be
found, such that

fff (ξ) = Ni (ξ) x̂
i − x = 0 . (6.25)

This problem can be solved by the Newton-Raphson algorithm

ξ(n+1) = ξ(n) − J(ξ(n))−1 f (ξ(n)) , (6.26)

with J being the Jacobian matrix with its components

Jij =
∂fi

∂ξj
(ξ) , i = 1, . . . , 3 , j = 1, . . . , 3 , (6.27)

an appropriate initial guess ξ0, and a convergence criterion

||ξ(n+1) − ξ(n)||
||ξ(1)||

< εtol , (6.28)

with a user-defined tolerance εtol.

6.4.2 In-hull test

Presuming ξ(xxx) is known, the quantity of interest q can be interpolated in terms of shape
functions from an element-wise finite element post-processing result as q(xxx) = Ni (ξ(xxx)) · q̂ i .
What remains is to check whether the local coordinates lie within the bounds of the reference
element. Since all commonly used types of finite elements are usually convex, a simple test of
whether ξ(xxx) lies within the convex hull of the reference finite element is sufficient. For the
class of tetrahedral elements as used in this thesis, an in-hull test, taking advantage of the
barycentric coordinate system, can be performed by

∑

i

ξi ≤ 1 and ξi ≥ 0 , i = 1, . . . , 3 , (6.29)

for example.
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6.5 Attenuation law

The initial intensity Iin of a beam of, e.g., electromagnetic radiation, decreases as it passes
through a volume of matter. The Beer-Lambert law [Swinehart, 1962] relates this attenuation
as

Iout = Iin e−
∫
µ(xxx) dx , (6.30)

where Iout is the resultant intensity and µ is the linear attenuation coefficient. For example,
in Schneider et al. [1985], linear attenuation coefficients for compact and cancellous bone are
stated as 2.251 cm−1 and 0.716 cm−1, respectively.

6.6 X-ray generation

A relatively simple model is chosen with an orthographic projection and monochromatic X-
ray beams for the X-ray setup. In an orthographic projection, the X-ray source is a plane
with equally distributed parallel X-rays, while monochromatic means each X-ray beam shares
the same energy. For more information about possible X-ray simulation setups, the reader is
referred to Sujar et al. [2017], for example.
A summary of the X-ray simulation process can then be stated as follows:

1. An axis-aligned bounding box enclosing the complete finite element model is generated,
whose surfaces can serve as emission plates.

2. A tree G of hierarchical-structured oriented boundary boxes is generated to subdivide
the finite element model.

3. For every X-ray RRRi sent through the model, the following steps are performed:

(a) Find all leaves of G, which intersect with RRRi .

(b) Introduce the numerical integration scheme R̄RRij = ooo + tj · ddd by sampling the ray
equidistantly with the desired resolution.

(c) For each discrete point R̄RRij , perform the global-to-local iteration only on the finite
elements inside the leaf bounding boxes.

(d) Perform numerical integration on the quantity of interest, e.g.,

Iout = Iin exp


−

∑

j

wjµ(ϱ(RRRij ))


 . (6.31)

Although it is possible to introduce hierarchical levels in the tree G until each leaf is filled
only with one finite element, it is not always sensible. It was found to be more efficient to
create leaves with less than ten elements and then order them for each ray RRRi by a linear guess
performed by the Möller-Trumbore algorithm, introduced in 6.3.2.

6.7 Numerical examples

All methods described in this chapter were implemented within a self-developed framework,
written in the ȷulıa language [Bezanson et al., 2017]. To demonstrate the functionality of the
method and the implementation, two numerical examples are derived here. The first one is a
coarsely discretized ball with constant density and the second one is a finer discretized disk
with a quadratic density distribution.
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6.7.1 Ball with constant density

As a first benchmark problem, a zero-centered ball S : x2+y2+z2 = r2, x , y, z , r ∈ R of radius
r = 1 cm is discretized coarsely with 50 quadratic 10-node tetrahedral elements (see figure 6.5).

Figure 6.5: Ball discretized by 50 quadratic tetrahedral elements (left picture) and the model
setup with a ball, initial bounding box, X-ray projection plane, and selected rays assembled in
one scene (right picture).

A constant density of ϱ = 1 g
cm3 is assigned to each element. An orthographic X-ray projection

plane is set up, as shown in figure 6.5, using the X-ray algorithm to integrate the density of
the discretized version of the ball. 23.668 rays per cm2 are used to sample the discretized ball,
resulting in 94.864 rays in total, while the density is sampled along each ray with the same
frequency, resulting in 29.218.112 sample points in total. In figure 6.6, the resulting X-ray
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Figure 6.6: X-ray projection of the ball with density displayed in g/cm2 (left picture) and
logscale plot of absolute error in g/cm2 (right picture).

image as well as the absolute error can be seen. The X-ray image looks as expected with a
maximum density of 1.995 g/cm2 at the middle of the picture, as the X-ray passes the total
diameter here. Integration once again over the projected density results in a mass of 4.135 g,
which has a deviation of approximately 1.3% compared to the analytically calculated mass
m = ϱ 4

3
πr3 ≈ 4.189 g. The absolute error, which can be seen as the sum of the discretization
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error of the ball and the discretization error of the rays, is measured at the location of each ray
Ri by comparing the projected density with the integral

∫ ri,out
ri,in

ϱ dx , where ri,in and ri,out are

the intersection points of the ray with the analytical ball S . It can be seen that the error is
the smallest where the vertices of the 10-node tetrahedral elements are clipped to the surface
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Figure 6.7: Cylinder discretized by 2143 quadratic tetrahedral elements (left picture) and
density distribution depending on the radius r (right picture).

of the ball, followed by the edges and finally the faces. As expected, the most significant error
occurs at the edge of the projected circle. In addition, concentric circles can be seen all over
the picture, which can be interpreted as a sign of the depth discretization of the rays.

6.7.2 Cylinder with quadratic density distribution

As second test, a cylinder with radius r = 1 cm and height h = 0.1 cm is discretized with 2143
quadratic 10-node tetrahedral elements and a quadratic density distribution along the radius
ϱ(r) = −4(r −0.5)2+2 is assigned to the model (both shown in figure 6.7). The X-ray setup is
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Figure 6.8: X-ray projection of the cylinder with density displayed in g/cm2 (left picture) and
plot of absolut error in g/cm2 (right picture).

analogous to the latter example, except that there are fewer samples in the depth direction as
the geometry and the density exhibit no variation in that direction. Therefore the integration
is exact even with just one sample along each ray.
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In figure 6.8, the projected density and the absolute error can be seen. The projected den-
sity looks as expected, which once again demonstrates the function of the X-ray simulation.
However, the total error is at least two magnitudes lower as in the first example. This can be
explained by the simplified geometry, which, as already mentioned, exhibits exact integration
per ray, and by the finer mesh, which renders the discretization of the cylinder almost exactly.





Chapter 7

Numerical bone remodeling

Bone remodeling simulation using finite elements has been an active field of research in compu-
tational biomechanics for the last four decades. Starting from a one-dimensional finite element
model in Woo et al. [1977], first attempts in two dimensions were carried out soon after that
by, among others, Hayes and Snyder [1979] and Hayes et al. [1982]. The former example inves-
tigated the effect of an internal fixation plate on long bone remodeling, while the latter studied
bone remodeling of trabecular bone of the patella.
Despite suffering from numerical instabilities, those early two-dimensional models, shown among
others in the works of Carter et al. [1989], Beaupré et al. [1990a] and Weinans et al. [1992],
were capable of reproducing the trabecular structure of bone and were in good agreement with
experimental results. By this time, three prominent approaches for the remodeling stimulus
were available in the literature: (1) the stress approach, (2) the fatigue damage approach, and
(3) the strain energy density approach. Generalizing these ideas, Carter et al. [1987] (cf. Taber
[1995]) defined a daily remodeling stimulus

Ψd = K

[
N∑

i=1

niΨ
m
i

]
, (7.1)

with N different daily loading cases i , each with ni repetitions and associated stimulus Ψi , and
constant K and m. Choosing an appropriate stimulus Ψi , the approaches (1), (2), and (3) can
be recovered. Furthermore, it was shown that if Ψ is uniform in the bone, the three approaches
lead to the same basic result. For more information, the reader is referred to the excellent review
article by Taber [1995]. As already mentioned, all of the above methods suffer from numerical
instabilities, in particular the occurrence of unphysical checkerboard patterns. Many different
approaches have been tried to achieve stability. In Jacobs et al. [1995], a node-based method
was introduced, which successfully suppressed the checkerboard modes for linear elements with
the density held constant per volume by averaging, which is related to the superconvergent
patch recovery method [Zienkiewicz and Zhu, 1992]. A problem related to the latter is the
non-linear dependence of the bone mineral density to Young’s modulus of the form

E

E0
=

(
ϱ

ϱ0

)n

, E0, ϱ0,n ∈ R . (7.2)

It is easy to see that an exponent of, e.g., n = 2 results in intermediate densities ϱmin ≤ ϱ ≤
ϱmax being undesired in a sense of energies. Such a formulation often generates a bone mineral
density field where supporting points of the discretized bone mineral density either adopt ϱmin

or ϱmax, a result closely related to zero-one integer programming. Without stabilization, those
formulations are strongly mesh-dependent; refinement of the mesh generates finer structures
with subsequently smaller areas either adopting ϱmin or ϱmax instead of converging. Harrigan

57
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and Hamilton [1992] showed the conditions under which bone remodeling with E -ϱ-relations of
the form (7.2) own a stable and unique solution.
From the more recent past, two different approaches should be mentioned here as examples:
Kuhl et al. [2003] and Garcia-Aznar et al. [2005]. The former models bone adaption processes
built upon the theory of open thermodynamic systems, and the latter describes bone remodeling
in analogy to damage mechanics.
In this thesis, the approach built upon the theory of open thermodynamic systems by Kuhl
et al. [2003] is adopted. Beyond the latter, an attempt was made to model all steps in close
analogy to material modeling as described in de Souza Neto et al. [2011].

7.1 The E -ϱ-relation

In numerous works, a relation between the bone mineral density and Young’s modulus of
cancellous bones, with the general form of equation (7.2) has been established [see, e.g., Carter
and Hayes, 1977, Gibson and Ashby, 1982, Nackenhorst et al., 2000, Morgan et al., 2003]. Here,
E0, ϱ0, and n are left to be identified by experimental investigations and physical reasoning,
which is an ongoing issue in the scientific community. In Lutz [2011], the following basic
material properties for the E -ϱ-relation have been proposed:

E0 = 6500
N

mm2
, ϱ0 = 1

g

cm3
, n = 2 , and ϱ ∈ [0, 2]

[ g

cm3

]
. (7.3)

It has been shown that this model fits experimental observations sufficiently and shall be used
as a basis throughout this thesis.

7.2 Strain-energy density driven bone remodeling

In chapter 3, a thermodynamic consistent constitutive law describing bone remodeling has been
proposed. As a result of this, the balance of mass was defined as

Dtϱ = R, (7.4)

where R is the mass source, which was left to be defined. According to the principle of ther-
modynamic determinism, R = R(ϱ, ε) has to be a function of the state variables {ϱ, ε}. As
mentioned before, a strain-energy density driven bone remodeling approach should be adopted.
Beaupré et al. [1990b] introduced a strain-energy density approach of the form

R = c
(
Ψ−Ψref

)
, (7.5)

where

Ψ = ϱψ = ϱ

(
ϱ

ϱ0

)n

ψLE (7.6)

is the density-weighted strain-energy density for a linear elastic material restricted to small
deformations (see equation 3.54)), Ψref is a physiological target value which should be adopted
by the density-weighted strain energy density, and c is an additional parameter with the unit
time divided by area, which governs the speed of the bone remodeling process. Harrigan and
Hamilton [1992] extended this approach

R = c

((
ϱ

ϱ0

)−m

Ψ−Ψref

)
= c

(
ϱ

(
ϱ

ϱ0

)n−m

ψLE −Ψref

)
(7.7)

by an additional factor (ϱ/ϱ0)−m . By setting m = 0, the approach of Beaupré et al. [1990b]
is recovered, while it has been shown that by choosing m > n, uniqueness and stability of the
solution are guaranteed [Harrigan and Hamilton, 1992].
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7.3 Bone remodeling as a material model

During the integration of the local stiffness matrix

Ke
(n+1) =

∫

Be

BT ¯̃CCC(n+1) BdV , (7.8)

the algorithmic consistent tangent modulus is evaluated at the supporting points of the nu-
merical integration scheme. Consequently, state variables {ϱ, ε} are discretized and stored at
the integration point level. Thus, the nature of bone remodeling only manifests itself in the
material subroutine of the finite element framework.
Consider a global time-step [t(n), t(n+1)] and a Newton-Raphson iteration (k). At each inte-
gration point XXX I , the material subroutine is executed with the trial strains

ε̃
tr,(k)
(n+1)

= ε̂(XXX I , ε̃(XXX I , t(n)),∆ε̃(XXX I , t(n) +

k−1∑

i=1

∆t(i))) (7.9)

and the last converged state of the bone mineral density ϱ(n) = ϱ(XXX I , t(n)) as input arguments.
By recalling that within the Newton-Raphson iteration of a time-step [t(n), t(n+1)] only the
trial strains are allowed to be altered, it is clear that to obtain the iterative change in bone
mineral density

∆ϱ(k) = ∆tR̂(ϱ(n), ε̃
tr,(k)
(n+1)

) , (7.10)

only an evaluation of the function R is necessary since the quantities ϱ(n) and ε̃
tr,(k)
(n+1)

are known,

and no internal Newton scheme is needed. If ∆ϱ(k) is known, it is possible to determine the

algorithmic consistent tangent modulus
¯̃CCC(k)
(n+1)

. A detailed derivation of the tangent modulus

can be found in section 7.4. The material subroutine is briefly summarized in Algorithm 1.

Algorithm 1 Material subroutine

1: procedure response(ε̃
tr,(k)
(n+1)

, ϱ(n))

2: ∆ϱ(k) ← ∆tR(ϱ(n), ε̃
tr,(k)
(n+1)

)

3:
¯̃CCC(k)
(n+1)

← C̃CC(ϱ(n)+∆ϱ(k))

∂ε̃∗
(n+1)

∣∣∣∣
ε̃
tr,(k)
(n+1)

: ε̃
tr,(k)
(n+1)

+ C̃CC(ϱ(n) +∆ϱ(k))

4: return (
¯̃CCC(k)
(n+1)

,∆ϱ(k))

7.4 Algorithmic consistent tangent modulus

To achieve quadratic convergence within the Newton-Raphson scheme, it is necessary to im-
plement the algorithmic consistent incremental tangent modulus

¯̃CCC(n+1) =
∂ ˆ̃σ(n+1)

∂ε̃(n+1)

, (7.11)
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which can be denoted as the partial derivative of the incremental constitutive function ∂σ̂(n+1)

with respect to the unknown strain ε̃(n+1). Within a Newton-Raphson iteration, the above can
be further specified as the algorithmic consistent incremental iterative tangent modulus

¯̃CCC(k)
(n+1)

=
∂σ̂(n+1)(ϱ(n), ε̃

(k)
(n+1)

)

∂ε̃∗(n+1)

∣∣∣∣∣∣
ε̃
tr,(k)
(n+1)

, (7.12)

the partial derivative of the incremental iterative constitutive function ∂σ̂(n+1) with respect

to the unknown trial strains ε̃∗(n+1), evaluated at the iterative trial strains ε̃
tr,(k)
(n+1)

= ε̃(n) +∑k−1
i=1 ∆ε̃(i) known from the solution of the first (k − 1) Newton-Raphson iterations. Inserting

equation (3.57) into the above and applying the chain rule yields

¯̃CCC(k)
(n+1)

=
∂ C̃CC(ϱ(n) +∆ϱ(k))

∂ε̃∗(n+1)

∣∣∣∣∣
ε̃
tr,(k)
(n+1)

: ε̃
tr,(k)
(n+1)

+ C̃CC(ϱ(n) +∆ϱ(k)) , (7.13)

where the partial derivative of the material tensor C̃CC with respect to the trial strains ε̃∗(n+1) is

left to be identified. A straightforward application of the rules for tensor derivations provides

∂CCC(ϱ(n) +∆ϱ(k))

∂ε∗
(n+1)

∣∣∣∣∣
ε
tr,(k)
(n+1)

= nϱ−n
0 ∆t · c

(
ϱ(n)

ϱ0

)n−m

σLE(k)
(n+1) ⊗CCCLE . (7.14)

Note that the expressions have been converted back to tensor notation in the above since it is
not trivial to multiply stresses and material tensors in Voigt notation. For more information
on the algorithmic consistent tangent modulus, the reader is referred to de Souza Neto et al.
[2011].

7.5 The Principle of static-equivalent forces and related biomechanical-
equilibrated bone mineral density distribution

In this thesis, the assumption was made that bone remodeling is a long-term process, which
takes place over a period of years. This justifies the omission of dynamic forces if the quantity
of interest is a biomechanical-equilibrated bone mineral density distribution.
Now consider the quasi-static example for a linearized-weak form of type (4.25) for a non-linear
but time-independent material: if the surface loads are held constant between two time steps
t(n) and t(n+1), no Newton-Raphson iteration will take place, since the external forces fff ext

(n+1)

are already in balance with the internal force fff int
(n)

. In bone remodeling, as described here, two

(pseudo)-time constants were introduced: (1) ∆t for the implicit Euler time integration and (2)
c as a constant describing the process speed in equation (7.5). That possibly results in an out-
of-balance right-hand side, although forces are held constant between two time steps. By that, it
is possible to define the biomechanical-equilibrated bone mineral density distributions: assume
ttt = ttt(XXX ) and ϱ = ϱ(XXX ) are a given surface load and a given bone mineral density distribution,
respectively. ϱ(XXX ) is called biomechanical-equilibrated with respect to ttt , if σ(n+1) = σ(n) for
ttt(n+1) = ttt(n) = ttt .
It is noted here that, albeit unconditionally stable for many problems, the time discretization
constant ∆t in the backward Euler method cannot be chosen to be arbitrarily large for the
Newton-Raphson procedure to converge.
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What remains is a meaningful defintion of ttt : in Lutz and Nackenhorst [2007] surface loads were
computed by solving the inverse optimization problem

min
ttt

1

2

nelems∑

I=1

(ϱ(XXX I , ε)− ϱref(XXX I ))
2 , (7.15)

where ϱref(XXX I ) has been obtained by projecting 3D-CT data from a human femur to an asso-
ciated finite element mesh.

7.6 Numerical examples

All methods described in this chapter were implemented within a self-developed framework,
written in the ȷulıa language [Bezanson et al., 2017]. In this section, some numerical examples
shall demonstrate the function of the bone remodeling algorithm as well as its implementation.
The first example is a thin plate where the variation of the parameter m shall be investigated.
The second example is a human femur where the influence of the reference strain energy Ψref

is studied.
For both examples following assumptions are made: To define the bone material, the parameters
introduced in equation (7.3) are used. Furthermore, Poisson’s ratio is set to ν = 0.3 and a
combined parameter ∆t · c = 100 s · 1 s/m2 = 1 s2/mm2 is used for controlling the speed of the
adaption process. The force is held constant, and the maximum number of global time-steps
is (nmax) = 120. The algorithm is said to have converged if for some time-step 1 < k ≤ n:
|ϱ(k)(XXX I )−ϱ(k−1)(XXX I )| < ϵtol for all integration pointsXXX I . All results are transferred to X-ray
images according to chapter 6.

7.6.1 Model 1: thin plate

As a first example, a thin three-dimensional plate with dimensions of 20cm × 20cm × 1cm is
clamped on its left-hand side, and a shear force qy (y) = 1 kN/mm, 9cm ≤ y ≤ 11cm is applied
at the right-hand side as displayed in figure 7.1. The reference strain-energy density is set

y

x

qy

Figure 7.1: Thin plate model: schematic representation (left) and sample discretization (right).

to Ψref = 10−3 N/mm2. The exponent m is varied to study the influence of this parameter.
The results of an X-ray simulation of the thin plate following the bone remodeling process are
displayed in figure 7.3 for linear finite elements and in 7.4 for quadratic finite elements.
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Linear finite elements. The thin plate model meshed by linear tetrahedron results in a
mesh with 709 elements and 816 degrees of freedom by choosing a coarse discretization scheme
or, if a finer discretization scheme is applied, in a mesh with 3081 elements and 3267 degrees
of freedom.
For the exponent m = 1, it can be seen that a strong checkerboarding pattern occurs for both
discretizations, the coarse one displayed in figure 7.3a and the finer one displayed in figure 7.3b.
Therefore, the convergence of the global algorithm is not achieved, while quadratic convergence
of the Newton-Raphson method is preserved, as shown in figure 7.2. While the exponent m
increases, the bone mineral density distribution is getting smoother, as seen by comparing
7.3c and 7.3e or 7.3d and 7.3f, respectively, but unphysical checkerboard patterns are not fully
suppressed. As all the results exhibit unphysical checkerboard patterns, it can be said that
linear finite elements are not suitable to perform bone remodeling simulations without further
treatment of the instabilities with the methods described here.
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Figure 7.2: Convergence history of bone remodeling material model.

Quadratic finite elements. The thin plate model meshed by quadratic tetrahedrons results
in a mesh with 709 elements and 4566 degrees of freedom by choosing a coarse discretization
scheme or, if a finer discretization scheme is applied, in a mesh with 3081 elements and 19032
degrees of freedom. For simulations with m = 1 (not depicted), convergence of the global
algorithm was not achieved, and unphysical patterns could be seen. For m = 2, the same
unphysical patterns occur but are less prominent, and convergence of the global algorithm
was achieved in 29 time-steps for the coarse mesh, depicted in figure 7.4a, and in 59 steps for
the finer mesh, depicted in figure 7.4b. The case with exponent m = 3 is the first where no
unphysical patterns are visible. In figure 7.4c, disturbances can be seen near the bearing and
force application, but these phenomenons disappear if the mesh is refined, as seen in figure
7.4b. It can be observed that while m increases, global convergence is improved, in general.
The Newton-Raphson scheme preserved quadratic convergence throughout all experiments, as
shown for the linear elements in figure 7.2.
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(a) m = 1 (b) m = 1

(c) m = 2 (d) m = 2

(e) m = 3 (f) m = 3

Figure 7.3: Bone remodeling followed by X-ray simulation of thin plate model meshed by linear
tetrahedral elements. (a), (c), and (e) are derived from the coarse mesh; (b), (d), and (e) from
the finer mesh.
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(a) m = 2, (nconv) = 29 (b) m = 2, (nconv) = 59

(c) m = 3, (nconv) = 13 (d) m = 3, (nconv) = 16

(e) m = 4, (nconv) = 11 (f) m = 4, (nconv) = 11

Figure 7.4: Bone remodeling followed by X-ray simulation of thin plate model meshed by
quadratic tetrahedral elements. (a), (c), and (e) are derived from the coarse mesh; (b), (d),
and (f) from the finer mesh.
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7.6.2 Example 2: human femur

The human femur, displayed in figure 7.5, serves as a second example. Since linear finite ele-
ments did not perform sufficiently in the last example, the model is meshed solely by quadratic
elements resulting in 21451 elements and 102048 degrees of freedom. For the depicted boundary
conditions, which were adopted from Lutz and Nackenhorst [2007], it has already been shown
that they are suitable to generate a physiological density distribution. The exponent m is set

Figure 7.5: Finite element model of human femur with boundary conditions.

to m = 2, while in this example, the reference strain energy density is altered in order to study
its influence. The results are transferred to an X-ray image and depicted in figure 7.6. In figure
7.6a, it can be seen that Ψref = 0.00001 N/mm2 is too small as a reference strain energy density
and leads to a bone mineral density distribution that is nearly uniform and doesn’t develop
visible zones of compact and cancellous bone. Increasing Ψref leads to a bone mineral density
distribution which can be considered more realistic as seen in figure 7.6b or, with even more
prominent developed zones with compact and cancellous bone, in figure 7.6c. In figure 7.6d, it
can be concluded that Ψref = 0.001 N/mm2 is possibly too large since especially in the region
of the femoral head, the bone mineral density seems to be underdeveloped. By that, it can
be concluded that 0.0005N/mm2 ≤ Ψref < 0.001N/mm2 can be considered an optimal reference
strain energy concering the given model and boundary conditions. Finally, it can be noted that
for this example, the Newton-Raphson algorithm preserved quadratic convergence for all cases
considered here, and the global algorithm has converged in less than 20 time-steps.
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Chapter 8

Numerical simulation of osseointegration: a node-to-node
contact interface approach

Simulating the process of osseointegration remains a challenge in biomechanical research. A
reason for this is that there is little knowledge available about the process of osseointegration
since it is hard to observe in vivio. As a result, only a few computational models are available. A
first approach using finite element analysis is given in Natali et al. [1997], by which the process
of osseointegration of dental implants was investigated by analyzing the dynamic response
following impulse excitation. Moreo et al. [2007] provided a more elaborate attempt by modeling
the bone-implant interface following the principles of continuum damage mechanics. This model
was capable of reproducing osseointegration patterns that agreed with clinical observations
qualitatively. Finally, a bio-active interface, analogous to modeling plasticity, is given in Lutz
and Nackenhorst [2012]. Here, the bony ingrowth is depicted with a Drucker-Prager plasticity
model, which merges into a von Mises model while osseointegration takes place.

8.1 Objectives of this approach

Medical researchers agree that micromotions are a driving factor for the process of osseointe-
gration [see, e.g., Munzinger et al., 2004]. Furthermore, osseointegration is a process closely
related to fracture healing or bone remodeling [see, e.g., Parithimarkalaignan and Padmanab-
han, 2013]. Consequently, it seems quite natural to combine the strain-energy density driven
approach from chapter 7 with a physically admissible micro-motion threshold.
To be able to display micro-motions, it is necessary to capture the relative kinematics of bone
and prosthesis accurately. Thus, the introduction of an interface that allows for relative dis-
placement of bone and prosthesis is required. A contact interface can naturally do this best.
Despite this, it may be exhibiting various other problems in terms of numerical stability, al-
gorithmic consistency, and the implementation of an evolutionary constitutive relation within
the interface. However, most of these problems are solved by the simple restriction to small
displacements in the interface, which fits well within the frame of the rest of this thesis. By that
restriction, it is possible to model the contact as node-to-node contact. Hereby, the interface
is introduced artificially by duplicating nodes of the finite element discretization, which are
shared between the volume parts of bone and prosthesis. In the literature, this is also known
as a zero-thickness contact element [see, e.g., Goodman et al., 1968, Day and Potts, 1994, Gaul
and Mayer, 2008, Cerfontaine et al., 2015]. A zero-thickness interface seems to be physically
favorable compared to previous approaches where the interface was realized with a thin layer
of volume elements, since in locations where the interface exhibits compressive stresses, the
bloody-bone-mixture by which the prosthesis is covered post-surgically is almost completely
displaced, resulting in direct contact of bone and prosthesis in reality.

67
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8.2 Multi-body weak form

Let B0 = B10
⋃B20

⋃
∂Bc0 be a deformable body embedded in R3 with distinct regions B10 and

B20 (see figure 8.1). We denote B10 the master body and B20 the slave body. The interface

layer connecting B10 and B20 is termed ∂Bc0 with associated boundary parts ∂Bc,10 ⊂ ∂B10 and

∂Bc,20 ⊂ ∂B20 (see figure 8.2). The interface allows for small relative displacements of B10 and

B10
B20

∂Bc0

x1

x3

x2

Figure 8.1: Deformable body B0.

∂Bc0

∂Bc,10

∂Bc,20

Figure 8.2: Interface layer ∂Bc0.

B20 and the specification of a user-defined interface constitutive relation. The multi-body weak
form, neglecting body forces, can then be stated as follows:

δΠ(uuu1,uuu2) =

2∑

α=1



∫

Bα
0

δ (εα : σ(εα)) dV −
∫

∂Bα
0

δuuuα · tttα dA


 . (8.1)

For each body, the surface contributions

δΠ∂B0 =
2∑

α=1


−

∫

∂Bα
0

δuuuα · tttα dA


 (8.2)

=
2∑

α=1


−

∫

∂Bα
0 \∂Bc,α

0

δuuuα · tttα,ext dA−
∫

∂Bc,α
0

δuuuα ·CCCα dA


 (8.3)

can be divided into a part accounting for surface tractions tttα,ext on ∂Bα0 \∂B
c,α
0 and a part ac-

counting for interface tractions CCCα on ∂Bc,α0 . Since this approach is restricted to the geometric
linear case and allows only for small relative displacements, it can be stated that

∂Bc0 ⊆ ∂Bc,10 ⊆ ∂Bc,20 ⊆ ∂Bc0 , (8.4)

which allows integration of the surface tractions over the master body ∂Bc,10 . In the following,

the terms master boundary ∂Bc,10 and interface layer ∂Bc0 will be used synonymously. By
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writing out solely the interface tractions

δΠC = −
∫

∂Bc
0

δuuu1 ·CCC 1 dA−
∫

∂Bc
0

δuuu2 ·CCC 2 dA , (8.5)

and enforcing mechanical equilibrium within the interface

CCC dA = −CCC 1 dA = CCC 2 dA , (8.6)

the interface contribution to the total virtual work can be stated as

−
∫

∂Bc
0

δuuu1 ·CCC 1 dA−
∫

∂Bc
0

δuuu2 ·CCC 2 dA = −
∫

∂Bc
0

(
δuuu2 − δuuu1

)
·CCC dA . (8.7)

Subsequently, the interface tractions

−
∫

∂Bc
0

(
δuuu2 − δuuu1

)
·CCC dA = −

∫

∂Bc
0

(
δuuu2 − δuuu1

)
· (CCCN +CCCT) dA (8.8)

may be split into their normal parts CCCN and their tangential parts CCCT. Here it is emphasized
that the subindices N and T only indicate the normal and tangential contribution, and no
summation is implied if they appear twice in an expression coincidentally.

8.3 Non-penetration condition in the interface: the normal gap func-
tion

In order to allow relative displacement but suppress interpenetration of ∂Bc,10 and ∂Bc,20 , the
non-penetration condition

(
xxx2 − x̄xx1

)
· n̄nn1

N ≥ 0 (8.9)

has to be fulfilled for each pair (xxx2, x̄xx1), where xxx2 ∈ ∂Bc,20 is a material point on the slave

surface, and x̄xx1 ∈ ∂Bc,10 is its related point on the master surface. If ξ1 = (ξ1, ξ2) denotes

the parametrization of ∂Bc,10 , in a general approach, the point x̄xx1 = xxx1(ξ̄) can be found by
solving the closest point projection problem, for example, providing the minimizing parameters
ξ̄. Here, since a node-to-node approach is used, the pair (xxx2, x̄xx1) is known a priori at the nodes
(x̂xx2

i , ˆ̄xxx
1
i ) of the finite element discretization of the interface and can provide for the definition of

a nodal gap ĝgg i = x̂xx2
i − ˆ̄xxx1

i , as seen in figure 8.3. This leads to the definition of an interpolatory
gap function

ggg(xxx2,xxx1, ξ) =

nnodes∑

i=1

Ni (ξ) ĝgg i (x̂xx
2
i , ˆ̄xxx

1
i ) , (8.10)

where Ni (ξ) is the i-th shape function of the element. Furthermore, the normals n̂nni have to
be defined at the nodes of the interface to guarantee continuity over element borders. The
associated surface normal n̄nn1

N = nnn1
N(ξ̄) can be defined as

nnnN(ξ) = nnn1
N(ξ) =

nnodes∑

i=1

Ni (ξ) n̂nni . (8.11)
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∂Bc,10

ξ2

ξ1
n̄nn1
T

n̄nn1
N

ggg
∂Bc,20

ˆ̄xxx1
1

ĝgg1

x̂xx2
1

ˆ̄xxx1
2

ĝgg2

x̂xx2
2

ˆ̄xxx1
4

ĝgg4

x̂xx2
4

ĝgg3

ĝgg1

n̂nn1

n̂nn2

n̂nn3

n̂nn4

Figure 8.3: Interpolatory gap function ggg defined by slave material points x̂xx2
i and related master

material points ˆ̄xxx1
i .

This provides for a redefinition of the normal gap function given in (8.9) as

ggg(xxx2,xxx1, ξ) · nnnN(ξ) ≥ 0 . (8.12)

xxxα is stated in the current configuration and can be expressed as xxxα = xxxα+uuuα, where xxxα relates
to the initial configuration and uuuα denotes the displacement field. In the initial configuration,
it can be stated that xxx2(ξ) = xxx1(ξ). From this it follows

ggg
(
xxx2,xxx1, ξ

)
· nnnN(ξ) = ggg

(
xxx2 + uuu2,xxx1 − uuu1, ξ

)
· nnnN(ξ) (8.13)

= ggg
(
uuu2,uuu1, ξ

)
· nnnN(ξ) , (8.14)

since ggg is a linear function, which leads to the definition of the so-called normal gap function

gN(ggg, ξ) = gN(uuu2,uuu1, ξ) = ggg(uuu2,uuu1, ξ) · nnnN(ξ). (8.15)

Finally, the contact indicator function

g−N (ggg, ξ) =

{
gN(ggg, ξ) if gN < 0 ,

0 else
(8.16)

is introduced, which takes negative values if the non-penetration condition (8.9) is violated and
is zero in the case of no contact.
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8.4 Relative displacement in the interface: the tangential gap func-
tion

A projector onto the tangential space can be defined as

aaaα(ξ)⊗ aaaα(ξ) = I− nnnN(ξ)⊗ nnnN(ξ) , (8.17)

which leads to the definition of the tangential gap vector

gggT(ggg, ξ) = gggT(uuu
2,uuu1, ξ) = ggg

(
uuu2,uuu1, ξ

)
· (aaaα(ξ)⊗ aaaα(ξ)) . (8.18)

The tangential gap function

gT(ggg, ξ) = ||gggT(ggg, ξ)|| (8.19)

is then just the norm of the tangential gap vector. Finally, a slip-normal

nnnT(ggg, ξ) =
gggT(ggg, ξ)

||gggT(ggg, ξ)||
=

gggT(ggg, ξ)

gT(ggg, ξ)
(8.20)

can be defined, pointing in the direction of the tangential displacement.

8.5 An approach towards a thermodynamical consistent osseointe-
gration contact interface

The osseointegration degree

ρ = ρ(XXX , t) , XXX ∈ ∂Bc0 , ρ ∈ [0, 1] (8.21)

is introduced as a dimensionless scalar field to depict the process of osseointegration within
the contact interface. If ρ = 0, no osseointegration has taken place, and the interface solely
transmits compressive stresses. If ρ = 1, osseointegration has taken place to the full extent, and
a firm bond exists between prosthesis and bone. The definition of a linear function represents
the increase of adhesive strength during the process of osseointegration.

c(ρ) = c0 + ρ · cρ . (8.22)

This provides for the definition of the constitutive normal gap function as

gcN(ρ,ggg) =





gN(ggg) if gN(ggg) < c(ρ)− r ,

c(ρ)− 1
2
r if gN(ggg) > c(ρ) ,

− 1
2
r ·
(

gN(ggg)−c(ρ)
r

)2
+ c(ρ)− 1

2
r else,

(8.23)

which will be used in the following instead of gN, resulting in an adhesive behavior of the inter-
face depending on ρ. Hereby r ≤ c0 is a regularization parameter. Furthermore, a constitutive
version of Coulomb’s law of friction

|CCCT| ≤ µ(ρ) |CCCN| (8.24)

shall be satisfied in the interface. Hereby, the linear function

µ(ρ) = µ0 + ρ · µρ (8.25)
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represents the increase in static friction during the process of osseointegration. In order to fulfill
Coulomb’s law of friction implicitly, a constitutive tangential gap function

gµT(ρ,ggg) =

{
µ(ρ) |gcN| if gT > µ(ρ) |gcN| ,
gT else

(8.26)

is defined. Using (8.23) and (8.67), the gap function

ggg = gcNnnnN + gµTnnnT + gggp = gggeN + gggeT + gggp = ggge + gggp (8.27)

can be split into an elastic part ggge and a plastic part gggp. Similar to section 3.5.1, it will be
assumed that the set of state variables

{ρ,ggg,gggp} (8.28)

determines the thermodynamical state for any time t at a point XXX ∈ ∂Bc0.

8.5.1 Dissipation inequality for contact interfaces

Following Laursen [2013] and Dittmann [2017], it is possible to extend the Helmholtz specific
free energy

ψ̄ = ψ(ϱ, ε) + ψC(ρ,ggg) = ψ(ϱ, ε) + ψCe (ρ,ggge) + ψCp (ρ,gggp) (8.29)

in the presence of a contact interface by an interface part ψC(ρ,ggge), which depends on the
osseointegration state ρ and the gap vector ggg. Furthermore, an interface version of the Clausius-
Duhem inequality, stated in equation 3.46, can be formulated as

dC,loc = −CCC ·Dtggg
e − ρDtψ

C − ρ(SC +Dθψ
C)− SCθ ≥ 0 , (8.30)

where SC is the entropy in the interface and SC is the additional interface entropy source
due to the theory of open systems thermodynamics. The negative sign in the first term was
introduced artificially since the gap vector ggg and the interface tractions CCC point in opposite
directions by construction. For more information about interface balance laws, the reader is
referred to Laursen [2013].

8.5.2 An osseointegration constitutive interface-model

Analogous to section 3.5, the time derivative of the interface Helmholtz specific energy function
can be stated as

Dtψ
C(ρ,ggg) = ∂ρψ

C Dtρ+ ∂gggeψ
Ce ·Dtggg

e + ∂gggpψ
Cp ·Dtggg

p . (8.31)

Furthermore, an interface evolution law can be stated in close analogy to (3.29) as

Dtρ = RC . (8.32)

Inserting equation (8.31) and (8.32) into (3.29) yields

dC,loc = (CCC − ρ∂gggeψCe ) ·Dtggg
e − ρ∂ρψCRC − ρ(SC +Dθψ

C)− SCθ
− ρ∂gggpψCp ·Dtggg

p ≥ 0 , (8.33)
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from which the constitutive equations




ψC = ψC(ρ,ggge)

CCC = −ρ∂gggeψC

Dtρ = RC

|CCCT| ≤ µ(ρ) |CCCN|
SC = 1

θ
ρ∂ρψCRC

−ρ∂gggpψCp ·Dtgggp ≥ 0

(8.34)

can be derived. Furthermore, SC = Dθψ
C = 0 was implied since no actual heat generation

takes place in this model. By that procedure, thermodynamical consistency is guaranteed a
priori. Finally, the constitutive initial value problem for osseointegration interfaces can be
stated as follows: presuming the history of the gap function ggg(t), t ∈ [t0,T ], the initial value of
the osseointegration degree ϱ(t0), and the plastic gap vector gggp(t0) are known, find the history
of CCC (t), ϱ(t), and gggp(t), such that the constitutive equations





CCC (t) = ρ(t) ∂gggeψCe (ρ(t),ggge(t))

Dtρ(t) = RC(ρ(t),ggge(t))

|CCCT(t)| ≤ µ(ρ(t)) |CCCN(t)|
(8.35)

hold for every t ∈ [t(0),T ].

8.5.3 Evolution law for osseointegration contact interfaces

Similar to bone remodeling, a predefined reference strain energy density ψCe
ref is adopted by the

interface. The rate of change of degree of osseointegration can be defined as follows

Dtρ = RC(ρ,ggg,gggp) = k ·
(

ln(ψCe
ref )

ln(S2(||gggp||) · ψCe )
− 1

)
, (8.36)

where k is an auxiliary parameter governing the speed of the adaption process, and S2 is an
indicator function for the admissible plastic displacements in the interface, as seen in figure
8.4. Osseointegration shall only take place if the relative displacement is in an admissible range
[gpmin, g

p
max] with an optimum at gpopt = (gpmin + gpmax)/2. Therefore, the admissible tangential

slip indicator function

S2(g
p = ||gggp||) =





S∗
2 (s(g

p, gpmin, g
p
opt)) if gpmin < gp ≤ gpopt ,

S∗
2 (s(g

p, gpopt, g
p
max)) if gpopt < gp ≤ gpmax ,

0 else

(8.37)

is defined with the help of the so-called smootherstep-function

S∗
2 (x) = 6x5 − 15x4 + 10x3 (8.38)

and a linear scaling function

s(x , a, b) =
1

b − a
x +

a

a − b
. (8.39)

An implicit Euler scheme

Dtρ =
ρn+1 − ρn

∆t
(8.40)

discretizes time integration of (8.36)
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gpmin gpopt gpmax

1

gT

[−]

Figure 8.4: Admissible tangential slip indicator function S2

8.5.4 The specific interface Helmholtz free energy function

For the osseointegration interface, a specific interface Helmholtz free energy function is chosen
as

ψCe (ρ,ggge) =
εp

2ρ
(ggge)T(ggge) =

εp

2ρ
(ggg − gggp)T(ggg − gggp) , (8.41)

with a penalty parameter εp from which the interface tractions can be derived as

CCC = CCCN +CCCT = −ρ∂gggeψCe = −εp ggge = −εp(ggg − gggp) . (8.42)

It is remarked that with the introduction of the penalty parameter εp, the non-penetration
condition is only fulfilled approximatively.

8.6 The interface tractions CCCN

The weak form of the normal part of the interface traction is given by

δΠCN = −
∫

∂Bc
0

δggg ·CCCN dA . (8.43)

To derive the normal interface traction, the interface Helmholtz free energy can be written as

ψCe (ρ,ggge) =
εp

2ρ
(ggge)T(ggge) =

(
εp

2ρ
(gcNnnnN + gµTnnnT)

T
(gcNnnnN + gµTnnnT)

)

=
εp

2ρ

(
(gcNnnnN)T(gcNnnnN) + (gµTnnnT)

T
(gµTnnnT)

)
, (8.44)

since nnnN · nnnT = 0. The partial derivative of the interface Helmholtz free energy can identify
the normal contact traction with respect to the elastic normal gap vector as

CCCN = −ρ∂gggeNψ
Ce = −εpgcNnnnN . (8.45)

With the above the normal contact pressure can be identified as

Pc
N = −εp · gcN . (8.46)

In figure (8.5), the contact pressure Pc
N is shown for different degrees of osseointegration,

illustrating the desired behavior in the interface.
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c(ϱ) = c0
gN

Pc
N

ρ = 0

c(ϱ)

gN

Pc
N

0 < ρ < 1

gN

Pc
N

ρ = 1

Figure 8.5: Contact pressure Pc
N for different degrees of osseointegration.

8.7 The interface tractions CCCT

The tangential part of the interface traction is given by:

δΠCT = −
∫

∂Bc
0

δggg ·CCCT dA . (8.47)

Similar to the normal interface tractions, a vector-valued elastic tangental gap function gggeN =

µ(ϱ)Pc
N

||g||

Pµ
T

Figure 8.6: Tangential contact pressure Pµ
T.

gµTnnnT is defined. Consequently, the tangential contact tractions can be derived by the partial
derivative of the interface Helmholtz free energy with respect to the elastic tangential gap vector
as

CCCT = −ρ∂gggeTψ
Ce = −εpgµTnnnT . (8.48)

In figure 8.6, the tangential contact pressure

Pµ
T = −εp · gµT (8.49)

is displayed.
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8.8 Material non-linearities

The initial boundary value problem for osseointegration contact interfaces




δΠC(ρ(t),ggge(t)) = 0

Φρ(ρ(t),ggge(t)) = 0 = Dtρ(t)−RC(ρ(t),ggge(t))

Φggge (ρ(t),ggge(t)) = 0 = ggge(t)− gcN(ρ(t),ggg(t))nnnN − gµT(ρ(t),ggg(t))nnnT

(8.50)

can be stated as the fulfillment of (1) the weak form contribution of the interface δΠ = 0,
(2) the evolution law for osseointegration interfaces Φρ = 0, and (3) retrieving the elastic gap
function by Φggge = 0. Therefore, an incremental evolution law

ρ(n+1) = ρ(n) +∆tR̂C(ρ(n),ggg
e
(n+1)) = ρ(n) +∆ρ (8.51)

and an incremental elastic law

ggge(n+1) = ĝgge(ρ(n) +∆ρ,ggg∗(n+1))

= gcN(ρ(n) +∆ρ,ggg∗(n+1))nnnN + gµT(ρ(n) +∆ρ,ggg∗(n+1))nnnT (8.52)

can be defined to solve this generally non-linear problem within the global Newton-Raphson
iteration. In the above, the implicit Euler scheme, introduced in (8.40), was used, and a trial

gap ggg∗
(n+1)

= ggg(n) − gggp
(n)

+ ∆ggg has been defined. Note that the incremental mass source R̂C

and the incremental elastic gap function ĝgge only exhibit variation in ggg. The interface tractions
can then be identified as

CCC (n+1) = −εp ĝgge(ρ(n) +∆ρ,ggg∗(n+1)) . (8.53)

Finally, the resultant weak form contribution of the osseointegration contact interface can be
stated as

δΠC
(n+1) = −

∫

∂Bc
0

δggg ·CCC (n+1) dA . (8.54)

8.9 Linearization of the interface contributions

Similarly to section 4.3, the contribution of the contact interface to the equations arising from
the linearization of (8.1) can be written as

δΠC
(n+1) = δΠC(ggg(n+1)) ≈ δΠC(ρ(n),ggg

p
(n)
,ggg(n)) + ∆δΠC(ρ(n),ggg

p
(n)
,ggg(n),∆ggg) . (8.55)

The first variation δΠC = δΠCN + δΠCT is given in (8.43) and (8.47), respectively. The second
variation of the normal interface contributions

∆δΠC = −
∫

∂Bc
0

∆δggg ·CCC dA−
∫

∂Bc
0

δggg ·∆CCC dA (8.56)

can be simplified to

∆δΠC = −
∫

∂Bc
0

δggg ·∆CCC dA = εp

∫

∂Bc
0

δggg ·∆ĝgge(ρ(n) +∆ρ,ggg∗(n+1)) dA , (8.57)

due to the fact that the second variation ∆δggg of the gap function vanishes.
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8.9.1 First variation δggg of the gap function

Due to the defintion (8.10) of ggg in terms of shape functions, the first variation of the gap
function is simply

δggg(uuu2,uuu1, ξ) =

nnodes∑

i=1

Ni (ξ) δĝgg i (ûuu
2
i , ˆ̄uuu

1
i ) =

nnodes∑

i=1

Ni (ξ)
(
δûuu2

i − δ ˆ̄uuu1
i

)
. (8.58)

8.9.2 Linearization ∆gN of the normal gap function

To find the first variation ∆gN of the normal gap given in (8.15), the chain rule can be stated
as

∆gN = nnnN∆ggg + ggg∆nnnN . (8.59)

Since nnnN is held constant, only the term nnnN∆ggg needs to be derived. The variation of ∆ggg is
known from equation (8.58), hence the first variation of the normal gap function is given by

∆gN = nnnN ∆ggg . (8.60)

8.9.3 Linearization ∆gT of the tangential gap function

The first variation of the tangential gap function given in (8.19) is stated as

∆gT = ∆(||gggT||) =
gggT

||gggT||
∆gggT = nnnT ∆gggT . (8.61)

8.9.4 Linearization ∆gggT of the tangential gap vector.

The tangential projector aaaα(ξ)⊗aaaα(ξ) exhibits no variation because it is defined by the normal
vector nnnN, hence

∆gggT = ∆(aaaα(ξ)⊗ aaaα(ξ)ggg) = (aaaα(ξ)⊗ aaaα(ξ))∆ggg . (8.62)

8.9.5 Linearization ∆nnnT of the slip normal.

In contrast to nnnN, the slip normal does vary with changes in ggg and therefore needs to be
linearized. It can be found by the following derivation:

∆nnnT =
∂nnnT

∂ggg∗
(n+1)

∆ggg = ∆

(
gggT

||gggT||

)
=

∆gggT

||gggT||
+∆(||gggT||)−1gggT

=
∆gggT

||gggT||
− 1

2
(gggT · gggT)−3/2 ∆(gggT · gggT) gggT

=
∆gggT

||gggT||
− (gggT ⊗ gggT)∆gggT

||gggT||3
=

∆gggT

||gggT||
− (nnnT ⊗ nnnT)∆gggT

||gggT||

=
I− (nnnT ⊗ nnnT)

||gggT||
(aaaα(ξ)⊗ aaaα(ξ))∆ggg . (8.63)
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8.9.6 Linearization ∆gggcN of the constitutive normal gap function

Recalling the trial gap ggg∗
(n+1)

= ggge
(n)

+ ∆ggg and defining a trial osseointegration state ρ∗ =

ρ(n) +∆ρ, the incremental constitutive normal gap can be derived as

∆gcN =
∂gcN

∂ggg∗
(n+1)

∆ggg (8.64)

the partial derivative of gcN with respect to the trial gap ggg∗
(n+1)

. Here, the partial derivative of

the constitutive normal gap can be stated as

∂gcN
∂ggg∗

(n+1)

=





(nnnN)T if gN(ggg∗
(n+1)

) < c(ρ∗)− r ,

0 · (nnnN)T if gN(ggg∗
(n+1)

) > c(ρ∗) ,
−(gN(ggg∗(n+1))−c(ρ∗))

r
(nnnN)T else .

(8.65)

8.9.7 Linearization ∆gggµT of the constitutive tangential gap function

The linearization of the constitutive tangential gap can be stated as

∆gµT =
∂gµT

∂ggg∗
(n+1)

∆ggg (8.66)

the partial derivative of gµT with respect to the trial gap ggg∗
(n+1)

. In the latter, the partial

derivative can be expressed as follows:

∂gµT
∂ggg∗

(n+1)

=




µ(ρ∗)

gcN(ρ∗,ggg∗(n+1))

|gcN(ρ∗,ggg∗
(n+1)

)|
∂gcN

∂ggg∗
(n+1)

if gT(ggg
∗
(n+1)

) > µ(ρ∗) |gcN(ρ∗,ggg∗
(n+1)

)| ,
(nnnT(ggg

∗
(n+1)

))T(aaaα ⊗ aaaα) else .
(8.67)

8.9.8 Linearization ∆CCC of the interface tractions and resultant weak form contri-
bution

Equations for CCC and ĝgge are given in (8.53) and (8.52), respectively. A straightforward applica-
tion of derivation rules yields the linearization of the interface tractions as

∆CCC = −εp ∆ĝgge = −εp(nnn1
N∆gcN + nnn1

T∆gµT + gµT∆nnn1
T) (8.68)

= −εp (nnn1
N

∂gcN
∂ggg∗

(n+1)

+ nnn1
T

∂gµT
∂ggg∗

(n+1)

+ gµT
∂nnnT

∂ggg∗
(n+1)

)

︸ ︷︷ ︸
=:C(n+1)

∆ggg (8.69)

= −εp C(n+1) ∆ggg , (8.70)

where C(n+1) is a 3×3-matrix. Concluding the above, the contribution of the contact interface
to the linearized weak form, can be stated as

δΠC
(n+1) = εp

∫

∂Bc
0

δggg · C(n+1) ∆ggg dA+ εp

∫

∂Bc
0

δggg · ggge(n) dA . (8.71)
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8.10 Discretization

In the following, the discretization strategy to the osseointegration interface is stated. The
overall model is discretized with 10-node quadratic tetrahedral elements, the interface is solely
described for quadratic triangular elements. Still, all the definitions made below could be
altered for arbitrary finite element formulations.

8.10.1 Zero-thickness contact elements

To implement zero-thickness contact elements [Goodman et al., 1968], nodes shared between the
volume part of the bone and the volume part of the prosthesis are selected, and subsequently,
these nodes are artificially duplicated. This procedure results in the creation of a new element

x

y

z

x̂xx1 x̂xx2

x̂xx3

x̂xx4

x̂xx5

x̂xx6

x̂xx7 x̂xx8

x̂xx9

x̂xx10

x̂xx11

x̂xx12
t=0

Figure 8.7: A triangular zero-thickness contact element.

that consists out of two parallel triangular faces with a distance of t = 0 cm, as can be seen in
figure 8.7. As mentioned before, this simple procedure could be done with arbitrary element
types.

8.10.2 Definition of the contact normals

From equation (8.11), it is evident that the normals have to be defined at the nodal positions.
It is noted that there exist different methods for the definition of normals at nodal positions.
For example, Wriggers and Zavarise [2004] propose a smooth spline interpolation of the contact
surfaces. By that, it is possible to derive smoothed normals at the nodes. For simplicity, in this

x

y

nnn1 nnn2

n̄nn

x̂xx1

x̂xx2

x̂xx3

e1 e2

Figure 8.8: Average interface normal.
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approach, vertex normals are derived by the weighted average of the normals at all integration
points XXX I of all adjacent elements ei , i = 1, ...,nadj to a node x̂xx j as

n̂nnj =

nadj∑
i=1

nip∑
I=1

wI · nnn(XXX I )

nadj∑
i=1

nip∑
I=1

wI

, (8.72)

with the weights

wI =
1

||x̂xx j −XXX I ||
(8.73)

being defined as the inverse of the distance between a node x̂xx j and a integration point XXX I . An
exemplary illustration of an average vertex normal is displayed in figure 8.8.

8.10.3 Discretized weak form contribution of the osseointegration interface

As a first step, the zero-thickness element displacement vector is introduced as

ˆ̃uuue =
[
ũ1
1 ũ1

2 ũ1
3 . . . ũ12

1 ũ12
2 ũ12

3

]T
. (8.74)

A definition of the gap function ggg was introduced in equation (8.10) in terms of shape functions,
so the known gap ggg(n) from the previous time-step can be conveniently discretized as

ggg(n) = H̄ ˆ̃uuue
(n) , (8.75)

with the help of an altered interface H-matrix as

H̄ =

[
N1 0 0 ··· N6 0 0 −N7 0 0 ··· −N12 0 0
0 N1 0 ··· 0 N6 0 0 −N7 0 ··· 0 −N12 0
0 0 N1 ··· 0 0 N6 0 0 −N7 ··· 0 0 −N12

]
. (8.76)

The first variation and the increment of the gap function then simply follow as

δggg = H̄ δuuue and ∆ggg = H̄∆ˆ̃uuue , (8.77)

respectively. Inserting the above into (8.78) yields the discretized weak form contribution of
the osseointegration interface as

δΠC
(n+1) = (δuuue)Tεp

∫

∂Bc
0

H̄TC(n+1) H̄dA∆ˆ̃uuue + (δuuue)Tεp

∫

∂Bc
0

H̄T(ggg(n) − gggp
(n)

) dA . (8.78)

8.11 Embedding the interface contribution into the global Newton-
Raphson scheme

In section 4.6, the global Newton-Raphson scheme was introduced. In this section, the lin-
earized interface contributions shall be embedded into the global Newton-Raphson procedure.
Therefore it is convenient to assume that for a Newton-Raphson iteration step (k), all incre-

ments of the gap function
∑k−1

i=1 ∆ggg(i), the osseointegration state ρ(n), the plastic gap gggp
(n)

,
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and the gap function ggg(n), known from the last converged solution, are given. That enables
the definition of the iterative trial gap as

ggg
tr,(k)
(n+1)

= ggg(n) − gggp
(n)

+

k−1∑

i=1

∆ggg(i) . (8.79)

In analogy to (4.44), an incremental version of the weak form contribution (8.78), linearized at

t̄ = t(n) +
∑k−1

i=1 ∆t(i), can be stated as

δΠC
(n+1) = (δuuue)Tεp

∫

∂Bc
0

H̄TC
(k)
(n+1)

H̄dA∆ˆ̃uuue(k) + (δuuue)Tεp

∫

∂Bc
0

H̄Tggg
e,tr,(k)
(n+1)

dA . (8.80)

8.11.1 Derivation of ∆ρ and ∆gggp within a global Newton-Raphson iteration

Recall that for computing the elastic trial gap

ggg
e,tr,(k)
(n+1)

= ĝgge(ρ(n) +∆ρ(k),ggg
tr,(k)
(n+1)

) (8.81)

at time t̄ , the increment of the osseointegration state

∆ρ(k) = ∆tR̂(ρ(n),ggg
e,tr,(k)
(n+1)

) (8.82)

at time t̄ must be known and vise versa. This assembles an incremental-iterative version of the
constitutive initial boundary value problem for osseointegration contact interfaces (8.50)2,3 as

Φ̂ =

(
Φ̂ρ

Φ̂ggge

)
=




∆ρ(k) −∆tR̂C(ρ(n),ggg

e,tr,(k)
(n+1)

) = 0

ggg
e,tr,(k)
(n+1)

− ĝgge(ρ(n) +∆ρ(k),ggg
tr,(k)
(n+1)

) = 0
. (8.83)

This system of equations can be solved by an additional inner Newton-Raphson procedure as
described in de Souza Neto et al. [2011] for the increment of the osseointegration state ∆ρ(k)

and the elastic trial gap ggg
e,tr,(k)
(n+1)

. Only after the global Newton-Raphson has converged for

some time-step (m), it is allowed to update the osseointegration state

ρ(n+1) = ρ(n) +∆ρ(m) (8.84)

and the plastic gap

gggp
(n+1)

= gggp
(n)

+∆gggp(m) , (8.85)

where the increment of the plastic gap can be defined as

∆gggp(m) = (g
(m)
T(n+1)

− g
µ(m)
T(n+1)

) · nnn(m)
T(n+1)

(8.86)

since plastic deformations only take place in the tangential plane.

8.12 Numerical examples

All methods described in this chapter were implemented within a self-developed framework,
written in the ȷulıa language [Bezanson et al., 2017]. In the following, two different numeri-
cal examples shall be conducted to prove the correctness of the methods described and their
implementation. The first example performed on a reference geometry serves as a verification
for the implemented methods. The second example is performed on a model of a bone with
implanted prosthesis demonstrating the applicability of the methods developed for simulation
of osseointegration after total hip replacement.
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8.12.1 Model 1: fiber-reinforced composite

To verify the contact implementation, a patch-test, equipped with a contact surface as general
as possible, shall be derived as a first example. Therefore, a quarter circle is inlaid into the lower

uuu,ttt

a = 10cm

a

r B10

B20

x

y

z

(a) patch-test model (b) generated mesh

Figure 8.9: Zero-thickness contact patch-test.

left edge of a three-dimensional cuboid-domain with dimensions 10 × 10× 1 mm3. Symmetry
boundary conditions are applied: the left edge is clamped in the x-direction ux (x = 0) = 0,
the lower edge is clamped in the y-direction uy (y = 0) = 0, and the rear side is clamped in
the z-direction uz (z = 1) = 0. At the right-hand side (x = 10), constant displacement or
constant traction is applied. The circular inlay and the exterior domain are named B10 and
B20 , respectively. A schematic representation of the patch-test model can be found in figure
8.9a. A mesh consisting of 18206 quadratic tetrahedral elements was generated according to
the latter specifications and can be seen in figure 8.9b. In the contact interface, 4515 nodes
were duplicated artificially, and 2152 zero-thickness elements were created.

No composite material, no plastic slip, and no osseointegration. As a first compu-
tational example, the same stiff material is chosen for both domains. More precisely, Young’s
modulus and Poisson’s ratio can be stated as E(XXX ) = 500GPa and ν(XXX ) = 0.3, XXX ∈ B10 ∪ B20 .
Furthermore, a constant displacement of 2.5 · 10−4 mm is applied at the right-hand side. In
this example, no plastic slip will be considered (gggp ≡ 0, ggge ≡ ggg∗), and no evolution of the
osseointegration degree will occur (∆ρ ≡ 0). What can then be expected from that example is,
due to the homogeneous boundary condition, a homogeneous stress field and a linear displace-
ment field will be present, only disturbed by the gap in the contact interface, which depends
on the introduced penalty parameter. In figure 8.10, the result of calculations performed as
described above with penalty parameter εp = 104 MPa/mm and εp = 106 MPa/mm are displayed.
Note that no color scale is indicated since we are only interested in identifying the displacement
and stress field, respectively. In figure 8.10a, it is readily apparent that the usage of a penalty
parameter of εp = 104 MPa/mm results in a disturbed displacement field, more precisely at
y = 0, the gap in the interface amounts to 1.77 · 10−4 mm, that is around 70 percent of the
total applied displacement. In figure 8.10b, a penalty of εp = 106 MPa/mm was used, and in
this example, a linear displacement field can be identified in the x-direction. The resulting gap
at y = 0 in the interface amounts to 6.092 · 10−6 mm, which corresponds to around 2 percent
of the total applied displacement. In figure 8.10c, the stress σ22 is displayed for the penalty
parameter εp = 106 MPa/mm. Due to the homogenous boundary condition, this component of
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(a) displacement u1, εp = 104 (b) displacement u3, εp = 106 (c) stress σ22, εp = 106

Figure 8.10: Exemplary results for two different penalty coefficients.

the stress tensor should be vanishing in the hole domain (σ22 ≡ 0) in theory. Nevertheless, a
maximum stress σmax

22 = 9.914 · 10−2 N/mm2 can be identified, demonstrating the magnitude
of the introduced error due to the contact interface for a very stiff material, which can serve as
a worst-case scenario.

0.2 0.4 0.6 0.8

(a) ρ = 0.01

0.15 0.2 0.25 0.3

(b) ρ = 1.0

Figure 8.11: Von Mises stress [N/mm2].

Composite material. As a second computational example, a composite material is now
considered. Plastic slip is included while the osseointegration degree is fixed ρ = 0.01 for
experiment one and at ρ = 1.00 for experiment two. Young’s modulus of the fiber (E(XXX ) =
200GPa, XXX ∈ B10) is chosen to be four times higher than Young’s modulus of the matrix
(E(XXX ) = 50GPa, XXX ∈ B20), while both materials share the exact Poisson’s ratio (ν(XXX ) = 0.3,
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XXX ∈ B10 ∪ B20). The constitutive adhesive function can be stated as

c(ρ) = 5 · 10−6 + 2 · 10−5 · ρ [mm] , (8.87)

the constitutive frictional function as

µ(ρ) = 0.1 + 1.25 · ρ , (8.88)

the penalty parameter is chosen as εp = 104 MPa/mm, and the regularization parameter as
r = 10−9 mm. In this example, Neumann boundary conditions are applied: a total force of
2.5 N is distributed equally to boundary faces of all elements at the right-hand side, follow-
ing the concept of equivalent nodal forces. Figure 8.11 shows the von Mises stress for both
osseointegration states, while the displacement is amplified by a factor of 2000 to make the
interface behavior visible. In figure 8.11a, debonding of the interface can be observed, while
in 8.11b, the gap is closed. Furthermore, in 8.11a, a peak in stress can be observed where
the matrix rests on the fiber, while in 8.11a, this peak has vanished while remaining peaks in
stress near the interface are caused by different transverse contractions. The tractions within

ρ = 0.01

ρ = 1.00

−0.1 0 0.1

(a) ||CCCN||

ρ = 0.01

ρ = 1.00

−7 · 10−2 0

(b) ||CCCT||

Figure 8.12: Interface tractions ||CCCN|| and ||CCCN|| [N].

the interface are shown in figures 8.12a and 8.12b for the normal interface traction and the
tangential interface tractions, respectively. Note that the displacements are again amplified by
a factor of 2000. Figure 8.12a illustrates the difference in normal interface tractions for the
initial osseointegration state with ρ = 0.01 and the full osseointegrated state with ρ = 1.0. In
the former osseointegration state, the interface transmits only a small amount of tension as
described by the adhesive function c(ρ = 0.01), while in the latter osseointegration state, the
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interface can transmit tensions to the full extent. The tangential interface tractions, shown in
figure 8.12b, are limited due to the constitutive version of Coulomb’s law as stated in equation
(8.24) for the initial osseointegration state and can be transferred to the full extent in the final
osseointegration state. However, the amount of tangential tractions is small in this example
and only results from different transversal contraction, as already mentioned.

8.12.2 Model 2: bone with implanted prosthesis

Finally, the contact interface shall be applied to the bone with an implanted prosthesis. The
model was generated according to chapter 5, whereas the model was chosen to be discretized
coarsely overall except for the surface of the prosthesis, where a finer discretization was chosen
(cf. figure 8.13). All elements associated with the femoral head and all nodes solely associated
with the femoral head have been erased. The same procedure has been applied to the top
part of the prosthesis since it does not contribute to the simulation results in any way and is
therefore not needed. Nodes within the bone-prosthesis interface have been doubled artificially

Figure 8.13: Resultant mesh.

to create the contact interface. This ultimately results in a mesh with 53334 and 240210 degrees
of freedom. The set of boundary conditions defined in section 7.6.2, resulting in a physiological
bone mineral density distribution within the bone, were adopted and transferred to the top part
of the prosthesis accordingly. A detailed explanation of how this can be done for the femoral
head is provided in section 11.1.3. This time the full osseointegration model, displaying plastic
slip and change in the osseointegration state within the contact interface, is applied.
The set of parameters used in this computation is displayed in table 8.1. If the simulation
has started, plastic slip is prevalent since the interface does not admit tension substantially.
If the plastic slip is within the bounds of the defined admissible plastic slip, osseointegration
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will occur proportional to the logarithmic osseointegration law, defined in equation (8.36). The
simulation is said to be converged if the increment of plastic slip and, therefore, the increment
of the osseointegration state within the contact interface is below a certain threshold. In figure

parameter value unit parameter value unit

εp 500 [MPa/mm] gpmin −2.5 · 10−6 [mm]

c0 10−6 [mm] gpopt 4.75 · 10−4 [mm]

cρ 10−5 [mm] gpmax 1.75 · 10−3 [mm]

µ0 0.5 [−] r 10−8 [mm]

µρ 20 [−] ψCe
ref 10−9 [MPa/mm]

ρ0 0.1 [−] ∆t 0.5 [s]

k 1 [1/s]

Table 8.1: Parameters for simulation of osseointegration.

8.14, the final osseointegration state is displayed. It can be seen that a partial ingrowth, as
observed in clinical studies, can be displayed. The interface tractions in the initial as well as in
the final state are shown in figure 8.15. A logarithmic color scale is applied since the different
interface tractions between a non-osseointegrated and an osseointegrated area is in the range of
several magnitudes. For the contact algorithm, including plastic slip, to converge sufficiently,

0 0.2 0.4 0.6 0.8 1

Figure 8.14: Final osseointegration state [−].

an active set iteration had to be introduced. This is necessary since otherwise integration
points, which we know are currently not slipping, begin to slip nonetheless within the Newton-
Raphson procedure because of the trial gap. An illustration of the convergence behavior of an
entire simulation of an osseointegration procedure, including the active set iteration, can be
found in image 8.16.
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8.3e-7 2.2e-5 6e-4 1.6e-2 2.2e0

Figure 8.15: Interface tractions ||CCC || [N/mm2] in the initial (left) and final (right) osseointegra-
tion state.
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Figure 8.16: Convergence behavior of the osseointegration interface including active set itera-
tion.





Chapter 9

Adaptive sparse grid collocation method

In this chapter, the adaptive sparse grid collocation method will be introduced. This is to be
used in the following to build a surrogate model. We will start with an introductory example
to illustrate the origin and idea of the method.
Let Ω be an open subset of Rn and f : Ω→ R a real-valued function. Consider the example of
a linear differential equation of form

Ly(x) = f (x) x ∈ Ω , (9.1)

where L : C k (Ω) → C 0(Ω) is an abstract bounded linear differential operator of order k . For
the approximative solution of equations of type (9.1), there exists a multitude of methods, most
prominent the method of weighted residuals [see, e.g., Finlayson, 2013] and its derivatives, such
as the Galerkin method. Hereby, the unknown solution is approximated by a function

y(x) ≈ y ′(x) =
n∑

i=1

ciϕi (x) , (9.2)

where ci ∈ R are coefficients and the set {ϕi}i=1,...,n assembles a basis for a finite-dimensional
subspace of C 0(Ω). Accounting for the linearity of L, substituting the latter into (9.1) enables
the definition of a residual :

R(x) = Ly ′(x)− f (x) , (9.3)

with |R(x)| > 0. The method of weighted residuals then states that by choosing (n − k)
appropriate weight functions wi : Ω→ R together with k boundary conditions, it is possible to
force the residual to vanish in the sense of integrals:

∫

Ω

R(x)wi (x) dΩ = 0 ∀wi , i = 1, . . . ,n − k . (9.4)

The latter yields a system of equations and can be solved for the unknown coefficients ci .
Variations of the method of weighted residuals differ primarily in the choice of weight functions.
Following Kajotoni [2008], it is possible to derive the collocation method from selecting the
Dirac delta distribution for the weights wi as

wi (x) = δ(x − xi ) with δ(x − xi ) =

{
1 if x = xi ,

0 otherwise.
(9.5)

89
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Substituting the latter into (9.4) yields

R(xi ) =

∫

Ω

R(x)δ(x − xi ) dΩ = 0 , (9.6)

demonstrating that the residual is in fact zero at the collocation points xi . An interpolatory ba-
sis, such as a Lagrange basis, is used to obtain intermediate values between collocation points.
It can be shown that as more points are included, the solution converges to the analytic solution.
The collocation method was first proposed in Frazer et al. [1937], while first investigations in
an error-efficient distribution of collocation points in space were carried out by Kadner [1960].
Wright [1964] and Villadsen and Stewart [1967] were among the first to use the roots of orthog-
onal Chebyshev polynomials as collocation points to achieve better convergence. Because of
its easy and efficient application to the numerical solution of integral equations, the collocation
method had been widely used in the following years [see, e.g., Schapery, 1962, Newman, 1971,
Russell and Shampine, 1972, Douglas and Dupont, 1973, Hsiao et al., 1980, Yang and Peet,
1988]. Sparse tensor product quadrature rules, mitigating the curse of dimensions occurring in
full tensor grid constructions, were provided early by Smolyak [1963]. Still, it has taken some
time before Zenger and Hackbusch [1990] introduced that concept into collocation methods,
while sparse grids with underlying Chebyshev nodes were first studied in Poplau [1995] and
Sprengel [1997]. In the last two decades, collocation methods were prominent in the solution
of stochastic partial differential equations, as shown in Babuška et al. [2007] and Nobile et al.
[2008]. Ma and Zabaras [2009] were able to once again increase the efficiency of the collocation
approach by introducing an error-adaptive formulation of the method, which will serve as a
basis for the collocation method described in this thesis. Finally, it can be noted that Gates
and Bittens [2015] provided an extension of the latter by the introduction of a hierarchy of suc-
cessively finer spatial discretizations, an idea adopted from the multilevel Monte Carlo method
[see, e.g., Heinrich, 2001].
Below, one-dimensional sparse grid construction and a corresponding one-dimensional La-
grangian basis are derived first. Hereafter, it will be shown how this concept easily translates
to higher dimensions.

9.1 Hierarchical grid construction in one dimension

Consider the construction of a one-dimensional collocation grid G on an interval [−1, 1]. Then,
the total amount n of collocation points up to level l can be determined by the nested Clenshaw-
Curtis rule:

n(l) =

{
1 if l = 1 ,

2l−1 + 1 if l > 1 .
(9.7)

The tuple (m, l) ∈ N+× N+ can serve as an abstract identifier for a collocation point, where
m ≤ n(l) is an ordinal number, and l is the level of the collocation point’s first occurrence.
Due to the nested structure, it is possible to re-identify each collocation point (m, l) on level
l + 1 by

m↑(m, l) =

{
2 if l = 1 ,

2m − 1 if l > 1 .
(9.8)

It is emphasized that collocation points (m, l) only exist on level l , while all possible level
transitions by the m↑ operator only refer to a placeholder needed to construct the basis, as
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shown in the next section. Furthermore, it is possible to state the position ξ̂ of each collocation
point (m, l) with the help of the rule

ξ̂ml = ξ̂(m, l) =

{
0 if n(l) = 1 ,

−1 +
2(m−1)
n(l)−1

if otherwise .
(9.9)

By (9.7),(9.8), and (9.9), it is possible to identify a parent-child relationship between a collo-
cation point (m, l) and its at most two child collocation points

C(m, l) =





{Cl} =
{
(m↑ + 1, l + 1)

}
if m = 1 ,

{Cr} =
{
(m↑ − 1, l + 1)

}
if m = n(l) ,

{Cl , Cr} =
{
(m↑ − 1, l + 1), (m↑ + 1, l + 1)

}
if otherwise .

(9.10)

To make this construct viable, the definition of a root point (m, l) = (1, 1) is sufficient. An

m : l = 1

m : l = 2

m : l = 3

m : l = 4

1

1 3

2 4

2 4 6 8

Cl (1, 1) Cr (1, 1)

Cr (1, 2) Cl (3, 2)

Cr (2, 3)Cl (2, 3) Cl (4, 3) Cr (4, 3)

m↑

m↑

m↑

2

3

5

m↑

m↑

1

1
m↑3

m↑7

m↑

m↑

5

9

Figure 9.1: Grid construction in one dimension.

illustration of this approach to collocation grids in one dimension can be found in figure 9.1.

9.2 Lagrangian bases for one-dimensional collocation grids

There are several choices for Lagrangian bases for sparse grids, including the global Lagrangian
basis (see figure 9.2a) and the local Lagrangian basis (see figure 9.2b). A one-dimensional
stochastic sparse grid with k collocation points, equipped with the well-known global La-
grangian basis

Ig(x) =
k∑

i=1

ci li (x) , ci ∈ R , li (x) =
∏

1≤m≤k
m ̸=i

x − xm

xi − xm
, (9.11)

was shown to retain the exponential convergence rate of the probability error in the stochastic
state-space that was first established for the spectral stochastic Galerkin approach [Babuška
et al., 2007]. But, this result holds only if relatively strict assumptions for the smoothness of
the input data are made, i.e., the occurrence of steep gradients in the stochastic state-space
can lead to Runge’s phenomenon. Therefore, for non-smooth problems, the local Lagrangian
basis with compact support seems favorable, despite its slower convergence. To obtain superior
efficiency, Ma and Zabaras [2009] introduced a hierarchical local Lagrangian basis into sparse
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x

y

(a) Global Lagrangian basis.

x

y

(b) Local linear Lagrangian basis.

Figure 9.2: Interpolatory bases in one dimension.

grid collocation, enabling for local refinement of collocation points instead of the common level-
wise refinement approach. To construct the latter basis, the local support of a collocation point
in one dimension shall be defined first as

supp(m, l) =





[−1, 1] if l = 1 ,

[−1, ξ̂m+1
l ] if l > 1 ∧ m = 1 ,

[ξ̂m−1
l , 1] if l > 1 ∧ m = n(l) ,

[ξ̂m−1
l , ξ̂m+1

l ] else.

(9.12)

The hierarchical basis

Ik (x) =
∑

(m,l)∈G
l≤k

c(m, l)a(m, l , x) =
∑

(m,l)∈G
l≤k

cml am
l (x) , x , cml ∈ R , (9.13)

or, in other words, the hierarchical interpolator up to level k , is constructed starting with the
definition of a constant basis function a1

1 = 1, for the root point. Assuming the sparse grid shall

a1
1

a2
3

a1
2

a4
3

a3
2

x (l = 1)

x (l = 2)

x (l = 3)

y

Figure 9.3: Hierarchical local Lagrangian basis in one dimension.
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interpolate a function f , the coefficient c11 = f (ξ̂11) follows from a simple function evaluation.
For points on a hierarchical level l > 1, the basis function can be stated as

am
l (x) =





x−ξ̂m−1
l

ξ̂m
l
−ξ̂m−1

l

if x ≤ ξ̂ml ∧ x ∈ supp(m, l) ,

x−ξ̂m+1
l

ξ̂m
l
−ξ̂m+1

l

if x > ξ̂ml ∧ x ∈ supp(m, l) ,

0 else.

(9.14)

Consequently, coefficients cml , l > 1 can be found with the help of the hierarchical interpolator

of the underlying level l − 1, i.e., cml = f (ξ̂ml ) − Il−1(ξ̂ml ). Such a hierarchical basis for three
hierarchical levels can be seen in figure 9.3. Its application in interpolating an exemplary
function

f (x) =
1

1 + e−5∗x −
2

5
, (9.15)

along with the three level interpolators I1, I2, and I3, is displayed in figure 9.4.

x

y

c11

c32

c43

c12
c23

I1:
I2:
I3:
f :

Figure 9.4: Hierarchical interpolation in one dimension.

9.3 Adaptive local refinement

The coefficients cml can be interpreted as a hierarchical surplus providing a local improvement

prediction for the next level interpolator Il+1. Consequently, a refinement strategy can be
defined: Consider a sparse grid G with l levels and level interpolator Il . Then collocation
points (m, l) spawn their hierarchical children C(m, l), as described in equation 9.10, only if
their hierarchical surplus is larger than some predefined threshold cml > ϵref.

It has to be stated that this procedure fails if a function value f (ξ̂ml ) coincidentally meets the

interpolant Il−1(ξ̂ml ) − f (ξ̂ml ) = 0 but exhibits a difference Il−1(ξ̂ml + ε) − f (ξ̂ml + ε) > ϵref

elsewhere in its near surrounding. However, for physical problems, the risk can be considered
negligible if the initial level linit of the sparse grid is sufficiently high.
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9.4 Sparse grid construction

From a one-dimensional grid G on [−1, 1], the full grid in e.g. two dimensions G⊗G on [−1, 1]⊗
[−1, 1] can be constructed via crosswise tensor products of all one-dimensional entities, resulting
in a dense grid as shown in figure 9.5(a) for three hierarchical levels. For a d-dimensional sparse

(a) full grid

level 1

level 2

level 3

(1, 2) ⊗ (1, 1)

(2, 3) ⊗ (1, 1)

(1, 1) ⊗ (1, 1)

(4, 3) ⊗ (1, 1)

(3, 2) ⊗ (1, 1)

(1, 1) ⊗ (1, 2)

(1, 1) ⊗ (2, 3)

(1, 1) ⊗ (4, 3)

(1, 1) ⊗ (3, 2) (3, 2) ⊗ (3, 2)(1, 2) ⊗ (3, 2)

(3, 2) ⊗ (1, 2)(1, 2) ⊗ (1, 2)

(b) sparse grid

Figure 9.5: Full grid and sparse grid in two dimensions.

grid, we can rather think of the construction as the tensor product extension of the abstract
identifier (m, l) to d-dimension and the subsequent execution of one-dimensional rules onto
each factor therein. We will make this idea concise in the following, starting by introducing the
d-dimensional abstract identifier for collocation points as

(mmm, lll) = (m1, l1)⊗ · · · ⊗ (md , ld ) , mmm, lll ∈ Nd
+ , (9.16)

which for the root-point results in (1, 1)⊗ · · · ⊗ (1, 1). A d-dimensional collocation point then
spawns at most 2d hierarchical children by the subsequent application of (9.10) onto each factor
as

C(mmm, lll) ={C(m1, l1)⊗ (m2, l2)⊗ · · · ⊗ (md , ld ) ∪ · · · (9.17)

· · · ∪ (m1, l1)⊗ · · · ⊗ (md−1, ld−1)⊗ C(md , ld )} .

Note that collocation points that spawn multiple times within a hierarchical refinement step
can be eliminated by set-builder notation, e.g., all unique collocation points arising from a
complete level transition from level k to k + 1 can be gathered by

⋃

(mmm,lll)∈G
1−d+|lll|=k

C(mmm, lll) . (9.18)

The result thereof for three hierarchical levels is displayed in figure 9.5(b), illustrating the sparse
characteristic compared to the full tensor grid. The construction of the support then follows as

supp(mmm, lll) = supp(m1, l1)⊗ · · · ⊗ supp(md , ld ) , (9.19)
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and the construction of the basis functions follows by simple multiplication

ammmlll (xxx) =
d∏

i=1

ami
li

(xi ) , (9.20)

resulting in the level interpolator

Ik (xxx) =
∑

(mmm,lll)∈G
1−d+|lll|≤k

cmmmlll ammmlll (xxx) , xxx ∈ Rd , cmmmlll ∈ R . (9.21)

9.5 Numerical example

The methods described above lend themselves readily to efficient and straightforward imple-
mentation, carried out in the ȷulıa language [Bezanson et al., 2017]. Proof shall be provided by
the example of a non-smooth two-dimensional function

f (xxx) =
1

|
√
2− (x1 − 1)2 − (x2 − 1)2 + 1

2
|
, f ∈ C0 , xxx ∈ R2 (9.22)

on [1, 1]2, where the non-smoothness is a curved kink. The grid is generated by setting the
tolerance to ϵref = 10−4 and the maximum number of grid levels is set to 25. In figure 9.6,

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1
level 1
level 2
level 3
level 4
level 5
level 6
level 7
level 8
level 9
level 10
level 11
level 12
level 13
level 14
level 15
level 16
level 17
level 18
level 19
level 20

Figure 9.6: Refinement pattern for sample non-smooth function in two dimensions.

the first 20 levels of the grid, consisting of a total of 9392 collocation points, are displayed,
illustrating the adaptive refinement. The sampled function is displayed in figure 9.7a, and
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the relative error in comparison to Monte Carlo sampling is displayed in figure 9.7b. For the
Monte Carlo convergence plot, the function (9.22) was integrated with three different sample
sizes: (1) 10,000, (2) 100,000 and (3) 1,000,000 sample points. For each sample size, the
numerical integration was carried out 1000 times. The result is visualized as a box plot. For
more information on box plots, the reader is referred to Williamson et al. [1989]. Note that as
dimensions in state-space are added, the convergence of Monte Carlo sampling will catch up to
the convergence rate of the collocation grid.
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(a) Sampled response surface on [−1, 1] ⊗ [−1, 1].
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Figure 9.7: Non-smooth examplary two-dimensional function.



Chapter 10

A comprehensive approach in prediction of biomechanical
compatibility in total hip arthroplasty

In the previous chapters, all necessary methods were laid out to describe the evolution of bone
mineral density following total hip replacement. The result of the osseointegration process,
described in chapter 8, is an indicator for secondary stability, while consecutive simulation of
bone remodeling, as described in chapter 7, can serve as an indicator for long-term stability.
As a first step, different abstract computational modelsM(·) will be described, defined by their
sets of inputs and outputs, considering the models themselves as black boxes. By that, the need
for surrogate modeling will be demonstrated. A surrogate is a simplified model of the outcome,
which can be used whenever the behavior of a system should be investigated but cannot be
measured directly because of the computational complexity of the original system. Nowadays,
a large number of methods are subsumed under the term surrogate modeling. Following Asher
et al. [2015], surrogate models can be divided into three basic categories: (1) Data-driven
models, which are built upon empirical evaluation of a complex model, (2) projection-based
models, where the governing equations are projected onto a reduced dimensional subspace and
(3) multi-fidelity based models, where the underlying physics is simplified, or the numerical
resolution is reduced. Examples of data-driven models are kringing [Dubourg et al., 2011, Han
and Görtz, 2012] or the response surface methodology [Jones, 2001, Khuri and Mukhopadhyay,
2010]. Prominent projection-based methods are, among others, proper orthogonal decompo-
sition [Willcox and Peraire, 2002, Rowley, 2005] or the Karhunen-Loève expansion [see, e.g.,
Kim, 1998]. Multifidelity-based models are especially interesting if multiple information sources
with different fidelities are available [Lam et al., 2015]. For more information about surrogate
modeling, the reader is referred to Queipo et al. [2005], Razavi et al. [2012], or Roy and Datta
[2018], for example.

10.1 Black box modeling

In the following, different computation models M(·) shall be defined by their differences in
inputs and outputs. The model itself is left as a black box in this section, assuming that each
model applies the same basic operations to their inputs to generate their correspondent version
of the output. That is, the models, in fact, solely differ in inputs and outputs. To create
common ground, inputs shared by all models are a CAD model D of the human femur and
a CAD model P of the prosthesis equipped with an initial position within the human femur.
Different outputs y for each model are conceivable and also feasible: y = ϱ(XXX ) could be a
scalar field of bone mineral density, y =

∫
B ϱ(XXX ) dV (alternatively y =

∫
∂Bc ρ(XXX ) dA) could be

some scalar-valued reference number, or yyy = {ŷi}i=1,...,nnodes
could be a vector-valued output

assembled from nodal data of a post-processed finite element result. It is also possible to define
yyy = {yi}i=1,...,noutputs a ordered set of different outputs. For notational convenience, only

97
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a common abstract output y shall be defined here for all models, which is left to be further
specified using concrete applications at a later stage.

10.1.1 The deterministic model MD

A deterministic modelMD is a classical model, which yields a deterministic output for a given
set of deterministic inputs:

y =MD(D,P,θM,θP) , (10.1)

where θM ∈ IM is the set of parameters describing a specific physical admissible prosthesis
position (see chapter 5), while in θP different patient-specific parameters could be assembled
as well as all parameters needed for each single simulation step.

10.1.2 The full model MF

As a preliminary remark, the designation as the full model is not rigorous and was only made
to indicate where a reduced model shall be derived from in the next stage. The full modelMF

is no longer deterministic as it includes all physical admissible prostheses positions IM as an
input parameter. In IM, all intervals Ii , defined in chapter 5, are assembled. As a result, the
output

y(IM) =MF(D,P,IM,θP) (10.2)

depends on IM as well, a concept which would be called the forward propagation of uncertainty
in a probabilistic framework. In fact, the approach taken here could be a probabilistic framework
if a suitable probability space (Ω,F ,P) was defined, where Ω is a sample space, F is a σ-algebra,
and P is a probability measure. It can be pointed out that IM is not a well-defined sample
space for arbitrary rotations since the prosthesis position as described in chapter 5 is defined by
Euler-angles. There are several approaches available [among others Downs, 1972, Mardia, 1975,
Habeck, 2009] describing the statistics of the orientation of bodies embedded in R3, which could
potentially be applied here to achieve a well-defined sample space. Consequently, assigning
an appropriate probability density function, which for example, renders larger deviation from
the initial position as less likely, would result in a probabilistic framework. The result of
such a probabilistic calculation could be an expected bone mineral density distribution that
takes implantation inaccuracies made by the surgeon into account. While this is a promising
approach, it is stated to be beyond the scope of this thesis and could be seen as a natural
extension thereof.
By analogy with the probabilistic framework, it can be easily demonstrated that the full model is
not computable in full complexity: consider y = yt to be a random process with finite variance,
then it can be shown that a spectral representation [cf. Chien and Fu, 1967, Le Gratiet et al.,
2017] exists as the infinite series

yt =
∞∑

i=1

√
λiξiϕi (t) , (10.3)

where ξi are pairwise uncorrelated random variables, ϕi are real-valued eigenfunctions on B,
which are pairwise orthogonal in L2(B), and λi are their correspondent eigenvalues.
Finally, it can be stated that by including parametric representations for D and P, as described
in Dopico-González et al. [2009], Mehrez and Browne [2012], or Ro et al. [2018], and by defining
admissible ranges for patient-individual characteristics in θP, it would also be possible to define
a fully parametric approach, which could make model-specific predictions on biomechanical
compatibility for a larger set of individuals.
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10.1.3 The surrogate model MSG

In the last section, it was demonstrated that the full model could not be computed. As a
result, model order reduction has to be introduced at this point. In this thesis, the use of
the response surface methodology is preferable because of its inherent interpolation property.
More precisely, the adaptive hierarchical sparse grid collocation method proposed in Ma and
Zabaras [2009] will be used. However, all response surface methods are based on a so-called
experimental design

X = {θM,(α1)=(1,...,1), . . . ,θM,(αm )=(n,...,n)} , (10.4)

which is based on a limited number of realizations

Xi = θM,(αi ) = [θαi1
1 , θαi2

2 , θαi3
3 , θαi4

4 , θαi5
5 , θαi6

6 , θαi7
7 ] (10.5)

from all physically admissible prosthesis positions IM. By notational abuse, the superscript
(αi ) in θM,(αi ), i = 1, . . . , 7 is a multi-index and is not referring to a time-step. The latter
enables the definition of an approximate model of the outcome as

y ≈ y ′ =MSG(D,P,X ,θP) . (10.6)

Recalling the assumption as mentioned above that all models proposed here perform the same
basic operations and only differ in their inputs and outputs, for each realization Xi of the
experimental design, a deterministic simulation run

yi =MD(D,P,Xi ,θ
P) (10.7)

is performed with the help of which the model of the outcome is generated. Hence, it is possible
to re-write (10.6) as

y ′ =MSG(y1, . . . , ym ) . (10.8)

It can be shown that this is equivalent to truncating the infinite series in equation (10.9) after
p terms, resulting in

yt =

p∑

i=1

√
λiξiϕi (t) , (10.9)

which renders the problem computationally feasible. Note that the coefficients in the latter
equations are determined explicitly in a Karhunen-Loeve expansion. By choosing these p terms
with the largest eigenvalues λi , optimality of the reduced basis is guaranteed for problems
with fast decaying eigenvalues. In response surface methods, this property is not preserved,
rendering the selection of realizations from the experimental design highly relevant.

10.2 White box modeling

In delimitation from the previous section’s black box modeling approach, in this section, the
computational models are defined by their internal program flow. This will serve to define
and illustrate the simulation process for the deterministic computational model MD and the
reduced computational model MSG. The full model MF is discontinued since it was only an
abstract concept to derive the reduced model. In the last section, it was demonstrated that the
deterministic model serves as an input to the reduced model in the form of simulation results of
realizations Xi of the experimental design X . It is therefore sensible to define the deterministic
model MD as a modeling approach in predicting secondary and long-term stability in total
hip arthroplasty, including different patient individual characteristics for a specific prosthesis
position and the reduced modelMSG as the subsequent non-intrusive extension thereof to all
physically admissible prosthesis position, which fulfills the objective of this thesis.
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10.2.1 The deterministic model MD

The deterministic model, previously defined by its inputs (D,P,θM,θP), shall now be further
specified by its internal program sequence. Despite differences in the chosen methods for single
simulation steps, the overall modeling approach of Lutz [2011] was adopted here. An illustra-
tion thereof can be found in figure 10.1, where each simulation step and its input parameter
are indicated.
The first simulation step is the automatic model and mesh generation, introduced in chapter
5, in which the full model of the femur with the head (1) and the model of the femur with an
implanted prosthesis (2) are generated and meshed. In the next step (3), a biomechanical equi-
librated bone mineral density distribution for the femur with the head is generated. Therefore,
bone remodeling following the principle of static-equivalent forces and related biomechanical
equilibrated bone mineral density distribution, as described in chapter 7, is applied. The forces
used herein, adopted from Lutz and Nackenhorst [2007], were shown to produce realistic bone
mineral density distributions in section 7.6.2. As a next step, the bone mineral density distri-

ϱ

(D,P,θM,θP)

MD

(1) Model generation of model 1: femur with head

(2) Model generation of model 2: femur with prosthesis

(3) Model 1: bone remodeling

(4) Model 2: osseointegration

(5) Model 2: bone remodeling

(6) Model 1+2: virtual X-ray generation

D

D,P,θM

θP

θP

θP

ϱ

Figure 10.1: Program sequence for a simulation call of the deterministic modelMD.

bution from (3) is transferred to the model with an implanted prosthesis, which is trivial since
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both models share the same mesh topology in their overlapping parts due to the meshing pro-
cedure. Consequently, simulation of osseointegration (4) is performed, as described in chapter
8. During the simulation of osseointegration, the internal bone mineral density distribution is
assumed to remain unchanged. After that, bone remodeling (5) is applied once again, this time
to the prosthesis with an implanted femur and converged osseointegration result, which results
in a biomechanical equilibrated bone mineral density distribution for the altered conditions.
In this simulation step, the osseointegration result is assumed to remain unchanged. Finally,
virtual X-ray imaging (6), as described in chapter 6, is applied to both the model resultant
from steps (3) and (5).

10.2.2 The surrogate model MSG

Finally, the program sequence for the surrogate model MSG(D,P,X ,θP) is determined and

ϱ′(IM)

(D,P,IM,θP)

MSG

(1) ASGCM: generate initial experimental design Xinit

(2) Deterministic simulation ϱi = MD(D,P,Xi ,θ
M)

(3) ASGCM: response surface

(4) ASGCM: decision: ∀ unrefined cmmmlll ∈ G : cmmmlll ≤ ϵref

(5) ASGCM: enrich experimental design X = X ∪ Xenr

(6) Deterministic simulation ϱi = MD(D,P,Xi ,θ
M)

IM

D,P,θM

ϱ′(IM)

true

{ϱi}i=1,...,n

∀Xi ∈ Xinit

false

∀Xi ∈ Xenr

{ϱi}i=1,...,n

D,P,θM

Figure 10.2: Program sequence for a simulation call of the surrogate modelMSG.

displayed in figure 10.2. As mentioned earlier, the surrogate, i.e., the response surface, is
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built by the adaptive sparse grid collocation method (ASGCM), defined in chapter 9. First,
an initial experimental design Xinit has to be created (1) for the hierarchical surpluses cmmmlll
to provide a reliable improvement prediction. In general, d + 1 hierarchical levels will be
sufficient for a d-dimensional parametric model. For every Xi ∈ Xinit, a deterministic simulation
ϱi = MD(D,P,Xi ,θ

M) is carried out (2). In the first place, the response surface (3) is
generated with the help of the initial experimental design Xintit alone.
Consequently, the experimental design is enriched: by evaluating the hierarchical surpluses for
each unrefined collocation point, the collocation points that spawn their hierarchical children
can be determined. Again, deterministic simulations are carried out whenever a new collocation
point is spawned (6). With each new collocation point, the resolution in state-space increases.
Eventually, the response surface is stated to be converged if the hierarchical surplus cmmmlll is
smaller than some predefined threshold ϵref for all unrefined collocation points.



Chapter 11

Numerical examples

In this chapter, all of the previously introduced methods shall be used in order to create a
comprehensive example of bone remodeling due to total hip replacement with a parametric
prosthesis position.

11.1 Configuration of the model

In chapter 10, different computation models were defined, first by means of abstract in- and
outputs. Afterward, the deterministic model MD and the reduced model MSG were fur-
ther defined by their respective simulation procedures. What is left to define are the precise
in- and outputs for the deterministic and surrogate model, that is, the patient-specific and
simulation-specific parameters θP and the range of physically admissible prothesis positions
IM, respectively. While the former is defined in the following, the latter will be defined in the
next section together with their concrete applications.

11.1.1 Patient-specific and simulation-specific parameters θP

As already mentioned, in θP, all parameters are assembled that does not change during the
parametric computation. In the following, θP shall be defined by the different simulation steps,
which are X-ray simulation, automatic model generation, numerical bone remodeling, and the
numerical simulation of osseointegration.

X-ray simulation. For the X-ray simulation, the algorithm described in chapter 6 is adopted
as is, except for the resolution, which is decreased to 1600 rays per cm2 and 60 samples per cm in
the depth-direction as this seems to result in a sufficient resolution while reducing computational
time.

Automatic model generation. In geometric modeling, the only parameter which does not
vary for both numeric examples is the length of the coating area θ7 = 4.5 cm. Still, this
parameter could readily be used for further studies concerning the influence of the length of
the coating area on the long-term stability of hip prostheses. In the meshing procedure, the
mesh density is reduced to approximately 50.000 degrees of freedom for each model.

Numerical bone remodeling. The parameters in section 7.1 defining the E-ϱ-relation are
adopted. The reference strain energy and the additional exponent are set to Ψref = 2.25 · 10−4

N/mm2 and m = 4, respectively, while all other parameters are adopted from the numerical
example 7.6.2.
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Numerical simulation of osseointegration For the simulation of osseointegration, all
parameters introduced in section 8.12.2 are adopted. An overview of all parameters is given in
table 8.1.

11.1.2 Quantity of interest

Another crucial parameter is the quantity of interest y = f (xxx) , which is defined by the output
of the deterministic model. Often it is assumed that f changes smoothly with changes in xxx ,
a prerequisite for using sparse grids with global Lagrangian bases. For the highly complex
and multi-staged simulation carried out in this thesis, a smooth response surface in parametric
state-space cannot be guaranteed in general. Nevertheless, a smooth response in state-space
is highly advantageous for efficient integration, and for many non-smooth problems, it is still
possible to define a smooth quantity of interest. For example, pressure and velocity fields in
compressible flow models may be non-smooth functions, but derived quantities, such as an
integrated measure of the pressure, may be smooth [Constantine, 2015].
The outcome of the deterministic simulation defined in section 10.2.1 was two X-ray images:
the first one from the bone in pre-operative state and the second one of the bone with an
implanted prosthesis in the long-term equilibrated state. Therefore, it is possible to generate
an image displaying the change in the percentage of bone mineral density due to the implanted
prosthesis. This image itself is not an objective measure since the prosthesis position differs for
different input vectors. For example, if the prosthesis is shifted in the longitudinal direction,
the resection height is altered, which leads to a change of total bone mass of the remaining
bone. To mitigate the effects of the change in prosthesis position on the smoothness of the
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Figure 11.1: Example plot of percentage change in bone mineral density due to THA.

response surface, three boxes are defined in which the change in bone mineral density should
be measured instead. Since the image is just a matrix filled with values between 0 and 1, it is
easy to select the subset of values inside the three boxes, defined in figure 11.1, and subsequently
derive the L2-norm of the matrix defined by each box and sum up the results.



11.1. CONFIGURATION OF THE MODEL 105

11.1.3 Boundary conditions

One more crucial point is the application of boundary conditions. While for parts of the mesh
that remain unchanged, boundary conditions defined in section 7.6.2 can be adopted, boundary
conditions applied to the femoral head have to be transferred to the upper surface of the pros-
thesis (see figure 11.2) with care. It shall be recalled at this point that the prosthesis position
and, therefore, its upper surface position is altered by the set of parameters θM. Thus, it

x

z

y

µ

Figure 11.2: Bone with implanted prosthesis (left picture) and prosthesis surface with center
µ for application of Neumann boundary conditions (right picture).

seems sensible to make the following assumption to transfer the Neumann boundary conditions
applied to the femoral head to the upper prosthesis surface, equivalently: despite the implanted
prosthesis, the transmission of forces remains physiological, i.e., the internal forces are not being
altered.
The forces applied to the femoral head, as shown in figure 7.5, are readily available in terms
of equivalent nodal force coefficients fff FH,ext (c.f. section 4.5). We can disassemble the latter
vector into three vectors fff FH

x ,fff FH
y , and fff FH

z , with equivalent nodal force coefficients pointing
in the x , y, and z -direction, respectively. Note that these vectors are constructed to be aligned
with the ordered set x̂xxFH. In x̂xxFH, all nodal position vectors of the two-dimensional elements
EFH on the surface of the femoral head are uniquely assembled. By notational abuse, we denote
a scalar-valued entry of fff FH

x by f FH
ix and a vector-valued entry of x̂xxFH by x̂xx i,FH.

At this point, another simplification is introduced: the moments generated by the original
boundary condition and the moments generated by the new boundary conditions, applied on
the upper prosthesis surface shall coincide at the center of the prosthesis surface µ. The center
itself is calculated as shown in (6.4).
To get a 1-load in each coordinate direction, the vector tttF = [1, 1, 1]T is integrated numeri-
cally, according to equations (4.44) - (4.41), against all shape functions of the two-dimensional
elements EPS on the upper surface of the prosthesis. The result is disassembled, equivalently
to fff FH,ext, resulting in the three vectors fff PS

1,x ,fff
PS
1,y , and fff PS

1,z , which are aligned with the nodal

positions x̂xxPS ∈ EPS. For moment generating equivalent nodal force coefficients, the lat-
ter procedure is repeated with the vectors tttMx = [0, 0, x − µ1]T, tttMy = [0, 0, y − µ2]T, and

tttMz = [y − µ2, 0, 0]T, resulting in the vectors fff PS
z ,Mx

,fff PS
z ,My

, and fff PS
x ,Mz

, respectively. Note that

the sum of the vectors

Fz ,Mx =
∑

f PS
z ,Mx

̸= 0 , (11.1)

Fz ,Mx =
∑

f PS
z ,My

̸= 0 , and (11.2)

Fx ,Mz =
∑

f PS
x ,Mz

̸= 0 (11.3)
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is small but not exactly zero. We further define the total applied forces to the femural head as

Fx =
∑

i

f FH
ix , (11.4)

Fy =
∑

i

f FH
iy , and (11.5)

Fz =
∑

i

f FH
iz , (11.6)

the total applied moment to the femural head with respect to µ as

[Mx ,My ,Mz ]
T =

∑

i

[
[f FH
ix , f FH

iy , f FH
iz ]T × (x̂xx i,FH − µ)

]
, (11.7)

the resultant 1-load forces applied to the prosthesis as

1x =
∑

i

f PS
ix , (11.8)

1y =
∑

i

f PS
iy , and (11.9)

1z =
∑

i

f PS
iz , (11.10)

the intentionally generated moments applied to the prosthesis as

[MPS
x ,Mx

,MPS
y,Mx

, 0]T =
∑

i

[
[0, 0, f PS

iz ,Mx
]T × (x̂xx i,FH − µ)

]
, (11.11)

[MPS
x ,My

,MPS
y,My

, 0]T =
∑

i

[
[0, 0, f PS

iz ,My
]T × (x̂xx i,FH − µ)

]
, and (11.12)

[0,MPS
y,Mz

,MPS
z ,Mz

]T =
∑

i

[
[f PS
ix ,Mz

, 0, 0]T × (x̂xx i,FH − µ)
]
, (11.13)

and, finally, the unintentionally generated moments applied to the prosthesis as

[0,MPS
y,1x

,MPS
z ,1x

]T =
∑

i

[
[f PS
ix , 0, 0]T × (x̂xx i,FH − µ)

]
, (11.14)

[MPS
x ,1y

, 0,MPS
z ,1y

]T =
∑

i

[
[0, f PS

iy , 0]T × (x̂xx i,FH − µ)
]
, and (11.15)

[MPS
x ,1z ,M

PS
y,1z , 0]

T =
∑

i

[
[0, 0, f PS

iz ]T × (x̂xx i,FH − µ)
]
. (11.16)

The latter assembles a linear system of equations

Axxx = bbb , (11.17)

with

A =




1x 0 0 0 0 Fx ,Mz

0 1y 0 0 0 0
0 0 1z Fz ,Mx Fz ,My 0

0 MPS
x ,1y

MPS
x ,1z

MPS
x ,Mx

MPS
x ,My

0

MPS
y,1x

0 MPS
y,1z

MPS
y,Mx

MPS
y,My

MPS
y,Mz

MPS
z ,1x

MPS
z ,1y

0 0 0 MPS
z ,Mz




and bbb =




Fx

Fy

Fz

Mx

My

Mz



, (11.18)
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which owns full rank and can be solved for the coefficients xxx . Finally, the vectors are scaled

with their corresponding coefficients as fff
′PS
1,x = x1 fff PS

1,x , fff
′PS
1,y = x2 fff PS

1,y , fff
′PS
1,z = x3 fff PS

1,z , fff
′PS
z ,Mx

=

x4 fff PS
z ,Mx

, fff
′PS
z ,My

= x5 fff PS
z ,My

, and fff
′PS
x ,Mz

= x6 fff PS
x ,Mz

and assembled into the global system of

equations (4.39).

11.2 Two-dimensional parametric study

In this first numerical study, only two of all six possible parameters affecting prosthesis place-
ment shall be varied, that is, the longitudinal shift θ1 and the transversal shift θ2. Therefore,
the vector defining the prothesis position can be stated as

θM = [θ1, θ2, 0, 0, 0, 0] , θ1, θ2 ∈ [−1mm, 1mm] , (11.19)

and a sparse grid with two dimensions in parametric state-space is created. Consequently, 29
collocation points on four consecutive levels of the sparse grid are generated. This can be done

Figure 11.3: Response surface with the longitudinal shift plotted on the x-axis, the transversal
shift on the y-axis, and the L2-norm of the percentage loss in bone mineral density in the three
defined regions on the z-axis.

fully in parallel. Every single calculation takes approximately less than two hours on a recent
workstation (Intel i7@3.6GHz, 32GB RAM), so presuming 29 distinct workers are available,
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θM = [0.9, 0, 9]

(a)

θM = [−0.9,−0, 9]

(b)

Virtual X-ray images of long-term equilibrated bone mineral density.

(c) (d)

0 0.2 0.4 0.6 0.8 1

Percentage change [p%] in bone mineral density.

Figure 11.4: Exemplary results of two-dimensional parametric study.
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the complete simulation takes about two hours in total. More points could be added to the
parametric state-space, but as can be seen in figure 11.4, the informative value and sharpness of
virtual X-ray images interpolated by the sparse grid at intermediate locations seem sufficient.
It is noted that since it is physical in nature, the problem should exhibit a smooth variation in
state-space. But there is evidence of a certain low-magnitude non-smoothness in the response
surface, as seen in figure 11.3. This non-smoothness can be interpreted as a measure for the
modeling error made in the simulation process, primarily the non-exact application of boundary
conditions and the not fully objective quantity of interest. The same applies to the operations
performed in the geometry and mesh creation, which are not exact to the accuracy of the
calculation. As a result, adding more collocation points has to be done with great care since
the error is additive across levels, and therefore its magnitude is likely to increase. Consequently,
adaptive refinement is not applied in the shown numerical examples. But more important here
is that the magnitude of this error is much smaller than the solution itself, which is the case
since a clear trend is visible: both a positive longitudinal and transversal shift, which coincides
with a greater resection height, seem beneficial for a smaller loss in bone mineral density. Still,
for both exemplarily shown prosthesis positions, there is a great loss of around 70-85% of bone
mineral density in the neck region of the femur.

11.3 Six-dimensional parametric study

To provide an example in full complexity, all possible parameters affecting prosthesis placement
shall be varied:

θM = [θ1, θ2, θ3, θ4, θ5, θ6] , (11.20)

θ1, θ2, θ3 ∈ [−0.25mm, 0.25mm] , and (11.21)

θ4, θ5, θ6 ∈ [−1◦ , 1◦] . (11.22)

Unfortunately, for a reliable meshing procedure, the interval range of the parameters had to be
further reduced. However, this does not affect the numerical complexity of the problem and
could be remedied by using better initial models. In the last example, the four corner collocation
points of the rectangle, i.e., [1, 1], [−1, 1], [1,−1] and [−1,−1], were sampled on the third level,
where the grid contains 13 collocation point in total (see figure 9.5b). In six dimensions, the 64
extremal points of the hypercube, i.e [1, 1, 1, 1, 1, 1], . . . , [−1,−1,−1,−1,−1,−1], spawn on level
seven of the six-dimensional grid. Consequently, 15121 collocation points across seven hierar-
chical levels of the sparse-grid were generated using the cluster system at the Leibniz University
of Hanover. Here, 768 workers can be allocated per user, where around 600 workers were avail-
able on average. Therefore, the simulation took around 50 hours to be carried out. Exemplary
results of two illustrative prosthesis positions θM

1 = [0.995, 0.999,−0.997, 0.996, 0.978, 0.993]
and θM

2 = [−0.995,−0.999, 0.997,−0.996,−0.978,−0.993] are shown in figure 11.5. The inter-
polation quality is inferior compared with the two-dimensional example. For more information
on convergence and interpolation quality of sparse grids in higher dimensions, the reader is
referred to Pflüger [2010]. For comparable interpolation results, at least one or two additional
refinement steps would have to be made, resulting in a sparse grid with up to 127105 colloca-
tion points. Since that would result in an estimated simulation time on the cluster of about
three weeks, it was decided not to further refine. As a first conclusion, it can be stated that
a six-dimensional sparse grid for such a complex simulation can be created but not yet for a
cost-efficient application with user-specific predictions, at least with the methods presented in
this work. A way to overcome this obstacle could be achieved with dimension adaptive sparse
grids (see, e.g., Jakeman and Roberts [2011]), which could be included in this approach as a
next model refinement step.
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θM
1

(a)

θM
2

(b)

Virtual X-ray images of long-term equilibrated bone mineral density.

(c) (d)
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Figure 11.5: Exemplary results of six-dimensional parametric study.



Chapter 12

Conclusion and outlook

The overall objective of this thesis was to provide a comprehensive modeling approach that
predicts secondary and long-term stability in total hip arthroplasty, including different patient
individual characteristics and all possible protheses positions within a physically admissible
range. This modeling approach was provided in chapter 10, first using an abstract full model,
which was found to be computationally unfeasible. For this reason, a reduced model has been
derived with the use of a response surface surrogate model, which renders the problem compu-
tationally feasible. Hereby, the full model is resembled by a number of deterministic simulation
calls. Each deterministic simulation call can be divided into four distinct parts: automatic
model generation, virtual X-ray generation, bone remodeling, and simulation of osseointegra-
tion.
The automatic model generation was carried out with the help of FreeCAD and Gmsh. This
was readily possible due to their in-built scripting interfaces. It is noted that within this thesis,
no proprietary software was used at all and the automatic model generation is the only part
where third-party software was used. Here, FreeCAD and Gmsh were chosen because of their
open-source software philosophy.
Conclusions are often hard to infer from finite element results for non-engineers. Therefore,
complexity was reduced, and interpretability was facilitated by a novel virtual X-ray simulation
approach for finite element results. Hereby, the finite element mesh is divided into a hierarchy of
successively finer tight-fitting oriented bounding boxes. Subsequently, ray casting is performed
on the tree of oriented bounding boxes first to pre-select finite element candidates, which are
ray casted thereafter. By that, the non-linear problem of ray casting a finite element of higher
polynomial order has to be solved for only a small fraction of all finite elements. This procedure
resulted in high-quality virtual radiographs, even if the geometry is represented by only a few
elements (see example 6.7.1).
Bone remodeling was described with the help of the theory of thermodynamic open systems and
carried out as a finite element material model following the guidelines of thermodynamically
consistent material modeling, as described in de Souza Neto et al. [2011]. This resulted in an
accurate, efficient, and reliable implementation of bone remodeling.
The same approach was applied for the simulation of osseointegration: the principles of bone
remodeling were translated to a contact interface between bone and prosthesis and combined
with a micro-motion threshold. This was done by the restriction to small deformation, an
assumption commonly made in the simulation of bone remodeling. By that, the contact inter-
face could be carried out as a node-to-node contact interface, facilitating the introduction of
constitutive relations within the interface since advection does not need to be considered. This
ultimately resulted in a geometrically accurate and thermodynamically consistent description
of the constitutive relations within the interface.
It is stated that great care was taken in the reliable and efficient implementation of the latter
three methods within a self-developed finite element framework since this was a prerequisite
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for performing larger-scale parametric simulations.
The response surface is built by the adaptive-sparse grid collocation method. The basis of
the adaptive grid is assembled by local Lagrangian basis functions. Although convergence is
inferior to the global Lagrangian approach, the use of local basis functions was highly beneficial
in the development process since modeling or implementation errors were often readily visible
as kinks on the response surface.
In conclusion, it can be stated that a framework simulating the changes in bone mineral density
following total hip arthroplasty in a holistic approach at this level of detail was not available in
the scientific literature, as well as the combination of a deterministic biomechanical framework
with parametric computations with this variety of parametric dimensions.

12.1 Capabilities and limitations of the presented approach

The overall motivation for this thesis was to move one step forward to the genuinely benefi-
cial introduction of digital tools and the higher precision that comes with them into surgical
planning. It was stated in the introduction that to make good use of the increased accuracy
of the prosthesis position, the surgeon must be able to estimate how these changes will affect
long-term stability. Within this thesis, this can now be regarded as accomplished since after
sampling the parametric state-space with the help of the surrogate model, a simulation result is
available for every possible prosthesis position without the need for further computation.
That being said, it has to be mentioned that for practical use, every single method used here,
and subsequently, the complete parametric framework, needs configuration and clinical valida-
tion. To make it accessible for testing, every single method was designed and developed with
its utilization as a stand-alone application in mind. Thereby, it is possible to replace a method
if it fails clinical validation or a better method is available. And both of the latter are possible
since, during the development process, many choices had to be made which are hard to justify
without clinical validation. If such choices were to be made, two principles were applied: (1)
physical reasoning and (2) the basic idea to retain the complexity of the problem as far as pos-
sible. So given another solution method arises, it probably does not affect the computability
of the framework, in general.
Referring to the objective, the primary capability of this framework is to provide a prediction
for secondary and long-term stability for arbitrary prothesis positions within a predefined range.
But also parts of this framework could be combined or used individually to provide either de-
terministic or, in combination with the sparse-grid surrogate model, parametric predictions in
biomechanics. All parameters of each method are exposed to the top level, which makes it
easy to exchange the parameters that are included in the parametric calculation. By that, a
multitude of numeric analyses is possible with the developed framework.
Despite the efficient sparse-grid sampling of the parametric state-space, the most significant
limitation is still the curse of dimension. It is questionable if prediction in biomechanical com-
patibility of total hip arthroplasty, with the modeling approach presented here, is, in fact,
cost-efficient for a larger number of dimensions (⪆ 5) anywhere in the near future. Never-
theless, the framework can be used in a higher number of parametric dimensions in order to
analyze the response surface for efficient reduction of parametric dimensions by eliminating less
sensitive parameters. Furthermore, if a response surface is generated, it can be efficiently used
for various sensitivity analyses and determination of extremal points, for example.
Another limitation of the framework so far is the modeling procedure. The input CAD ge-
ometries, obtained from CT data, are not of the best quality, and there is not much space for
variation of the prosthesis position available in the first place. If deviations from the initial
position are too large, applying boolean operations within FreeCAD might result in possible
intersecting or overlapping Bezier splines, which cannot be meshed by gmsh. This further
reduces the space for variation. Possible solutions to this problem are: create better input ge-
ometries, exchange the complete modeling procedure by something less error-prone, or maybe
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these problems are simply no longer prominent in future versions of the actively developed
open-source projects FreeCAD, Gmsh, and Open Cascade.

12.2 Further research

As mentioned above, this framework and each method used here require configuration and
clinical validation if it is to be used in clinical practice. Each method on its own could also
need further research efforts. The automatic model generation could be further investigated
and combined with approaches for parametric prostheses design, such as Saravana Kumar and
Gupta [2011] or Tabaković et al. [2014]. As a result, a framework for the optimal patient-
specific prostheses design could be established. Predictions for a larger set of individuals could
be provided if a parameterized model for the femur itself could be found.
The virtual X-ray imaging approach lends itself perfectly to parallelization and, in addition,
could be performed on the GPU since ray casting is an operation commonly done by GPUs.
This was not needed in the scope of this thesis since the generation of the X-ray barely carried
weight in a deterministic simulation call.
Tests have suggested that the noise on the response surface is mainly caused by applying bound-
ary conditions and the choice of a quantity of interest. Thereby, boundary conditions were used
with the assumption that the transmission of forces remains physiological after the implanta-
tion. In the following, this was reduced to the equivalence of forces and moments with respect
to the center point of the prosthesis surface. This could be improved by demanding equivalence
of forces and moments in the complete prosthesis surface. An alternative approach would be
to actually simulate the effect on the transmission of forces due to the altered conditions with
the help of a dynamic multi-body model, as shown in Heller et al. [2001] or Kähler et al. [2010],
for example, and subsequently finding its static equivalent. The quantity of interest, which
was chosen here for the sake of simplicity as the percentage loss in three predefined rotated
boxes near the prosthesis, could be improved as well. For example, the change in bone min-
eral density could be measured in the seven zones according to Gruen [Sarmiento and Gruen,
1985]. Therefore, these zones would have to be identified in virtual X-ray images, a problem
the solution of which could be found by digital image processing.
For the simulation of the osseointegration, the same boundary conditions as for bone remod-
eling were used. It is worth investigating, if a single static-equivalent load case is sufficient
to represent the process of osseointegration or if more load cases should be introduced and
averaged according to equation (7.1).
Since the coating length of the prosthesis was included in the automatic model generation but
not used as a parameter for the sparse grid, the study of the influence of the coating length on
the long-term stability would be readily possible.
This parametric framework can be translated into a stochastic framework by only small alter-
ations. If for all input parameters a probability density function is known, an output cumulative
distribution function can be generated with the help of the response surface. As already men-
tioned, to account for an uncertain prosthesis position, an approach describing the statistics of
orientation [see among others Downs, 1972, Mardia, 1975, Habeck, 2009] has to be included.
Since the modeling approach described in chapter 10 can be altered quite simply, it is con-
ceivable to address different stochastic problems, for example, the problem of bone remodeling
under uncertain boundary conditions. Finally, it shall be mentioned that conducting stochastic
simulations without a clinically validated parametric framework is a purely academic exercise,
which again highlights the need for clinical validation.
Finally, the model needs further refinement for cost-efficient application where dimensional
adaptivity of the sparse grid, as shown in Jakeman and Roberts [2011], surely has the greatest
potential.
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Appendix

In this thesis an attempt has been made to use a notation that is familiar to most readers.
Nevertheless, notations, symbols, and syntax used throughout this thesis shall be introduced
in the following.

13.1 Notation

In the following, a list with notations used throughout this thesis shall be compiled:

a,A, α, a,A, ... Scalars, constants, indicies
aaa,AAA, ... Vectors, multi-indices,
ai ,Ai , ... Components of vectors,
a,A, ... Tensors, matrices,
aij ,Aij , aijk ,Aijkl , ... Components of tensors or matrices,
a(n),aaa(n),A(n), ... Quantity (scalar, vector, tensor,...) at timestep n
ã, Voigt notated symmetric tensor,
I, Identity tensor of order 2,
I, Identity tensor of order 4,
AT (with components Aij = (AT)ji ), Transposition of a tensor or matrix,
δij , Kronkecker delta,
CCC, Material tensor of order 4,
ϱ, Bone mineral density,
ϱ0, Initial value of bone mineral density,
ρ, Osseointegration degree,
t0, Start time of the simulation,
T , End time of the simulation,
∆t , time increment,
B, A body in the current configuration,
B0, A body in the reference configuration,
∂B, Boundary domain of body B and
R, Real numbers .

13.2 Definitions

In this section definitions, operators, and abbreviated expressions used throughout this thesis
will be introduced in order to provide a concise and unique notation.

• Basic objects and rules of calculation might not be explained and no proofs will be given.
For more information about vector and tensor calculus, the reader is referred to Hjelmstad
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[2007].

• In general objects denoted by capital letters refer to the initial configuration and objects
denoted by lowercase letters refer to the current configuration.

• Explicit expression of the arguments of functions can be omitted for readers convenience
if dependencies are clear from the context.

• If no “dot” is written between two non-scalar objects, matrix multiplication rules apply.

13.2.1 Einstein’s summation convention

If a subscript occurs twice in a product, summation of that term overall values of the index is
implied, if not stated else in advance.
Example:

aaa,bbb ∈ R3 : aibi = a1b1 + a2b2 + a3b3 . (13.1)

13.2.2 Tensor product of two vectors

Let aaa,bbb ∈ Rn be two vectors. The tensor product, also referred to as dyadic product, of
aaa = aieeei and bbb = bieeei is then given by

S = aaa ⊗ bbb = aibjeeei ⊗ eeej , (13.2)

and the result is a tensor S = Sijeeei ⊗ eeej .

13.2.3 Dot products

Beside the standard scalar product between two scalar entities, several other dot products can
be defined. All non-standard dot products used throughout this thesis are defined below.

Vector-vector dot product:

aaa,bbb ∈ Rn : s = aaa · bbb = aibi . (13.3)

Tensor-tensor double-dot product: Let a = aijeeei ⊗eeej and b = bijeeei ⊗eeej be two tensors
of order two. Then the scalar result s of the double contraction a : b is defined by

s = a : b = aijbij . (13.4)

Let CCC = Cijkleeei ⊗ eeej ⊗ eeek ⊗ eee l be a tensor of order four and a = aijeeei ⊗ eeej a tensor of order
two. Then the double contraction is defined by

b = C : a = Cijmnamneeei ⊗ eeej , (13.5)

and the result b = bijeeei ⊗ eeej is a tensor of order two.

Tensor-vector dot product: Let A = Aijeeei ⊗ eeej be a tensor of order two and bbb = bieeei a
vector of the same dimension. The tensor-vector dot product is defined by

ccc = A · bbb = bkAij δjkeeei (13.6)

and the result is again a vector ccc = cieeei .



13.2. DEFINITIONS 117

13.2.4 Derivatives

In the following, a notation for different derivatives for scalars, vectors, and tensors is intro-
duced.

Gradient. The gradient of a scalar-valued differentiable function f : Rn → R is defined as

Grad(f ) = f,ieeei =
∂f

∂Xi
eeei . (13.7)

Similarly, the gradient of a vector-valued function aaa and a second-order tensor field A is defined
as

Grad(aaa) =
∂(ajeeej )

∂Xi
⊗ eeei = aj ,ieeej ⊗ eeei =

∂aj

∂Xi
eeej ⊗ eeei (13.8)

and

Grad(A) =
∂(Ajkeeej ⊗ eeek )

∂Xi
⊗ eeei = Ajk,ieeej ⊗ eeek ⊗ eeei =

∂Ajk

∂Xi
eeej ⊗ eeek ⊗ eeei , (13.9)

respectively.

Divergence. The divergence of a vector-valued function aaa in cartesian coordinates is the
scalar-valued function Div(aaa) defined by

Div(aaa) =
∂ai

∂Xi
= ai,i . (13.10)

Subsequently, the divergence of a second-order tensor field is the first-order tensor field given
by

Div(A) =
∂Aki

∂Xk
eeei = Aki,keeei . (13.11)

13.2.5 Voigt notation for symmetric tensors

For symmetric tensors, there exists a condensed representation called Voigt notation [Voigt
et al., 1928], which is particularly useful in numerical implementation of continuum mechanic
frameworks. Thereby, the order of a symmetric tensor is reduced, i.e., a symmetric second-order
tensor a is reduced to a vector1 ã, and a fourth-order tensor CCC is reduced to a second-order
tensor C̃CC. In continuum mechanics, the precise notation is motivated by demanding equivalence
of the following expressions:

σ = CCC : ε

ψ = 1
2ϱ

σ : ε

}
⇔
{
σ̃ = C̃CC : ε̃

ψ = 1
2ϱ

σ̃ : ε̃
. (13.12)

1Despite ã being a vector-like object, formally, we keep the notation of a tensor to indicate Voigt notation’s
nature as an exclusive matter of representation of tensors.
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By that, the Cauchy stress tensor and the linearized strain can be re-written as follows

[σij ] =



σ11 σ12 σ13

σ22 σ23
sym. σ33


⇔ [σ̃i ] =




σ11
σ22
σ33
σ12
σ13
σ23



, and (13.13)

[εij ] =



ε11 ε12 ε13

ε22 ε23
sym. ε33


⇔ [ε̃i ] =




ε11
ε22
ε33
2ε12
2ε13
2ε23



, (13.14)

respectively. The material tensor then follows as

[C̃ij ] =




C̃11 C̃12 C̃13 C̃14 C̃15 C̃16

C̃21 C̃22 C̃23 C̃24 C̃25 C̃26

C̃31 C̃32 C̃33 C̃34 C̃35 C̃36

C̃41 C̃42 C̃43 C̃44 C̃45 C̃46

C̃51 C̃52 C̃53 C̃54 C̃55 C̃56

C̃61 C̃62 C̃63 C̃64 C̃65 C̃66




(13.15)

=




C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212



. (13.16)

It is mentioned that the expressions (13.13), (13.14), (13.15) are just a choice in order to fulfill
the requirement (13.12). There are several other choices, resulting in the Mandel notation
or Kelvin notation, for example. Caution is advised if calculating quantities not depicted
in (13.12): equivalence is generally not maintained, and translating Voigt-notated quantities
back to the non-symmetric tensor notation is in most cases less cumbersome compared with
introducing the proper scaling into the Voigt-notated expressions artificially.

13.2.6 Abbreviated expressions

To avoid long and complex formulas, abbreviated expressions will be used where it seems
appropriate. A list of all abbreviated expressions is compiled in the following.

Derivative of a quantity:

D{•}{∗} =
D

D{•}{∗} ; example: Dtϱ =
Dϱ

Dt
. (13.17)

Partial derivative of a quantity:

∂{•}{∗} =
∂

∂{•}{∗} ; example: ∂tϱ =
∂ϱ

∂t
. (13.18)
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Y. Tyson, O. Rolfson, J. Kärrholm, N. P. Hailer, and M. Mohaddes. Uncemented or cemented
revision stems? Analysis of 2,296 first-time hip revision arthroplasties performed due to
aseptic loosening, reported to the swedish hip arthroplasty register. Acta orthopaedica, 90
(5):421–426, 2019.
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