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Abstract 

External factors such as climate change and the current energy crisis due to global conflicts are leading to 
the increasing relevance of energy consumption and energy procurement in the manufacturing industry. In 
addition to the growing call for sustainability, companies are increasingly struggling with rising energy costs 
and the power grid’s reliability, which endangers the competitiveness of companies and regions affected by 
high energy prices. Appropriate measures for energy-efficient and, not least, energy-flexible production are 
necessary. In addition to innovations and optimizations of plants and processes, digital energy platforms for 
the visualization, analysis, optimization, and control of energy flows are becoming essential. Over time, 
several digital energy platforms emerged on the market. The number and the different functionalities of the 
platforms make it challenging for classic manufacturing companies to keep track of and select the right 
digital energy platform. The characteristics and functionalities of digital energy platforms have already been 
identified and structured in literature. However, classifying existing platforms into archetypes makes it easier 
for companies to select the platforms providing the missing functionality. To tackle this issue, we conducted 
an explorative and data-driven cluster analysis based on 47 existing digital energy platforms to identify 
digital energy platform archetypes and derive implications for research and practice. The results show four 
different archetypes that primarily differ in terms of energy market integration functionalities: Research-
Driven Energy Platforms, Energy Flexibility Platforms, SaaS-Aggregators / Virtual Power Plants, and 
(Manufacturing) IoT-Platforms. Decision makers in manufacturing companies will benefit from the 
archetypes in future analyses as decision support in procurement processes and modifications of digital 
energy platforms. 
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1. Introduction 

The negative consequences of climate change, global crises, and local energy shortages require targeted and 
effective measures to achieve the climate targets in the international climate agreements [1]. The German 
government has adopted the phase-out of coal and nuclear power generation as a critical measure [2]. To 
ensure a sufficient power supply, the share of electricity generation from renewable energy sources should 
already increase to 80% of electricity consumption by 2030 [3]. However, the output of renewable energy 
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sources is highly dependent on external circumstances such as the sun and wind [4]. Therefore, an increase 
in storage capacities and synergy effects (e.g., in sector coupling) is necessary for transforming towards 
clean electricity generation. Demand side management (DSM) offers a competitive solution to meet the 
expected challenges by increasing energy flexibility (EF) on the demand side [5]. The industrial sector offers 
significant potential for savings. This sector accounts for 44 percent of electricity consumption in Germany 
[6]. At the same time, this sector offers considerable potential for balancing fluctuations in the power grid 
by adjusting power consumption to the available power [7]. Energy-intensive industrial companies typically 
can shut down, shift, or regulate their (production) processes and equipment to adjust their electricity demand 
[8]. Exploiting EF helps companies to benefit from reduced energy procurement costs by responding to 
volatile electricity prices or reducing their grid charges by avoiding peak loads while contributing to the 
stabilization of the power grid [9]. Despite these advantages, the exploitation of EF in manufacturing 
companies is low [10]. For companies that intend to exploit EF and need to select suitable platform solutions, 
it is often unclear which aspects and functions of a platform are relevant to them [11]. Evaluating available 
platforms is time-consuming, and tools and assistance such as a pre-classification of platforms and their 
characteristics do not exist. Besides platform selection obstacles, Leinauer et al. [12] identify technical 
obstacles such as high IT requirements, high effort, and complexity within IT systems, IT security and data 
security, lack of IT prerequisites in companies, lack of standardization of IT systems, and the lack of 
interoperability of IT systems that refrain companies from exploiting EF. Additionally, Honkapuro et al. [13] 
found the “lack of economic benefits, lack of motivation among the customers, [and] missing standards in 
data system interfaces” as major obstacles to exploiting available EF. DEPs tackle all said obstacles by 
providing economic benefits, simplifying exploitation, and proposing standards. As a first step to shedding 
light on the perceived black box and support companies, Duda et al. [11] developed a multi-layer taxonomy 
of digital energy platforms (DEPs) for DSM applications in the industry that includes a general and a more 
specific data-centric and transaction-centric perspective. While the taxonomy creates a solid foundation for 
understanding and analyzing DEPs in detail, structuring the market and landscape of existing platforms to 
simplify the selection process is still arduous. To identify, conceptualize, and define typical setups of 
platforms, deriving archetypes, such as done by Arnold et al. [14] for the case of IIoT platforms, has 
established a solid approach in literature. To address this vacuum of missing archetypes of DEPs, we 
formulate our guiding research question as follows: 

Which archetypes of digital energy platforms exist in the manufacturing domain? 

To adequately address our research question, we follow an explorative, data-driven clustering approach 
embedded in an adapted process of the well-established Cross Industry Standard Process for Data Mining 
(CRISP-DM). Moreover, we derive four archetypes of DEPs, illustrating which roles digital energy 
platforms can play. The remainder of this paper is structured as follows: Section 2 provides the theoretical 
background of DEPs before we detail the methodological approach in Section 3. Section 4 presents our 
cluster analysis and the derived archetypes. Section 5 gives implications for research and practice before it 
concludes with limitations and prospects for further research. 

2. Literature 

Digital platforms are emerging in almost all industries [15]. To enable the industry to use DSM and exploit 
their EF in their production processes, DEPs provide innovative services [16] and connect the industry with 
providers for control parameters (e.g., contemporary energy procurement costs [17]) or marketplaces (e.g., 
for trading EF) [18]. Zhong et al. [19] show that integrating DEPs into the existing production planning and 
controlling is key for the practical usage of DSM and exploiting the EF. A platform architecture has 
advantages since platforms can connect a company’s heterogeneous components, planning systems, and 
machines [18]. In recent years, many DEPs have been developed (see Table 1). Yet, the DEPs provide 
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different functionality and are based on various architectures and business models. Taxonomies can help to 
classify and compare DEPs. 

Taxonomies aid in classifying entities into their dimensions. Depending on whether one can choose one or 
multiple characteristics of a dimension, the dimension is exclusive (E) or non-exclusive (NE). This allows 
decision-makers and researchers to distinguish between and compare different manifestations of the entities. 
Based on the taxonomy, real-world examples can be classified by creating groups of entities - archetypes. 
Decision-makers can use a taxonomy and respective archetypes to select the appropriate entity for their 
needs. There is an active research stream that develops taxonomies for platforms. Blaschke et al. [20] 
developed a taxonomy to categorize digital platforms according to four dimensions (infrastructure, core, 
ecosystem, and service dimensions). Blaschke et al. [20] used the method to build taxonomies proposed by 
Nickerson et al. [21]. In addition, they derived three archetypes of digital platforms. Moreover, there are 
taxonomies for platforms in multiple domains. Bouadjenek et al. [22] developed a taxonomy that classifies 
social information retrieval platforms. A taxonomy of mobility platforms was developed by Harri et al. [23]. 
Arnold et al. [14] developed a taxonomy and derived archetypes of industrial internet of things platforms. 
Also, in the domain of energy management, there are taxonomies. Khan et al. [24] developed a smart meter 
data taxonomy, Behrens et al. [25] proposed a taxonomy on constraints in DSM methods, and Karlin et al. 
[26] derived a taxonomy of energy feedback systems. However, the academic discourse lacks a more detailed 
look at DEPs. Duda et al. [11] propose a taxonomy to categorize DEPs but to better understand these 
platforms, the derivation of respective archetypes is critical. This paper builds on their taxonomy (see Figure 
1) to derive archetypes. 

Figure 1: The multi-layer taxonomy for DEPs of Duda et al. [11] 

3. Methodological Approach 

In this paper, we used the CRISP-DM process to address the paper’s research question adequately. We follow 
a CRISP-DM-based data-driven clustering approach to derive the archetypes of DEPs based on selected real-
world entities. CRISP-DM is a standardized process that aims to increase business understanding and gain 
insights by applying data mining methods [27]. Figure 2 displays our process. In the first step of “Business 
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Understanding”, we focus on understanding the field of DEPs (see Section 2), and setting the objective of 
deriving archetypes of DEPs. In the second step of “Data Understanding”, we review the data necessary for 
subsequently applying clustering techniques. Here, we build on data from Duda et al. [11], who developed 
a taxonomy for DEPs using real-world examples (cf. Figure 1). In doing so, we dispose of the data of 47 
real-world DEPs with information about their nature in the 15 dimensions depicted in Duda et al.’s taxonomy 
[11]. Each platform considered in this work (cf. Table 1) was characterized/labeled in the taxonomy’s 
dimensions based on information available in project reports, data sheets, or interviews conducted in Duda 
et al.’s work [11] to the best of the authors’ knowledge. 

 

Figure 2: Adapted CRISP-DM process to derive DEP archetypes using a data-driven clustering approach (own 
illustration adapted from [27]) 

Table 1: DEPs considered in this work 

Cordinet Project, Cornwall Local Energy Market, Electron Platform, ETPA, Flexible Power, FutureFlow, 
GoFlex, Nextra, Nodes Market, Piclo Flexibility Marketplace, wepower, AWS IoT Core, Bosch IoT Suite, 
CELOS, Cloud der Dinge, Connected Factories, Connected Factories 2, Enterprise IoT Platform, 
FIWARE, Google IoT Core, IBM Watson, ITAC.MES.Suite, LITMUS, OpenIoTFog, Productive 4.0, PTC 
Thingworx, Siemens Mindsphere, tapio, Virtual FortKnox, Bosch Energy Platform, DEXMA Platform, 
EMPURON EVE, EnCoMOS, ennex OS, ITC Power Commerce EnMS, KMUPlus - Energy Intelligence, 
opti.node, PHI-Factory, SIMATIC Energy Suite, Smart Energy Hub, ENIT, Balance Power, BayWa r.e. 
CLENS, Centrica Business Solutions, e2m, Entelios, Next-Kraftwerke, ENIT Systems 

 

After reviewing the available data, we ensure high data quality and modify the data in the “Data Preparation” 
step for the following modeling step, checking for missing characteristics – if we cannot extract platform 
information, we set the respective value to zero, indicating missing information. The fourth step of 
“Modelling” consists of three sub-steps to correctly and replicable derive archetypes. First, we select cluster 
algorithms that can handle the hierarchically structured platform data. Considering several algorithms allows 
us to avoid algorithm-biased results on the number and composition of archetypes. We apply the commonly 
used clustering algorithms k-modes, k-means, k-means minibatch, spectral clustering, agglomerative 
clustering, and Birch. All steps of data preparation and modeling are implemented in Python using the 
algorithms available in the open-source “scikit-learn” [28] and “scipy” [29] library that provides tools for 
data analysis. Second, to determine the number of clusters k, i.e., the number of archetypes, we use the elbow 
method with a specific metric called distortion score for each algorithm [30]. The elbow method is typically 
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used in cluster analysis and can be applied to different metrics. The distortion score measures and calculates 
the sum of square distances from each point to its assigned center [31]. We subsequently compare the results 
of !!"# for each algorithm and determine the optimal global number of clusters "!$%& with Equation 1 where 

# is the number of clustering algorithms: 

"!$%& = #∑ %!"#	(')%
&'(

) *	 (1) 

,-.!"# = /0.1'2
)&*#_*,!-.

(	 3 4'56_5890:(', <!!"#)
%!"#$%

&'(
) (2) 

Third, we derive the cluster centers, i.e., the characteristics of each archetype, by applying the clustering 
algorithm $%&'"# exhibiting the lowest distortion score by comparing the clustering algorithms with <!"#, 
thus, the best separated and tightest clusters on the data (see Equation 2). The clusters represent DEPs with 
similar characteristics identified based on the taxonomy. Using typical characteristics based on recurring 
patterns, knowledge can be synthesized in a cumulative form of archetypes [32]. The results then serve as a 
basis for the step “Archetype Evaluation & Interpretation”, where we graphically present the cluster analysis 
results transforming the information on cluster centers into interpretable archetypes with individual 
characteristics. Section 4 reports the clustering analysis results before Section 5 discusses the findings. The 
results’ discussion and the publication within this piece of research present the last step, “Deployment” and 
contribute to the initial “Business Understanding” step. Further iterative analysis loops are possible, i.e., for 
future analysis of novel platform data. 

4. Results 

4.1 Clustering Results 

The applied data-driven clustering approach led to the following results. For all algorithms except k-modes, 
the optimal number of clusters was 4, in line with Equation 1, which is why we continued with four 
archetypes for further analysis. The distortion scores of the different algorithms were at a relatively similar 
level, with the Birch algorithm having the lowest score of 169.003 and thus being used to determine the 
exact archetypes. Table 2 reports the detailed results.  

Table 2: Optimal Number of Clusters and Distortion Scores for each Algorithm tested 

Cluster Algorithm Optimal Number of Clusters Distortion Score 

k-modes 5 159.569 

k-means 4 172.833 

k-means mini batch 4 178.765 

spectral clustering 4 169.100 

agglomerative clustering 4 169.940 

Birch 4 169.003 

 

For better visualization, we calculated the two principal components of the data and visualized it as depicted 
in Figure 3. Figure 3 reports the two principal components on the x and y-axis. Each of the four clusters is 
colored differently to distinguish the archetypes we present in subsection 4.2 in detail. The archetypes 
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“Energy Flexibility Platform” (blue) and “SaaS-Aggregators” (orange) differ quite strongly from the two 
remaining archetypes, “Research-based Platform” and “Manufacturing IoT Platform”. Both last-named 
archetypes seem to be more similar to each other. Nevertheless, the two-dimensional depiction may not be 
capable of distinguishing between the multiple dimensions resulting from the input data. We further analyze 
the archetypes in the following. 

 

Figure 3: Simplified graphical representation of the derived archetypes after principal component analysis 

4.2 Digital Energy Platform Archetypes 

This section presents and analyses the DEP archetypes in detail. Table 3 provides an overview of each 
archetype with its central attributes and characteristics, exemplary platforms, and the number of platforms 
associated with the specific archetype. We observe a relatively high share of research-driven energy 
platforms followed by energy flexibility and manufacturing IoT platforms. The smallest share holds for the 
SaaS-Aggregators/Virtual Power Plant archetype.  

Research-driven Energy Platforms are developed by research institutes, universities, and companies. These 
are sometimes organized in larger research projects financed by several ministries (e.g., the German Ministry 
of Education and Research) or the European Union. Nevertheless, the platforms in this cluster are not only 
platform concepts or prototypes but also fully functional platforms with international customers in the 
manufacturing field. The energy platforms offered are primarily open and web-based. Furthermore, the 
platforms use statistical tools and methods to analyze and especially visualize the energy consumption of 
manufacturing plants.  

Energy Flexibility Platforms implement a new concept and connect energy suppliers and commercial energy 
consumers – e.g., typically found as local energy markets. The platform’s objective is to enable the 
flexibilization of power consumption to allow a flexibility marketing for specific use cases such as electricity 
grid congestion management. The development of these platforms is mostly research-driven. Compared to 
the research-driven energy platforms, we could not identify any development toward the commercialization 
of the flexibility platforms. Thus, research projects and consortiums mainly dominate this cluster instead of 
company-only solutions or products.  
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SaaS-Aggregators / Virtual Power Plants are company-based, well-established aggregators that offer SaaS 
products for their customers in energy-intensive industries. The provided software offered participation in 
virtual power plans to optimize energy procurement for energy-intensive industries. Most of the platforms 
in this cluster have highly restricted access possibilities. Therefore, companies that want to participate in 
virtual power plants must fulfill the criteria. The platforms are also used for trading flexibilities on the spot 
markets (e.g., Intraday). Furthermore, the platforms offer to trade the given flexibilities from manufacturing 
companies in the energy markets. 

(Manufacturing) IoT-Platforms offer the broadest functionality of all platforms and, thus, focus least on the 
energy domain. The platforms are mainly responsible for acquiring, aggregating, visualizing, and analyzing 
data streams out of the manufacturing processes, as well as controlling these processes. The platforms are 
offered by well-established companies and are cloud-based platforms. They also give free and unrestricted 
access to the resources and services they offer in their ecosystems. Platforms in this cluster are typically 
generic platforms without a focus on energy management. However, some of the platforms in this cluster 
also develop native applications, e.g., for industrial PCs, to simplify the platform’s integration with the 
machines and components.  

Table 3: Overview of the Determined Archetypes 

Archetype Central Attributes and 
Characteristics 

Platform Examples Number of 
Platforms in sample 

Research-driven 
Energy Platforms 

Web-App, Research-driven 
Company, Open, Data-driven 

Virtual Fort Knox, ENIT 
Systems, Smart Energy 
Hub 

22 

Energy Flexibility 
Platforms 

Research, Many-to-Many-
Platforms, Energy Flexibility 
Trading, OTC 

WePower, GoFlex, Nextra, 
ETPA 

11 

SaaS-Aggregators 
/ Virtual Power 
Plants 

Aggregator, Interfaces, Cloud, 
Closed Access, Transactional, 
Trading,  

NextKraftwerke, 
BalancePower, Entelios, 
e2m 

6 

(Manufacturing) 
IoT-Platforms 

Company, Cloud, Free-Access, 
One-to-Many, Native-App 

Siemens Mindsphere, 
Bosch IoT Suite, 
ITAC.MES.Suite 

8 

5. Implications and Conclusion 

This paper addressed the lack for archetypes characterizing DEPs that make it easier for companies to select 
the platforms providing the missing functionality. Following an explorative data-driven clustering approach 
building on the well-established CRISP-DM process, we identified four DEP archetypes: Research-driven 
Energy Platforms, Energy Flexibility Platforms, SaaS-Aggregators / Virtual Power Plants, and 
(Manufacturing) IoT-Platforms. Our results and findings have several implications for practice and research. 
First, the archetypes structure DEPs in their functionality and services provided, which may serve as a first 
market overview. Market gaps can be identified, highlighting technological needs or opportunities for novel 
platforms, e.g., platforms that combine functionalities of two or more archetypes or business models 
beneficial for providers. Second, and in line with the first implication, the archetypes may represent a 
decision support system for the early stages of digital platform selection. Comparing a company’s existing 
IT infrastructure with the identified archetypes can lead to a particular archetype that fills current gaps in 
automation or additional services. Third, with the goal of (entirely) automated energy flexibility marketing 
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from the shop floor to the energy/flexibility markets, the archetypes clearly show that typical production and 
IoT issues should be thought of in line with energy supply and demand. Compared with Figure 3, we see 
that no overarching archetype covers the full range of functionalities provided for each archetype. 
Transferring this finding to practice, companies may consider several platforms in their enterprise 
architecture for automated flexibility marketing. This leads to implication number four: interfaces and 
standardized communication are crucial for the automation of flexibility marketing, which is in line with 
findings from Schott et al. [33]. Thus, selecting and implementing platforms requires expertise in 
requirements engineering and defining interfaces between different platforms. Alternatively, developing a 
“holistic” platform that covers every functionality needed from the shop floor to energy/flexibility markets 
would be a costly approach, as proposed by Bauer et al. [7]. Fifth, the archetypes “Research-Driven Energy 
Platforms” and “IoT Platforms” are comparatively most comparable (cf. Figure 3). It appears that the 
majority originate or were developed in the production domain and less in the energy domain. The focus of 
“Research-driven Energy Platforms” is on optimizing energy consumption (efficiency instead of flexibility), 
emphasizing data management and less on the marketing of flexibility and its economic potential. It may 
make sense to establish research consortia with additional specialists from the energy sector to further 
develop these platforms in flexibility marketing. In contrast, the “SaaS Aggregators / Virtual Power Plants” 
archetype differs significantly from the “Research-Driven Energy Platforms” and “IoT Platforms” 
archetypes. This indicates historically grown structures and proprietary solutions in a highly regulated energy 
sector [34], which aggregators have tapped in recent years [35]. The need for end-to-end communication and 
interfaces can also be derived here, which should be considered in practical implementation. 

As with any research endeavor, our work has some limitations but spurs future research. First, our study is 
limited in data about existing DEPs focusing on Germany. Broadening the scope might distort the results 
and strengthen the validity of the derived archetypes. We leave this and the research’s transferability to other 
countries for future studies. Second, the derived archetypes represent the status quo regarding existing DEPs. 
Ongoing development, market, and customer requirements (e.g., changing regulations) may lead to changes 
in archetypes. Thus, we recommend applying our methodological approach cyclically to obtain insights into 
trends from a market and functionality perspective. Third, there is room for improvement regarding our 
methodological approach next to limitations in data. There are several other clustering algorithms and 
metrics to derive the optimal number of clusters and evaluate the clusters’ composition [36].In summary, 
despite these limitations, we contribute relevant archetypes of DEPs for production companies and 
researchers. 
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