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Abstract

This doctoral thesis comprises one essay on the risk management of mo-

mentum strategies and three essays on the implications of skewness pref-

erences on financial markets. Chapter 1 provides an extensive summary

and links all projects within the framework of behavioral finance.

In Chapter 2 (co-authored with Maik Dierkes), we investigate mo-

mentum in stock returns and propose a novel approach to manage the

downside risk of momentum strategies. Across markets, momentum is

one of the most prominent anomalies and leads to high risk-adjusted

returns. However, these returns come at the cost of substantial tail risk

as there are short but persistent periods of highly negative returns. Mo-

mentum crashes occur in rebounding bear markets, when the momentum

portfolio exhibits a negative beta and momentum volatility is high. Based

on ex-ante estimates of these risk measures, we construct a crash indicator

that effectively isolates momentum crashes. Subsequently, we propose

an implementable trading strategy that combines both systematic and

momentum-specific risk and more than doubles the Sharpe ratio of the

original momentum strategy. Moreover, it outperforms existing risk man-

agement approaches over the 1928-2020 period, in sub-samples, and

internationally.

In Chapter 3 (co-authored with Maik Dierkes and Sebastian Schroen),

we address the effects of time-varying skewness preference, referred to as

lottery demand, on first-day returns and the long-term performance of

initial public offerings (IPOs). Following the identification approach of

Dierkes (2013), we measure lottery demand in terms of option-implied

probability weighting functions and find a significantly positive impact

on first-day returns, tantamount to higher IPO underpricing and more

money left on the table. Furthermore, disentangling the effects of lottery

demand and cross-sectional expected skewness reveals that IPO returns

are particularly driven by the interaction of market-wide lottery demand
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and asset-specific lottery characteristics. In the long run, firms that went

public during periods of high lottery demand perform poorly for up to

five years after the IPO.

In Chapter 4 (co-authored with Maik Dierkes, Sebastian Schroen, and

Philipp Sibbertsen), we perform a simulation-based approach to estimate

volatility-dependent probability weighting functions and investigate the

impact of probability weighting on the pricing kernel puzzle. We first

obtain risk neutral and physical densities from the Pan (2002) stochas-

tic volatility and jumps model and then estimate probability weighting

functions according to the identification strategy presented in Chapter 3.

Across volatilities, we find pronounced inverse S-shapes. Hence, small

(large) probabilities are overweighted (underweighted), and probability

weighting almost monotonically increases in volatility, suggesting higher

skewness preferences in volatile markets. Moreover, by estimating proba-

bilistic risk attitudes, equivalent to the share of risk aversion related to

probability weighting, we shed further light on the pricing kernel puzzle.

While pricing kernels estimated from the Pan (2002) model display the

typical U-shape documented in the literature, adjusted pricing kernels

are monotonically decreasing and thus in line with economic theory. As a

result, risk aversion functions are positive throughout wealth levels.

Finally, in Chapter 5 (co-authored with Maik Dierkes), we employ

idiosyncratic skewness as a proxy for firm-specific mispricing and investi-

gate the impact of market timing on capital structure decisions. Consis-

tent with the market timing theory, idiosyncratic skewness is significantly

positively related to equity issues, while the impact on debt issues is

negative and less important. Moreover, we find equity issues to be ac-

companied by debt retirement programs. Challenging the market timing

theory, effects are not persistent and vanish after about three years. In line

with Alti (2006), our results are therefore consistent with a modified ver-

sion of the trade-off theory, including market timing as a short-term factor.

Keywords: Momentum, IPO, Skewness Preferences, Probability Weight-

ing, Pricing Kernel Puzzle, Market Timing, Capital Structure

iii



Zusammenfassung

Diese Dissertation umfasst einen Aufsatz zum Risikomanagement von

Momentum-Strategien und drei Aufsätze über die Auswirkungen von

Schiefepräferenzen auf Finanzmärkte. Kapitel 1 enthält eine ausführliche

Zusammenfassung und ordnet die Forschungsprojekte in den Rahmen

der verhaltensorientierten Finanztheorie ein.

In Kapitel 2 (gemeinsam mit Maik Dierkes verfasst) untersuchen wir

das Momentum von Aktienrenditen und entwickeln einen neuartigen

Ansatz zur Risikosteuerung von Momentum-Strategien. Die Momentum-

Anomalie ist eine der bekanntesten Finanzmarkt-Anomalien und erzielt

hohe risikobereinigte Renditen. Diese sind jedoch mit einem erheblichen

Verlustrisiko verbunden, da sich wiederholt mehrmonatige Phasen stark

negativer Renditen ereignen. Momentum-Crashes treten insbesondere in

sich erholenden Bärenmärkten auf, wenn das Momentum-Portfolio zeit-

gleich ein negatives Beta und eine hohe Momentum-Volatilität aufweist.

Auf Grundlage von ex-ante Schätzungen dieser Risikomaße konstru-

ieren wir einen Crash-Indikator, welcher Momentum-Crashes erfolgreich

isoliert. Infolgedessen stellen wir eine implementierbare Handelsstrategie

vor, die systematisches und momentumspezifisches Risiko kombiniert

und die Sharpe-Ratio der ursprünglichen Momentum-Strategie mehr als

verdoppelt. Darüber hinaus übertrifft sie bestehende Risikomanagement-

Strategien im Zeitraum von 1928-2020 sowie in Subperioden und im

internationalen Kontext.

In Kapitel 3 (gemeinsam mit Maik Dierkes und Sebastian Schrön

verfasst) untersuchen wir die Auswirkungen von zeitlich variierenden

Schiefepräferenzen, im Folgenden als Lotterienachfrage bezeichnet, auf

kurz- und langfristige Renditen nach Börsengängen (IPOs). Aufbauend

auf der Identifikationsstrategie von Dierkes (2013) messen wir die Lot-

terienachfrage anhand optionsimplizierter Wahrscheinlichkeitsgewich-

tungsfunktionen und stellen einen signifikant positiven Einfluss auf die
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Renditen am ersten Handelstag fest. Dieses Resultat ist gleichbedeu-

tend mit einer stärkeren Unterbewertung der Emittenten (bezüglich des

Eröffnungspreises) sowie höheren Opportunitätskosten. Darüber hinaus

werden IPO-Renditen insbesondere durch die Interaktion von markt-

weiter Lotterienachfrage und firmenspezifischer Lotteriecharakteristika

getrieben. Abschließend stellen wir fest, dass Unternehmen, deren Börsen-

gang in Zeiten starker Lotterienachfrage erfolgt, über einen Zeitraum von

bis zu fünf Jahren nach dem Börsengang schlechtere Renditen aufweisen.

In Kapitel 4 (gemeinsam mit Maik Dierkes, Sebastian Schrön und

Philipp Sibbertsen verfasst) nutzen wir stattdessen einen simulations-

basierten Ansatz, um volatilitätsabhängige Wahrscheinlichkeitsgewich-

tungsfunktionen zu schätzen und deren Auswirkungen auf das Pricing

Kernel Puzzle zu untersuchen. Zunächst elizitieren wir risikoneutrale

und physische Dichtefunktionen auf Basis des stochastischen Volatilitäts-

und Sprungmodells von Pan (2002) und schätzen damit Wahrschein-

lichkeitsgewichtungsfunktionen gemäß der in Kapitel 3 vorgestellten

Identifikationsstrategie. Über alle Volatilitätsniveaus hinweg weisen diese

eine ausgeprägte inverse S-Form auf, gleichbedeutend mit der Übegewich-

tung (Untergewichtung) kleiner (großer) Wahrscheinlichkeiten. Bemer-

kenswerterweise nimmt die Wahrscheinlichkeitsgewichtung mit der

Volatilität beinahe monoton zu, was auf ausgeprägtere Schiefepräferenzen

in volatilen Märkten hinweist. Darüber hinaus schätzen wir die prob-

abilistische Risikoeinstellung, also den Anteil der Risikoaversion, der

durch Wahrscheinlichkeitsgewichtung hervorgerufen wird, und unter-

suchen damit das Pricing Kernel Puzzle. Während die mit Pan (2002)

geschätzten Pricing Kernel, übereinstimmend mit der Literatur, U-förmig

sind, weisen die um die probabilistische Risikoeinstellung bereinigten

Kernel-Funktionen einen monoton fallenden Verlauf auf und stehen

somit im Einklang mit der ökonomischen Theorie. Infolgedessen ist

die Risikoaversion über alle Vermögensniveaus hinweg positiv.

Abschließend verwenden wir in Kapitel 5 (gemeinsam mit Maik

Dierkes verfasst) die idiosynkratische Schiefe als einen Proxy für un-

ternehmensspezifische Fehlbewertungen und untersuchen anhand dessen
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die Auswirkungen von Market Timing auf Kapitalstrukturentscheidun-

gen. Im Einklang mit der Market-Timing-Theorie hat die idiosynkratische

Schiefe einen signifikant positiven Effekt auf die Emission von Aktien,

während der Einfluss auf die Emission von Schuldtiteln negativ und von

geringerer Bedeutung ist. Zudem stellen wir fest, dass Aktienemissionen

in der Regel durch den Abbau von Schulden begleitet werden. Entgegen

der Market-Timing-Theorie sind diese Effekte jedoch nicht von Dauer

und verschwinden nach etwa drei Jahren. In Übereinstimmung mit Alti

(2006) unterstützen unsere Ergebnisse daher eine modifizierte Version

der Trade-Off-Theorie, welche Market Timing als kurzfristigen Faktor

einbezieht.

Schlagwörter: Momentum, IPO, Schiefepräferenz, Wahrscheinlichkeits-

gewichtung, Pricing Kernel Puzzle, Market Timing, Kapitalstruktur
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Chapter 1

Introduction

1.1 Motivation

To gain a better understanding of financial markets, neoclassical finance

assumes that market participants act strictly rational and maximize utility.

Consequently, asset prices should reflect fundamental values and markets

are assumed to be in line with the efficient market hypothesis (Fama,

1970), which, in its strongest form, states that asset prices reflect all

available information, both public and private. Hence, it is not possible

to outperform the market on a risk-adjusted basis.

Although neoclassical models such as Sharpe (1964)’s capital asset

pricing model (CAPM) are still widely accepted and taught as normative

models, a growing strand of literature questions the existence of both

rational market participants and market efficiency. The latter asserts that

shares always trade at their fair value since mispricing is immediately cor-

rected by rational arbitrageurs. However, De Long et al. (1990) show that

prices can deviate considerably, even in the absence of fundamental risk.

Hence, arbitrageurs may encounter limits to arbitrage if irrational noise
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Introduction

traders drive up existing overvaluations. In fact, arbitrage is only con-

ducted by a small number of professional traders who apply the capital of

less sophisticated retail investors (Shleifer and Vishny, 1997). Since these

are unaware of fair values and focus on past performance, arbitrageurs

may have to liquidate positions without correcting the mispricing. As a

result, predictable return patterns that contradict neoclassical finance –

so-called anomalies – may persist over a long time period. In Chapter 2,

we focus on one of the most prominent of these anomalies, the momentum

anomaly, and propose a novel risk management strategy.

Contradicting another cornerstone of neoclassical finance – expected

utility theory – a large and growing body of literature, both experimental

and empirical, documents behavioral patterns that are hard to reconcile

with rational decision making. For example, experimental evidence shows

that losses are perceived more negatively than equivalent gains and small

probabilities for tail events are overweighted. Moreover, decision makers

tend to focus on changes in wealth rather than total wealth. Kahneman

and Tversky (1979) and Tversky and Kahneman (1992) summarize these

findings in their famous prospect theory, which is still considered to be

one of the most influential descriptive models for decision making under

risk. Notably, several studies, such as Kliger and Levy (2009), Barberis

et al. (2016), and Baele et al. (2019), find probability weighting – and thus

skewness preference – to be the model’s key component. Consistent with

this finding, Kraus and Litzenberger (1976) show that many empirical

contradictions of the CAPM can be attributed to the omission of skewness

as a risk factor. Hence, in Chapters 3 and 4 we elicit probability weighting
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functions from S&P 500 option prices and the Pan (2002) stochastic

volatility and jumps model, respectively, and relate them to empirical

puzzles (the IPO underpricing puzzle and the pricing kernel puzzle).

Finally, Barberis and Huang (2008) show that prospect theory investors

overweight securities with highly right-skewed return distributions, caus-

ing them to be overvalued. In line with this prediction, Boyer et al. (2010)

and Conrad et al. (2013) find a negative relation between idiosyncratic

skewness and subsequent returns. In Chapter 5, we therefore employ

idiosyncratic skewness as a proxy for firm-specific mispricing and investi-

gate the impact of market timing on capital structure decisions.

1.2 Outline

Each chapter of this thesis provides an independent introduction and

conclusion to the respective research question. The remainder of this

chapter summarizes the contribution of each paper.

Chapter 2: Isolating Momentum Crashes (co-authored with Maik

Dierkes) Jegadeesh and Titman (1993) show that past winners tend to

outperform past losers in the near future. A subsequent zero-cost strategy

that buys past winners and short sells losers therefore earns significant

returns of 1.49% per month. Moreover, after controlling for Fama and

French (1993) factors, risk-adjusted returns even increase to 1.69% per

month, challenging neoclassical finance and, in particular, the CAPM.

However, despite earning high average returns, the momentum strategy

3
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exhibits both a high kurtosis and a negative skewness, exposing it to

significant tail risk. The two most prominent crashes took place in 1932

and 2009 and resulted in a draw-down of 91% and 73%, respectively.

Notably, momentum crashes primarily occur in rebounding bear markets,

when the momentum portfolio displays a negative beta and the volatility

of momentum returns is high.

In order to control the time-varying exposure to momentum, the

influential studies of Barroso and Santa-Clara (2015) and Daniel and

Moskowitz (2016) both propose scaling approaches. However, while

Barroso and Santa-Clara (2015) focus on momentum-specific risk, Daniel

and Moskowitz (2016)’s baseline approach is restricted to systematic risk.

We therefore propose a novel crash indicator strategy that accounts for

both sources of risk. We first show that an ex-ante crash indicator, based

on systematic risk, largely separates momentum crashes from momentum

bull markets. Subsequently, we study the interaction between the crash

indicator and momentum-specific risk and find that the explanatory

power further improves.

Building on these insights, we propose an implementable trading strat-

egy that scales time-varying exposure based on momentum-specific risk

and reverses weights when the crash indicator predicts a crash. Empiri-

cally, we find the crash indicator strategy to outperform the approaches

of Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) both

over the full sample period from 1926 to 2020 and in sub-samples. Our

conclusions are robust to spanning tests, an international momentum

portfolio, and the inclusion of transaction costs.
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Chapter 3: Option-implied Lottery Demand and IPO Returns (co-

authored with Maik Dierkes and Sebastian Schroen) IPOs not only

earn anomalously high returns on their first day of trading, but also

exhibit substantial variation over time. For example, the average return

increased from 15% in 1990-1998 to 65% in 1999-2000, before falling

back to 12% in 2001-2003 (Loughran and Ritter, 2004). In stark contrast,

the performance in the long run is exceptionally poor (Ritter, 1991).

While earlier studies focus on rational explanations like information

asymmetries (Beatty and Ritter, 1986) and a changing risk composition

(Ritter, 1984), more recent studies suggest a behavioral perspective. For

example, Loughran and Ritter (2002) propose a prospect theory (PT) ap-

proach, where firms evaluate outcomes based on a reference point and

aggregate the loss from leaving money on the table and the increased val-

uation of retained shares. Usually, this results in a net profit and explains

why firms only partially adjust offer prices to high demand during the

book building period. In contrast, Barberis and Huang (2008) focus on

PT’s probability weighting component and find that investors, on average,

overweight small probabilities for large gains, resulting in a preference

for lottery-like stocks. As a consequence, more pronounced probability

weighting should lead to higher first-day returns and a poor performance

in the long run. By estimating the expected skewness of the IPO’s industry,

Green and Hwang (2012) document first empirical evidence consistent

with these predictions. Following the identification approach of Dierkes

(2013), we provide a cleaner test by directly estimating a time series of

PT’s probability weighting parameter gamma from S&P 500 option prices.
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During our sample period from 1996 to 2020, we find several episodes of

increased probability weighting (i.e. small gammas), most importantly

in the late 1990s (during the DotCom bubble) and in the most recent

past (2018-2020). We therefore employ gamma as an inverse predictor of

market-wide lottery demand.

In line with the predictions of Barberis and Huang (2008), we find

that IPOs issued in periods of high lottery demand earn higher first-day

returns and are more likely to perform poorly over return horizons of up

to five years. Moreover, we show that the explanatory power of expected

skewness strongly depends on the respective lottery demand regime. IPO

returns are thus particularly driven by the interaction of market-wide

lottery demand and asset-specific lottery characteristics. Finally, we find

that most of the market reaction takes place in the secondary market,

driven by buying pressure from retail investors.

Chapter 4: Volatility-Dependent Probability Weighting and the Dy-

namics of the Pricing Kernel Puzzle (co-authored with Maik Dierkes,

Sebastian Schroen, and Philipp Sibbertsen) Jackwerth (2000) defines

risk neutral probabilities as the product of physical probabilities and a

risk aversion adjustment. Accordingly, the pricing kernel, defined as the

ratio of risk neutral to physical probabilities, is expected to monotonically

decrease in wealth and distinctly reflects risk aversion. In contrast to

this prediction, however, several studies find U-shaped pricing kernels,

implying episodes of negative risk aversion.

We attribute this finding to irrational investors who overweight small
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probabilities for tail events and thus distort the pricing kernel. Impor-

tantly, recent studies find both the pricing kernel (Benzoni et al., 2011;

Babaoğlu et al., 2018) and probability weighting functions (Kilka and

Weber, 2001; Polkovnichenko and Zhao, 2013) to depend on the level of

volatility (or uncertainty, respectively). We therefore refer time variation

in pricing kernels and risk aversion to a volatility-dependent and thus

time-varying degree of probability weighting. We first follow Ziegler

(2007) and elicit risk neutral and physical density functions from the

Pan (2002) stochastic volatility and jumps model for a wide range of

volatilities. Subsequently, we adopt the identification strategy presented

in Chapter 3 and estimate implied probability weighting functions for

each of the obtained densities. However, in contrast to Chapter 3, we do

not estimate a time series, but focus on the cross-section of probability

weighting functions over volatilities, which enables us to counterfactually

investigate the impact of volatility on the extent of probability weighting.

Although the Pan (2002) model was not designed to account for

prospect theory preferences, our results are strikingly robust. Implied

probability weighting functions are consistently inverse S-shaped and

the curvature parameter gamma (probability weighting) almost mono-

tonically decreases (increases) in volatility, implying more pronounced

skewness preferences in volatile market environments. Furthermore,

estimating probabilistic risk attitudes, equivalent to the share of risk

aversion related to probability weighting, enables us to explore the

pricing kernel puzzle. While pricing kernels estimated from the Pan

(2002) model display the typical U-shape documented in the literature,
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adjusted pricing kernels are monotonically decreasing in wealth and thus

in line with economic theory. As a direct result, risk aversion functions

are positive throughout wealth levels. Our conclusions are robust to

alternative return horizons, a nonparametric empirical setting, and

several other robustness checks.

Chapter 5: Idiosyncratic Skewness and Market Timing of Capital

Structure Decisions (co-authored with Maik Dierkes) There are three

prevailing theories of capital structure: the pecking order theory, the

trade-off theory, and the market timing theory. The pecking order theory

predicts that firms primarily fund investments with internal funds. If

these are not sufficient, they prefer debt over equity issues. According

to the trade-off theory, firms choose a target leverage by balancing the

costs and benefits of debt. In contrast, the market timing theory predicts

that managers attempt to exploit temporary fluctuations in the cost of

equity and therefore issue (repurchase) equity when shares are perceived

to be overvalued (undervalued). According to Baker and Wurgler (2002),

market timing should have a long-lasting impact on capital structure.

Again, our approach builds on the theoretical insights of Barberis and

Huang (2008). Investors with prospect theory preferences demand secu-

rities with highly right-skewed payoffs, causing them to be overvalued.

In line with this prediction, several empirical studies find a significantly

negative relation between subsequent returns and both idiosyncratic and

market-wide skewness (Boyer et al., 2010; Chang et al., 2013). Moreover,

Green and Hwang (2012) find their measure of industry-specific skewness
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to be positively (negatively) related to first-day (long-term) IPO returns.

We therefore employ a firm-specific version of their measure as a proxy for

mispricing and investigate both the short-term impact and the persistence

of (equity) market timing.

Our results provide further evidence for a strong market timing effect

in the short run. Idiosyncratic skewness is significantly positively related

to equity issues and negatively related to debt issues, with the former

effect being the predominant one. Moreover, we find equity issues to

be accompanied by debt retirement programs. However, in contrast to

the predictions of Baker and Wurgler (2002), the market timing effect

is not persistent and disappears after about three years. This key result

is confirmed by both partial adjustment models and interaction effects

with the firm-specific financing deficit and is robust to a wide range

of robustness checks. Our findings are thus consistent with a long-run

validity of the trade-off theory, including market timing as a short-term

factor.
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Chapter 2

Isolating Momentum Crashes

This chapter refers to the following publication:

Dierkes, Maik and Jan Krupski (2022): ‘Isolating Momentum Crashes’,
Journal of Empirical Finance 66: 1-22.

Available online at:
https://doi.org/10.1016/j.jempfin.2021.12.001

Abstract
Across markets, momentum is one of the most prominent anoma-

lies and leads to high risk-adjusted returns. On the downside, mo-
mentum exhibits huge tail risk as there are short but persistent
periods of highly negative returns. Crashes occur in rebounding
bear markets, when momentum displays negative betas and momen-
tum volatility is high. Based on ex-ante calculations of these risk
measures, we construct a crash indicator that effectively isolates mo-
mentum crashes from momentum bull markets. An implementable
trading strategy that combines both systematic and momentum-
specific risk more than doubles the Sharpe ratio of original momen-
tum and outperforms existing risk management strategies over the
1928-2020 period, in 5 and 10-year sub-samples, and an interna-
tional momentum portfolio.

Keywords: Asset Pricing, Market Anomalies, Momentum, Crash Indicator

JEL: G11, G12.
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Isolating Momentum Crashes

2.1 Introduction

Jegadeesh and Titman (1993) show that past winners continue to out-

perform past losers in the near future. Their zero-cost strategy buys

previous winners, short sells losers, and earns significant returns of 1.49%

per month. Notably, controlling for Fama and French (1993) risk factors

over the period from 1928 to 2020 results in even higher risk-adjusted

returns of 1.69%.1 These findings challenge neoclassical finance and, in

particular, the capital asset pricing model (CAPM).2 Furthermore, mo-

mentum is robust across industry portfolios, international markets, and

asset classes.3

Average momentum returns are high, yet they display huge tail risk, i.e.

a high kurtosis and negative skewness. Since 1926, there have been several

momentum crashes that feature short but persistent periods of highly

negative returns. For example, the momentum portfolio lost about 91%

from June to August 1932, followed by a second draw-down in April to

July 1933. Another prominent crash took place in 2009 when momentum

lost more than 73% within a period of three months. Remarkably, crashes

are driven by large gains of previous losers while winners still exhibit
1 Controlling for Fama and French (2015) factors, risk-adjusted returns decrease to

1.38% but remain highly significant. Note that Fama and French (2015) factor data
starts in 1963.

2 The CAPM was independently proposed by Sharpe (1964), Lintner (1965) and Mossin
(1966).

3 See Moskowitz and Grinblatt (1999) for industry portfolios and Rouwenhorst (1998)
and Rouwenhorst (1999) for international evidence in developed and emerging mar-
kets, respectively. Chan et al. (2000) confirm results for both markets. Notably, there
is no significant momentum in the Japanese market, as shown by Asness (2011). See
Okunev and White (2003) and Menkhoff et al. (2012) for currency markets as well
as Erb and Harvey (2006) and Asness et al. (2013) for commodity futures and bond
markets.
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modestly positive returns.

Our study is most closely related to Barroso and Santa-Clara (2015)

and Daniel and Moskowitz (2016) who employ scaling strategies that

adjust the time-varying exposure to momentum. Barroso and Santa-Clara

(2015) propose a risk management strategy solely based on momentum-

specific risk. Thereby, exposure to momentum is scaled by the ratio of a

pre-defined target volatility and the realized volatility of momentum re-

turns. The strategy almost doubles the Sharpe ratio of original momentum

and provides an intuitive way to adjust risk according to individual risk

aversion. In contrast, Daniel and Moskowitz (2016) focus on systematic

risk and adjust exposure with respect to expected returns, the conditional

variance, and a time-invariant scaling parameter. This dynamic approach

(DYN) significantly increases momentum returns and outperforms the

constant volatility strategy (CVOL) of Barroso and Santa-Clara (2015).

We introduce a novel crash indicator strategy (CI) that considers both

systematic and momentum-specific risk and improves existing risk man-

agement approaches. Our contribution to the literature is threefold. First,

we show that an ex-ante crash indicator based on systematic risk measures

largely separates momentum crashes from momentum bull markets. In

our sample from 1928 to 2020, average returns when a crash is indicated

amount to −3.63%, while the mean in non-crash periods is 1.49%. Sec-

ond, we perform predictive regressions with crash indicators motivated

from the literature and momentum volatility to show that a combination

of systematic and momentum-specific risk measures further improves

explanatory power. Third, we propose an implementable trading strategy
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based on our crash indicator and a constant scaling approach. In momen-

tum bull markets, the strategy corresponds to Barroso and Santa-Clara

(2015), but replaces the volatility of momentum returns by the variance.

In crash periods, the weight in momentum is reversed, i.e. the strategy

invests in past losers and short sells winners.4

With a Sharpe ratio of 1.12, CI is superior to both CVOL (0.94) and

DYN (1.03).5 Moreover, both strategies are spanned by the CI strategy,

while CI’s alpha remains significant at the 1% level (even after adjusting

for CVOL and DYN simultaneously).6 By dividing the full sample into

decades and 5-year rolling windows, we further show that CI consistently

offers superior returns even in shorter time periods. DYN is outperformed

in all decades and 90% of 5-year periods, while CVOL returns are ex-

ceeded in seven out of nine decades and 75% of rolling windows. In

addition to that, one of the remaining decades offers almost equivalent

returns. Most importantly, CI clearly outperforms both strategies in ma-

jor crash periods. Remarkably, implementing CVOL and CI requires

only six and 24 months, respectively, while DYN rests on an expanding

window regression that gains power by applying a long sample of data.

By re-estimating the strategies in each sub-sample, we show that DYN
4 Our study is also related to Blitz et al. (2011) and Blitz et al. (2020) who rank stocks on

residual returns – adjusted for Fama and French (1993) factors – instead of raw returns.
However, we focus on the interaction of systematic (beta) risk and momentum-specific
risk. Furthermore, our estimation of beta requires less data (six months) since the
estimation of residual stock returns relies on regressions that include the previous 36
months.

5 As break-even round-trip costs show, CI remains superior even after including trans-
action costs.

6 Our results are robust to a 2× 3 style momentum portfolio that is formed on previous
performance and size.
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performs substantially worse when applied in markets that have not yet

experienced a momentum crash. More precisely, the re-estimated strategy

is clearly inferior in all decades and 99% of 5-year periods. In six out of

nine decades, DYN is even outperformed by original momentum.

Moreover, by ex-post scaling risk-adjusted returns to have an annual-

ized volatility of 19%, Daniel and Moskowitz (2016) circumvent a highly

relevant problem in implementing their strategy: there is no hint on how

an investor could intuitively adjust risk exposure ex-ante. Therefore, we

perform a sensitivity analysis and show that downside risk strongly de-

pends on the choice of the ex-ante unknown scaling parameter. In a worst

case scenario, even a reasonable calibration can involve a loss of the full

investment, rendering risk management ineffective.

Finally, we present international evidence by estimating an interna-

tional momentum portfolio consisting of the most important markets

outside of the United States: France, Germany, Japan, and the United

Kingdom.7 Again, the Sharpe ratio of CI (1.77) clearly exceeds both CVOL

(1.48) and DYN (1.47). To prove that these results are not driven by the

specific choice of countries, we re-estimate all strategies for a Global-Ex-

USA and regional portfolios and still find superior performance.
7 See Barroso and Santa-Clara (2015)’s Table 5.
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2.2 Momentum in US Equity Markets

2.2.1 Data and Portfolio Construction

We determine momentum returns based on daily and monthly return-

sorted decile portfolios that are kindly provided by Kenneth French.8 We

classify the 10% best (worst) performing stocks as winners (losers) and

rebalance portfolios on a monthly basis. Monthly (daily) data cover the

period from January 1927 (October 1926) to May 2020. Supplementary

data on the Fama and French (1993) three factor model, the risk-free

rate, and 2 × 3 portfolios formed on size and momentum are provided

by Kenneth French as well. Furthermore, we employ daily and monthly

country-specific momentum returns (provided by AQR Capital Manage-

ment) to construct an international momentum portfolio.9 Finally, to

perform robustness checks, we deploy a Global-Ex-USA momentum port-

folio and several regional portfolios (Europe, North America, and Pacific)

that are also provided by AQR. We cover the entire period of available

data (January 1987 to May 2020).

2.2.2 Momentum Crashes

Fig. 2.1 illustrates momentum crashes by plotting cumulative momen-

tum returns over the full sample (Panel A) and the two most important

crash decades: the 1930s (Panel B) and 2000s (Panel C). Although a $1
8 For details, see https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html.
9 See https://www.aqr.com/Insights/Datasets. For further information on the construc-

tion of country-specific momentum portfolios, see Asness and Frazzini (2013) and
Asness et al. (2019).
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Isolating Momentum Crashes

Fig. 2.1: Cumulative Momentum and the Market
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Fig. 2.1 plots cumulative momentum and markets returns over the full sample (Panel A)
and the two most prominent crash periods: The 1930s (Panel B) and 2000s (Panel C).
The y-axis of Panel A is logarithmized to improve visibility. Highlighted areas in Panel B
and C mark crash periods.

investment in September 1928 would have led to $4,607 in May 2020,

several crashes occurred that took decades to recover from. Due to short

but persistent crashes in June to August 1932 and April to July 1933, the

momentum strategy occasionally lost more than 95% of its initial value.

Another large crash from March to May 2009 similarly involved a loss
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of more than 73%. In addition to that, there have been several smaller

crashes in 1938/1939, 1974/1975, and 2001/2002. While being smaller in

size, each involved at least one monthly loss of more than 19%. Therefore,

high monthly returns of 1.15% come with a large kurtosis of 16.6 and

a highly negative skewness of −2.3.10 Barroso and Santa-Clara (2015)

note that even the high average returns of the momentum strategy do not

compensate investors for taking the risk of suchlike momentum crashes.

2.3 Predicting Momentum Crashes

2.3.1 Time-varying Risk of Momentum

Cooper et al. (2004) find a positive correlation between momentum re-

turns and the state of the market, where up-markets (down-markets) are

defined by positive (negative) 3-year market returns. More precisely, aver-

age momentum returns following up-markets (0.93%) are significantly

higher than following down-markets (−0.37%). Daniel and Moskowitz

(2016) confirm this finding for market states based on 2-year returns and

show that crash periods display positive 1-month returns. Consequently,

they define this turning point as ‘Market Rebound’.11 Panels B and C of

Fig. 2.1 illustrate this finding as both show negative 2-year and positive

1-month market returns during momentum crashes (highlighted area).

Crashes occur exactly when the market starts to rebound.
10 Note that monthly returns reported by Jegadeesh and Titman (1993) are higher since

the momentum crash of 2009 is not included in their sample.
11 Asem and Tian (2010) have been the first to show that momentum returns particularly

depend on market dynamics. They find returns to be higher when markets remain in
their current state.
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Grundy and Martin (2001) find a time-varying market beta of momen-

tum returns.12 This result is intuitive as in bull markets winners (losers)

tend to be high-beta (low-beta) stocks, while in bear markets winners

(losers) are those who co-vary the least (most). Based on this finding,

Grundy and Martin (2001) propose a dynamically hedged portfolio that

adjusts momentum returns for market and size risk. However, since mo-

mentum returns are regressed on market and size returns in month t to

month t + 5, betas have a look-ahead bias and the strategy is not tradable.

Moreover, Daniel and Moskowitz (2016) show that ex-ante hedging does

not improve performance.13 To illustrate the interaction of momentum

and its market beta, Panel A of Fig. 2.2 displays cumulative momentum

returns and betas for the period from January 2000 to May 2020.14 While,

in fact, beta is negative in crash periods (e.g. in 2009), it is also negative

prior to crashes when momentum exhibits exceptionally large returns

(e.g. in 2008). Thus, despite comprising some information, beta alone

does not avoid momentum crashes.

As of yet, we only considered market risk (i.e. systematic risk) of

momentum. Another important source of risk is presented by Stivers

and Sun (2010) and Barroso and Santa-Clara (2015) who investigate the

impact of momentum-specific risk. Stivers and Sun (2010) find a negative

relationship between the cross-sectional dispersion in stock returns and

subsequent momentum returns, net of several macroeconomic variables.
12 Time-variation in betas of return-sorted portfolios was first shown by Kothari and

Shanken (1992).
13 See also Barroso (2014).
14 Appendix 2.A.1 outlines the calculation of momentum betas.
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Fig. 2.2: Momentum and Beta
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Fig. 2.2 plots cumulative momentum returns (Panel A) and momentum volatility (Panel
B) compared to momentum beta. Both panels include monthly data from January 2000
to May 2020. At the beginning of each month, beta is estimated by a simple regression
of the 126 preceding daily momentum returns on the CAPM. Momentum volatility is
calculated as the realized volatility of the 126 daily momentum returns preceding the
start of the current month.

Barroso and Santa-Clara (2015) find momentum risk to be predictable by

its own realized variance and document a negative relationship between

momentum volatility and subsequent returns.

Fig. 2.3 therefore compares cumulative momentum returns to mo-

mentum volatility.15 Panels A and B display the 1930s and 2000s crash

decades, respectively, where highlighted areas denote the momentum

crashes of 1932/1933 and 2009. Both panels confirm Barroso and Santa-
15 Momentum volatility is calculated according to Appendix 2.A.2.
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Fig. 2.3: Risk and Return of Momentum
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Fig. 2.3 plots cumulative momentum returns and annualized momentum volatility in the
1930s (Panel A) and 2000s (Panel B). Highlighted areas mark crash periods. Momentum
volatility is calculated as the realized volatility of the 126 daily momentum returns
preceding the start of the current month.

Clara (2015)’s result that momentum volatility increases during momen-

tum crashes. Moreover, Panel B of Fig. 2.2 shows that high-volatility

periods feature negative betas. This result is intuitive as periods of high

momentum volatility are also periods of market distress, which in turn

implies a low (high) beta of previous winners (losers).

Table 2.1 summarizes the time-varying risk of momentum by col-

lecting the 15 worst momentum returns of our sample period and the

corresponding risk measures. In each of these months, momentum in-

curred a loss of at least 19.7%. Notably, we find the worst months to be
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Table 2.1: Worst Momentum Returns and Corresponding Risk Measures

Rank Date Momentum Systematic Risk Specific Risk

Market1M Market2Y βMOM σMOM

1 1932− 08 −77.0% 37.6% −67.6% −0.84 0.51

2 1932− 07 −60.2% 33.9% −74.8% −0.79 0.44

3 2009− 04 −45.6% 10.2% −40.6% −1.00 0.84

4 1939− 09 −45.2% 16.9% −21.6% −0.08 0.22

5 2001− 01 −42.0% 3.9% 10.7% 0.39 0.37

6 1933− 04 −41.9% 39.0% −59.0% −0.11 0.43

7 2009− 03 −39.8% 9.0% −44.9% −0.93 0.78

8 1938− 06 −33.2% 24.0% −27.7% −1.29 0.44

9 1931− 06 −29.0% 14.2% −47.6% −1.05 0.35

10 2020− 04 −28.7% 13.6% −0.8% 0.01 0.28

11 1933− 05 −26.9% 21.6% −36.7% −0.13 0.38

12 2009− 08 −25.4% 3.4% −27.2% −1.98 0.85

13 2002− 11 −20.1% 6.0% −36.2% −0.51 0.31

14 2016− 04 −19.8% 0.9% 10.9% −1.00 0.45

15 1975− 01 −19.7% 14.0% −41.8% −0.40 0.17

Table 2.1 presents the 15 worst monthly momentum returns over the period from
September 1928 to May 2020 as well as corresponding risk measures. Market2Y and
Market1M are the 2-year and contemporaneous 1-month market return. σMOM and
βMOM are momentum volatility and beta. At the beginning of each month, beta is
estimated by a simple regression of the 126 preceding daily momentum returns on the
CAPM. Momentum volatility is calculated as the realized volatility of the 126 daily
momentum returns preceding the start of the current month.

clustered as 12 out of 15 either took place in the 1930s or the 2000s and

the two worst months are subsequent losses from July to August 1932.

The maximum loss occurred in August 1932 when momentum lost 77%

of its initial value. In all months, the contemporaneous market return is

positive and all but two months display a negative 2-year market return.

Similarly, 13 out of 15 months exhibit a negative beta. With respect to
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momentum-specific risk, only one month shows an annualized volatility

of slightly below the average (0.18), while still exceeding the median

annualized volatility of 0.14.

2.3.2 Isolation of Crash Periods

Based on the results presented in Section 2.3.1, we propose three feasible

crash indicators.

1. A bear market indicator, IB,t−1, based on Daniel and Moskowitz

(2016), which equals one if the 2-year market return preceding the

start of month t (Market2Y ,t−1) is negative and zero otherwise.

IB,t−1 =


1 if Market2Y ,t−1 < 0,

0 otherwise
(2.1)

2. As Daniel and Moskowitz (2016) find momentum crashes to occur

during market rebounds, we further motivate a rebound indicator,

IR,τ , which equals zero unless bear markets display positive 1-month

returns (Market1M,τ ). Depending on the view (ex-post or ex-ante),

Market1M,τ is either the contemporaneous (τ = t) or lagged 1-month

return (τ = t − 1).

IR,τ =


1 if Market2Y ,t−1 < 0 & Market1M,τ > 0,

0 otherwise
(2.2)

3. Although momentum beta alone does not avoid momentum crashes

(Daniel and Moskowitz, 2016), a combination with IR,τ seems rea-

sonable. Therefore, we propose a crash indicator, IC,τ , which is one

22



Isolating Momentum Crashes

if a rebound takes place and momentum beta is negative.

IC,τ =


1 if Market2Y ,t−1 < 0 & Market1M,τ > 0 & βMOM,t−1 < 0,

0 otherwise
(2.3)

Table 2.2 presents average momentum returns with respect to the state

of the indicators. Most importantly, each indicator features significantly

lower returns in periods defined as a crash. Considering ex-ante mea-

sures, IC,t−1 displays the highest and most significant absolute difference

in means (−5.12%). In months depicted as ‘no crash’, average returns

increase from the full sample mean of 1.15% to 1.49%, while dropping to

−3.63% in crash periods. For the rebound indicator, IR,t−1, the absolute

difference in means decreases (−3.84%) and significance reduces to the

5%-level. While average returns in non-crash periods are similar to those

of IC,t−1 (1.47%), returns in crash periods increase to −2.38%. For the bear

market indicator, IB,t−1, the difference remains significant at the 5%-level,

although the absolute spread shrinks to 2.63%. The crash period aver-

age increases to roughly −1.04%, whereas the non-crash mean amounts

to 1.59%.16 Considering ex-post indicators, differences and absolute t-

values strongly increase. However, IC,t still displays the highest and most

significant difference (10.40%).

While these results suggest that IC is a meaningful crash indicator, it

seems reasonable to ask how an investor could have known this in 1930.

Note that bear markets are often initiated by a market crash. In these
16 The latter result is driven by the fact that IR,t−1 and IC,t−1 occasionally miss the first

month of momentum crashes, whereas IB,t−1 covers the whole period of market stress.
As bear markets also include positive returns prior to momentum crashes, the crash
period mean is increased, while the non-crash average enlarges as well.
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Table 2.2: Comparison of Mean Returns

Indicator (Ij ) Ij = 0 Ij = 1 Diff. t-value Implementation

IB,t−1 1.59% −1.04% −2.63% −2.49** ex-ante

IR,t−1 1.47% −2.38% −3.84% −2.53** ex-ante

IC,t−1 1.49% −3.63% −5.12% −2.83*** ex-ante

IR,t 1.95% −6.66% −8.61% −5.65*** ex-post

IC,t 1.94% −8.47% −10.40% −5.94*** ex-post

Table 2.2 presents average momentum returns with respect to indicator j, where B
denotes the bear-market indicator, R is the rebound indicator and C is the crash indicator.
To calculate means, we apply the full sample period from September 1928 to May
2020. Ex-ante (ex-post) implementation indicates that lagged (contemporaneous) market
returns are used. Stars indicate significance at the 10% (*), 5% (**) and 1% (***) level.

particular periods, momentum winners (losers) are those stocks with the

smallest (largest) losses. In line with Shleifer and Vishny (1997), losers are

more likely to be undervalued than winners and their expected returns

increase.17 By construction, losers also exhibit a higher beta than winners,

resulting in a negative beta of the momentum portfolio.18 When the

market starts to recover, contemporaneous returns are positive, but the

overall market condition is still considered to be a bear market.19 Finally,

as losers move back to their fair value, they display higher returns and

the return of the momentum portfolio is negative.

To investigate whether a combination of the crash indicators and

momentum-specific risk further improves momentum predictability, we

employ predictive regressions of monthly momentum returns on the
17 According to Shleifer and Vishny (1997), professional traders (arbitrageurs) apply the

capital of less sophisticated (potentially irrational) retail investors who are unaware
of fair values and focus on past performance. Therefore, larger losses in the recent
past likely entail more withdrawals, resulting in an undervaluation of loser stocks.

18 See Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016).
19 See Daniel and Moskowitz (2016).
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interaction of crash indicators and annualized momentum volatility. The

regression framework is set up as follows

rMOM,t = α +γ · Ij,t−1 + δ · Ij,t−1 · σMOM,t−1 + η · σMOM,t−1 +λ · ~Xt−1 + εt,

where rMOM,t and σMOM,t−1 denote monthly momentum returns and the

annualized momentum volatility of the preceding 126 daily momentum

returns, respectively. Ex-ante crash indicators are depicted by Ij,t−1. In

addition to that, ~Xt−1 and εt denote a vector of lagged Fama and French

(1993) risk factors and the monthly residuals.

Table 2.3 presents results for the full sample period from September

1928 to May 2020. The first three models simply regress momentum

returns on indicator dummies. By construction, coefficients correspond to

the difference in means presented in Table 2.2 and t-statistics are lowest

for IC,t−1 (well below −5). In Model (4), momentum returns are solely

regressed on the preceding momentum volatility. Consistent with Stivers

and Sun (2010) and Barroso and Santa-Clara (2015), we find that momen-

tum volatility has a significantly negative impact on subsequent returns.

Models (5) to (7) present results for the interaction of crash indicators

and momentum volatility, where we obtain four important results. First,

significance increases for each of the indicators. Second, in absolute

terms, coefficients, t-values, and R2’s exceed those of Models (1) to (4),

suggesting that a combination of market risk and momentum-specific risk

improves crash predictability. Third, IC,t−1 remains the most significant

indicator, both statistically and economically. Fourth, as explained vari-

ability ranges from 2.2% (IB,t−1) to 3.4% (IC,t−1), R2’s can be considered
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Table 2.3: Predictive Regressions

Dependent variable:

rMOM,t

(1) (2) (3) (4) (5) (6) (7) (8) (9)

IB,t−1 −0.026***

(−4.18)

IR,t−1 −0.038***

(−4.47)

IC,t−1 −0.051***

(−5.43)

σMOM,t−1 −0.078***

(−4.14)

IB,t−1 · σMOM,t−1 −0.083***

(−5.06)

IR,t−1 · σMOM,t−1 −0.123*** −0.103***

(−5.63) (−4.47)

IC,t−1 · σMOM,t−1 −0.144*** −0.125***

(−6.30) (−5.23)

FF3 included? No No No No No No No Yes Yes

Adj. R2 0.016 0.018 0.026 0.014 0.022 0.027 0.034 0.040 0.046

Table 2.3 presents OLS-regressions of monthly momentum returns on the interaction
of several combinations of lagged crash indicators and lagged annualized momentum
volatility over the full sample period from September 1928 to May 2020. In addition
to that, model (8) and (9) include Fama and French (1993) risk-factors. The regression
framework is set up as follows:

rMOM,t = α +γ · Ij,t−1 + δ · Ij,t−1 · σMOM,t−1 + η · σMOM,t−1 +λ · ~Xt−1 + εt

rMOM,t and σMOM,t−1 denote monthly momentum returns and the annualized momen-
tum volatility of the preceding 126 daily momentum returns, respectively. Ex-ante
crash indicators j are depicted by Ij,t−1. In addition to that, ~Xt−1 and εt state a vector of
lagged Fama and French (1993) risk-factors and the monthly residuals. Stars indicate
significance at the 10% (*), 5% (**) and 1% (***) level, t-values are stated in parentheses.

high.20 To examine whether these findings are robust to common risk

factors, the last two models add Fama and French (1993) factors. For both

indicators, IR,t−1 and IC,t−1, coefficients and t-values only slightly decrease

(in absolute terms) and IC,t−1 continues to exhibit the highest predictive
20 See Campbell and Thompson (2008). Even in-sample regressions do not exceed

R2 = 1.35% (their Table 2).
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power. We thus find IC,t−1 to effectively isolate momentum crashes from

momentum bull markets.

To illustrate why beta adds information, Panel A of Fig. 2.4 plots cu-

mulative momentum returns in contrast to 2-year market returns. High-

lighted areas of both panels begin when momentum starts to recover

and end when the 2-year market return (or beta) recognizes that the

momentum crash is over (i.e. changes sign). A closer look at the years

2008 to 2010 reveals highly positive returns prior to momentum crashes.

According to the bear-market indicator (which is solely based on 2-year

market returns), the crash period would not only include the crash but

also a large proportion of preceding positive returns. Moreover, the 2-year

market return remains negative until September 2010, whereas momen-

tum already starts to recover in October 2009. In contrast, the rebound

indicator (IR,t−1) additionally incorporates 1-month market returns and

is thus capable of separating crashes from the preceding rise. However,

IR,t−1 still fails to isolate momentum crashes from the beginning recovery

(as 2-year-market returns remain negative until late 2010). In Panel B,

the market return is replaced by momentum beta, which recognizes the

recovery in March 2010, six months earlier than the 2-year market return.

The reasoning is simple. In contrast to the 2-year market return, beta

estimates are based on the previous six months and therefore show a

faster response to market changes.

To examine the information content of beta in more detail, we perform

a simple regression of momentum volatility on the contemporaneous and
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Fig. 2.4: Isolation of Crash Periods
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Fig. 2.4 opposes cumulative momentum returns over the period from January 2000 to
May 2020 to 2-year market returns (Panel A) and momentum beta (Panel B). Highlighted
areas mark the period from the beginning of momentum recovery to the point when
2-year market returns and beta change signs. At the beginning of each month, beta is
estimated by a simple regression of the 126 preceding daily momentum returns on the
CAPM.

lagged beta, respectively

σMOM,τ = α +γ · βMOM,t + εt,

where τ is either t or t+1. Table 2.4 shows that both the contemporaneous

and the lagged beta add information, suggesting that beta predicts future

momentum volatility. More precisely, a decrease of beta by one unit in-

creases contemporaneous (future) momentum volatility by economically

and statistically significant 7.6 (7.2) percentage points.
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Table 2.4: The Information Content of Beta

Dependent Variable Independent Variables

α βMOM,t R2

σMOM,t 0.190 −0.076*** 0.157

(t-value) (54.14) (−14.34)

σMOM,t+1 0.190 −0.072*** 0.143

(t-value) (53.54) (−13.57)

Table 2.4 presents results for OLS-regressions of momentum volatility on the contempo-
raneous and lagged momentum beta over the full sample period from September 1928
to May 2020, respectively:

σMOM,τ = α +γ · βMOM,t + εt ,

where τ is either t or t+ 1. At the beginning of each month, beta is estimated by a simple
rolling regression of the 126 preceding daily momentum returns on the standard market
model. Momentum volatility is calculated as the realized volatility of the 126 daily
momentum returns preceding the start of the current month. Stars indicate significance
at the 10% (*), 5% (**) and 1% (***) level, t-values are stated in parentheses.

2.4 Risk-Managed Momentum

2.4.1 Risk Management Strategies

There is a growing literature on managing momentum crashes. Two of

the most promising strategies are presented by Barroso and Santa-Clara

(2015) and Daniel and Moskowitz (2016) who apply scaling strategies

that take into account the current level of risk.

Barroso and Santa-Clara (2015) propose a constant volatility scaling

strategy (CVOL) based solely on momentum-specific risk. Exposure to

momentum (wCVOLt−1 ) is scaled by the ratio of a pre-defined target volatility

(σtarget) and the realized volatility of daily momentum returns over the
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preceding 126 trading days (σMOM,t−1)

rMOMCVOL
t

=
σtarget

σ̂MOM,t−1︸     ︷︷     ︸
=̂wCVOLt−1

rMOM,t. (2.4)

Barroso and Santa-Clara (2015) propose a target volatility of 12%. Al-

though the actual volatility over our sample period exceeds this target

(16.5%), constant volatility scaling increases momentum returns and si-

multaneously reduces volatility. Moreover, including a constant target

supports investors in adjusting risk exposure according to their individual

risk preferences.

In contrast, the baseline strategy of Daniel and Moskowitz (2016) fo-

cuses on market risk and scales momentum exposure dynamically (DYN).

More precisely, the optimal weight in their momentum strategy (wDYNt−1 )

maximizes the Sharpe ratio of an intertemporal version of Markowitz’

(1952) portfolio optimization

rMOMDYN
t

= (
1

2λ
)
µ̂t−1

σ̂2
t−1︸     ︷︷     ︸

=̂wDYNt−1

rMOM,t. (2.5)

While expected returns (µ̂t−1) are estimated by a full sample regression of

monthly momentum returns on the interaction of the bear market indica-

tor and lagged market variance, expected momentum variance (σ̂2
t−1) is

calculated by a linear combination of a GJR-GARCH model and realized

momentum volatility. The scaling parameter λ is a pre-defined constant

that controls the unconditional risk and return of the dynamic portfolio.

Notably, there is no intuitive choice of λ, potentially entailing high risk
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exposure. Importantly, as µ̂t−1 is estimated over the full sample, the strat-

egy is not implementable. To overcome this issue, Daniel and Moskowitz

(2016) propose to replace full sample regressions by expanding window

regressions.21 Furthermore, ex-ante expected variance is based on the

realized variance of momentum returns over the preceding 126 days. In

their sample period from 1934 to 2013, DYN outperforms both original

momentum and CVOL (in terms of Sharpe ratios).

We propose a novel crash indicator strategy (CI) that combines both

market and momentum-specific risk

rMOMCI
t

=
σ2
target

σ̂2
t−1

· (−1)IC,t−1︸              ︷︷              ︸
=̂wCIt−1

rMOM,t. (2.6)

First, the strategy comprises momentum-specific risk since baseline

weights are determined by a scaling approach that is similar to Barroso

and Santa-Clara (2015). However, our scaling approach slightly differs as

returns are scaled by the momentum variance. We motivate this approach

using the theoretical results of Daniel and Moskowitz (2016) who find the

optimal weight to be determined by the variance.22 The actual volatility

resulting from a 12% target volatility (i.e. σ2
target = 0.122 = 0.0144) is

roughly 17.2% and thus only slightly exceeds constant volatility scaling

(16.5%). Therefore, it is still possible to adjust risk exposure with re-

spect to individual risk preferences. Second, by including the (ex-ante)
21 We recap their ex-ante estimations in Appendix 2.A.3. For ex-post estimations see

Daniel and Moskowitz (2016) and Glosten et al. (1993).
22 This finding is in line with general portfolio theory (Campbell and Viceira, 2002). In

an earlier version of this study, the crash indicator strategy was based on volatility
scaling. However, conclusions with respect to our main results have been the same.
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crash indicator, IC,t−1, we also take into account systematic sources of

risk, leading to enhanced momentum scaling. More precisely, when the

indicator predicts a crash (IC,t−1 = 1), exposure to the momentum strategy

is reversed (we are long in losers and short sell previous winners). Thus,

CI not only mitigates momentum crashes but also benefits from them.

2.4.2 Risk-managed Performance

To make results comparable, we follow Daniel and Moskowitz (2016) and

scale all strategies to have an annualized in-sample volatility of 19% over

the sample period from September 1928 to May 2020.23

The time-varying exposure of all strategies is presented in Fig. 2.5.24

Panel A presents the weights of CI (dotted line) and DYN (solid line).

Except for the first years (prior to the first momentum crash), non-crash

weights of CI and DYN are highly correlated (96.5%) and in non-crash

periods after 1933, correlation even increases to 98.8%. Considering that

far more data is needed to reasonably estimate DYN, this is an interesting

observation. While both strategies exhibit large maximum weights (CI:

4.88, DYN: 4.26), CI’s minimum (−1.78) is distinctly lower than that

of DYN (−0.40).25 Panel B displays weights for the constant volatility

strategy. Even though in-sample volatility is scaled to 19%, weights are

similar to those of Barroso and Santa-Clara (2015), because the actual
23 This approach does not affect the Sharpe ratio since average returns and volatilities

change proportionally.
24 By definition, original momentum exhibits a weight of one.
25 Daniel and Moskowitz (2016) report weights ranging from −0.60 to 5.37. Our results

differ as Daniel and Moskowitz (2016) only report values related to their ex-post
strategy.
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Fig. 2.5: Weights in Momentum
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Fig. 2.5 plots scaling weights of risk management strategies over the full sample period
from September 1928 to May 2020. Panel A displays the weights of the crash indicator
(CI) and dynamic scaling strategy (DYN), while Panel B plots weights with respect to the
constant volatility strategy (CVOL). Following Daniel and Moskowitz (2016) and to make
results comparable, all risk management strategies are scaled to have an annualized
in-sample volatility of 19%.

volatility resulting from a 12%-target is roughly 16.5%, and thus close to

the in-sample volatility imposed here. While weights reported in Barroso

and Santa-Clara (2015) range from 0.13 to 2.00, respective values in our

analysis are 0.15 and 2.41. The standard deviation of weights is equal to

0.45 and thus falls below DYN (0.80) and CI (0.92).

Fig. 2.6 presents cumulative returns of all risk management strategies

over the full sample period from September 1928 to May 2020 (Panel

A) and the crash periods of the 1930s (Panel B) and 2000s (Panel C).

33



Isolating Momentum Crashes

Fig. 2.6: Risk-Managed Performance: Cumulative Returns
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Fig. 2.6 presents cumulative returns of original momentum (MOM), the constant volatil-
ity strategy (CVOL), dynamic scaling (DYN), and the crash indicator strategy (CI). Panel
A shows cumulative returns over the full sample period from September 1928 to May
2020, while Panels B (1930s) and C (2000s) display cumulative returns in crash periods.
Following Daniel and Moskowitz (2016) and to make results comparable, all risk man-
agement strategies and original momentum are scaled to have an annualized in-sample
volatility of 19%. Cumulative returns of Panels B and C are calculated applying full-
sample returns, i.e. returns are not re-scaled within decades. The y-axis of Panel A is
logarithmized to improve visibility.

Panel A shows that CI clearly outperforms original momentum, CVOL,

and DYN. While a $1 investment in the CI strategy in September 1928

34



Isolating Momentum Crashes

Table 2.5: Risk-Managed Performance: Descriptive Statistics

Statistic Full Period

MOMraw CVOL DYN CI

Mean 13.81% 17.85% 19.62% 21.33%

Median 17.64% 18.80% 10.73% 12.46%

Minimum −77.02% −28.26% −24.62% −25.39%

Maximum 26.16% 24.99% 42.18% 44.18%

Volatility 27.32% 19.00% 19.00% 19.00%

Sharpe Ratio 0.51 0.94 1.03 1.12

Skew −2.27 −0.32 0.85 0.75

Kurtosis 16.58 2.02 6.47 6.07

Table 2.5 presents descriptive statistics for original momentum (MOMraw), the constant
volatility strategy (CVOL), dynamic scaling (DYN), and the crash indicator strategy (CI).
Calculations cover the full sample period from September 1928 to May 2020. Following
Daniel and Moskowitz (2016) and to make results comparable, all risk management
strategies are scaled to an annualized in-sample volatility of 19%. Both, mean and
median returns are annualized, while minimum and maximum returns are stated as
monthly returns. Furthermore, we annualize volatilities and Sharpe ratios.

would have led to almost 55 million dollars, the same investment in

DYN would have generated roughly 11.8 million dollars. This is equal

to an outperformance of 367%. With respect to CVOL, results are even

clearer as cumulative returns of CI are almost 24 times higher. Original

momentum is staggeringly outperformed by roughly 55 million dollars.

As shown in Table 2.5, all risk management strategies successfully re-

duce extreme losses. While original momentum exhibits monthly crashes

of up to 77%, risk-managed crashes reduce to about 28.3% (CVOL), 24.6%

(DYN), and 25.4% (CI), respectively. Moreover, annualized mean returns

of CI (21.33%) exceed those of original momentum (13.81%) by almost
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55%. CVOL and DYN are outperformed by 19.5% and 9%, respectively.26

At a first glance, the increase in monthly returns may appear small, yet

the actual improvement is strong. First, a large chunk of these benefits can

be reaped precisely when marginal utility is highest, namely during crash

periods (Panels B and C of Fig. 2.6). Without rescaling to 19%, average

monthly returns of the CI strategy in the 1930s (2000s) amount to roughly

0.35% (0.53%), whereas returns of DYN and CVOL decrease to 0.26%

(0.48%) and 0.28% (0.43%), respectively. By rescaling strategies to 19%,

results become even clearer. Average CI returns are 0.78% (1.02%), while

CVOL and DYN earn only 0.25% (0.52%) and 0.30% (0.96%), respectively.

Second, Table 2.6 presents t-tests for differences in means. CI returns

are significantly different from original momentum, both over the full

sample and in respective states of the crash indicator. Most importantly,

although not being significant over the full sample (when considering

CVOL and DYN), CI returns are significantly higher in crash periods.

Thus, the crash indicator strategy particularly mitigates crash risk, yet

keeping momentum’s upside potential alive.

Third, in Section 2.5 we perform robustness checks that confirm a

superior performance of CI in sub-samples.27 Moreover, they reveal a

significantly worse performance of the dynamic strategy when applied to
26 We also construct a strategy that adjusts the Daniel and Moskowitz (2016) approach

for the crash indicator (instead of a bear market indicator). Risk adjusted returns
largely exceed original momentum but trail DYN.

27 In a first draft, only pre-Covid data until October 2019 was available. While April 2020
has been one of the 15 worst monthly momentum returns (−28%), the momentum
strategy merely lost 2.8% throughout February 2020 to May 2020. Thus, the Covid
induced market crash did not result in a momentum crash, which is why CI correctly
did not indicate a crash. Hence, CI only lost 0.3%, whereas DYN performed worse
than original momentum (−3.1%). We consider this as out-of-sample evidence.
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Table 2.6: T-Tests for Differences in Average Returns

Sample p-value

CVOL DYN MOMraw

Full Sample 0.2150 0.5423 0.0000***

IC = 0 0.5130 0.7141 0.0004***

IC = 1 0.0051*** 0.0390** 0.0146**

Table 2.6 presents p-values of t-tests for differences in means of the crash indicator
strategy (CI) and the other risk management strategies. Positive numbers imply higher
average returns of CI. IC,t−1 = 0 and IC,t−1 = 1 indicate the current state of the crash
indicator proposed in section 2.3.2. Full Sample tests cover data from September 1928
to May 2020. Stars indicate significance at the 10% (*), 5% (**) and 1% (***) level.

relatively new markets.

Fourth, although CI requires less data than DYN, even non-crash re-

turns (IC,t−1 = 0) are higher (1.85% vs. 1.76% per month). Our results

thus suggest that DYN’s outperformance with respect to CVOL is exclu-

sively driven by applying variance scaling instead of volatility scaling. In

fact, variance scaling in the spirit of Barroso and Santa-Clara (2015), i.e.

without having to estimate µ, earns higher full period returns than DYN

(1.68% vs. 1.63%).

Finally, by ex-post scaling risk-adjusted returns to 19%, Daniel and

Moskowitz (2016) circumvent a highly relevant problem of implementing

their strategy: there is no hint on how investors could intuitively choose

the scaling parameter λ ex-ante.28 To investigate the sensitivity with

respect to the choice of λ, we recalculate risk-managed returns for sev-

eral parameter choices. As the full sample λ to achieve 19% annualized

volatility is roughly 0.49, we choose values from λ = 0.1 to λ = 1.0 to cal-
28 See Equation (2.5).
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Fig. 2.7: Sensitivity Analysis of DYN (1928:09 - 2020:05)
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Fig. 2.7 presents maximum monthly losses and annualized in-sample volatilities of the
dynamic scaling strategy (DYN) with respect to the scaling parameter λ, presented in
Equation (2.5). Returns are calculated over the full sample period from September 1928
to May 2020. Ex-post λ (= 0.491) denotes the full sample λ that is chosen to achieve an
in-sample annualized volatility of 19%.

culate both maximum monthly losses and annualized volatilities. Fig. 2.7

presents results. While λ > 0.49 slightly reduce losses and annualized

volatilities, λ < 0.49 result in sharply increased draw-downs, accompa-

nied by large volatilities. Most importantly, with λ < 0.12 investors would

have lost their full investment, rendering risk management ineffective.29

Nevertheless, it is questionable whether very small λ’s are implementable

at all (λ = 0.12 would produce a maximum weight of 17.3).30 Rational

µ−σ investors might note that Sharpe ratios are not affected by λ’s greater

than 0.12. However, Shleifer and Vishny (1997) show that professional
29 This is particularly relevant for the 1930s momentum crash when no empirical data

was available.
30 We thank an anonymous referee for this suggestion.
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arbitrage is usually conducted by a small number of arbitrageurs, using

the capital of less sophisticated, potentially irrational, investors who are

unaware of fair values and act rather myopic. Thus, although the choice

of λ > 0.12 does not influence Sharpe ratios directly, it may significantly

affect monthly draw-downs, potentially leading to fund withdrawals and

ultimately an indirect effect on Sharpe ratios.

Apart from that, CI and DYN offer the highest maximum returns

(44.2% and 42.2%), but also exhibit the lowest medians (12.5% and 10.7%)

and a high kurtosis (6.1 and 6.5), suggesting that average returns are

driven by a small number of particularly high returns. However, the kur-

tosis is still clearly reduced and both strategies show a positive skewness

of 0.75 and 0.85, respectively. In contrast, CVOL displays a kurtosis of

roughly 2.0 and returns are still negatively skewed (−0.32). Hence, all

strategies effectively reduce tail risk. Finally, as volatilities coincide by

construction, Sharpe ratios reflect average returns: CI displays the highest

Sharpe ratio (1.12), followed by DYN (1.03) and CVOL (0.94).31

Despite offering the largest Sharpe ratio, the high variability of CI’s

weights makes it reasonable to ask whether our results hold after in-

cluding transaction costs. Following Barroso and Santa-Clara (2015) and

Hanauer and Windmueller (2021), we therefore first calculate each strat-

egy’s turnover.32 Table 2.7 presents results. For the original momentum

strategy, we obtain an average monthly turnover of roughly 81.1%, which
31 Note that the discussion of average returns extends to Sharpe ratios. By applying

an ex-post crash indicator, average returns increase to 22.8% and the Sharpe ratio
improves to roughly 1.20.

32 The calculation of the monthly turnover is outlined in Appendix 2.A.4.

39



Isolating Momentum Crashes

is similar to the results of Barroso and Santa-Clara (2015) who report

a monthly turnover of 74%. However, note that their sample is limited

to the period from March 1951 to December 2010.33 Average monthly

turnovers of risk-managed strategies are 81.5% (CVOL), 78.3% (DYN),

and 84.4% (CI), respectively. While we expected CI to display the highest

turnover, results for the dynamic strategy are surprisingly low. Although

the average absolute change of wDYNt−1 (0.154) more than doubles the

change of wCVOLt−1 (0.073), the portfolio turnover is 3.2 percentage points

lower and even falls below MOMraw. We explain this finding by DYN’s

mean and median weight in the momentum strategy (0.94/0.76), which is

lower than for both CI (0.97/0.76) and CVOL (1.00/0.96). In high turnover

periods (when more stocks enter or leave one of the portfolios), smaller

weights reduce monthly turnover, while in periods of low turnover, the

larger variation in momentum weights becomes more relevant. In these

periods, DYN indeed displays a higher portfolio turnover. However, we

find the former effect to be stronger.34 By construction, these findings
33 Hanauer and Windmueller (2021) find a clearly lower turnover of roughly 54%. This

finding is caused by constructing the momentum strategy with HML-style portfolios
based on 70%/30% percentile breakpoints and double-sorts instead of momentum
deciles. Moreover, they report a significantly larger increase of turnover when risk-
managed strategies are considered. We explain this difference by higher scaling
weights (their risk-managed strategies are scaled to have the same annualized volatility
as original momentum). Daniel and Moskowitz (2016) do not report turnovers.

34 We examine DYN’s turnover relative to the turnover of CVOL (∆ = TODYN −TOCVOL).
First, we calculate DYN’s average turnover with respect to the monthly change in
weights. If the difference is above the median (0.038), we find ∆ to be 0.08 (i.e. TODYN
exceeds TOCVOL by eight percentage points), while otherwise ∆ is clearly negative
(−0.14). Although the variation of weights indeed influences monthly turnover, the
positive effect of a lower mean exposure is prevailing. Moreover, we calculate ∆ with
respect to the turnover of original momentum. If TOMOM is below (above) its median
(0.796), ∆ amounts to roughly −4.0 (−2.5) percentage points. Thus, in high turnover
periods the impact of a smaller median weight increases.
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Table 2.7: Turnover and Break-even Round Trip Costs

MOMraw CVOL DYN CI

Turnover 81.11% 81.47% 78.27% 84.44%

Round-trip costs (5% level) 10.14% 17.14% 20.10% 20.65%

Round-trip costs (1% level) 7.97% 15.64% 18.54% 19.20%

Table 2.7 presents the average monthly portfolio turnover of original momentum
(MOMraw), the constant volatility strategy (CVOL), dynamic scaling (DYN), and the
crash indicator strategy (CI). Furthermore, we report annualized break-even round trip
transaction costs, i.e. round trip costs that would render profits of each strategy insignif-
icant at the 5% and 1% level, respectively. Both, turnovers and break-even round trip
costs are calculated according to Appendix 2.A.4. We cover the full sample period from
September 1928 to May 2020.

also come into effect when considering the CI strategy. However, in this

case, turnover increases by incorporating the crash indicator.

To prove that the CI strategy remains superior after including trans-

action costs, we follow Barroso and Santa-Clara (2015), Hanauer and

Windmueller (2021), and Grundy and Martin (2001) and calculate the

round trip transaction costs that would render profits of each risk man-

agement strategy insignificant at the 5% and 1% level, respectively.35

As depicted by Table 2.7, CI’s annualized break-even transaction costs

at the 1% level are 19.20% and exceed both DYN (18.54%) and CVOL

(15.64%). Results at the 5% level are very similar. We thus conclude

that the crash indicator strategy still outperforms CVOL and DYN after

including transaction costs.
35 The calculation of break-even transaction costs is outlined in Appendix 2.A.4.
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2.4.3 Spanning Tests

To investigate whether risk management strategies are spanned by com-

mon risk factors or each other, we perform regressions of monthly risk-

managed returns on variations of Fama and French (1993) factors and

risk-managed returns of the remaining strategies. Table 2.8 reports the cor-

responding regression alphas. For ease of comparison, we follow Daniel

and Moskowitz (2016) and scale risk-managed returns to have the same

annualized in-sample volatility. That is, we apply scaled full-sample

returns, as presented in Section 2.4.2.36

Table 2.8: Spanning Tests

Model

(1) (2) (3) (4) (5) (6) (7) (8) (9)

FF3 FF3 FF3 FF3 FF3 FF3 CVOL CI CI

+MOM +CVOL +DYN +CI +CVOL +DYN +DYN +CVOL

+DYN

αCVOL 1.70*** 0.62*** 0.23*** 0.19** −0.01

(10.67) (6.81) (3.00) (2.26) (−0.07)

αDYN 1.72*** 0.91*** 0.14* 0.03 −0.01

(10.37) (6.66) (1.79) (0.52) (−0.15)

αCI 1.82*** 1.10*** 0.29*** 0.22*** 0.18*** 0.26***

(10.96) (7.59) (3.28) (3.42) (2.82) (4.01)

Table 2.8 presents full-sample (1928:09-2020:05) regression alphas of monthly risk-
managed momentum returns with respect to Fama and French (1993) factors (FF3) and
the other risk management strategies. CVOL and DYN denote the constant and dynamic
scaling strategy, whereas CI corresponds to the crash indicator strategy. Following Daniel
and Moskowitz (2016), all strategies are scaled to have the same annualized in-sample
volatility of 19%. Alphas are stated in percentage points. Stars indicate significance at
the 10% (*), 5% (**) and 1% (***) level, t-values are stated in parentheses.

36 For their spanning tests, Daniel and Moskowitz (2016) change scaling to have an
annualized in-sample volatility of 23%. For consistency, we keep our previously used
target of 19%.
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In Model (1), we simply regress risk-managed momentum returns

on the Fama and French (1993) three factor model (FF3). All strategies

display large and significant alphas, whereby both economic and statisti-

cal significance is highest for CI. Model (2) extends the right-hand side

by original momentum, leading to the Carhart (1997) four factor model.

Although t-statistics and alphas decrease, all strategies remain highly

significant. More precisely, t-statistics range from 6.66 (DYN) to 7.59 (CI)

and risk-adjusted returns of CI and DYN (1.10% and 0.91%) clearly exceed

those of CVOL (0.62%). This finding is reasonable as CVOL only depends

on momentum-specific information. Models (3) to (6) provide combina-

tions of Fama and French (1993) factors and risk-managed momentum

returns. Model (3) controls for CVOL. While αCI = 0.29% remains highly

significant (t = 3.28), αDYN is distinctly smaller (0.14%) and merely sig-

nificant at the 10% level (t = 1.79). Model (4) replaces CVOL by DYN and

displays highly significant alphas, both for CVOL and CI. However, αCI

is still the most significant. Controlling for CI (Model 5), αCVOL shows

a lower t-value (2.26) but is still significant at the 5% level. In contrast,

αDYN reduces to 0.03% and is not significant at any conventional level. To

investigate the joint impact of DYN and CVOL, Model (6) combines Fama

and French (1993) factors with both competing strategies. Emphasizing

previous results, αCI remains large (0.18%) and significant at the 1% level.

Finally, Models (7) to (9) test each strategy with respect to both of the

remaining strategies (jointly and without FF3). Results are impressive.

While both αDYN and αCVOL (Models 8 and 9) show no significance at all,

αCI (Model 7) remains highly significant (t = 4.01).
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In summary, all regressions suggest a superior performance of CI.

Since CVOL returns show reduced significance after controlling for FF3

and CI, and there is no significance when controlling for CI and DYN

simultaneously, the CVOL strategy is partially spanned. Likewise, after in-

cluding CI as an explanatory variable, DYN alphas become very small and

are not significant at all. We find our results to be confirmed when CVOL

and DYN are solely regressed on CI (not reported). We thus conclude

that DYN and CVOL returns are (partially) spanned by CI. Moreover, our

findings are in contrast to Daniel and Moskowitz (2016) who find CVOL

returns to be spanned by the dynamic strategy.37

In unreported results, we replace the value factor (HML) by Asness

and Frazzini (2013)’s ‘HML Devil’ factor (HMLd), which depends on more

recent data and is thus considered to be a better predictor of momentum.

Results are similar. CI is not spanned by one of the other strategies and

DYN returns are spanned by CI. However, DYN is now also spanned by

CVOL and αCVOL displays higher t-values.38 Moreover, we re-estimate all

strategies with a 2× 3 style momentum portfolio.39 Results correspond to

earlier findings. CI offers the highest Sharpe ratio and is not spanned by

one of the other strategies, while DYN continues to be spanned by CI.40

37 Results differ from Daniel and Moskowitz (2016) for two reasons. First, Daniel
and Moskowitz (2016) only report spanning tests for their ex-post strategy. Second,
reported alphas are estimated with respect to interaction terms of Fama and French
(1993) factors and a market stress indicator. By construction, average returns in these
periods are lower.

38 We thank an anonymous referee for this suggestion.
39 Two portfolios are formed on size and three portfolios are formed on prior returns

(breakpoints are the 30th and 70th percentile). Returns of the winner (loser) portfolio
are then calculated by the average of small and big previous winners (losers).

40 When Fama and French (1993) factors are excluded, CVOL returns are spanned as
well. We thank an anonymous referee for this suggestion.
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2.4.4 International Evidence

To investigate the international performance of risk management strate-

gies, we construct an international momentum portfolio. Thereby, we

follow Barroso and Santa-Clara (2015) and focus on the most important

markets outside of the United States: France, Germany, Japan, and the

United Kingdom. In order to construct the portfolio, we first estimate

all risk management strategies in each respective market. Thereafter,

we scale all strategies to have an annualized in-sample volatility of 19%

and calculate monthly international portfolio returns by equally weight-

ing each market. After deducting months that are needed to estimate

the strategies, we cover a 31-year period from March 1989 to May 2020.

Table 2.9 reports results.

Although strategies in each country are scaled to have an in-sample

volatility of 19%, the portfolio volatility is lower and ranges from 11.9%

(CI) to 13.8% (CVOL). Thus, independent of risk management, risk can be

reduced by constructing an international portfolio. Nevertheless, except

for original momentum (9.7%), average returns are similar to those in

the US.41 The highest mean returns are offered by CI (21.1%), whereas

DYN and CVOL earn average returns of 18.0% and 20.3%, respectively.

As a result, CI also offers the highest Sharpe ratio (1.77), followed by

CVOL (1.48) and DYN (1.47).42 All of which clearly exceed the Sharpe

ratio of original momentum (0.76). Apart from that, maximum losses
41 Low returns of original momentum are driven by Japanese momentum. This finding

is consistent with Barroso and Santa-Clara (2015) and Asness (2011).
42 Results hold when considering a value-weighted international portfolio.
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Table 2.9: International Performance: Descriptive Statistics

Statistic International Portfolio

MOMraw CVOL DYN CI

Mean 9.74% 20.32% 17.95% 21.07%

Median 11.09% 20.27% 13.60% 17.48%

Minimum −24.97% −12.20% −11.89% −9.05%

Maximum 15.23% 17.55% 16.38% 13.74%

Volatility 12.85% 13.75% 12.18% 11.89%

Sharpe Ratio 0.76 1.48 1.47 1.77

Skewness −0.92 −0.08 0.30 0.60

Kurtosis 7.89 0.74 2.27 1.09

Table 2.9 presents descriptive statistics with respect to an international momentum
portfolio. In order to construct the portfolio, we first estimate all risk management
strategies in each of the four most important markets outside of the United States: France,
Germany, Japan, and the United Kingdom. We choose countries according to Barroso
and Santa-Clara (2015). Second, all strategies are scaled to have an annualized in-sample
volatility of 19%. Third, we calculate monthly portfolio returns by equally weighting
each of the international markets. Both, mean and median returns are annualized,
while minimum and maximum returns are stated as monthly returns. Furthermore,
we also annualize volatilities and Sharpe ratios. CVOL and DYN denote the constant
and dynamic scaling strategy, whereas CI corresponds to the crash indicator strategy.
Reported values are calculated for the period from March 1989 to May 2020.

strongly decrease. While original momentum offers a minimum return of

roughly −25.0%, returns increase to about −9.1% when considering CI.

Results for CVOL (−12.2%) and DYN (−11.9%) are similar. Due to smaller

volatilities, we also observe decreasing maximum returns. Nonetheless,

except for original momentum, maxima exceed minima by 38% (DYN) to

52% (CI). Consequently, the risk management strategies either display a

positive (CI and DYN) or only slightly negative skewness (CVOL). More-

over, as kurtosis ranges from 0.7 (CVOL) to 2.3 (DYN), all strategies show
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a negative excess kurtosis.43 To prove that our findings are not simply

driven by the specific choice of countries, we repeat our analysis for a

Global-Ex-USA portfolio and several regional momentum portfolios.44

In all regions, CI strongly improves momentum returns. Furthermore,

CI offers the highest Sharpe ratio with respect to the global portfolio (CI

1.33, CVOL 1.31, DYN 1.18), in North America (CI 1.35, CVOL 1.16, DYN

1.14), and in the Pacific region (CI 0.88, CVOL 0.74, DYN 0.67), while

slightly trailing CVOL in Europe (CI 1.74, CVOL 1.76, DYN 1.66).

Finally, to study whether the risk management strategies span each

other in an international environment, we also repeat the spanning tests.45

Results are presented in Table 2.10. After adjusting for Fama and French

(1993) factors and original momentum (Models 1 and 2), all strategies

remain highly profitable. In Models (3) to (6), αCI remains significant at

the 1% level, both after adjusting for CVOL and DYN separately (Models

3 and 4) and jointly (Model 6). When adjusting for CI, αDYN is barely

significant at the 5% level and αCVOL is not significant at any conventional

level (Model 5). Without Fama and French (1993) factors (Models 7-9),

results are even clearer. CI remains significant at the 1% level, while

αCVOL and αDYN show no significance at all. We find our results to be

confirmed when CVOL and DYN are regressed on CI only (not reported).

In summary, we find CI to outperform the other risk management
43 In each respective country – including Japan – CI and CVOL clearly improve the

performance. In Japan, the Sharpe ratio of CI (0.27) almost quadruples the ratio of
original momentum (0.07), while DYN’s improvement is small (0.08).

44 We thank an anonymous referee for this suggestion.
45 Country-specific Fama and French (1993) factors are provided by AQR capital. In

accordance with the calculation of portfolio returns, factor returns are also weighted
equally.
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Table 2.10: Spanning Tests for International Momentum Strategies

Model

(1) (2) (3) (4) (5) (6) (7) (8) (9)

FF3 FF3 FF3 FF3 FF3 FF3 CVOL CI CI

+MOM +CVOL +DYN +CI +CVOL +DYN +DYN +CVOL

+DYN

αCVOL 1.86*** 0.94*** 0.36** 0.24 −0.01

(9.11) (9.05) (2.55) (1.61) (−0.04)

αDYN 1.67*** 1.08*** 0.38*** 0.27** 0.17

(9.33) (7.54) (3.13) (1.99) (1.52)

αCI 1.87*** 1.43*** 0.61*** 0.60*** 0.46*** 0.52***

(10.36) (8.65) (4.74) (4.53) (3.77) (4.21)

Table 2.10 presents regression alphas of the risk-managed international momentum
portfolio with respect to Fama and French (1993) factors (FF3) and the other risk
management strategies. In order to construct the portfolio, we first estimate all risk
management strategies in each of the four most important markets outside of the United
States: France, Germany, Japan, and the United Kingdom. We choose countries according
to Barroso and Santa-Clara (2015). Second, all strategies are scaled to have an annualized
in-sample volatility of 19%. Third, we calculate monthly portfolio returns by equally
weighting each of the international markets. Corresponding Fama and French (1993)
factors are calculated by equally weighting respective factors of each country. CVOL
and DYN denote the constant and dynamic scaling strategy, whereas CI corresponds
to the crash indicator strategy. Alphas are stated in percentage points. Stars indicate
significance at the 10% (*), 5% (**) and 1% (***) level, t-values are stated in parentheses.

strategies in terms of Sharpe ratios, both in the United States and inter-

nationally. Moreover, the CI strategy sharply decreases maximum losses

and tail risk, while still preserving high maxima. As a result, CI is not

spanned by one of the other strategies, whereas DYN and CVOL are at

least partially spanned, both in the United States and internationally.
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2.5 Robustness Checks

2.5.1 Full-sample Scaling and Sub-sample Performance

To verify the insights of Section 2.4.2, we now introduce sub-samples.

Each sub-sample contains one decade of monthly returns, starting in

January 1930. To calculate cumulative returns of each strategy, we apply

full sample risk-adjusted returns, i.e. we do not rescale sub-samples to

have an annualized in-sample volatility of 19%. The interpretation is

as follows. Assume an investor who starts at the end of our sample, i.e.

May 2020, and has to live through one of the previous decades with its

respective returns. Fig. 2.8 illustrates the results.

Remarkably, DYN is outperformed in all decades, including the 1960s,

1980s, and 1990s, when no crash was indicated. This finding confirms

that dynamic scaling is inferior to simple variance scaling (which does

not require the estimation of µ). Furthermore, CVOL is outperformed in

seven out of nine decades, while another decade offers almost equivalent

returns (1940s, Panel B). In the 2010s (Panel I), CI is inferior to CVOL,

but still offers significantly positive returns. However, in this decade CI

also displays a very low volatility of roughly 9% (CVOL: 14.7%). As a

result, the Sharpe ratio of CI exceeds CVOL by more than 24%. Most im-

portantly, original momentum, DYN, and CVOL are clearly outperformed

in the crash periods of the 1930s and 2000s (Panels A and H). Notably, in

both decades CI also displays a low volatility (8.5% and 10.0%, respec-

tively), suggesting that the strategy effectively reduces crash risk. Original

momentum is outperformed in all but one sub-sample (2010s, Panel I).
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Fig. 2.8: Sub-sample Performance
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Fig. 2.8 presents sub-sample performance of original momentum (MOM), the constant
volatility strategy (CVOL), dynamic scaling (DYN), and the crash indicator strategy (CI).
Panels show cumulative returns for each of the covered decades. Following Daniel and
Moskowitz (2016) and to make results comparable, full sample strategies are scaled
to have an annualized in-sample volatility of 19%. Cumulative returns are calculated
applying full-sample returns, i.e. returns are not re-scaled within decades.

However, cumulative returns in this decade are almost equal and origi-

nal momentum’s volatility is clearly higher (16.3%). As a consequence,

CI’s Sharpe ratio exceeds original momentum by more than 68%. These

findings support earlier insights and, given CI’s superiority, confirm the

power of the crash indicator in separating crashes from momentum bull

markets.

To study whether our results are driven by specific starting points,

we also calculate 5-year rolling windows. Again, we apply full sam-
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Fig. 2.9: 5-Year Rolling Windows
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Fig. 2.9 presents ratios of rolling 5-year returns of the crash indicator strategy (CI)
relative to dynamic scaling (DYN, Panel A), the constant volatility strategy (CVOL, Panel
B), and unscaled original momentum (MOM, Panel C). As we calculate cumulative 5-year
returns, reported values cover the period from September 1933 to May 2020. Following
Daniel and Moskowitz (2016), full sample returns are scaled to have an annualized
in-sample volatility of 19%. Cumulative returns are calculated applying full-sample
returns, i.e. returns are not re-scaled within 5-year periods.

ple risk-adjusted returns that are not re-scaled within 5-year periods.

Fig. 2.9 presents ratios of cumulative CI returns relative to returns of the

DYN strategy (Panel A), the CVOL strategy (Panel B), and raw momen-

tum (Panel C), starting in September 1933 (the first month containing

five years of data). A ratio greater than one is tantamount to superior

performance of CI, while values below one indicate underperformance.

Cumulative returns of CI exceed those of the DYN strategy in roughly
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90% of 5-year periods, including major crash periods as well as momen-

tum bear markets of the mid-1970s. In contrast, DYN shows superior

performance only in the late 1930s, while the strategy is outperformed

by up to 50% in the early 1930s.46 With respect to CVOL, we find su-

perior CI returns in more than 75% of 5-year periods, including major

crash periods of the early 1930s and late 2000s. The extent of outper-

formance peaks in the 1950s, 1970s, and late 1980s. However, note that

in crash periods CI displays a lower volatility. Thus, in terms of Sharpe

ratios, the outperformance in these periods is higher than depicted. In

contrast, the extent of underperformance within the remaining 25% is

of minor importance. Lastly, outperformance further increases when

considering original momentum, which is clearly outperformed in more

than 88% of rolling windows, and particularly peaks in the 1930s, 1970s,

and early 1990s, when CI returns exceed original momentum by up to

550%. Underperformance in the remainder is negligible.

2.5.2 Re-estimated Strategies and Sub-samples

While CVOL and CI only require six and 24 months of data, respectively,

DYN performs an expanding window regression that gains power by

applying a long sample. To investigate the implementability in markets

with shorter time-series, we repeat the robustness checks of Section 2.5.1

with a re-estimated version of the DYN strategy. Hence, we reset expand-
46 The very first months indicate a superior performance of DYN. However, this finding

is related to the fact that until September 1930 (when there was the first bear market),
µ is equal to the average of previous momentum returns, resulting in a large weight
and higher risk-adjusted returns.
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Fig. 2.10: Sub-sample Performance (re-estimated)

1.0

1.5

2.0

2.5

3.0

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

C
u
m

u
la

ti
ve

 R
et

u
rn

CI CVOL DYN (re−estimated) MOM

Panel A: Risk−managed Momentum (1930:01−1939:12)

1.0

1.5

2.0

2.5

3.0

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

C
u
m

u
la

ti
ve

 R
et

u
rn

CI CVOL DYN (re−estimated) MOM

Panel B: Risk−managed Momentum (1940:01−1949:12)

2

4

6

8

10

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

C
u
m

u
la

ti
ve

 R
et

u
rn

CI CVOL DYN (re−estimated) MOM

Panel C: Risk−managed Momentum (1950:01−1959:12)

2

4

6

8

10

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

C
u
m

u
la

ti
ve

 R
et

u
rn

CI CVOL DYN (re−estimated) MOM

Panel D: Risk−managed Momentum (1960:01−1969:12)

0

5

10

15

20

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

C
u
m

u
la

ti
ve

 R
et

u
rn

CI CVOL DYN (re−estimated) MOM

Panel E: Risk−managed Momentum (1970:01−1979:12)

2

4

6

8

10

12

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

C
u
m

u
la

ti
ve

 R
et

u
rn

CI CVOL DYN (re−estimated) MOM

Panel F: Risk−managed Momentum (1980:01−1989:12)
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Fig. 2.10 presents the re-estimated sub-sample performance of original momentum
(MOM), the constant volatility strategy (CVOL), dynamic scaling (DYN), and the crash
indicator strategy (CI). This is, we estimate expanding window regressions for each of
the decades. Therefore, we do not apply full sample returns, but scale strategies in each
decade to have an annualized in-sample volatility of 19%.

ing windows for each decade and 5-year period. Fig. 2.10 presents the

sub-sample performance of re-estimated DYN, CI, CVOL, and original

momentum. To make results comparable, we do not apply full sample

returns, but scale all strategies to have an annualized in-sample volatility

of 19%.

Re-estimated DYN is clearly outperformed in all sub-samples. The

performance particularly declines in crash periods (Panels A and H) and

in the 2010s (Panel I), when the strategy incurs losses. Moreover, in six
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out of nine decades re-estimated DYN is even outperformed by original

momentum, including the momentum bull markets of the 1950s (Panel C)

and 1980s (Panel F). The reasoning is as simple as important. With respect

to Equation (2.5), the weight of the dynamic strategy largely depends on

expanding window regressions of the expected return µ̂t−1. Until the

first bear market, µ̂t−1 is solely based on the intercept and equals the

average of preceding momentum returns. As non-crash periods display

positive returns, expected momentum returns are rather high and DYN

exhibits a high exposure to the momentum strategy. Consequently, the

first momentum crash has an exceptionally large impact. This process

is particularly obvious in the 1930s (Panel A) and the 2000s (Panel H).

Additionally, CVOL and original momentum are outperformed by CI in

eight out of nine and seven out of nine periods, respectively. However, in

these decades (the 1940s and 1960s), CI still earns significantly positive

returns. Most importantly, CI particularly improves in crash decades. In

terms of cumulative returns, competing strategies are outperformed by at

least 83.5%.

Analogously to Section 2.5.1, we also re-calculate returns for rolling

5-year periods. In order to make results comparable, we now report abso-

lute differences in Sharpe ratios of CI and the other strategies. Fig. 2.11

presents results for the re-estimated DYN strategy (Panel A), CVOL (Panel

B) and original momentum (Panel C). Values above zero imply supe-

rior risk-adjusted performance of CI, while values below zero indicate

underperformance.

CI staggeringly outperforms the re-estimated DYN strategy in almost
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Fig. 2.11: 5-Year Rolling Windows (re-estimated)
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Fig. 2.11 presents the 5-year rolling window performance of original momentum (MOM),
the crash indicator strategy (CI), the constant volatility strategy (CVOL), and re-estimated
dynamic scaling (DYN, re-estimated). This is, we estimate expanding window regressions
for each of the 5-year periods. As we calculate 5-year returns, reported values cover the
period from September 1933 to May 2020. In order to make results comparable, we
report differences in Sharpe ratios of the crash indicator strategy and DYN (Panel A),
CVOL (Panel B), and unscaled original momentum (Panel C).

every 5-year period (99%). Average outperformance in terms of Sharpe

ratios amounts to more than 0.61, particularly peaking in the crash pe-

riods of the 1930s, 1974/1975, and 2009. With respect to CVOL, more

than 80% of 5-year periods are outperformed. Differences now peak in

the 1930s, 1974/1975, and the 2000s. The same applies to original mo-

mentum since the majority of differences (84.1%) largely exceeds zero
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(with a mean of roughly 0.36).47 Notably, the average Sharpe ratio of

original momentum (0.75) exceeds that of re-estimated DYN (0.50), while

the ratios of CI (1.11) and CVOL (0.93) are consistent with the full sample

results.

In summary, our findings strongly suggest that DYN is not particularly

successful in markets that have not yet experienced a momentum crash.48

In contrast, both CVOL and CI provide successful risk management

without requiring long time series.

2.6 Concluding Remarks

On average, investing in past winners and short-selling past losers pro-

vides highly significant returns that cannot be explained by common

risk factors. However, the momentum strategy also displays substantial

tail risk as there are short but persistent periods of highly negative re-

turns. Crashes particularly occur in rebounding bear markets, when the

momentum portfolio displays a negative market-beta and momentum

volatility is high. We show that a crash indicator based on systematic

risk measures isolates momentum crashes from momentum bull markets.

Furthermore, we find enhanced predictive power when combining sys-

tematic (measured by the crash indicator) and momentum-specific risk

(measured by momentum volatility). Based on this finding, we propose
47 From 1948 to 1953 and 1965 to 1970, the risk-adjusted Sharpe ratio of CI is inferior to

original momentum, which is caused by a rather high standard deviation of CI. This
finding coincides with Fig. 2.10.

48 Interestingly, Table 7 of Daniel and Moskowitz (2016) likely exaggerates DYN’s per-
formance because they report the performance from 1934 onward, after the first
momentum crash, although their sample starts in July 1927.
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an implementable trading strategy that outperforms the existing risk

management strategies of Barroso and Santa-Clara (2015) and Daniel and

Moskowitz (2016) over the period from 1928 to 2020, in sub-samples,

and after accounting for transaction costs. Moreover, by constructing an

international momentum portfolio, we show that our results extend to

foreign markets. Importantly, we find that the dynamic scaling strategy

of Daniel and Moskowitz (2016) is not successful in markets that have

not yet experienced a momentum crash and does not give a hint on how

investors could intuitively adjust scaling parameters ex-ante, potentially

leading to large losses.
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2.A Appendix

2.A.1 Estimation of Momentum Beta

At the beginning of each month, beta is estimated by a rolling regression

of the 126 preceding daily momentum returns on the CAPM

rMOM,t − rf ,t = α + βMOM · (rMkt,t − rf ,t) + εt, (2.A.1)

where rMOM,t and rMkt,t denote daily momentum and market returns,

respectively. rf ,t is the daily risk-free rate and εt are residuals at time t.

2.A.2 Estimation of Momentum Volatility

Following Barroso and Santa-Clara (2015), the volatility at the beginning

of month t is estimated by the realized volatility of the previous 126 daily

momentum returns

σMOM,t =
√

12

√√√√
21

125∑
j=0

r2
MOM,dt−1−j

/126, (2.A.2)

where σMOM,t states the annualized momentum volatility in month t and

r2
MOM,dt−1−j

denotes the daily squared momentum return at day t − 1− j.

2.A.3 Estimation of the Ex-Ante Dynamic Strategy

Daniel and Moskowitz (2016) deduce the optimal weight in the momen-

tum portfolio (wDYNt ) by maximizing the in-sample unconditional Sharpe

ratio (see their Appendix C) which gives

wDYNt = (
1

2λ
)
µ̂t−1

σ̂2
t−1

. (2.A.3)
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In their ex-ante approach, the conditional expected return of the momen-

tum portfolio (µ̂t−1) is estimated by an expanding window regression of

monthly momentum returns on the interaction between the bear mar-

ket indicator (IB,t−1) and the realized market variance (σ̂2
m,t−1) over the

preceding 126 daily momentum returns

rMOM,t = γ0 +γint · IB,t−1 · σ̂2
m,t−1 + ε̂t. (2.A.4)

The conditional variance of the momentum portfolio (σ̂2
t−1) is estimated

by the realized variance of the 126 preceding daily momentum returns.

In addition to that, λ is a constant that controls for unconditional risk

and return of the risk-managed portfolio. Daniel and Moskowitz (2016)

choose λ to achieve an ex-post annualized volatility of 19%. There is no

hint on how to determine λ ex-ante.

2.A.4 Turnover Calculation and Break-even Round Trip

Costs

To calculate momentum turnover, we follow Barroso and Santa-Clara

(2015) and Hanauer and Windmueller (2021). For each leg (the winner

and loser portfolio), we compute monthly turnover by

TOt,l = 0.5 ·
Nt∑
t

|wi,t − w̃i,t−1|, (2.A.5)

where TOt,l denotes the turnover of leg l in month t, wi,t is the weight of

stock i in the respective leg at time t, and Nt is the corresponding number

of stocks. Moreover, w̃i,t−1 is the weight of stock i right before portfolio
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re-balancing. More precisely, we adjust weights of the previous period by

including each constituent’s return (ri,t−1) during that period

w̃i,t−1 =
wi,t−1 · (1 + ri,t−1)∑Nt
t wi,t−1 · (1 + ri,t−1)

. (2.A.6)

Monthly turnover of the momentum portfolio is then calculated by sum-

ming up the turnover of the long and the short leg. Finally, to obtain the

turnover of the risk-managed strategies, we adjust Equation (2.A.5) by

including the risk-managed weights (i.e. wDYNt−1 , wCVOLt−1 , and wCIt−1) at time

t (denoted by wscaled,t)

TOt,l = 0.5 ·
Nt∑
t

|wscaled,t ·wi,t −wscaled,t−1 · w̃i,t−1|. (2.A.7)

Following Grundy and Martin (2001), Barroso and Santa-Clara (2015),

and Hanauer and Windmueller (2021), we further calculate break-even

round trip costs, i.e. round trip transaction costs that would render profits

of each strategy insignificant at the 5% and 1% level, respectively

Round-trip costs = (1−
z1−α/2
ts

) ·
µs
TOs

, (2.A.8)

where ts is the t-statistic of strategy s, µs is the average monthly return,

and TOs is the average monthly turnover of strategy s. Furthermore,

z1−α/2 denotes the z-value corresponding to the desired level of α (1.96

for α = 5% and 2.576 for α = 1%).
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Chapter 3

Option-implied Lottery Demand and

IPO returns

This chapter refers to the following publication:

Dierkes, Maik, Jan Krupski and Sebastian Schroen (2022): ‘Option-
implied Lottery Demand and IPO Returns’, Journal of Economic Dy-
namics and Control 138, 104356.

Available online at:
https://doi.org/10.1016/j.jedc.2022.104356

Abstract
We study the impact of time-varying lottery demand on first-day

returns and the poor long-term performance of IPOs. Lottery de-
mand – measured in terms of option-implied probability weighting –
is associated with significantly higher first-day returns, tantamount
to higher IPO underpricing and more money left on the table. In-
teracting the time variation in lottery demand with cross-sectional
expected skewness reveals that IPO returns are particularly driven
by the interaction between market-wide lottery demand and asset-
specific lottery characteristics. When expected skewness meets low
lottery demand, there is virtually no effect of skewness on first-day
returns. In the long run, IPOs issued in high lottery demand regimes
are more likely to perform poorly for up to five years after the IPO.

Keywords: IPO, Lottery Demand, Skewness Preferences

JEL: G12, G41.

61

https://doi.org/10.1016/j.jedc.2022.104356


Option-implied Lottery Demand and IPO returns

3.1 Introduction

We present a novel behavioral explanation for the anomalously high first-

day returns of initial public offerings (IPOs) and their underperformance

in the long run. Our explanation is based on time-varying demand for

lottery-like investments, measured in terms of market-wide probability

weighting, and our rationale is as follows. As outlined by Barberis and

Huang (2008), the positively skewed returns of IPOs are attractive to

investors with a preference for lottery-like returns, also referred to as

lottery demand. Due to lottery demand, IPOs earn high first-day returns

but perform poorly in the long run, tantamount to a correction of the

initial overpricing. We account for time variation in lottery demand

and find that expected lottery demand significantly predicts high first-

day returns as well as a poor long-term performance. Furthermore, we

disentangle the pricing effects of expected idiosyncratic skewness and

lottery demand and find that skewness significantly predicts IPO returns

– as documented by Green and Hwang (2012) – but only if there is market-

wide lottery demand to cater for. Our results suggest that institutional

investors have a lower preference for skewed returns as they are less likely

to exert buying pressure in IPOs, both in the primary and the secondary

market.

We follow Dierkes (2013) and estimate Cumulative Prospect Theory’s

(CPT) probability weighting parameter gamma nonparametrically from

S&P 500 index options. During our sample period from 1996 to 2020,

we find several episodes of increased probability weighting, for example,
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during the run-up of the DotCom bubble in the late 1990s or the most re-

cent surge of US stock indices in 2019-2020. Since lower values of gamma

imply stronger probability weighting, we use gamma as an inverse proxy

for expected lottery demand in the subsequent month. More specifically,

gammas below one are tantamount to overweighting small probabilities,

consistent with higher lottery demand.

We find expected lottery demand to perform well in explaining both

the anomalously high first-day returns and the poor long-term perfor-

mance of IPOs. With respect to first-day returns, a sample split at γt−1 = 1

yields a highly significant difference of 14.28 percentage points (t-value

= 12.27) between periods of high and low lottery demand (26.76% ver-

sus 12.48%). The effect is strongest for firms younger than four years.

Our baseline results extend to a regression analysis which controls for

various deal, firm, and market characteristics known to affect first-day

IPO returns. A one unit decrease of gamma – and thus an increase in

lottery demand – is associated with higher first-day returns of up to 13

percentage points (t-value = −9.42). Net of control variables and indus-

try fixed-effects, this effect reduces to six percentage points but remains

statistically significant at the 1%-level (t-value = −3.63).

Given our time series of gammas, we are able to disentangle the effects

of skewness and lottery demand and find the interaction to be an impor-

tant driver of IPO returns. More precisely, we revisit the findings of Green

and Hwang (2012) who relate first-day returns to the expected skewness

of stock returns within the IPO’s industry and also document a positive

impact. Compared to Green and Hwang (2012), the performance of ex-
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pected skewness is not only weaker once we include control variables, but

also depends on the prevailing lottery demand regime. Interacting lottery

demand and expected skewness highlights that skewness significantly

predicts first-day IPO returns, but only if there is lottery demand to cater

for. Without lottery demand, the relation between skewness and first-day

returns is virtually flat.

Moreover, expected lottery demand explains the poor long-term per-

formance of IPOs. We compare long-term IPO returns to the returns of

non-issuers by matching each IPO to the firm with the closest book-to-

market ratio in the same size decile. Although matching firms outperform

IPOs for several return horizons (one year, three years, and five years), the

outperformance is only significant for all three time horizons if the IPO

took place during a high lottery demand regime. We thus conclude that

IPOs are more likely to become overpriced on the first day of trading if

they go public during periods of high lottery demand. Since this overpric-

ing tends to be corrected in the long run, respective IPOs are more likely

to underperform matching firms.

Finally, a closer look at the relationship between expected lottery

demand and the trading behavior of institutional and individual investors

suggests that our results are driven by the differential in the skewness

preference between institutional and individual investors. Institutional

investors in the primary market only incorporate a fraction of 12.5%-25%

of expected lottery demand in their revision of the offer price, whereas the

lion’s share of the market reaction occurs in the secondary market. Well

in line with this finding, expected lottery demand predicts retail buying
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pressure on the first trading day of IPOs, while being less important for

the trading behavior of institutional investors, both measured in terms

of the Barber et al. (2009) herding measure. This finding likely explains

why expected lottery demand particularly predicts IPO returns in the

secondary market and suggests that retail investors indeed have a higher

skewness preference than institutional investors. Apart from that, we

perform several robustness checks and find that our baseline results hold

for alternative definitions of lottery demand regimes and different sub-

periods.

Our study contributes to a large and growing body of literature on the

underpricing of IPOs and their subsequent long-term performance. Early

studies focus on traditional explanations like information asymmetries

(Beatty and Ritter, 1986; Rock, 1986), litigation and reputation risk (Tinic,

1988; Lowry and Shu, 2002), and a changing risk composition (Ritter,

1984).1 Under the changing risk composition hypothesis, riskier IPOs are

expected to be more underpriced, equivalent to higher first-day returns.

Ljungqvist and Wilhelm (2003) explain the exceptionally high first-day

returns in 1999-2000 by a reduced (fractional) CEO ownership and a

strongly increased proportion of ‘family & friends’ shares.2 Since the

latter entitle to purchase shares at the offer price, there is an incentive to

underprice. Loughran and Ritter (2004) reject this finding together with

the changing risk composition hypothesis. Instead, they propose that
1 Ritter and Welch (2002) later argue that asymmetric information is not the primary

determinant of IPO underpricing.
2 ‘Family & friends’ shares are, for example, distributed to family members, employees,

and suppliers.
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return differences trace back to a changing objective function of issuing

companies. In the late 1990s, issuers were more willing to accept under-

pricing due to an increased emphasis on analyst coverage (resulting in an

oligopoly of underwriters) and personal brokerage accounts (resulting in

incentives to seek underpricing).3

Ritter and Welch (2002) suggest a behavioral perspective to explain

IPO underpricing. In this direction, Loughran and Ritter (2002) propose a

prospect theory approach to explain why issuers agree to leave ‘money on

the table’ (which is tantamount to underpricing). According to prospect

theory, issuing firms focus on the change in wealth rather than the level of

wealth, which is in line with prospect theory’s reference point dependent

valuation (see Kahneman and Tversky, 1979; Tversky and Kahneman,

1992). Therefore, they will aggregate the loss from leaving money on the

table and the large gain from an increased valuation of retained shares,

resulting in a net profit.4 As a consequence, issuers only partially adjust

offer prices to news and high demand during the book building period.5

In a more recent study, Loughran and McDonald (2013) show that IPO

underpricing is also related to the tone of the S-1 form. By conducting a

text mining approach, they find higher first-day returns for issuers whose

S-1 form contains more words that are uncertain or negative. Loughran

and McDonald (2013) conclude that their results are consistent with
3 Other related studies focus on regulations (Loughran et al., 1994), internet IPOs (Ofek

and Richardson, 2003), and industry peers (Purnanandam and Swaminathan, 2004).
4 This behavior is likely related to mental accounting introduced by Thaler (1985).
5 Since the model does not distinguish between public and private information, first-day

returns should be predictable based on public information. The partial adjustment
phenomenon was first shown by Hanley (1993).
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prospect theory as well.6

Barberis and Huang (2008) take a closer look at the relation of IPO

underpricing and probability weighting, which is one of CPT’s key prefer-

ence components. Investors, on average, overweight small probabilities

for large gains, resulting in a preference for lottery-like stocks with highly

right-skewed returns. Consequently, Barberis and Huang (2008) predict

that IPOs with positively skewed returns earn higher first-day returns

but perform poorly in the long run. As the study most closely related

to ours, Green and Hwang (2012) provide first evidence in favor of this

prediction. They find expected skewness, based on the IPO’s industry, to

be positively (negatively) related to first-day returns (long-term returns).7

This result is in line with Boyer et al. (2010) who find a negative impact

of idiosyncratic skewness on subsequent returns and Kumar (2009) who

shows that individual investors prefer stocks with lottery-like features and

underperformance is strongest for those who overweight lottery stocks

the most.8

We provide additional evidence in favor of behavioral explanations

for IPO underpricing and extend the findings of Green and Hwang (2012)

in several directions. First, we provide a cleaner test of the predictions

in Barberis and Huang (2008) by directly estimating the impact of proba-

bility weighting on IPO pricing. Second, the empirical literature usually

studies the asset pricing implications of time-varying skewness under
6 Other behavioral studies also consider sentiment demand (e.g. Ljungqvist et al., 2006)

as an alternative mechanism.
7 Aissia (2014) confirms results for French IPOs. For a seminal study on long-term IPO

returns, see Ritter (1991).
8 See also Bali et al. (2011), Eraker and Ready (2015), and Kumar et al. (2016).

67



Option-implied Lottery Demand and IPO returns

constant preferences for skewness. However, there is ample evidence

that skewness preferences (and thus lottery demand) vary over time. Ku-

mar (2009) finds higher gambling demand during economic downturns,

whereas Polkovnichenko and Zhao (2013) and Dierkes (2013) show that

option-implied skewness preferences exhibit significant time variation.

By accounting for this time variation in aggregate lottery demand, we shed

further light on the otherwise puzzling episodes of high IPO underpricing

documented in Loughran and Ritter (2004).9 Third, by studying the in-

teraction between expected lottery demand and cross-sectional expected

skewness, we are able to emphasize the role of aggregate preferences

for skewness as the main driver of the findings in Green and Hwang

(2012). High expected lottery demand strongly amplifies the otherwise

flat relationship between idiosyncratic skewness and first-day returns,

further highlighting the interaction between skewness preferences and

asset-specific skewness as an important determinant of IPO returns.

3.2 Data

3.2.1 Options Data

In order to derive a monthly time series of option-implied gammas (and

thus lottery demand), we follow the approach of Dierkes (2013) and

obtain S&P 500 option prices provided by OptionMetrics. Consistent

with the availability of data, our sample includes monthly option expiries
9 For example, the average IPO return increased from 7% in 1980-1989 to 15% in

1990-1998 and 65% in 1999-2000, before falling back to 12% in 2001-2003.
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from February 1996 to December 2020.10 Data preparation follows the

previous literature, most importantly Dierkes (2013) and Ait-Sahalia

et al. (2001). Option prices are determined by the average of bid and ask

prices and we only keep options with a positive volume. Interest rates

to determine physical and risk neutral distributions are linearly inter- or

extrapolated and obtained from OptionMetrics as well. We outline the

calculation of gamma in more detail in Section 3.3.

3.2.2 IPO Data

Our sample of IPOs is based on the Field-Ritter dataset of IPO found-

ing dates, as used in Field and Karpoff (2002) and Loughran and Ritter

(2004).11 Among other firm characteristics, the Field-Ritter dataset in-

cludes offer and founding dates as well as internet and venture capital

dummies. In accordance with the availability of options data, we choose

a sample period from February 1996 to December 2020. We thus cover

several relevant periods: the DotCom bubble of 1999-2000, the financial

crisis of 2007-2008, and the 2020 stock market crash due to the Covid-

19 pandemic. We obtain offer prices and deal characteristics from the

Refinitiv Financial Securities database and keep all IPOs with a share

code of 10 or 11 (common stocks) that are covered by the Center for

Research in Security Prices (CRSP) within three days.12 We calculate

first-day returns in three steps. If an IPO is covered by CRSP within

the first day of trading, the return is determined by the offer price and
10 An initial month is needed to estimate the first gamma.
11 For more details, see Appendix A of Loughran and Ritter (2004).
12 The database was formerly known as the Thomson Financial Securities database.
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the CRSP closing price of the same day. If an IPO is not covered within

the first day, we use first-day returns provided by the Refinitiv Financial

Securities database. In case first-day returns are still missing after step

2, we extend step 1 up to the third day of trading. As a result, our final

sample comprises 4,673 IPOs. Long-term IPO returns are based on the

split-adjusted 252/756/1260 trading days (1/3/5 years) ahead price from

CRSP (excluding initial returns).13 To compare these returns to matching

non-issuers, we obtain balance sheet data from Compustat and NYSE

size breakpoints from the Kenneth French Data Library.14 To control our

results for expected skewness (as proposed by Green and Hwang, 2012)

and coskewness (Harvey and Siddique, 2000), we further obtain industry-

sorted portfolio returns from Kenneth French and SIC codes from CRSP.

In contrast to Green and Hwang (2012), we do not remove IPOs that are

related to the industry ‘other’. Lastly, we obtain trade and quotes data

from the Trades and Quotes (TAQ) transaction database from March 1996

to December 2000. We thank all fellow researchers for sharing their data.

3.3 Option-implied Lottery Demand

3.3.1 Probability Weighting and Lottery Demand

We derive our measure of lottery demand from the probability weighting

parameter gamma in the cumulative prospect theory (CPT) of Tversky and

Kahneman (1992). CPT has been widely used to explain the demand of
13 We choose these return horizons to produce results that are comparable to Green and

Hwang (2012).
14 See French (2022a).
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individuals for lotteries, which is hard to reconcile with expected utility

theory (EUT). Under CPT, the decision maker evaluates the lottery L

according to the CPT value

CP T (L) =
m∑
i=1

w−i · v(xi) +
n∑

i=m+1

w+
i · v(xi), (3.1)

with the value function

v(x) =


xα if x ≥ 0

− k(−x)β if x < 0,
(3.2)

where x := x̃−x∗ is the vector of outcomes x̃ of lottery L over the reference

value x∗, α ∈ (0,1) (β ∈ (0,1)) is the value sensitivity for gains (losses),

and k > 1 is the loss aversion parameter. Outcomes xi are associated with

probability pi (i = 1, . . . ,n) and rank-ordered such that x1 < . . . < xm ≤ 0 <

xm+1 < . . . < xn. The outcome of the value function then enters the CPT

value with distorted probability weights according to

w−i = w−(
i∑
j=1

pj)−w−(
i−1∑
j=1

pj), (3.3)

w+
i = w+(

n∑
j=i

pj)−w+(
n∑

j=i+1

pj). (3.4)

To capture the overweighting of small probabilities, Tversky and Kahne-

man (1992) propose the probability weighting functions

w+(p) =
pγ

(pγ + (1− p)γ )1/γ
, w−(p) =

pδ

(pδ + (1− p)δ)1/δ
. (3.5)

For γ ∈ (0,1) and δ ∈ (0,1), the probability weighting functions w+ and

w− imply an overweighting of low probabilities such that w(p) > p. Since

the weighting functions are monotone, they honor first-order stochastic
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dominance for γ,δ ≥ 0.28 only (see Barberis and Huang, 2008). When es-

timating gamma from option data (see below), we thus winsorize γ < 0.28

to 0.28.15 As outlined by Barberis and Huang (2008), who set γ = δ, prob-

ability weighting has a distinct effect on the demand for lottery-like assets.

The relation between gamma and lottery demand is inverse, meaning that

a lower value of gamma is tantamount to stronger overweighting of low

probabilities and thus higher lottery demand.

IPOs are a perfect example to study the asset pricing implications of

aggregate probability weighting. The IPO return distribution is highly

positively skewed and offers an IPO investor the small chance of a very

large return (see Section 3.4). Thus, IPOs are attractive to lottery investors,

become overpriced, and earn low long-term returns (see Barberis and

Huang, 2008).

3.3.2 Implications of Probability Weighting for Option

Pricing

Our estimation approach closely follows Dierkes (2013) who is the first to

introduce this fully nonparametric estimation procedure for probability

weighting from option prices. We generalize the discrete version of CPT

in Section 3.3.1 to allow for continuous distributions as in, for exam-

ple, Barberis and Huang (2008) and Polkovnichenko and Zhao (2013).

Furthermore, we make the simplifying assumption that the reference

point is set to zero. Hence, all outcomes are gains, allowing for a unique
15 There are eight occurrences in our series of 299 monthly gamma estimates that have

virtually no effect on our main results.
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identification.16 We assume a representative agent with monotonically

increasing utility function u and monotonically increasing probability

weighting function w. Both u and w are assumed to be twice continuously

differentiable. This assumption is well in line with the previous literature,

for example Barberis and Huang (2008). The representative agent derives

utility from an index S that represents the return of the market portfolio.

St (ST ) refers to the index value today (in the future). We follow the

literature and normalize St to one (see, for example, Jackwerth, 2000).

Let fP and fQ denote the density functions of the data-generating

process (or physical measure) and the risk neutral measure with cor-

responding cumulative distribution functions FP and FQ, respectively.

Polkovnichenko and Zhao (2013) and Dierkes (2013) formally derive the

pricing kernel and show that the risk neutral density with probability

weighting is given by

fQ(ST ) = fP (ST ) ·w′
(
1−FP (ST )

)
· βu

′(ST )
u′(St)

. (3.6)

Equation (3.6) implies that the cumulative physical distribution, FP (ST ),

gets distorted by probability weighting as 1−w(1−FP (ST )). It follows that

−
∫∞

0
u(ST )dw(1 − FP (ST )) is the CPT value over gains (see Barberis and

Huang, 2008, p. 2071). Further rearranging of Equation (3.6) yields the

pricing kernel under probability weighting

fQ(ST )
fP (ST )

= w′
(
1−FP (ST )

)
· βu

′(ST )
u′(St)

,

16 This assumption does not affect the general estimation of over- or underweighting of
small probabilities for extreme outcomes and thus lottery demand. However, it facili-
tates unique identification since non-zero reference points can impede normalization
of the gain distribution due to mixed lotteries.
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which varies with the physical distribution, FP (ST ), if w is not linear

for given preferences w and u. Taking derivatives with respect to ST

and rearranging then reveals the impact of probability weighting on risk

aversion as

f ′P (ST )
fP (ST )

−
f ′Q(ST )

fQ(ST )
= −u

′′(ST )
u′(ST )︸    ︷︷    ︸

ARAu(ST )

+
(w′′(1−FP (ST ))
w′(1−FP (ST ))

fP (ST )
)

︸                        ︷︷                        ︸
probabilistic risk attitude

. (3.7)

ARAu(ST ) denotes the absolute risk aversion function across index levels

ST , associated only with the agent’s utility function u. The second term

w′′(1−FP (ST ))/w′(1−FP (ST )) · fP (ST ) on the right-hand side of Equation

(3.7) displays the probabilistic risk attitude. The denominator is always

positive due to the strictly increasing weighting function. Equation (3.7)

reveals the additional impact of probability weighting on the option-

implied risk aversion. With linear w, i.e. no probability weighting, the

probabilistic risk attitude part vanishes and Equation (3.7) boils down to

a variant well-known from classic economic theory (see e.g. Jackwerth,

2000). With probability weighting, however, observed risk aversion con-

tains a probabilistic risk attitude attributable to the probability weighting

function w (in addition to the Arrow-Pratt measure of u). For instance,

in the case of an inverse S-shaped probability weighting function w, the

probabilistic risk attitude is positive for low wealth levels and steadily

decreases until it is negative for high wealth levels. The intuition here is

that convex parts of the probability weighting function locally overweight

bad states in the economy and thereby increase the observed risk aver-

sion. Concave parts reduce the probabilistic risk attitude due to a local
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overweighting of favorable states.

We now set out to identify w and u nonparametrically by starting

from the equilibrium condition (3.6). For notational convenience, we

drop the time index T and summarize constants u′(St) and β to a single

normalization constant β. Our identification strategy to estimate w and

u makes use of the fact that the probabilistic risk attitude associated

with w varies with the physical distribution, FP , whereas the risk attitude

associated with u, i.e. ARAu(ST ), stays constant. To illustrate this, we take

Equation (3.6) for the two different physical distributions P1 and P2 and

rearrange for u′(S)

fQ1
(S)

w′(1−FP1
(S))fP1

(S) · β1
= u′(S), (3.8)

fQ2
(S)

w′(1−FP2
(S))fP2

(S) · β2
= u′(S). (3.9)

Obviously, the term w′(1−FPi (S)) changes with Pi , i ∈ {1,2}, whereas u′(S)

remains constant. Equating the left-hand sides of Equations (3.8) and

(3.9) eliminates u′(S) and yields

w′(1−FP2
(S)) =

fQ2
(S)

fQ1
(S)

fP1
(S)

fP2
(S)

β1

β2
·w′(1−FP1

(S)), ∀ S. (3.10)

The only unknown in this equation is the functionw, since we can estimate

the other quantities from market outcomes. We refer to Appendix 3.A.1

for the estimation of the risk neutral and physical densities fQi and fPi ,

respectively.

To get an estimate for w, we impose the so-called single crossing

assumption on the two distribution functions FP1
and FP2

to make sure

that Equation (3.10) constitutes a delay differential equation (DDE) of
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neutral type.17 Under the single crossing assumption, 1− FP2
is always

above (below) 1−FP1
if S is small (large) and both actually coincide in one

point. Taking a closer look at the two distribution functions illustrates

how to guarantee this assumption. If P1 has more mass in the tails than P2,

then for some value Ŝ it holds FP1
(S) ≥ FP2

(S) for all S ≤ Ŝ, FP1
(S) ≤ FP2

(S)

for all S ≥ Ŝ, and FP1
(Ŝ) = FP2

(Ŝ). Thus, with S < Ŝ, we are able to identify

w′(1−FP2
(S)) at some ‘time point’ 1−FP2

(S) because ‘time point’ 1−FP1
(S)

lies in the past and therefore w′(1 − FP1
(S)) is already known (and vice

versa). Finally, we can solve the DDE for w on the two intervals [0, Ŝ] and

[Ŝ,∞). We follow Dierkes (2013) and use different times to maturity to

ensure the single crossing property. One advantage is that this allows

for a time series of estimated probability weighting functions and thus

lottery demand.

Importantly, DDEs require a small range of starting values, not a single

initial value as is the case with ordinary differential equations. To get a

reasonable initial condition, we reconsider the two distributions P1 and P2

with their risk neutral counterparts Q1 and Q2, respectively. Rearranging

the decomposition of aggregate absolute risk aversion in Equation (3.7)

yields the following set of equations:

f ′P1
(Ŝ)

fP1 (Ŝ)
−
f ′Q1

(Ŝ)

fQ1 (Ŝ)
−ARAu(Ŝ)

fP1
(Ŝ)

=
w′′(1−FP1

(Ŝ))

w′(1−FP1
(Ŝ))

,

17 DDEs are characterized by the fact that today’s derivative of the unknown function
depends on the function’s behavior in the past. Neutral type means that today’s
derivative of the unknown function depends on its derivative in the past.
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f ′P2
(Ŝ)

fP2 (Ŝ)
−
f ′Q2

(Ŝ)

fQ2 (Ŝ)
−ARAu(Ŝ)

fP2
(Ŝ)

=
w′′(1−FP2

(Ŝ))

w′(1−FP2
(Ŝ))

.

Since the single crossing assumption guarantees that FP1
(Ŝ) = FP2

(Ŝ) for

the state Ŝ, we equate the left hand sides of both equations, rearrange,

and obtain

ARAu(Ŝ) = −u
′′(Ŝ)

u′(Ŝ)
=

ARAM1 (Ŝ)

fP1 (Ŝ)
− ARAM2 (Ŝ)

fP2 (Ŝ)

1
fP1 (Ŝ)

− 1
fP2 (Ŝ)

, (3.11)

where ARAMi
(S) = f ′Pi (S)/fPi (S) − f ′Qi (S)/fQi (S), i ∈ {1,2}, is the market’s

aggregate risk aversion implied by asset prices. Importantly, Equation

(3.11) can be solved without knowledge about w or u.

Equation (3.11) gives us a rough estimate of u in the tiny neighborhood

of Ŝ. We make a parametric assumption about u for a tiny range around

Ŝ, say [Ŝ −0.001, Ŝ + 0.001], to gain an initial condition for our DDE. Then,

Equation (3.6) yields an initial condition for w′ in Equation (3.10) and,

together with w(0) = 0 and w(1) = 1, we can identify w nonparametrically.

We assume that ARAu(S) = ARAu(Ŝ), ∀S ∈ [Ŝ − 0.001, Ŝ + 0.001]. Thus,

absolute risk aversion associated with u is constant in this small range

and u is characterized by an exponential utility function. An unreported

simulation study reveals that, even if the utility function u is not given by

the exponential function, this parametric choice for u on a tiny interval

around Ŝ does not affect our results for the probability weighting function

w. There is virtually perfect identification.
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3.3.3 Estimating Gamma from Option Prices

Now that we identified the probability weighting function w implied in

option prices, we make the transfer from the yet anonymous function w

back to CPT and estimate the curvature (i.e. the gamma) of the proba-

bility weighting function. More precisely, we fit the linear-in-log-odds

probability weighting function w(p) = δpγ

δpγ+(1−p)γ (see Bleichrodt and Pinto,

2000) by fitting a linear regression to

log
(
w(p)

1−w(p)

)
= log(δ) +γ log

(
p

1− p

)
+ ε, (3.12)

on the interval p ∈ {0.10,0.11, . . . ,0.90}, where ε is the residual.18 The

curvature index gamma corresponds to the estimated slope parameter of

this regression. For each month of our sample period from February 1996

to December 2020, we estimate the nonparametric probability weighting

function w from Equation (3.10) according to the procedure outlined in

Section 3.3.2. Then, we estimate a time series of gammas from Equa-

tion (3.12). The time series average (median) of gamma is 0.90 (0.89) with

a 95% confidence interval [0.853,0.938]. This estimate is slightly larger

than the values reported by psychologists who document values between

0.65 and 0.84 (see Bleichrodt and Pinto, 2000). The fact that our value for

gamma is closer to one is not surprising since the estimates come from one

of the most liquid and competitive option markets in the world. Thus, we

can expect estimates to be closer to EUT. However, the overall probability

weighting function exhibits an inverse-S shape, consistent with CPT.
18 We discard the edges of the interval (0,1) to avoid distortion of the estimates due to

noise.
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Fig. 3.1: Option-Implied Gamma

Fig. 3.1 illustrates the probability weighting parameter gamma over the period from
February 1996 to December 2020. Gammas are calculated as outlined in Section 3.3.3.
According to CPT, gammas below one imply an overweighting of small probabilities, i.e
a higher demand for lotteries.

Fig. 3.1 depicts the option-implied probability weighting parameter

gamma throughout our sample period. The time series reveals three major

periods of γ < 1 and thus increased lottery demand. The first period is

from February 1996 to January 2000 – with a short exception in December

1996 – and largely coincides with the run-up of the DotCom bubble. Since

this episode is also referred to as irrational exuberance, our observation of

increased lottery demand is to be expected. The next prolonged period of

lottery demand largely covers the subprime crisis and lasts from March

2007 to December 2009. The third episode ranges from January 2018 to

December 2020 with only three exceptions in September 2018, April 2019,

and July 2019. Especially the recent past is characterized by increased

lottery demand. The most recent minimum occurred in March 2020 when

Covid-19 fully reached global stock markets.

Finally, our time series of gammas serves as a measure of expected
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lottery demand. More precisely, we define expected lottery demand in

month t as gamma in month t − 1.

Et−1
[
Lottery Demandt

]
= γt−1. (3.13)

Using lagged gammas in the analysis of IPOs prevents a look-ahead bias

and guarantees that lottery demand is observable from an ex-ante per-

spective. Recall that gamma is an inverse measure of lottery demand and

lottery demand is particularly pronounced for γ < 1, as shown in Section

3.3.1.

3.4 Expected Lottery Demand and IPO

Returns

3.4.1 Lottery Demand and First-Day Returns

Fig. 3.2 illustrates the distribution of first-day returns within our sample

period from February 1996 to December 2020. While most IPOs offer

modestly positive returns (as indicated by the median of 7.21%), five

percent of IPOs display a return of more than 100% (and up to 697.5%).19

As a result, the distribution of returns is highly right-skewed with a

skewness of roughly 4.77. We thus confirm a lottery-like behavior of IPOs,

as predicted by Barberis and Huang (2008), and expect lottery demand to

be an important driver of first-day returns.
19 The highest first-day return within our sample period was recorded for VA Linux in

December 1999.
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Fig. 3.2: Frequency Distribution of First-Day Returns

Fig. 3.2 illustrates the frequency distribution of first-day returns (stated in percent) over
the period from February 1996 to December 2020.

To take a first look at this prediction, we investigate the lowess-

smoothed relationship between first-day returns and expected lottery

demand as defined in Equation (3.13).20 As illustrated by Fig. 3.3, we find

a strongly negative (positive) impact of γt−1 (expected lottery demand).21

Except for a small increase of returns between γt−1 = 0.28 and roughly

γt−1 = 0.65, the relationship is strictly monotonically decreasing. A closer

look at the small increase for γt−1 < 0.65 reveals that this finding is due

to the omission of important IPO characteristics in the univariate rela-

tionship depicted in Fig. 3.3. In unreported results, we find the relation

to be almost exclusively driven by Internet IPOs of the years 1999 and

2000. Consequently, controlling for this effect reestablishes a strictly neg-

ative relation between γt−1 and first-day returns. Furthermore, univariate

regressions on a subsample with γt−1 ≤ 0.65 reveal that the increase is
20 For more information on smoothing scatter plots, see Cleveland (1979).
21 Note that the overall level of first-day returns is rather small since smoothed values

are guided by the median instead of average returns.
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Fig. 3.3: Expected Lottery Demand and First-Day Returns

Fig. 3.3 plots the lowess-smoothed relationship between expected lottery demand (γt−1)
and first-day IPO returns. We cover a sample period from March 1996 to December
2020.

not statistically significant (t = 0.77), while there is a highly significant

negative relationship for γt−1 > 0.65 (t = −9.96). Apart from that, we find

the impact of γt−1 to be particularly strong as we move closer to one and

there is a salient difference between first-day returns in high (γt−1 ≤ 1)

and low (γt−1 > 1) lottery demand regimes, indicating that overweighting

of small probabilities is related to higher first-day returns.

Table 3.1 presents descriptive statistics for first-day returns in low

and high lottery demand regimes as well as the full sample. We choose

a threshold of γt−1 = 1 since gammas below one imply an inverse S-

shape of the probability weighting function and thus overweighting of

small probabilities. Consistent with Fig. 3.3, both mean and median

returns significantly increase in lottery demand. While mean (median)

returns amount to 12.48% (3.57%) in low lottery demand periods, values

increase to 26.76% (9.38%) when lottery demand is high. The difference

in returns (14.27 percentage points) is highly significant at the 1% level
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Table 3.1: Expected Lottery Demand and IPO Returns: Descriptive
Statistics

Lottery Demand

Full Sample Low High

Mean 22.12 12.48 26.76

Median 7.21 3.57 9.38

Minimum −54.10 −41.08 −54.10

Maximum 697.50 212.10 697.50

Volatility 166.15 83.55 191.68

Table 3.1 presents descriptive statistics of first-day IPO returns (in percent), conditional
on the expected lottery demand regime. The IPO volatility is annualized. In accordance
with CPT, we refer to high lottery demand if the lagged gamma in a given month is
below or equal to one, and to low lottery demand otherwise. We cover a sample period
from March 1996 to December 2020.

(t = 12.27). This result coincides with Green and Hwang (2012) who

report significantly higher mean and median returns when their measure

of expected skewness is high. Furthermore, high lottery demand regimes

display substantially higher maximum returns (697.50% vs. 212.10%)

and maximum losses (41.08% to 54.10%). Lastly, we report the annualized

volatility of first-day returns. Consistent with the larger range of returns,

high lottery demand regimes display a higher volatility (191.68% vs.

83.55%).22

Previous studies (e.g. Ritter, 1991; Loughran and Ritter, 2004) find the

age of an issuer to be an important determinant of IPO pricing. Therefore,

our next step is to investigate the impact of lottery demand on first-day

returns sorted by the age of the issuer. Age classes correspond to Ritter

(1991) and results are depicted in Table 3.2. Consistent with Loughran
22 In unreported results, we find that high lottery demand regimes also exhibit a higher

skewness and kurtosis.
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Table 3.2: Expected Lottery Demand, IPO Returns, and Firm Age

Lottery Demand

Age in Years Full Sample Low High High − Low t-value

0 − 1 14.88 3.73 21.29 17.56*** (4.35)

2 − 4 42.55 19.26 48.49 29.23*** (6.65)

5 − 9 27.21 19.21 31.14 11.93*** (4.95)

10 − 19 20.75 15.33 23.18 7.85*** (3.86)

20 − up 12.96 10.82 14.08 3.26** (2.21)

Table 3.2 presents average first-day IPO returns (in percent), conditional on the expected
lottery demand regime and age classes as defined in Ritter (1991). In accordance with
CPT, we refer to high lottery demand if the lagged gamma in a given month is below or
equal to one, and to low lottery demand otherwise. Stars indicate significance at the 10%
(*), 5% (**) and 1% (***) level. We cover a sample period from March 1996 to December
2020.

and Ritter (2004), we find first-day returns to peak for issuers that are

2-4 years old (42.55%). Within this age class, we also find the largest

and most significant difference between high (48.49%) and low (19.26%)

lottery demand regimes (29.23 percentage points). Beyond that, we find

large and highly significant return differences for issuers with an age of

up to one year (21.29% vs. 3.73%) and 5-9 years (31.14% vs. 19.21%).

However, independent of the specific category, the lottery demand pre-

mium is positive and significant for issuers of all age classes. Consistent

with earlier results, full sample means are mainly driven by high lottery

demand periods.

So far, we have focused on univariate results. However, our measure

of expected lottery demand is likely related to other determinants of

first-day returns that have been documented in the literature.
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Table 3.3: Summary of Control Variables

Variable Description and expected sign Source

Panel A: Firm Characteristics

Age We define the Age of an issuing firm according to the founding dates provided in

the Field-Ritter dataset. Ritter (1991) and Loughran and Ritter (2004) document a

negative impact on IPO returns.

Ritter

(2022a)

Internet Internet is an industry dummy that equals one if an IPO is considered to be an

internet company and is zero otherwise. Ofek and Richardson (2003) show that

internet firms attain higher first-day returns.

Ritter

(2022a)

NASDAQ NASDAQ is a dummy variable that takes the value one if an IPO is listed on NAS-

DAQ and is zero otherwise. In line with Loughran and Ritter (2004) and Green and

Hwang (2012), we expect a positive coefficient.

Refinitiv

CoSkew Following Green and Hwang (2012), we calculate the coskewness of an IPO as the

average firm-level coskewness over the previous 63 trading days (three months)

within the IPO’s industry. CoSkew is the parameter δ of the regression

rMkt − ri,t − rf ,t = α + β(rMkt,t − rf ,t) + δ(rMkt,t − rf ,t)2 + εi,t ,

where ri,t is the return of the IPO’s industry at time t, rf ,t is the risk-free rate, and

rMkt,t is the market return. εi,t denotes the residual. Green and Hwang (2012) find

no significant effect of CoSkew.

CRSP,

French

(2022a),

French

(2022b)

Panel B: Deal Characteristics

LN(Proceeds) LN(Proceeds) is the natural logarithm of the total proceeds from an IPO in million

dollars and includes over-allotments (see Ritter, 1991). We adjust values to 1997

prices according to the CPI. Proceeds should be positively related to initial returns

(see Loughran and Ritter, 2004).

Refinitiv

Price

Adjustment

Price Adjustment accounts for adjustments between the initial filing range and the

offer price. We calculate adjustments as the absolute of the percentage change from

the average filing price to the offer price. According to Hanley (1993), price adjust-

ments should be positively related to first-day returns.

Refinitiv

Share

Overhang

Share Overhang is defined as the natural logarithm of (1 + retained shares / shares

offered). To calculate the ratio of retained shares, we make use of the percentage

value of shares offered. According to Loughran and McDonald (2013), Share Over-

hang should have a positive impact on IPO returns.

Refinitiv

Pure

Primary

Pure Primary is an indicator that equals one if an IPO only includes primary shares.

IPOs without secondary shares are expected to offer higher first-day returns. How-

ever, as Loughran and Ritter (2004) show, the impact is largely driven by the 1999-

2000 period.

Refinitiv
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Continued from previous page

Variable Description and expected sign Source

Top Tier

Underwriter

Top Tier Underwriter is a dummy variable that is equal to one if the Carter and Man-

aster (1990) rank of the lead underwriter is greater than or equal to eight and is zero

otherwise. The role of underwriter reputation has been explored by several studies,

for example Carter et al. (1998), Ljungqvist and Wilhelm (2005), and Loughran and

McDonald (2013). We expect a positive coefficient.

Ritter

(2022b)

Venture

Capital

Venture Capital is a dummy variable that indicates if an IPO was venture-backed.

In general, venture-backed IPOs are assumed to offer higher first-day returns.

Ritter

(2022a)

Panel C: Market Characteristics

Investor

Sentiment

Following Green and Hwang (2012), we include Investor Sentiment, measured by

the Michigan State University Consumer Confidence Index

Univ. of

Michigan

(2022)

IPO

Volatility

IPO Volatility is the three-month volatility of first-day returns prior to the IPO. As

shown in Table 3.1, high lottery demand regimes display a distinctly higher level of

IPO volatility. We thus expect IPO volatility to have a positive impact on first-day

returns.

CRSP,

Refinitiv

MktRft−1 MktRft−1 is the return of the market portfolio over the previous month. Loughran

and Ritter (2004) document that high first-day returns often follow high market

returns.

French

(2022a)

Y(1999-2000),

Y(2007-2008)

Y(1999-2000) and Y(2007-2008) are time period indicators that capture the peak

of the DotCom bubble (1999-2000) and the subprime crisis (2007-2008).

Refinitiv

Panel D: Alternative Skewness Measures

Skewi,t−1 Green and Hwang (2012) calculate the expected (idiosyncratic) skewness of IPO i

at time t as

Skewi,t−1 =
(P99 − P50)− (P50 − P1)

(P99 − P1)
,

where Pj is the jth percentile of logarithmized monthly returns across stocks within

the IPO’s industry over the last three months prior to the month of the IPO. We

denote expected skewness by Skewi,t−1 since it is based on ex-ante available data.

Given the findings in Green and Hwang (2012), the expected coefficient is positive.

French

(2022a)

Market

Skewi,t−1

We calculate expected market skewness (MarketSkewi,t−1) according to

MarketSkewi,t−1 =
(P99 − P50)− (P50 − P1)

(P99 − P1)
,

where Pk is the kth percentile of logarithmized monthly returns across all stocks

over the last three months prior to the month of the IPO.

French

(2022a)
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To account for these, we follow Green and Hwang (2012) and estimate

a regression framework that includes several firm, deal, and market

characteristics as well as industry fixed effects.23 Table 3.3 presents both

the included control variables and their expected sign. The dependent

variable of all specifications is the first-day return.

Table 3.4 presents results, where t-values in parentheses are based on

White (1980) standard errors. In Model (1), we start with a univariate re-

gression of first-day returns on γt−1 (expected lottery demand) and find a

highly significant, negative (positive) relationship (t = −9.42). An increase

of gamma by one unit reduces first-day returns by economically impor-

tant 13 percentage points. After including firm and deal characteristics in

Model (2), statistical significance is only slightly reduced (t = −8.46) and

the negative (positive) impact of γt−1 (lottery demand) on first-day returns

becomes even stronger with a coefficient estimate of −0.14. Furthermore,

we find all control variables to be significant at the 1%-level and, except

for CoSkew, signs correspond to our expectations. However, the negative

sign of CoSkew coincides with the results of Carter et al. (2011).24 In

Model (3), we add market characteristics and industry fixed effects. With

a t-value of −3.63 and a coefficient estimate of −0.06, expected lottery

demand continues to be economically and statistically significant at the

1%-level. Not surprisingly and consistent with Table 3.1, we find the IPO

volatility (t = 5.31) to be a major cause of the reduced statistical signif-
23 As our measure of lottery demand is not based on the IPO’s industry, we exclude

industry characteristics. Regressions that include industry fixed effects are estimated
without a constant.

24 Note that the coskewness measure of Carter et al. (2011) is based on the returns of
previous IPOs instead of industry returns.
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Table 3.4: Expected Lottery Demand and IPO Returns: Regression
Approach

Dependent variable:
First-Day Return

(1) (2) (3) (4) (5)

γt−1 −0.13∗∗∗ −0.14∗∗∗ −0.06∗∗∗

(−9.42) (−8.46) (−3.63)
Skewt−1 0.10∗∗

(2.47)
MarketSkewt−1 0.01

(0.14)
Age −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(−5.99) (−4.83) (−5.06) (−5.01)
CoSkew −0.003∗∗∗ −0.002∗∗∗ −0.001∗∗ −0.002∗∗∗

(−4.14) (−3.02) (−2.39) (−2.70)
Internet 0.37∗∗∗ 0.22∗∗∗ 0.22∗∗∗ 0.22∗∗∗

(10.40) (6.41) (6.25) (6.29)
NASDAQ 0.07∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.05∗∗∗

(5.73) (3.44) (3.28) (3.43)
LN(Proceeds) 0.06∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(7.41) (7.33) (6.99) (6.95)
Price Adjustment 0.37∗∗∗ 0.27∗∗∗ 0.27∗∗∗ 0.27∗∗∗

(4.13) (3.21) (3.16) (3.15)
Share Overhang 0.45∗∗∗ 0.35∗∗∗ 0.36∗∗∗ 0.35∗∗∗

(9.81) (8.22) (8.24) (8.18)
Pure Primary 0.07∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(5.13) (3.70) (3.79) (3.75)
Venture Capital 0.07∗∗∗ 0.06∗∗∗ 0.07∗∗∗ 0.06∗∗∗

(4.29) (3.98) (4.00) (3.94)
Top Tier Underwriter 0.05∗∗∗ 0.03∗∗ 0.04∗∗ 0.04∗∗

(3.07) (2.16) (2.41) (2.38)
MktRft−1 0.74∗∗∗ 0.75∗∗∗ 0.74∗∗∗

(3.61) (3.66) (3.57)
IPO Volatility 0.42∗∗∗ 0.43∗∗∗ 0.45∗∗∗

(5.31) (5.46) (5.50)
Investor Sentiment 0.0002 0.001∗∗ 0.001

(0.40) (1.97) (1.48)
Y(1999-2000) 0.02 −0.01 −0.01

(0.27) (−0.09) (−0.16)
Y(2007-2008) −0.04∗ −0.01 −0.02

(−1.80) (−0.68) (−1.04)
Industry fixed effects No No Yes Yes Yes
Adjusted R2 0.01 0.19 0.41 0.41 0.41

Table 3.4 presents results for OLS regressions of first-day IPO returns on our measure of
expected lottery demand (γt−1), expected skewness (Skewt−1), expected market skewness
(MarketSkewt−1), and several control variables motivated by the literature. Stars indicate
significance at the 10% (*), 5% (**) and 1% (***) level and t-values (in parentheses) are
based on White (1980) heteroscedasticity-consistent standard errors. We cover a sample
period from March 1996 to December 2020 and do not report the intercept which is
included in Models (1) and (2).
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icance.25 Interestingly, we do not find a significant impact of investor

sentiment. This is, in part, related to the Covid-19 pandemic. While

sentiment was very low, average IPO returns in 2020 have been quite high

(38.4%). In contrast, the same period displayed gammas around 0.5 and

thus high lottery demand.

To compare the explanatory power of expected lottery demand

with other skewness measures, we replace gamma by the expected

(idiosyncratic) skewness, Skewt−1, and the expected market skewness,

MarketSkewt−1, respectively. In contrast to Green and Hwang (2012), our

estimate for Skewt−1 (Model 4) is only significant at the 5%-level. This

finding is attributable to the considerable correlation between Skewt−1

and the IPO volatility (ρ = 23.8%) such that IPO volatility captures at least

some of Skew’s explanatory power. After excluding IPO volatility from

Model (4), Skewt−1 turns out to be significant at the 1% level (t = 4.48),

as expected from the findings in Green and Hwang (2012). Moreover,

without control variables (not reported), Skew’s explanatory power is

comparable to that of γt−1. With respect to MarketSkewt−1 (Model 5), we

do not find any explanatory power. Again, we attribute this finding to the

(even higher) correlation with the IPO volatility (33.3%).

In unreported results, we further investigate the impact of expected

lottery demand on money left on the table.26 In a regression framework

similar to that of Table 3.4, we find lottery demand to be significant at

the 1% level. A one unit increase of γt−1 is associated with a 27.1 million
25 Excluding IPO volatility from Model (3) increases the significance of γt−1 to t = −6.15.
26 Money left on the table is defined as the difference between the first closing price and

the offer price, multiplied by the number of shares sold.
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dollar reduction of money left on the table. To put that in perspective:

the average amount of money left on the table in our sample period is

roughly 25 million dollars. However, this result is not surprising as the

amount of money left on the table largely depends on first-day returns.

In summary, we find expected lottery demand to be an important

determinant of IPO returns. First-day returns strongly increase in lottery

demand (even after adjusting for control variables) and return differ-

ences between high and low lottery demand regimes are large and highly

significant.

3.4.2 Disentangling Lottery Demand and Skewness

Now we turn to our key contribution. Considering that the rationale

behind our measure of expected lottery demand (i.e. investors’ lottery

preferences) and expected skewness (i.e. the IPO-specific lottery charac-

teristics) is very similar, it is important to disentangle their impact on

first-day returns. Therefore, we first perform a two-way sort based on

skewness terciles and lottery demand regimes.27 Results are depicted in

Table 3.5.

With respect to the full sample, the return difference between high

and low expected skewness amounts to 13.91 percentage points and is

very similar to the value reported in Green and Hwang (2012). Moreover,

with a t-value of 7.71, the difference is significant at the 1%-level. In high

lottery demand regimes, the return difference substantially increases to
27 Following Green and Hwang (2012), we define tercile membership based on data that

was available at the time of the IPO. Therefore, in each month IPOs are ranked in
ascending order based on expected skewness and assigned into terciles.
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Table 3.5: Expected Lottery Demand, Expected Skewness and IPO
Returns: Two-Way Sort

Lottery Demand

Full Sample Low High High − Low t-value

Low Skew 15.84 12.35 17.60 5.25*** (3.53)

Med Skew 21.79 13.00 26.59 13.58*** (6.80)

High Skew 29.75 12.00 36.69 24.69*** (9.94)

High − Low 13.91*** −0.35 19.09***

t-value (7.71) (−0.22) (7.87)

Table 3.5 presents first-day IPO returns (in percent), conditional on expected lottery
demand and expected skewness as defined in Green and Hwang (2012). In accordance
with CPT, we refer to high lottery demand if the lagged gamma in a given month is below
or equal to one, and to low lottery demand otherwise. Following Green and Hwang
(2012), in each month IPOs are ranked in ascending order based on expected skewness
and assigned into terciles. Classification of expected skewness is based on full sample
terciles. Stars indicate significance at the 10% (*), 5% (**) and 1% (***) level. We cover a
sample period from March 1996 to December 2020.

19.09 percentage points with a t-value of 7.87. During low lottery de-

mand periods, however, there is no skewness premium at all. In contrast,

the return difference between high and low lottery demand regimes is

positive and significant at the 1%-level for all skewness terciles. While the

return difference is 5.25 percentage points (t = 3.53) across low skewness

IPOs, the premium increases to 24.69 percentage points (t = 9.94) when

skewness is high.

As of yet, our results indicate that the explanatory power of expected

skewness largely depends on the respective lottery demand regime. We

further investigate this finding in a regression framework that incorpo-

rates interaction terms. To simplify interpretations, we replace γt−1 by

an indicator variable, Lottery Demandt−1, which takes on a value of one
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Table 3.6: Expected Lottery Demand, Expected Skewness and IPO
Returns: Interaction Regressions

Dependent variable:

First-Day Return

(1) (2) (3) (4) (5)

Lottery Demandt−1 0.14∗∗∗ 0.14∗∗∗ 0.15∗∗∗ 0.11∗∗∗ 0.06∗∗∗

(12.27) (12.02) (12.43) (8.95) (4.81)

Skewt−1 0.37∗∗∗ 0.01 0.09∗∗ 0.08∗

(8.75) (0.28) (2.06) (1.96)

Lottery Demandt−1 × Skewt−1 0.53∗∗∗ 0.24∗∗∗ 0.14∗

(7.72) (3.20) (1.90)

Firm characteristics No No No Yes Yes

Deal characteristics No No No Yes Yes

Market characteristics No No No No Yes

Industry fixed effects No No No Yes Yes

Adjusted R2 0.02 0.04 0.04 0.19 0.40

Table 3.6 presents results for OLS regressions of first-day IPO returns on an expected
lottery demand indicator (Lottery Demandt−1), expected skewness (Skewt−1), and an
interaction term. The lottery demand indicator is equal to one if the lagged gamma in a
given month is below or equal to one and zero otherwise. Control variables and industry
fixed effects correspond to Table 3.4. However, in Model (5), we drop IPO Volatility due
to the large correlation with Skewt−1, as shown in Section 3.4. Stars indicate significance
at the 10% (*), 5% (**) and 1% (***) level and t-values (in parentheses) are based on
White (1980) heteroscedasticity-consistent standard errors. We cover a sample period
from March 1996 to December 2020 and do not report the intercept which is included
in Models (1) to (3).

if γt−1 ≤ 1 and is zero otherwise. Skewt−1 corresponds to the expected

skewness as described above. Results are depicted in Table 3.6. In Model

(1), we start with a univariate regression of first-day returns on the lottery

demand dummy. By construction, the coefficient estimate and t-value of

Lottery Demandt−1 correspond to the average first-day returns described

in Table 3.1. In Model (2), we further include expected skewness (but do

not include an interaction term). Both measures have a positive and highly
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significant impact on first-day returns. While the coefficient and t-value

of Lottery Demandt−1 are very similar to Model (1), Skewt−1 displays a co-

efficient estimate of 0.37 with a t-value of 8.75. Thus, increasing Skewt−1

by one unit increases first-day returns by 37 percentage points. However,

note that the difference between Skew’s 10% and 90% percentile is only

0.43, compared to 0.95 for gamma. In Model (3), we additionally include

an interaction term. In line with Table 3.5, we find expected skewness to

be insignificant, while the interaction term (Lottery Demandt−1×Skewt−1)

is highly significant, both statistically (t = 7.72) and economically. In

Model (4), we control for firm and deal characteristics as well as industry

fixed effects. Now, Skewt−1 is significant at the 5%-level (t = 2.06), while

Lottery Demandt−1 (t = 8.95) and the interaction term remain significant

at the 1%-level (t = 3.20). In Model (5), we also add market controls.28

Most importantly, even though the significance of the interaction term is

reduced, we still find it to be almost significant at the 5%-level (t = 1.90),

while Lottery Demandt−1 remains significant at the 1%-level (t = 4.81).

We conclude that the impact of expected lottery demand is differ-

ent from expected skewness. Moreover, we find the interaction between

investors’ lottery demand and assets’ lottery characteristics to be an im-

portant determinant of IPO returns.29

28 We drop IPO volatility due to the large correlation with Skewt−1.
29 In unreported results, we replace Skewt−1 by the expected market skewness. Except

for a reduced explanatory power of lottery demand in low MarketSkew periods, our
conclusions remain the same.
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3.4.3 Lottery Demand and Long-Term Performance

In stark contrast to the high first-day returns documented in the previous

section, IPOs often perform poorly in the long run, as documented by,

for example, Ritter (1991) and Ritter and Welch (2002). In line with the

predictions of Barberis and Huang (2008) and the results in Green and

Hwang (2012), this suggests that IPOs are initially overpriced due to their

lottery-like payoffs. If high first-day returns, attributable to high lottery

demand regimes, represent an overpriced first-day valuation, we expect a

stronger underperformance of IPOs that took place during a high lottery

demand regime.

We start our long-run analysis by estimating the lowess-smoothed

relationship between expected lottery demand and long-term returns.

Fig. 3.4 illustrates results for 1-year, 3-year, and 5-year returns, where

one year is defined by 252 trading days and initial returns are excluded.

Mirroring the relationship between lottery demand and first-day returns,

Fig. 3.4: Expected Lottery Demand and Long-Term Returns

Fig. 3.4 plots the lowess-smoothed relationship between expected lottery demand (γt−1)
and long-term IPO returns. Following Green and Hwang (2012), we report 1-year
(252 tradings days), 3-year (756 trading days), and 5-year (1260 trading days) returns,
excluding the first-day return. We cover a sample period from March 1996 to December
2020.
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1-year (Panel A) and 3-year returns (Panel B) display a small decrease

between γt−1 = 0.28 and γt−1 = 0.70, while there is a strictly positive

and distinct relationship for gammas above 0.70. Again, we relate this

finding to Internet IPOs of the years 1999 and 2000, which not only

displayed extraordinary high first-day returns (90%), but also very low

long-term returns. For example, the average (median) 3-year return over

the full sample amounts to 12% (−25%), whereas DotCom IPOs offered

an average (median) return of only −83% (−94%). Moreover, compared to

other IPOs of the years 1999 and 2000, Internet IPOs less often survived

for five years or longer (42.6% vs. 70.8%). As a result, their impact on the

smoothed relationship declines and 5-year returns (Panel C) are almost

monotonically increasing in gamma, except for a very small interval

around γt−1 = 0.70. Noteworthy, the return difference between high and

low gammas (low and high lottery demand) is substantial for each of the

three holding periods.

To confirm this result, we follow Ritter (1991), Ritter and Welch (2002),

and Green and Hwang (2012) by comparing long-term IPO returns to

the returns of matching non-issuers. Thereby, we adopt the matching

procedure of Green and Hwang (2012). More precisely, we match each

IPO to a non-issuing firm (with share code 10 or 11) with the closest

book-to-market ratio in the same size decile that has been listed on AMEX,

NASDAQ, or NYSE for at least five years. To account for delistings, we

drop non-issuers as soon as less than five more years of data are available

and only keep returns that are covered by both the matching firm and
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Table 3.7: Expected Lottery Demand and the Long-Run Performance of
IPOs

Lottery Demand 1 Year 3 Years 5 Years

Low

IPO 9.74 20.54 29.32

Matching 12.25 33.18 43.21

Difference −2.51 −12.64** −13.89*

t-value (−1.08) (−2.34) (−1.79)

High

IPO 2.63 11.65 14.93

Matching 14.63 32.19 43.36

Difference −12.00*** −20.54*** −28.42***

t-value (−4.48) (−3.16) (−4.60)

Table 3.7 compares long-term IPO returns (in percent) to returns of non-issuing matching
firms. We follow Green and Hwang (2012) and define a matching firm as the stock with
the closest book-to-market ratio in the same size decile. Size breakpoints are based on
NYSE breakpoints. The size of an IPO is defined as the market value after the first trading
day. Book-to-market ratios are based on book values provided by Compustat. Non-
issuing firms are defined as firms that have been listed on NYSE, AMEX, or NASDAQ
(with share code 10 or 11) for more than 5 years (1260 trading days). We remove all
non-issuers that have been delisted within 5 years after the IPO and report results for
1-year (252 trading days), 3-year (756 tradings days), and 5-year (1260 trading days)
returns, excluding the first-day return. In accordance with CPT, we refer to high lottery
demand if the lagged gamma in a given month is below or equal to one, and to low
lottery demand otherwise. Stars indicate significance at the 10% (*), 5% (**) and 1%
(***) level and t-values are based on White (1980) heteroscedasticity-consistent standard
errors.

the IPO.30 As a result, our new sample covers IPOs from 1996 to 2015.

In accordance with the previous literature, size breakpoints are based on

NYSE breakpoints and first-day returns are excluded. We calculate the

market value of an IPO according to the first closing price, while market
30 If an IPO firm is delisted during a year, we follow Green and Hwang (2012) and

calculate the return for the remainder of the respective year by compounding the
CRSP value-weighted market return.
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values of matching firms are based on the previous month. Depending

on data availability, book-to-market ratios of IPOs are either based on the

current or the following year.31 For matching firms, we employ the most

recent available book value. After the matching procedure, 3,505 IPOs

(75% of the initial sample) remain.32 Table 3.7 presents results.

Most importantly, IPOs underperform matching firms throughout all

holding periods and differences strongly increase when lottery demand at

the time of the IPO was high. For low lottery demand regimes, differences

vary from −2.51 (1 year) to −13.89 percentage points (5 years) and are

only significant at the 5%-level when considering 3-year holding periods.

In contrast, underperformance increases to 12.00 (1 year), 20.54 (3 years),

and 28.42 percentage points (5 years) when lottery demand at the time of

the IPO was high. Importantly, all differences are substantially larger and

highly significant at the 1%-level.33

In summary, our results provide further evidence that market-wide

lottery demand causes IPOs to become overpriced, resulting in a poor

long-term performance.
31 We drop IPOs for which no book value is available by the end of the following year.
32 777 IPOs (or 16.6%) of the initial IPO sample could not be matched due to missing

book values.
33 We derive similar results when considering 2-year or 4-year return horizons. In

unreported results, we also compare median differences and find them to strongly
increase when lottery demand at the time of the IPO was high (while increments for
low lottery demand periods are rather moderate).
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3.5 Dissecting the Asset Pricing Implications

of Lottery Demand

3.5.1 Primary versus Secondary Markets

The high first-day returns of IPOs suggest that the offer price, which is

determined in the primary market, does not fully incorporate the asset

pricing implications of skewness. Green and Hwang (2012) point out

two alternative explanations. Either institutional investors in the primary

market have a lower skewness preference, or institutional investors don’t

recognize that retail investors are willing to pay higher prices for highly

skewed securities.34 In this section, we use our proxy for expected lottery

demand to distinguish between these possible explanations.

As a first step in this regard, we quantify the extent to which each

market segment incorporates lottery demand in the IPO process. To mea-

sure the market reaction in the primary market, we use the revision of

the offer price (OP ) relative to the midpoint (Mid) of the filing range,

(OP −Mid)/Mid, as the dependent variable. The combined market reac-

tion (primary and secondary) is measured as (Close −Mid)/Mid, where

Close is the first-day closing price as used for the first-day returns. Re-

placing the first-day returns with these two measures and comparing the

coefficient estimates then allows us to quantify the differential impact

of expected lottery demand in secondary markets.35 Table 3.8 presents
34 We thank an anonymous referee for highlighting this point.
35 Loughran and Ritter (2002) use a similar setup to quantify the incorporation of market

returns 15 days prior to the offer date.
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Table 3.8: Primary versus Secondary Market Adjustment to Lottery
Demand

Dependent variable:
OP−Mid
Mid

Close−Mid
Mid

(1) (2) (3) (4)

γt−1 −0.02∗∗∗ −0.02∗∗ −0.16∗∗∗ −0.08∗∗∗

(−4.20) (−2.47) (−9.13) (−3.70)

Firm characteristics No Yes No Yes

Deal characteristics No Yes No Yes

Market characteristics No Yes No Yes

Industry fixed effects No Yes No Yes

Adjusted R2 0.003 0.16 0.01 0.40

Table 3.8 presents OLS regressions of the primary market return (defined as the percent-
age change from the average filing price to the offer price) on our measure of expected
lottery demand (γt−1) and control variables introduced in Table 3.4 (except for Price
Adjustment). We match lottery demand in two ways: γt−1 at the time of the IPO (Models
1 and 2) and γt−1 at the filing date (Models 3 and 4). Stars indicate significance at the
10% (*), 5% (**) and 1% (***) level and t-values (in parentheses) are based on White
(1980) heteroscedasticity-consistent standard errors. We cover a sample period from
March 1996 to December 2020 and do not report the intercept.

results. Except for the new dependent variables and the exclusion of Price

Adjustment, the setup is identical to Table 3.4.

Interestingly, expected lottery demand has an impact in both market

segments as the coefficient estimates on γt−1 are highly significant in

statistical terms throughout Models (1) to (4). However, the impact of

lottery demand is stronger in the secondary market. Comparing the

coefficient estimates (−0.02 vs. −0.16) shows that the primary market

incorporates only roughly 12.5% of expected lottery demand into the

offer price. This share increases to roughly 25% (−0.02 vs. −0.08) after

accounting for control variables. Thus, the lion’s share of the market

reaction occurs in the secondary market, in line with the conclusions of

Green and Hwang (2012).
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3.5.2 Institutional versus Retail Investors

There are two potential explanations for the stronger effect of lottery

demand in the secondary market (as documented in the previous section).

First, there are countervailing forces in the bargaining process in the pri-

mary market. As the profits due to high first-day returns in the secondary

market come at the expense of the issuing company and its pre-issue

shareholders, issuers prefer high offer prices and reject IPO underpricing.

From an underwriter’s perspective, IPO underpricing is an indirect source

of compensation, because it makes it easier to find buyers and thereby

reduces marketing costs. This might explain why underwriters do not

completely adjust the offer price to public information, e.g. indications

of high demand (see Loughran and Ritter, 2002). However, there are

also several incentives for underpricing from an issuer’s perspective, e.g.

side payments via personal brokerage accounts (Loughran and Ritter,

2004), ‘family and friends shares’ (Ljungqvist and Wilhelm, 2003), and

an aggregation of money left on the table with gains from an increased

valuation of retained shares (Loughran and Ritter, 2002).

Second, the institutional investors who determine the offer price are

simply less likely to account for skewness in their valuation of IPOs or

refrain from investing due to risk considerations. As the IPO market is

subject to the aforementioned institutional features which might mute or

at least mitigate institutional lottery demand’s impact on the offer price,

we study the trading behavior of both investor groups in the secondary

market during the IPO. Similar to Green and Hwang (2012), we use
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buyer-initiated trades from the Trades and Quotes (TAQ) transaction

database and extend the scope of our analysis to the trading behavior

of institutional investors. For this explanation to hold, we expect that

lottery demand predicts retail buying pressure in IPOs, while being less

important for institutional trading.

We adopt the Barber et al. (2009) herding measure, which relies on

the proportion of buyer-initiated trades in the TAQ database. To sign a

trade as buyer-initiated, we follow Barber et al. (2009) and apply the Lee

and Ready (1991) algorithm to NYSE stocks and the Ellis et al. (2000)

classification rule to NASDAQ stocks. Next, we match the TAQ data with

our IPO sample and keep all matches with up to three days between the

IPO date and the first trading date in the TAQ database. However, due to

the widespread introduction of decimalization in 2001 and the growth

in algorithmic trading, we cover a subset from March 1996 to December

2000.36 We are able to match 1,921 out of 2,085 IPOs.

After matching the data and inferring the trade direction, we follow

Green and Hwang (2012) and use trades with a size below $10,000 as a

proxy for retail investor trades. In line with Barber et al. (2009), trades

with a total size above $50,000 serve as a measure for institutional trad-

ing. For stock i on day t, we then compute pi,t as the proportion of

signed trades which is buyer-initiated and use pi,t to compute the herding

measure HMi,t as

HMi,t =
∣∣∣pi,t −E[pi,t]

∣∣∣−E [∣∣∣pi,t −E[pi,t]
∣∣∣] , (3.14)

36 Both mechanisms undermine the distinction between individual and institutional
trading based on trade size (see Barber et al., 2009; Cao et al., 2020). Our restriction
of the sample period is standard in this strand of the literature.
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where E[pi,t] is the proportion of all purchases on day t and

E
[∣∣∣pi,t −E[pi,t]

∣∣∣] accounts for the higher variation in the proportion of

purchases in stocks with fewer trades.37 We compute HMi,t separately for

small and large trades, referred to as HMRetail and HMInst., respectively.

The correlation between both measures is ρ = 34%.

To analyze the relationship between trading behavior and lottery de-

mand, we regressHMRetail andHMInst. on expected lottery demand (γt−1),

expected skewness (Skewt−1), and control variables motivated by Green

and Hwang (2012)’s Table 6: CoSkew, Internet, Age, NASDAQ, LN(Proceeds),

MktRft−1, and Investor Sentiment. Table 3.9 presents results.

Models (1) and (2) analyze the relationship between expected lottery

demand (γt−1) and retail buying pressure (HMRetail). The results are well

in line with our hypothesis as lottery demand significantly increases retail

trading in IPOs at the 1% level. In Model (1), the coefficient estimate of

γt−1 is −0.04 with a t-value of −4.52. After including control variables in

Model (2), the coefficient estimate of γt−1 increases to −0.03, but remains

economically and statistically significant (t = −2.77). Models (3) and (4)

extend the analysis to institutional trading. While Model (3) reveals a

similar relationship between γt−1 and trading activity, the effect is com-

pletely captured by control variables in Model (4). Thus, after accounting

for deal and market characteristics, expected lottery demand predicts

retail buying pressure on the first day of trading, but not buying pressure

exerted by institutional investors. A closer look at the control variables
37 In line with Barber et al. (2009), we compute proportions in terms of the value of the

trade.
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Table 3.9: Impact of Lottery Demand on IPO Trades

Dependent variable:
HMRetail HMInst.

(1) (2) (3) (4)

γt−1 −0.04∗∗∗ −0.03∗∗∗ −0.06∗∗∗ 0.005
(−4.52) (−2.77) (−4.30) (0.38)

Skewt−1 −0.01 −0.01
(−0.95) (−0.47)

CoSkew 0.0001 0.001∗∗

(0.31) (2.10)
Internet 0.01 −0.03∗∗∗

(1.21) (−5.12)
Age 0.0002 0.001∗∗∗

(1.16) (3.71)
NASDAQ −0.07∗∗∗ −0.10∗∗∗

(−10.21) (−11.01)
LN(Proceeds) 0.01∗∗ −0.02∗∗∗

(2.47) (−4.47)
MktRft−1 0.09∗ −0.12∗

(1.67) (−1.91)
Investor Sentiment −0.0001 −0.001

(−0.20) (−1.02)

Adjusted R2 0.01 0.11 0.01 0.17

Table 3.9 presents OLS regressions of the Barber et al. (2009) herding measure, HMi
(i = Retail, Inst.), on expected lottery demand (γt−1), expected skewness (Skewt−1), and
several control variables that are motivated by Green and Hwang (2012)’s Table 6. We
use trades with a size below (above) $10,000 ($50,000) as a proxy for retail (institutional)
investor trades. Stars indicate significance at the 10% (*), 5% (**) and 1% (***) level
and t-values (in parentheses) are based on White (1980) heteroscedasticity-consistent
standard errors. We cover a sample period from March 1996 to December 2000 and do
not report the intercept.

facilitates the understanding of this result. The most striking differences

are the changing signs on Internet, Age and LN (P roceeds) from Model (2)

to Model (4). Buying pressure from institutional investors is significantly

lower for Internet IPOs and increases in the age of the firm, whereas

both variables have no explanatory power for retail trading.38 Moreover,
38 Adding the controls sequentially reveals that Internet andAge have the largest impact.
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HMRetail is significantly larger for IPOs with higher proceeds, whereas

the opposite holds true for HMInst.. In stark contrast to Green and Hwang

(2012), Skewt−1 is insignificant in both cases, which is likely explained

by a different definition of retail trading activity. Our results illustrate

that the secondary market of IPOs exhibits a stronger pricing reaction

to expected lottery demand and that this reaction is primarily driven by

buying pressure from retail investors.39

3.6 Robustness Checks

3.6.1 Alternative Sample Splits

With respect to CPT, splitting the sample at γt−1 = 1 is an intuitive way to

separate high and low lottery demand regimes. Nevertheless, there might

be a small area around γt−1 = 1 where probability weighting is moderate

and investors still act rather neutral.40 We thus introduce an alternative

sample split that assigns gammas between 0.9 and 1.1 to medium lottery

demand. Gammas below 0.9 and above 1.1 are still considered as high and

low lottery demand, respectively. In Appendix 3.A.2, we report results.

For the sake of brevity, we focus on the most important findings.

Table 3.A.1 reports descriptive statistics of first-day returns. All mea-

sures behave monotonically, and when lottery demand his high, mean
39 In unreported results, we extend our scope to the overall US stock market (as covered

by CRSP) and evaluate the change of institutional ownership in lottery-like stocks, i.e.
stocks which are identified along the lines of, for example, Bali et al. (2011) and Kumar
et al. (2016). We find that institutional investors tend to relatively reduce positions in
lottery stocks significantly during periods of high lottery demand. This is consistent
with gamma being closely related to retail trading behavior in the secondary market.

40 Furthermore, gamma is an estimate which is subject to estimation error.
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(median) returns exceed respective values from the two-way split. With

respect to the age-sort (Table 3.A.2), we derive very similar conclusions.

For all age classes, returns monotonically increase in lottery demand and

return differences between high and low lottery demand regimes slightly

exceed those from the two-way split. Table 3.A.3 presents results for the

alternative sort based on expected skewness and lottery demand regimes.

Except for low skewness IPOs, first-day returns monotonically increase

in lottery demand. Moreover, the deviation is very small and high−low

differences increase for both expected skewness and expected lottery de-

mand. A potential concern with respect to our alternative sample split

is that thresholds are chosen arbitrarily. We therefore repeat the above

analysis with alternative thresholds (for example 0.80/1.20 and 0.95/1.05,

not reported) and derive very similar conclusions.41

We conclude that it is reasonable to define a medium lottery demand

regime in which investors act rather neutral. First-day returns monotoni-

cally increase in lottery demand and results hold for alternative thresh-

olds.

3.6.2 Sub-periods

Finally, to make sure that our results are not exclusively driven by the

exceptionally high first-day returns in 1999-2000, we perform a simple

sub-period test by cutting our sample period in half. The first sub-sample

comprises IPOs from 1996 to 2008 and includes the DotCom bubble,
41 For some specifications, first-day returns in medium and low lottery demand regimes

converge. However, we still find a significant lottery demand premium.
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Fig. 3.5: Lottery Demand Regimes and Sub-period Returns

Fig. 3.5 plots average first-day IPO returns in sub-periods, conditional on the expected
lottery demand regime in the month of the IPO. Thereby, we simply split our sample
period in half. In accordance with Cumulative Prospect Theory, we refer to high lottery
demand if the lagged gamma in a given month is below or equal to one and to low lottery
demand otherwise.

the burst of the DotCom bubble, and the subprime crisis. The second

sub-sample contains IPOs from 2009 to 2020 and covers the long-running

bull market from 2009 to 2019 as well as the Covid-19 crash in 2020.

Furthermore, by choosing this threshold, we ensure that sub-samples

contain both high and low lottery demand regimes.42 Fig. 3.5 illustrates

results by comparing average first-day returns in low and high lottery

demand regimes.

In the first sub-sample, average returns amount to 28.80% when ex-

pected lottery demand is high and reduce to 12.20% when lottery demand

is low. We thus yield a highly significant return difference of 16.60 per-

centage points (t = 11.29). In 2009-2020, low lottery demand returns are

comparable to the first sub-sample (12.83%), while returns in high lottery
42 See Fig. 3.1 and Section 3.3.3.
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demand regimes amount to 19.63%. The return difference of 6.79 percent-

age points is significant at the 1%-level (t = 4.19). We therefore conclude

that our results are not particularly driven by the DotCom bubble and

extent to more recent IPOs.

3.7 Concluding Remarks

Our results provide further evidence for the asset pricing implications

of skewness and lottery demand. More precisely, lottery-like assets may

become overpriced and earn low subsequent returns. We are the first to

account for time variation in market-wide lottery demand in the context

of IPO pricing. IPOs issued in periods of high lottery demand earn

higher first-day returns and are more likely to perform poorly over return

horizons of up to five years after the IPO. Most importantly, we show

that the explanatory power of expected skewness strongly depends on

lottery demand regimes. Thus, first-day IPO returns are particularly

driven by the interaction of market-wide lottery demand and asset-specific

lottery characteristics. Moreover, we find institutional investors to have a

lower propensity to exert buying pressure on the IPO day, which likely

explains why expected lottery demand particularly predicts returns in

the secondary market. Our findings complement the existing literature,

most importantly Barberis and Huang (2008) and Green and Hwang

(2012), and suggest that buying pressure due to high lottery demand is

an important determinant of IPO pricing.
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3.A Appendix

3.A.1 Estimation of Risk Neutral and Physical Densities

The estimation technique for both the risk neutral and the physical distri-

butions follows Dierkes (2013). We briefly summarize the approach here.

For preparation of the OptionMetrics options data, we refer to Section

3.2.1. To abstract from dividend payments Dt,τ between time t and the

expiry date t + τ , we base our results on the option-implied future. More

specifically, we infer the futures price Ft,τ = Stert,τ−Dt,τ from the put-call

parity. After calculating the future value, we exclude in-the-money op-

tions and use the more liquid at-the-money and out-of-the-money options

for further calculations.

In general, the estimation of risk neutral densities follows the standard

in the literature, most importantly Ait-Sahalia and Lo (1998). We fix times

to maturity to 15 and 30 calendar dates in order to obtain two different

risk neutral distributions for each expiry date (which is necessary for the

identification strategy outlined in 3.3.2). Our calculation of risk neutral

densities relies on Breeden and Litzenberger (1978). Since this requires

a fine grid of implied volatilities σ̂ (K/Ft,τ ), we start with the estimation

of nonparametric implied volatilities. For a given time to maturity t

and expiry date t + τ , we collect all S&P 500 options that have the same

expiration date and whose time to maturity deviates by at most seven

calendar days. For each option i out of these n options, we collect the

Black-Scholes implied volatility σi , the strike priceKi , the time to maturity

τi , and the implied future value Ft,τ . We then apply the Nadaraya-Watson
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kernel estimator to obtain

σ̂ (K/Ft,τ ) =

∑n
i=1 kK/Ft,τ

(
K/Ft,τ−Ki /Fti ,τi

hK/Ft,τ

)
kτ

(
τ−τi
hτ

)
σi∑n

i=1 kK/Ft,τ

(
K/Ft,τ−Ki /Fti ,τi

hK/Ft,τ

)
kτ

(
τ−τi
hτ

) , (3.A.1)

with the kernel functions

kK/Ft,τ (x) =
1

2π
exp

(
− x

2

2

)
, (3.A.2)

kτ(x) ==
1

2π
exp

(
− x

2

2

)
. (3.A.3)

The bandwidths hK/Ft,τ and hτ are chosen according to Ait-Sahalia and Lo

(1998). The implied volatilities from Equation (3.A.1) are then used to

compute call prices along a grid of equidistant strike prices K = K1, ...,Kn.

The resulting call pricesCt,τ (St,K,τ, rt,τ ,Dt,τ ) enter the formula of Breeden

and Litzenberger (1978) for the risk neutral density fQ

fQ(ST ) = e−rt,τ
δ2Ct,τ(St,K,τ, rt,τ ,Dt,τ )

δK2

∣∣∣∣∣∣
K=ST

. (3.A.4)

The estimation of the physical counterpart of the return distribution

follows the bootstrap approach of Kliger and Levy (2009). We collect

daily returns of the S&P 500 from four years prior to each expiry, until

the expiry, as motivated from Jackwerth (2000). Then, we sample returns

with replacement and compound returns to match the trading days until

expiry of the options. This approach contains a tiny proportion of forward

looking data to account for the notion of rational expectations.43 We set

the mean of the compounded returns to the sample average of returns

over the future values.44 Finally, we estimate the physical distribution
43 Our results are robust to the exclusion of forward looking returns.
44 Recall that we abstract from dividend payments by using returns over the futures

value, similar to Polkovnichenko and Zhao (2013).
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from a kernel density estimate with Gaussian kernel and the Silverman

(1986) rule for the bandwidths over 10,000 of such bootstrapped samples.

3.A.2 Alternative Sample Splits

Table 3.A.1: Expected Lottery Demand and IPO Returns: Descriptive
Statistics (Alternative Sort)

Lottery Demand

Full Sample Low Medium High

Mean 22.12 12.60 16.50 28.00

Median 7.21 3.13 5.03 10.00

Minimum −54.10 −33.08 −41.08 −54.10

Maximum 697.50 212.10 292.19 697.50

Volatility 166.15 86.52 121.40 198.31

Table 3.A.1 presents descriptive statistics of first-day IPO returns (in percent), condi-
tional on the expected lottery demand regime. The IPO volatility is annualized. In
contrast to Table 3.1, we now consider three lottery demand regimes. We refer to high
(low) lottery demand if the lagged gamma in a given month is below or equal to 0.9
(above 1.1). Medium lottery demand regimes are defined by gammas between 0.9 and
1.1. We cover a sample period from March 1996 to December 2020.
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Table 3.A.2: Expected Lottery Demand, IPO Returns, and Firm Age
(Alternative Sort)

Lottery Demand

Age in Years Full Sample Low Medium High High − Low t-value

0 − 1 14.88 3.34 8.24 22.71 19.37*** (4.34)

2 − 4 42.55 20.96 24.10 50.83 29.87*** (5.95)

5 − 9 27.21 19.94 22.97 31.88 11.94*** (4.45)

10 − 19 20.75 15.51 18.64 23.50 7.99*** (3.50)

20 − up 12.96 10.21 12.69 14.38 4.17** (2.47)

Table 3.A.2 presents average first-day IPO returns (in percent), conditional on the
expected lottery demand regime and age classes as defined in Ritter (1991). In contrast
to Table 3.2, we now consider three lottery demand regimes. We refer to high (low)
lottery demand if the lagged gamma in a given month is below or equal to 0.9 (above
1.1). Medium lottery demand regimes are defined by gammas between 0.9 and 1.1. Stars
indicate significance on the 10% (*), 5% (**) and 1% (***) level. We cover a sample period
from March 1996 to December 2020.

Table 3.A.3: Expected Lottery Demand, Expected Skewness and IPO
Returns: Two-Way Sort (Alternative Sort)

Lottery Demand

Full Sample Low Med High High − Low t-value

Low Skew 15.84 12.08 11.90 18.40 6.33*** (3.75)

Med Skew 21.79 13.33 16.01 27.95 14.62*** (6.43)

High Skew 29.75 12.40 21.62 39.45 27.05*** (9.43)

High − Low 13.91*** 0.32 9.71*** 21.04***

t-value (7.71) (0.18) (3.11) (7.53)

Table 3.A.3 presents first-day IPO returns (in percent), conditional on expected lottery
demand and expected skewness as defined in Green and Hwang (2012). In contrast to
Table 3.5, we now consider three lottery demand regimes. We refer to high (low) lottery
demand if the lagged gamma in a given month is below or equal to 0.9 (above 1.1).
Medium lottery demand regimes are defined by gammas between 0.9 and 1.1. Following
Green and Hwang (2012), in each month, IPOs are ranked in ascending order based on
expected skewness and assigned into terciles. Stars indicate significance on the 10% (*),
5% (**) and 1% (***) level. We cover a sample period from March 1996 to December
2020.
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Chapter 4

Volatility-Dependent Probability

Weighting and the Dynamics of the

Pricing Kernel Puzzle

This chapter refers to the working paper:

Dierkes, Maik, Jan Krupski, Sebastian Schroen and Philipp Sibbertsen
(2022): ‘Volatility-Dependent Probability Weighting and the Dynam-
ics of the Pricing Kernel Puzzle’, Working Paper, Leibniz Universität
Hannover.

Abstract
We obtain risk neutral and physical densities from the Pan

(2002) stochastic volatility and jumps model to estimate volatility-
dependent probability weighting functions. Across volatility levels,
we find pronounced inverse S-shapes and probability weighting
almost monotonically increases in volatility, indicating higher skew-
ness preferences in volatile market environments. Moreover, by
estimating probabilistic risk attitudes, we shed further light on the
pricing kernel puzzle. In line with economic theory, we find pricing
kernels, net of probability weighting, to be monotonically decreas-
ing. Equivalently, we find risk aversion to be positive across wealth
levels. Our results are robust to a variety of adjustments.

Keywords: Stochastic Volatility, Probability Weighting, Pricing Kernel
Puzzle

JEL: G11, G14, G41.
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4.1 Introduction

According to Jackwerth (2000), risk neutral probabilities are tantamount

to the product of physical probabilities and a risk aversion adjustment.

The pricing kernel, defined as the ratio of risk neutral and physical prob-

abilities, is expected to monotonically decrease in wealth and distinctly

reflects risk aversion. However, several studies find U-shaped pricing ker-

nels (the pricing kernel puzzle) or, equivalently, negative episodes of risk

aversion functions (the risk aversion puzzle). We attribute this finding to

investors who overweight small probabilities for tail events and therefore

distort the pricing kernel. Moreover, it has long been suggested that time-

varying risk aversion or, put differently, a time-varying price of risk, is key

to understand asset prices. For example, Fama (2014) notes that both risk

and investors’ risk aversion are likely to change over time, resulting in a

time-varying equity premium. In line with this, we refer time variation

in pricing kernels and risk aversion to a volatility-dependent and hence

time-varying degree of probability weighting.

Our study thus contributes to two strands of literature: time-varying

risk preferences and the pricing kernel puzzle. First, we obtain risk neu-

tral and physical densities from the Pan (2002) stochastic volatility and

jumps model and find a strikingly robust relationship between volatility

and cumulative prospect theory (CPT)’s probability weighting parameter

gamma (see Tversky and Kahneman, 1992). Across volatility levels, the

probability weighting function exhibits an inverse S-shape, i.e. small

(large) probabilities are overweighted (underweighted) and gamma (prob-
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ability weighting) almost monotonically decreases (increases) in volatility,

suggesting that skewness preferences are more pronounced in volatile

markets. Second, by adjusting model-implied pricing kernels and risk

aversion functions for probability weighting, we shed further light on the

pricing kernel puzzle. More specifically, we estimate probabilistic risk

attitudes, equivalent to the share of risk aversion related to probability

weighting. While pricing kernels estimated from the Pan (2002) model

exhibit the typical U-shape documented in the literature, pricing kernels

net of probability weighting are strictly monotonically decreasing and

therefore in line with economic theory. As a direct result, risk aversion

functions are positive throughout wealth levels.

In a seminal study, Campbell and Cochrane (1999) propose a habit-

formation model with slowly moving external habits and find both risk

aversion and marginal utility to countercyclically depend on the busi-

ness cycle. Moreover, the model explains several asset pricing phenom-

ena, including the procyclical (countercyclical) variation of stock prices

(volatility). Brandt and Wang (2003) extend the habit-formation model

by including a process for aggregate risk aversion and also find risk

preferences to vary. They conclude their results to be consistent with

both an agent irrationally fearing unexpected inflation and an economy

with heterogeneous preferences where risk aversion varies with the cross-

sectional distribution of wealth. In a more recent study, Guiso et al. (2018)

analyze portfolio data and repeated surveys of Italian bank clients in

2007 and 2009. After the financial crisis, they find both qualitative and

quantitative measures of risk aversion to increase substantially. As po-
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tential mechanisms behind their findings, the authors suggest fear of

losses and overweighting of salient payoffs. Hence, it seems reasonable

to explain time-varying risk preferences from a behavioral perspective.

In this sense, Barberis et al. (2001) propose a prospect theory framework

in which, in contrast to Campbell and Cochrane (1999), changes in risk

aversion are caused by changes in the level of the stock market. They

find that, after recent run-ups, agents are less risk averse because prior

gains cushion subsequent losses. In comparison to consumption-based

models, the level of risk aversion is smaller but still explains several

market characteristics. While Barberis et al. (2001) restrict their model

to reference-point dependent valuation and loss aversion, several recent

studies highlight the importance of CPT’s probability weighting compo-

nent. Kliger and Levy (2009) assess the performance of expected utility

(EUT), rank-dependent expected utility (RDEU), and CPT models and

find that probability weighting functions exhibit a pronounced inverse

S-shape.1 Moreover, when including probability weighting, the model

fit improves substantially. Polkovnichenko and Zhao (2013) and Dierkes

et al. (2022) estimate option-implied probability weighting functions

and find them to substantially vary over time. Notably, variation is not

erratic, but systematic. For example, Kilka and Weber (2001) find in

the lab that probability weighting is more pronounced when agents are

less confident in assessing the uncertainty of a decision situation – much

like in a high volatility regime, especially when volatility drives up jump
1 See also Camerer and Ho (1994), Tversky and Fox (1995), Wu and Gonzalez (1996),

Gonzalez and Wu (1999), Abdellaoui (2000), and Bleichrodt and Pinto (2000).
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intensity. In line with this finding, Liu et al. (2005) propose that risk

and rare events should have an impact on risk preferences and Chabi-Yo

et al. (2008) relate changes in preferences and beliefs to regime shifts in

state variables.2 Moreover, Gao et al. (2021) show that investors dislike

high-skewness securities in low volatility regimes, while Polkovnichenko

and Zhao (2013) note that periods with less inverse S-shaped probability

weighting functions tend to coincide with these regimes.

We capture these findings by estimating probability weighting func-

tions from the Pan (2002) stochastic volatility and jumps model. We

choose this model as it offers the advantage that, in addition to the wealth

level, it includes the volatility as an additional state variable which we can

change counterfactually.3 Following Ziegler (2007), we first obtain risk

neutral and physical densities for a wide range of volatilities. Thereafter,

we follow Dierkes et al. (2022) and employ these densities to estimate the

probability weighting parameter gamma for any given volatility. Even

though the Pan (2002) model was never designed to match CPT prefer-

ences, our results are strikingly robust and correspond to earlier studies.

In our main specification, we normalize the return horizon to one year

and find gamma (probability weighting) to almost monotonically decrease

(increase) in volatility. For example, with the two-parameter specification

of Prelec (1998), gammas vary from roughly 0.99 for very low volatilities

to 0.70 for high volatilities. Results for the two-parameter linear-in-log-

odds (0.90 to 0.68) and the one-parameter Tversky and Kahneman (1992)
2 See also Bliss and Panigirtzoglou (2004) and Brown and Jackwerth (2012).
3 Nevertheless, we find our model-based results to hold in a fully nonparametric setting.
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function (0.95 to 0.82) are similar. Most importantly, we find the average

probability weighting function over volatilities to display a pronounced

inverse S-shape. These findings are robust to alternative return horizons

(three months and six months) and a nonparametric empirical setting.

As risk aversion is closely connected to the pricing kernel, we can

directly transfer our estimation approach to the pricing kernel puzzle. In

a seminal study, Jackwerth (2000) recovers risk aversion from risk neu-

tral and physical probabilities, estimated via S&P 500 options and stock

returns, respectively.4 While he finds risk aversion to be positive and

decreasing in wealth prior to the 1987 stock market crash, risk aversion is

partially negative and increasing in the post-crash era. Among others, the

puzzle has been confirmed by Ait-Sahalia and Lo (2000) and Rosenberg

and Engle (2002). Moreover, Beare and Schmidt (2016) and Golubev et al.

(2014) perform statistical tests and reject pricing kernel monotonicity for

the S&P 500 and the German DAX, respectively.5 In the recent past, sev-

eral studies proposed possible solutions to the pricing kernel puzzle. For

example, Bakshi et al. (2010) assume heterogeneity among investors, with

pessimists short selling the market portfolio and thus driving increases

in the pricing kernel. Ziegler (2007) estimates risk aversion functions

from the Pan (2002) model and finds them to be monotonically decreasing
4 To obtain densities, Jackwerth (2000) employs a variation of Jackwerth and Rubinstein

(1996)’s approach.
5 Bliss and Panigirtzoglou (2004) find risk aversion estimates to be positive. However,

they restrict the pricing kernel by assuming power or exponential utility functions.
Linn et al. (2018) argue that prior pricing kernel estimates are inconsistent because
they compare forward looking risk neutral densities to backward looking physical
densities. While they find a monotonically decreasing pricing kernel, Cuesdeanu and
Jackwerth (2018) attribute this result to their specific estimation procedure.
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but negative for gains (implying an increasing pricing kernel). Although

assuming heterogeneous investors might solve the problem, the degree of

heterogeneity would need to be implausibly large. Further possible solu-

tions include state-dependence in fundamentals (Chabi-Yo et al., 2008)

and the inclusion of higher moment preferences (Chabi-Yo, 2012; Cues-

deanu and Jackwerth, 2018). Hens and Reichlin (2013) show that if at

least one of the three standard assumptions (market completeness, risk

aversion, correct beliefs) is violated, the pricing kernel may have increas-

ing parts. Most importantly, they find the combination of distorted beliefs

(i.e. probability weighting) and misestimation of probabilities to be a

possible solution.6 Hence, it appears reasonable that applying behavioral

insights may solve the pricing kernel puzzle.

In this sense, Baele et al. (2019) develop an asset pricing model with

CPT preferences (based on Barberis et al., 2001) and find the implied

CPT pricing kernel to display a pronounced U-shape (implying partially

negative risk aversion functions). In line with Barberis et al. (2016), they

conclude that the key driver of their results is the probability weighting

component. Polkovnichenko and Zhao (2013) and Dierkes et al. (2022) es-

timate pricing kernels to study the time variation in probability weighting

functions. While their results are generally consistent with a U-shaped

pricing kernel, they rather focus on the time variation in probability

weighting and its asset pricing implications.

By adjusting model-implied pricing kernels and risk aversion func-

tions for probability weighting, we shed further light on the role of proba-
6 However, they need to assume a slightly negative expected mean return.
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bility weighting as an important driver of the pricing kernel puzzle. Since

Benzoni et al. (2011) and Babaoğlu et al. (2018) find pricing kernels to be

variance-dependent, we again employ the Pan (2002) stochastic volatility

and jumps model and estimate probabilistic risk attitudes, equivalent

to the share of risk aversion related to probability weighting.7 We add

to the results of previous studies in two ways. First, we provide direct

measures of pricing kernels and risk aversion functions, and second, we

explicitly relate the pricing kernel puzzle to the probabilistic risk attitude.

Before accounting for probability weighting, we find the average pricing

kernel to exhibit a strong U-shape, implying episodes of negative risk

aversion (consistent with Ziegler, 2007). However, since the probabilistic

risk attitude is strikingly close to the absolute risk aversion estimated

from Pan (2002), the adjusted risk aversion function is consistently posi-

tive and the corresponding pricing kernel is monotonically decreasing in

wealth. Our results are robust to alternative return horizons (three and

six months), wealth percentiles, an alternative functional assumption, a

numerical approach to estimate the probabilistic risk attitude, and varia-

tions of the Pan (2002) coefficient estimates. We therefore conclude that

probability weighting intensifies in volatile market environments and

plays an important role in explaining the pricing kernel puzzle.
7 Further studies that relate the pricing kernel and risk aversion to volatility are Christof-

fersen et al. (2013), Song and Xiu (2016), and Linn et al. (2018).
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4.2 Methodology

4.2.1 Estimation of Probability Weights

Our framework closely follows Dierkes et al. (2022) who introduce a fully

nonparametric estimation procedure to derive time-varying probability

weighting functions. We assume a representative agent with monotoni-

cally increasing and twice continuously differentiable utility function u

and probability weighting function w.8 Moreover, we assume the agent

to derive utility from the market return, denoted by S. Then, under EUT

(i.e. with linear w) it holds

fQ(ST ) = fP (ST ) · βu
′(ST )
u′(St)

, (4.1)

where fQ(ST ) and fP (ST ) denote the risk neutral and physical densities

with corresponding distribution functions FQ and FP .9 Furthermore,

u′(ST ) and u′(St) are marginal utilities with respect to the future and

current stock price. β is a normalizing constant. By solving Equation

(4.1) for u′(ST ) and calculating u′′(ST ), we yield the absolute risk aversion

associated with the index level ST

ARA(ST ) = −u
′′(ST )
u′(ST )

=
f ′P (ST )
fP (ST )

−
f ′Q(ST )

fQ(ST )
, (4.2)

which corresponds to Jackwerth (2000). However, with probability weight-

ing, and thus non-linear w, the physical distribution function adjusts to

FP̃ (ST ) = 1 − w(1 − FP (ST )) and the corresponding density function is
8 This assumption is in line with Barberis and Huang (2008). See Tversky and Kahneman

(1992) for more details on probability weighting.
9 See, for example, Chapman and Polkovnichenko (2009) and Ross (2015). In accordance

with Jackwerth (2000), we normalize St to one.
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fP̃ (ST ) = fP (ST ) ·w′(1− FP (ST )). As a result, the risk neutral density and

the pricing kernel, net of probability weighting, are given by

fQ(ST ) = fP (ST ) ·w′(1−FP (ST ))︸                      ︷︷                      ︸
fP̃ (ST )

·βu
′(ST )
u′(St)

, (4.3)

and

fQ(ST )
fP (ST ) ·w′(1−FP (ST ))

= β
u′(ST )
u′(St)

, (4.4)

respectively. Note that the adjusted pricing kernel varies with the physical

distribution, FP (ST ), if w is not linear. In case of linear w, however,

Equation (4.4) collapses to the standard pricing kernel. In analogy with

the steps from Equation (4.1) to Equation (4.2), we then yield the absolute

risk aversion with probability weighting as

f ′P (ST )
fP (ST )

−
f ′Q(ST )

fQ(ST )︸              ︷︷              ︸
ARA(ST )

= −u
′′(ST )
u′(ST )︸    ︷︷    ︸

ARAu(ST )

+
w′′(1−FP (ST ))
w′(1−FP (ST ))

fP (ST )︸                      ︷︷                      ︸
ARAw(ST )

, (4.5)

where ARAu(ST ) denotes the absolute risk aversion after accounting for

probability weighting, i.e. the level of risk aversion only associated with

the representative agent’s utility function u. In contrast, ARAw(ST ) de-

scribes the probabilistic risk attitude and reflects the level of risk aversion

originating from the probability weighting function w.10 Equation (4.5)

also reveals that without probability weighting, the probabilistic risk

attitude becomes zero and absolute risk aversion boils down to Equation

(4.2). However, in case of the typically observed inverse S-shaped proba-

bility weighting function, the probabilistic risk attitude is positive (and
10 By assuming an increasing probability weighting function, the denominator of the

probabilistic risk attitude is always positive. See also Polkovnichenko and Zhao (2013)
and Quiggin (1993).
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decreasing) for low wealth levels and becomes negative for high wealth

levels. Thus, convex episodes of the probability weighting function lo-

cally overweight bad states in the economy and increase the observed risk

aversion (probabilistic risk attitude > 0), while concave parts reduce the

risk aversion (probabilistic risk attitude < 0).

In order to identify u and w, we utilize the fact that the probabilistic

risk attitude varies with the physical distribution, FP (ST ), while the risk

aversion associated with u, ARAu(ST ), remains constant. More precisely,

we assume two different physical distributions, FP1
(ST ) and FP2

(ST ), solve

Equation (4.3) for u′(ST ) and merge β and u′(St) to a single normalizing

constant β. After dropping the time index T for notional convenience, we

yield

fQ1
(S)

w′(1−FP1
(S))fP1

(S) · β1
= u′(S), (4.6)

fQ2
(S)

w′(1−FP2
(S))fP2

(S) · β2
= u′(S). (4.7)

By equating the left hand sides of Equations (4.6) and (4.7) , we eliminate

u′(S) and obtain

w′(1−FP2
(S)) =

fQ2
(S)

fQ1
(S)

fP1
(S)

fP2
(S)

β1

β2
·w′(1−FP1

(S)), ∀ S. (4.8)

Since we are able to estimate risk neutral and physical densities from

the Pan (2002) stochastic volatility and jumps model (see Section 4.2.2),

Equation (4.8) leaves w′ as the only unknown. We impose the following

assumption (single-crossing assumption) which allows the estimation of

w′, or equivalently w. Suppose that P1 has more mass in the tails than P2,

122



Probability Weighting and the Pricing Kernel Puzzle

such that for some value Ŝ it holds

FP1
(S) ≥ FP2

(S) ∀ S ≤ Ŝ,

FP1
(S) ≤ FP2

(S) ∀ S ≥ Ŝ,

FP1
(Ŝ) = FP2

(Ŝ).

Then, Equation (4.8) constitutes two Delay Differential Equations (DDE)

of neutral type, one DDE for all S ≤ Ŝ and one DDE for all S ≥ Ŝ. More

precisely, on both subsets, today’s derivative of the yet unknown function

w depends on its derivative in the past. For example, we are able to iden-

tify w′(1−FP2
(S)) at ‘time point’ 1−FP2

(S) when ‘time point’ 1−FP1
(S) lies

in the past and w′(1− FP1
(S)) is already known (and vice versa). Conse-

quently, we can solve the DDE for w′ on the two intervals [0, Ŝ] and [Ŝ,∞).

And finally, with w(0) = 0 and w(1) = 1, we identify w. However, while

Dierkes et al. (2022) estimate risk neutral and physical densities from

empirically observed option prices, we analytically calculate densities

in the Pan (2002) model (see Section 4.2.2). In Section 4.2.3, we provide

more details on the estimation of the DDE and outline differences with

respect to Dierkes et al. (2022).

4.2.2 The Pan (2002) Model

We obtain risk neutral and physical densities from the Pan (2002) stochas-

tic volatility and jumps model as it offers the advantage that, besides

the wealth level, it includes the volatility as an additional state variable,

which we can change counterfactually. Note that our analyses are difficult

to execute in a nonparametric setup, since – for any given cross-section
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of option prices – we would not be able to change the volatility state

counterfactually without the model framework. At the same time, the Pan

(2002) model is rich enough to explain relevant characteristics of S&P 500

index returns and options written on them. Moreover, it provides closed-

form expressions for the transforms of both fP (ST ) and fQ(ST ), making it

appealing for our estimation technique. Given that Polkovnichenko and

Zhao (2013) casually observe S-shaped probability weighting functions

during times of low volatility and Kilka and Weber (2001) find proba-

bility weighting to be more pronounced when agents are less confident

in assessing a decision situation, we expect volatility to be an important

determinant of probability weighting.11

Pan (2002) fits an elaborate model, based on Bates (2000), to S&P 500

option prices and time series of the underlying. More specifically, she

proposes a model with stochastic volatility and jumps in the underlying’s

price process, where jump intensity is correlated with the current level of

volatility. The model determines three risk premia: a diffusive (Brownian)

risk premium, a volatility risk premium, and a state-dependent jump risk

premium. Under the physical measure, Pan (2002) proposes the following

process for the underlying index price St and variance Vt

dSt = [rt − qt + ηSVt +λVt(µ−µ∗)]Stdt +
√
VtStdB

1
t + dZt −µStλVtdt,

(4.9)

dVt = κv(v̄ −Vt)dt + σv
√
Vt

(
ρdB1

t +
√

1− ρ2dB2
t

)
, (4.10)

11 In addition to that, several studies relate volatility to the pricing kernel puzzle or risk
aversion, e.g. Bliss and Panigirtzoglou (2004), Ziegler (2007), and Linn et al. (2018).
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where the riskless rate rt and the dividend yield qt both follow a square-

root process with long-run means r̄ and q̄, mean reversion rates κr and κq,

and volatility coefficients σr and σq, respectively.12 Random innovations

are introduced by two independent standard Brownian motions, dB1
t and

dB2
t , and a poisson (pure-jump) process, Zt, whose jump intensity is λVt

and which is thus perfectly correlated with the instantaneous variance Vt.

The logarithm of the relative jump size, conditional on a jump occurring,

is normally distributed with mean µJ = ln(1 + µ) − σ2
J /2 and variance

σ2
J . Thus, the last term of Equation (4.9), µStλVtdt, compensates for

the instantaneous change in expected index returns introduced by the

pure-jump process Zt. The premia for Brownian return risks and jump

risks are estimated by ηSVt and λVt(µ − µ∗), respectively. The variance

process is modeled by Equation (4.10) and follows a square-root process

with long-run mean v̄, mean reversion rate κv, and volatility σv. The

Brownian shocks to price St and variance Vt are correlated with constant

coefficient ρ. Under the risk neutral measure, the dynamics of St and Vt

evolve according to

dSt = (rt − qt)Stdt +
√
VtStdB

1
t (Q) + dZQt −µ∗StλVtdt, (4.11)

dVt = [κv(v̄ −Vt) + ηvVt]dt + σv
√
Vt

(
ρdB1

t (Q) +
√

1− ρ2dB2
t (Q)

)
, (4.12)

where rt and qt are assumed to behave as under the physical measure.

dB1
t (Q), dB2

t (Q), and ZQt are two independent standard Brownian motions

and the poisson (pure-jump) process under the risk neutral measure,

respectively. Again, jump intensity is defined by λVt and the logarithm of
12 See Pan (2002)’s Equation (2.3).
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Table 4.1: Pan (2002) Parameters

Panel A: Pan (2002), Table 3

κv v̄ σv ρ ηs ηv λ∗ = λ µ (%) σJ µ∗ (%)

6.4 0.0153 0.30 −0.53 3.6 3.1 12.3 −0.8 0.0387 −19.2

(1.8) (0.0029) (0.04) (0.07) (2.4) (2.2) (1.9) (2.4) (0.0072) (1.8)

Panel B: Pan (2002), Table 6

κr r̄ σr κq q̄ σq

0.20 0.058 0.0415 0.24 0.025 0.0269

(0.15) (0.016) (0.0009) (0.33) (0.011) (0.0004)

Table 4.1 presents parameter estimates from the Pan (2002) stochastic volatility and
jumps model (see her Tables 3 and 6). Pan (2002) estimates these parameters with an
implied-state generalized method of moments (IS-GMM) approach and joint spot and
option data from the Berkeley Options Data Base for the period from 1989 to 1996.

the jump size, conditional on a jump occurring, is normally distributed

with mean µ∗J = ln(1 + µ∗) − σ2
J /2 and variance σ2

J . The variance process

in Equation (4.12) is defined by the mean reversion rate κ∗v = κv − ηv , the

long-run mean v̄∗ = κv v̄/κ∗v , and the volatility coefficient σv . The volatility

risk premium is estimated by ηvVt.

Pan (2002) estimates parameters with an ‘implied-state’ generalized

method of moments (IS-GMM) approach and joint spot and option data

from the Berkeley Options Data Base.13 We provide an overview of the

coefficient estimates in Table 4.1 and employ these to obtain risk neutral

and physical densities via Fourier inversion. Thereby, we closely follow

Ziegler (2007) and refer to Appendix 4.A.1 for more details.

An obvious concern of our approach is that Pan (2002) applies op-

tion data from 1989 to 1996 and the market environment has changed

thereafter. In Section 4.4.1, we therefore provide an out-of-sample test
13 We refer to Pan (2002) for more details.
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by implementing a nonparametric empirical setting for the period from

1996 to 2020. Moreover, in Section 4.4.4 we re-run our simulation with

alternative parameters. In both cases, we find our results to hold.

4.2.3 Differentiation from Earlier Studies

Although the economic theory underlying our analysis is very similar to

that of Dierkes et al. (2022), the actual implementation differs signifi-

cantly. While they conduct a fully nonparametric approach and obtain

risk neutral and physical densities from option prices, we rely on the Pan

(2002) model. Our analysis is thus entirely simulation-based.

To solve the DDE introduced in Section 4.2.1, Dierkes et al. (2022)

employ different S&P 500 maturities.14 By repeating this approach each

month, they estimate a time series of probability weighting functions. We

adjust their approach by assuming different levels of volatilities. More

specifically, we solve the DDE for volatilities, vt =
√
Vt, from 0.01 to 0.60

by choosing two adjacent volatility levels, e.g. vt = 0.10 and vt + 0.01 =

0.11. We thus provide a cross-section of probability weighting functions,

which enables us to counterfactually investigate the relationship between

probability weighting and volatilities.

4.2.4 Fitting Probability Weighting Functions

Given that we have estimated nonparametric probability weights accord-

ing to Sections 4.2.1 through 4.2.3, we now have to fit these weights to
14 We refer to their study for more details. See also Dierkes (2013) who was the first to

introduce the elicitation procedure described above.
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parametric functions. To do so, we make use of three different functional

forms: the two-parameter Prelec (1998) function, the two-parameter

linear-in-log-odds function (Tversky and Fox, 1995; Bleichrodt and Pinto,

2000), and the one-parameter Tversky and Kahneman (1992) function, as

defined by Equations (4.13), (4.14), and (4.15), respectively.

w(p) = e−δ(− log(p))γ , (4.13)

w(p) =
δpγ

δpγ + (1− p)γ
, (4.14)

w(p) =
pγ

(pγ + (1− p)γ )1/γ
, (4.15)

where γ < 1 implies overweighting of small probabilities and the typical

inverse S-shape. We estimate δ and γ by fitting Equations (4.13) and

(4.14) with linear regressions according to

log(− log(w(p)) = log(δ) +γ log(− log(p)) + ε, (4.16)

log
(
w(p)

1−w(p)

)
= log(δ) +γ log

(
p

1− p

)
+ ε, (4.17)

on the interval p ∈ {0.01,0.02, . . . ,0.99}, while Equation (4.15) is fitted with

non-linear least squares. ε denotes the residuals.

4.3 Results

4.3.1 Implied Probability Weighting Functions

In this section, we report results for the main specification of our study,

characterized by a return horizon of one year and stochastic volatilities

ranging from 0.01 to 0.60. However, in Section 5.4, we show that our

results extend to return horizons of three and six months.
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In order to estimate implied probability weighting functions, we first

obtain physical and risk neutral probabilities according to Section 4.2.2.

Fig. 4.1 illustrates the corresponding densities (Panel A) and distribu-

tion functions (Panel B) across wealth levels (averaged over volatilities).

Dashed lines correspond to 95% point-wise confidence intervals. By con-

struction, our results are very similar to those of Ziegler (2007). This

is, the average physical density is located to the right of the risk neutral

density and exhibits a more pronounced peak (at a wealth level of 1.13).

However, in contrast to Ziegler (2007), we find both densities to be more

dispersed and attribute this finding to a different choice of volatilities.

While we average over a large set of volatilities, Ziegler (2007)’s results

are based on five rather low volatilities, ranging from roughly 0.097 to

0.145.15

In Fig. 4.2, we illustrate the estimated probability weighting param-

eters for each volatility level and each of the three functional forms

outlined in Section 4.2.4. While we also report the elevation parameter

delta (Panel B), we follow Polkovnichenko and Zhao (2013) and focus our

analysis on the curvature parameter gamma (Panel A).

Although the Pan (2002) model was never designed to match CPT

preferences, the relationship between volatilities and probability weight-

ing is strikingly clear. For all weighting functions, probability weighting

is present across volatility levels and gammas almost monotonically de-

crease in volatility. This result is well in line with Polkovnichenko and
15 Ziegler (2007) bases his choice on the average volatility reported in Pan (2002), i.e. he

applies v̄ =
√

0.0153± one and two standard errors.
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Fig. 4.1: Physical and Risk Neutral Distributions, 1 Year Horizon

0.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Wealth

P
ro

b
ab

il
it

y

fP(ST) fQ(ST) fP(ST) ± 1.96σ fQ(ST) ± 1.96σ

Panel A: Average Density Function

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Wealth

C
u
m

u
la

ti
ve

 P
ro

b
ab

il
it

y

FP(ST) FQ(ST) FP(ST) ± 1.96σ FQ(ST) ± 1.96σ

Panel B: Average Distribution Function
Average Density and Distribution Function, 1 Year Horizon

Fig. 4.1 plots physical and risk neutral densities (Panel A) and distribution functions
(Panel B), estimated from the Pan (2002) stochastic volatility and jumps model and
averaged over volatilities from 0.01 to 0.60. Physical (risk neutral) densities are denoted
by fP (ST ) (fQ(ST )), whereas physical (risk neutral) distribution functions are denoted by
FP (ST ) (FQ(ST )). We assume a return horizon of one year.

Zhao (2013) and Kilka and Weber (2001). Moreover, it corresponds to

Gao et al. (2021) who find that investors dislike high-skewness securities

when market volatility is low. With the two-parameter Prelec (1998)

specification (γP relec), gamma is about 0.99 for very low volatilities and

0.70 for high volatilities. With respect to the linear-in-log-odds function

(γLog.Odds), our results are very similar as gammas vary from 0.90 to 0.68.

In contrast, variation of the Tversky and Kahneman (1992) gamma (γTK92)

is slightly reduced to 0.95 and 0.82, which is likely explained by the fact

that the Tversky and Kahneman (1992) function does not include the

elevation parameter δ.

In Table 4.2, we summarize our results and compare them to parameter

estimates from previous studies.16 Given that Pan (2002) estimates model
16 We refer to Stott (2006) for an extensive overview.
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Fig. 4.2: Implied Probability Weighting, 1 Year Horizon
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Fig. 4.2 plots results for probability weighting functions estimated from the Pan (2002)
stochastic volatility and jumps model. We identify probability weights nonparametri-
cally and estimate parameter values for three well known probability weighting func-
tions, namely the two-parameter weighting function of Prelec (1998), denoted by P relec,
the two-parameter linear-in-log-odds function (as used in Tversky and Fox, 1995; Ble-
ichrodt and Pinto, 2000), denoted by Log.Odds, and the one-parameter function of
Tversky and Kahneman (1992), denoted by TK92. While Panel A and Panel B display the
curvature parameter γ and the elevation parameter δ, respectively, Panel C shows the
probability weighting function averaged over volatilities. We assume a return horizon of
one year.

parameters from the S&P 500, i.e. one of the most liquid and competitive

option markets in the world, it is not surprising that our gamma estimates

are closer to one compared to, for example, Bleichrodt and Pinto (2000)

and Kliger and Levy (2009). However, in line with these studies, we find

persistent overweighting of small probabilities, indicating a high demand

for lottery-like assets and a large potential impact of probability weighting

on the pricing kernel puzzle. Moreover, note that Polkovnichenko and

Zhao (2013)’s median estimates (0.90-0.95, depending on the assumed

level of risk aversion) are even closer to one. As a result, the average
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Table 4.2: Typical Parameters of Probability Weighting Functions

Functional Form Study γ δ

P relec Kliger and Levy (2009) 0.60 0.79

P relec Polkovnichenko and Zhao (2013) 0.90− 0.95

Log.Odds Wu and Gonzalez (1996) 0.68 0.84

Log.Odds Tversky and Fox (1995) 0.69 0.77

Log.Odds Bleichrodt and Pinto (2000) 0.55 0.81

Log.Odds Dierkes et al. (2022) 0.89

TK92 Tversky and Kahneman (1992) 0.61

TK92 Wu and Gonzalez (1996) 0.71

TK92 Zeisberger et al. (2012) 0.86− 0.87

P relec This study 0.70− 0.99 1.19− 1.79

Log.Odds This study 0.68− 0.90 0.68− 0.83

TK92 This study 0.82− 0.95

Table 4.2 lists parameter estimates of previous studies for different probability weighting
functions. We report results for the two-parameter weighting function of Prelec (1998),
denoted by P relec, the one- and two-parameter linear-in-log-odds function (as used
in Tversky and Fox, 1995; Bleichrodt and Pinto, 2000), denoted by Log.Odds, and the
one-parameter function of Tversky and Kahneman (1992), denoted by TK92. We outline
these functions in Equations (4.13) to (4.15), where δ denotes the elevation parameter
and γ defines the curvature. The last three rows correspond to our results illustrated in
Fig. 4.2. We report our estimates for the lowest and highest volatility (0.01 and 0.60),
respectively. Note that Polkovnichenko and Zhao (2013) apply the two-parameter Prelec
(1998) function, but only report median values for the curvature parameter γ . Dierkes
et al. (2022) employ the one-parameter linear-in-log-odds function. We only report
parameters for gains.

probability weighting function over volatilities (Panel C) is characterized

by a pronounced inverse S-shape. According to Polkovnichenko and Zhao

(2013), inverse S-shaped probability weighting functions (including a

convex segment) are consistent with non-monotonicity in pricing kernels

and negative risk aversion functions. As we find pronounced probability
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weighting, we expect a strong impact of the probabilistic risk attitude on

pricing kernels and risk aversion functions.

Apart from that, understanding how probability weighting varies with

volatility might help us to understand how negative premia on lottery

stocks such as IPOs (Green and Hwang, 2012), SEOs (Chen et al., 2019),

and OTC stocks (Eraker and Ready, 2015) change with aggregate volatility.

Moreover, M&A activity (Schneider and Spalt, 2017) and the equity share

in new issues (Baker and Wurgler, 2000) might also depend on volatility.

To quantify the relationship between probability weighting and volatility,

we fit linear regressions of gamma on volatilities (v = 0.01,0.02, ...,0.60)

and variances (v2 = 0.012, ...,0.602). We report the regression estimates

below.

γP relec = 0.977− 1.181v + 1.253v2, adj. R2 = 0.978

γLog.Odds = 0.889− 0.861v + 0.892v2, adj. R2 = 0.980

γTK92 = 0.962− 0.482v + 0.374v2, adj. R2 = 0.989

We conclude that there is a distinct and close relationship between volatil-

ity and probability weighting. In times of market distress (when volatility

is high), investors overweight small probabilities and the demand for

lottery-like assets increases, while during low volatility regimes weighted

probabilities are close to their actual counterparts.

4.3.2 The Pricing Kernel Puzzle

According to economic theory, pricing kernels are defined as the ratio of

risk neutral to physical probabilities and should monotonically decrease
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in wealth. Moreover, it is well established that the pricing kernel and risk

aversion are two sides of the same coin. A locally decreasing (increasing)

pricing kernel directly implies a locally positive (negative) risk aversion

and vice versa. Thus, we can make a statement on the pricing kernel

either by estimating the pricing kernel itself or by retracing it from risk

aversion functions.

However, in contrast to economic theory, several recent studies have

captured (locally) U-shaped pricing kernels or negative episodes of the

risk aversion function, implying the pricing kernel and risk aversion

puzzle, respectively.17 We tackle these puzzles by adjusting both pricing

kernels and risk aversion functions for probability weighting. Note that,

although most of our results relate to risk aversion functions, we refer

to both puzzles by the term ‘pricing kernel puzzle’ as this term is more

frequently used in the literature.

In a first step, we investigate the pricing kernel puzzle by calculating

both the raw pricing kernel, i.e. fQ(ST )/fP (ST ), and the pricing kernel net

of probability weighting (as outlined in Equation 4.4). Recall that the

adjusted pricing kernel varies with the physical distribution, FP (ST ), if

the probability weighting function is not linear (i.e. γ , 1). Thus, convex

parts of the probability weighting function (w′(1 − FP (ST )) > 1) reduce

the pricing kernel, whereas concave parts (w′(1−FP (ST )) < 1) increase it.

Given our finding of pronounced probability weighting across volatilities,

we expect the adjusted pricing kernel to monotonically decrease in wealth.
17 See, for example, Jackwerth (2000), Ait-Sahalia and Lo (2000), and Rosenberg and

Engle (2002).
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Fig. 4.3: Average Pricing Kernel, 1 Year Horizon
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Fig. 4.3 plots pricing kernels estimated from the Pan (2002) stochastic volatility and
jumps model. Following the literature (e.g. Jackwerth, 2000; Baele et al., 2019), we
estimate the pricing kernel (PK, Panel A) as the ratio of the risk neutral to the physical
probabilities, i.e P K = fQ/fP . In Panel B, we follow Equation (4.4) and calculate the
pricing kernel, net of probability weighting, as P K = fQ(ST )/fP (ST ) ·w′(1−FP (ST )). We
assume a return horizon of one year.

Fig. 4.3 illustrates both the raw and the adjusted pricing kernel, es-

timated from the Pan (2002) model and averaged over volatilities. The

return horizon is one year and dashed lines correspond to 95% point-wise

confidence intervals. Note that, in order to obtain a smooth probabilistic

risk attitude, we derive w′(1 − FP (ST )) and w′′(1 − FP (ST )) analytically

by fitting the nonparametric probability weights to the two-parameter

weighting function of Prelec (1998). We obtain an almost perfect fit.18

Consistent with the literature, we find the raw pricing kernel (Panel A)

to exhibit a pronounced global U-Shape, implying a decreasing and par-
18 Depending on the volatility level, R2’s vary from 99.74% to 99.99%. The median

estimate is 99.96%.
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tially negative risk aversion. Hence, as inferred by Ziegler (2007), the Pan

(2002) model alone does not lead to well-behaved preferences. However,

by providing closed-form expressions for the transforms of both fP (ST )

and fQ(ST ), the model is well-suited to adjust the pricing kernel and risk

aversion functions for probability weighting, as outlined by Equations

(4.4) and (4.5). In Panel B, we report results for the adjusted pricing ker-

nel, which is monotonically decreasing in wealth. Thus, after accounting

for probability weighting, the pricing kernel is well in line with economic

theory and corresponds to Baele et al. (2019). To have a closer look at

the dynamics driving this result, it is natural to investigate risk aversion

functions. Fortunately, Equation (4.5) enables us to separate risk aversion

related to the utility function u (denoted by ARAu) and risk aversion orig-

inating from the probability weighting function w (the probabilistic risk

attitude ARAw). Fig. 4.4 presents results for a return horizon of one year,

where risk aversion functions are averaged over volatilities and dashed

lines correspond to 95% point-wise confidence intervals.

In Panel A, we report the absolute risk aversion (ARA) over wealth lev-

els. While the Pan (2002) model indeed solves the problem of a U-shape,

risk aversion still becomes negative for wealth levels greater than 1.35.

By construction, this finding is consistent with Ziegler (2007) and the

raw pricing kernel reported in Fig. 4.3. Moreover, it confirms Campbell

and Cochrane (1999) and Brandt and Wang (2003): when the business

cycle reaches the trough, wealth levels are low and the corresponding

risk aversion is high. Panels B and C illustrate the adjusted risk aversion,

ARAu, and the probabilistic risk attitude, ARAw, respectively. Most im-
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Fig. 4.4: Implied Absolute Risk Aversion, 1 Year Horizon
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Fig. 4.4 plots implied risk aversion functions estimated from the Pan (2002) stochastic
volatility and jumps model. In Panel A, we report the absolute risk aversion (ARA) over
wealth levels, averaged across volatilities from 0.01 to 0.60 and calculated following
Jackwerth (2000) and Equation (4.2): ARA = F′P (ST )/FP (ST )− F′Q(ST )/FQ(ST ). In Panel
B, we report ARA functions adjusted for the probabilistic risk attitude (as outlined
by Equation 4.5), i.e. ARAu = ARA− w

′′(1−FP (ST ))
w′(1−FP (ST )) · fP (ST ). We derive w′′(1−FP (ST )) and

w′(1−FP (ST )) analytically by fitting the nonparametrically estimated probability weights
to the two-parameter probability weighting function of Prelec (1998). In Panels D to F,
we repeat all estimations for wealth percentiles instead of wealth levels. We assume a
return horizon of one year.

portantly, as ARAw closely resembles ARA, the adjusted risk aversion is

significantly positive and almost constant over wealth levels. Moreover, in

accordance with the dynamics outlined in Section 4.2.1, ARAw is positive

and decreasing for low wealth levels, while it becomes negative for wealth

levels greater than 1.10. To prove that our findings do not depend on

the specific choice of volatilities, we repeat our calculations for wealth
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percentiles instead of levels and present results in Panels D to F.19 In fact,

the high risk aversion for wealth levels smaller than 0.80 appears to be

driven by only a few wealth percentiles. However, the probabilistic risk

attitude, ARAw, still resembles this behavior very closely, resulting in

a positive and almost constant adjusted risk aversion, ARAu.20 Again,

this is a surprisingly clear result given that the Pan (2002) model does

not account for probability weighting. However, a reasonable concern

of our approach is that we calculate w′(1 − FP (ST )) and w′′(1 − FP (ST ))

analytically by fitting the estimated probability weights to the weighting

function of Prelec (1998). In Section 4.4.3, we accommodate this concern

by providing results for both an alternative functional assumption and a

numerical solution.

Our results shed further light on the dynamics driving the pricing

kernel puzzle. By accounting for probability weighting, we obtain a

monotonically decreasing pricing kernel and a decreasing but consistently

positive risk aversion. Importantly, we show that negative episodes of

the risk aversion function arise due to the probabilistic risk attitude

being negative for high wealth levels. We therefore conclude that the

probabilistic risk attitude is a promising explanation for the pricing kernel

puzzle.
19 For example, low volatilities correspond to almost no probability mass for wealth

levels greater than 1.40.
20 Note that risk aversion estimates become insignificant for the lowest wealth percentiles

as there is a strongly increased standard deviation.
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4.4 Robustness

4.4.1 Empirical Relationship between Probability

Weighting and Volatility

While our main results are based on the Pan (2002) model and suggest

a strongly negative relation between gamma and stochastic volatility

(i.e. probability weighting increases in volatility), it is reasonable to ask

whether this relationship extends to a nonparametric empirical setting.

We therefore follow Dierkes et al. (2022) and utilize a time series of

monthly gammas from nonparametric estimates of the physical density

function fP (via S&P 500 returns) and the risk neutral density fQ (via

S&P 500 option prices).21 To measure volatility, we employ the option-

implied volatility index V IX which is provided by the Chicago Board

Options Exchange (CBOE) on a daily basis. To reconcile both time series,

we calculate the monthly average of daily V IX closing prices. Data on

gammas is provided by Dierkes et al. (2022). Due to data availability,

we cover a sample period from February 1996 to December 2020. As

this period directly follows the sample period used in Pan (2002), our

robustness check also serves as an out-of-sample test.

Most importantly, we once more find a strongly negative relation-

ship. For example, a univariate regression of gamma on the V IX yields

a negative and highly significant coefficient estimate (t = −10.91) and
21 The authors illustrate that their measure closely reflects several stock market episodes

like the DotCom bubble, the subprime crisis, and the recent surge in lottery demand
in 2020 and 2021 (see their Fig. 1). Parameters are fitted based on the two-parameter
log-odds function.
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Fig. 4.5: Empirical Relationship between Probability Weighting and
Volatility
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Fig. 4.5 plots the lowess-smoothed empirical relationship between the probability weight-
ing parameter gamma and volatility. Gammas are estimated by applying nonparametric
estimates of the physical density function fP (via S&P 500 returns) and the risk neutral
density fQ (via S&P 500 option prices), while volatilities are proxied by the option-
implied volatility index V IX. As data on the V IX is provided on a daily basis, we
employ the monthly average of daily V IX closing prices. Due to data availability, we
cover a sample period from February 1996 to December 2020.

R2 = 28.4%. By including an additional variance term (as in Section 4.3.1),

R2 even increases to 30.1%. Moreover, the difference between average

gammas in high (0.71) and low volatility regimes (1.06), according to

a median split of the V IX, is economically important and statistically

significant at the 1%-level (t = −8.05).

In Fig. 4.5, we illustrate the empirical link between probability weight-

ing and volatilities by estimating the lowess-smoothed relationship be-

tween gamma and the V IX. The range of gammas increases, yet the shape

of the smoothed relationship is surprisingly close to that reported in Panel

A of Fig 4.2. First, gamma monotonically decreases in volatility, indicating

more pronounced probability weighting in volatile market environments.
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Fig. 4.6: Empirical and Model-Implied Probability Weighting
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Panel A of Fig. 4.6 plots the time series of empirical gammas as described in Fig. 4.5.
Panel B illustrates a time series of model-implied gammas. In order to estimate this time
series, we employ the monthly average of daily VIX closing prices and match each value
according to the relationship presented in Fig. 4.2. Due to data availability, we cover a
sample period from February 1996 to December 2020.

Second, gamma strongly decreases for low V IX levels, while the slope is

less steep for volatilities greater than 0.35, suggesting that the differential

impact is stronger in low volatility periods.22 The empirical relationship

is thus well in line with Kilka and Weber (2001) and Gao et al. (2021) and

confirms our simulation-based conclusions.

In Fig. 4.6, we compare the monthly empirical gammas (Panel A) to

a time series of gammas implied by our simulation approach (Panel B).

In order to estimate the model-implied gammas, we employ the monthly

average of daily VIX closing prices and match each value according to
22 Replacing the average V IX by the maximum V IX per month leads to very similar

results. However, while maintaining its shape, the lowess-smoothed relationship is,
by construction, slightly shifted upwards.
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the relationship presented in Fig. 4.2. While model-implied gammas are,

by construction, more condensed, the overall shape of both time series is

remarkably close. For example, both time series display lower gammas

(i.e. increased probability weighting) during the run-up of the DotCom

bubble in 1998-2000 and the subprime crisis in 2007-2009. Moreover,

both estimates nicely reflect increased probability weighting after Covid-

19 reached global stock markets in March 2020. In line with this, we also

find a large correlation between the two time series (54.5%). We therefore

consider our results as further out-of-sample evidence. Moreover, they

are well in line with the literature on time-varying risk preferences, e.g.

Brandt and Wang (2003), Guiso et al. (2018), and Polkovnichenko and

Zhao (2013).

While it is reassuring that the empirical results confirm our simulation-

based findings, note that in such an exercise it is not possible to coun-

terfactually change the volatility level with all else being equal. That is,

an analysis using several months with varying volatility could have been

confounded by additional time-varying economic state variables. This

is why, in our baseline analysis, we opted for model-based results with

volatility as the only additional state variable.

4.4.2 Alternative Maturities

To prove that our results hold for alternative assumptions, we now re-

peat our estimations for return horizons of six and three months and

focus on the most important components: volatility-dependent proba-
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Fig. 4.7: Implied Probability Weighting, 6 Months and 3 Months Horizon
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Fig. 4.7 plots results for probability weighting functions estimated from the Pan (2002)
stochastic volatility and jumps model. We identify probability weights nonparametri-
cally and estimate parameter values for three well known probability weighting func-
tions, namely the two-parameter weighting function of Prelec (1998), denoted by P relec,
the two-parameter linear-in-log-odds function (as used in Tversky and Fox, 1995; Ble-
ichrodt and Pinto, 2000), denoted by Log.Odds, and the one-parameter function of
Tversky and Kahneman (1992), denoted by TK92. While Panel A and Panel B display
the curvature parameter γ for a return horizon of six and three months, respectively,
Panel C shows the probability weighting function averaged over volatilities. We assume
a return horizon of six months.

bility weighting and the impact of the probabilistic risk attitude on risk

aversion functions. However, we report corresponding risk neutral and

physical densities as well as pricing kernels in Appendices 4.A.2 and

4.A.3, respectively.

Fig. 4.7 illustrates the curvature parameter gamma as well as the aver-

age probability weighting function for return horizons of six and three

months, respectively. With respect to a return horizon of six months

(Panel A), the variation in gamma is very similar to our main specifica-

tion. While γP relec varies from 1.02 for low volatilities to 0.71 for high
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volatilities, γLog.Odds decreases from roughly 0.97 to 0.70. Notably, γP relec

is rather constant for volatilities between 0.01 and 0.11 and then sharply

decreases for volatilities between 0.12 and 0.30. Again, the variation

in γTK92 is somewhat smaller (0.98 to 0.80) but still reasonable. Most

importantly, even though gammas seem to be shifted upwards, we still

find a strongly negative relationship with volatilities. As a result, the

average probability weighting function (black solid line in Panel C) dis-

plays a distinct, but slightly less pronounced, inverse S-shape. Panel B

reports gammas for a return horizon of three months. γP relec (γLog.Odds)

now varies from roughly 0.98 to 0.77 (0.97 to 0.78), whereas γTK92 ranges

from 0.97 to 0.84. Again, γP relec is almost constant for small volatilities

and then sharply decreases. Although gammas are below one, the overall

level is further shifted upwards. As a consequence, the average probabil-

ity weighting function (grey solid line in Panel C) is closer to the identity

function (dashed line), but still preserves an inverse S-shape. We thus

conclude that the estimation of probability weights is robust to alternative

return horizons.

To further investigate the pricing kernel puzzle, we focus on the ad-

justed risk aversion (ARAu). Fig. 4.8 illustrates risk aversion functions

for a return horizon of six months. In Panel A, we report the average risk

aversion over wealth levels. While the overall shape is close to our main

specification, ARA is slightly shifted upwards and becomes negative for

wealth levels greater than 1.20 (compared to 1.35 for a return horizon

of one year). In contrast to Fig. 4.4, the adjusted risk aversion, ARAu,

is somewhat bumpier and slightly increasing for wealth levels greater
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Fig. 4.8: Implied Absolute Risk Aversion, 6 Months Horizon
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Fig. 4.8 plots implied risk aversion functions estimated from the Pan (2002) stochastic
volatility and jumps model. In Panel A, we report the absolute risk aversion (ARA) over
wealth levels, averaged across volatilities from 0.01 to 0.60 and calculated following
Jackwerth (2000) and Equation (4.2): ARA = F′P (ST )/FP (ST )− F′Q(ST )/FQ(ST ). In Panel
B, we report ARA functions adjusted for the probabilistic risk attitude (as outlined by
Equation 4.5), i.e. ARAu = ARA − w′′(1−FP (ST ))

w′(1−FP (ST )) · fP (ST ). We derive w′′(1 − FP (ST )) and
w′(1 − FP (ST )) analytically by fitting the derive estimated probability weights to the
two-parameter probability weighting function of Prelec (1998). In Panels D to F, we
repeat all estimations for wealth percentiles instead of wealth levels. We assume a return
horizon of six months.

than 1.60 (with very little probability mass, Panel B). Most importantly,

ARAu remains significantly positive for all wealth levels and thus implies

a monotonically decreasing pricing kernel. The probabilistic risk attitude

is almost unchanged, i.e. ARAw is positive and decreasing for low wealth

levels, and negative for wealth levels greater than 1.05 (Panel C). With

respect to wealth percentiles (Panels D to F), results correspond to our

main specification. Notably, except for some noise around the 15% quan-
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Fig. 4.9: Implied Absolute Risk Aversion, 3 Months Horizon
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Implied Absolute Risk Aversion, 3 Months Horizon

Fig. 4.9 plots implied risk aversion functions estimated from the Pan (2002) stochastic
volatility and jumps model. In Panel A, we report the absolute risk aversion (ARA) over
wealth levels, averaged across volatilities from 0.01 to 0.60 and calculated following
Jackwerth (2000) and Equation (4.2): ARA = F′P (ST )/FP (ST )− F′Q(ST )/FQ(ST ). In Panel
B, we report ARA functions adjusted for the probabilistic risk attitude (as outlined
by Equation 4.5), i.e. ARAu = ARA− w

′′(1−FP (ST ))
w′(1−FP (ST )) · fP (ST ). We derive w′′(1−FP (ST )) and

w′(1−FP (ST )) analytically by fitting the nonparametrically estimated probability weights
to the two-parameter probability weighting function of Prelec (1998). In Panels D to F,
we repeat all estimations for wealth percentiles instead of wealth levels. We assume a
return horizon of three months.

tile, there are no episodes of increasing ARAu. We therefore argue that

increasing segments in Panel B are merely an artifact of averaging over

volatilities.

Fig. 4.9 illustrates results for a return horizon of three months. In

contrast to our main specification, ARA is shifted upwards and appears

to be more bumpy, but still monotonically decreases in wealth. Since

the probabilistic risk attitude is only slightly affected, the bumpy shape
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of ARA directly transfers to the adjusted risk aversion. Hence, ARAu

exhibits increasing parts around a wealth level of 0.80 (with a physical

density of almost zero). Most importantly, ARAu is consistently positive

and Panel E confirms that increasing episodes are, again, an artifact of

averaging over volatilities.

In summary, we find our results to be robust to alternative maturities.

Although risk aversion functions are less smooth, we find the risk aversion

− net of probability weighting − to remain significantly positive over both

wealth levels and wealth percentiles, implying a monotonically decreasing

pricing kernel.

4.4.3 Alternative Estimation of the Probabilistic Risk

Attitude

A natural concern of our approach is that we derive w′(1 − FP (ST )) and

w′′(1−FP (ST )) analytically by fitting nonparametric probability weights

to the two-parameter function of Prelec (1998). Thus, our results might

reflect the specific functional assumption. To accommodate this con-

cern, we first replace our functional assumption by the linear-in-log-odds

probability weighting function and then provide an entirely numerical

solution. Results for the linear-in-log-odds function and a return horizon

of one year are presented in Fig. 4.10.23

By construction, absolute risk aversion functions in Panels A and D

are not affected by a change of the functional assumption since ARA (see
23 Again, we find an almost perfect fit.
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Fig. 4.10: Implied Absolute Risk Aversion, Linear-in-Log-Odds, 1 Year
Horizon
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Implied Absolute Risk Aversion, 1 Year Horizon

Fig. 4.10 plots implied risk aversion functions estimated from the Pan (2002) stochastic
volatility and jumps model. In Panel A, we report the absolute risk aversion (ARA) over
wealth levels, averaged across volatilities from 0.01 to 0.60 and calculated following
Jackwerth (2000) and Equation (4.2): ARA = F′P (ST )/FP (ST )− F′Q(ST )/FQ(ST ). In Panel
B, we report ARA functions adjusted for the probabilistic risk attitude (as outlined
by Equation 4.5), i.e. ARAu = ARA− w

′′(1−FP (ST ))
w′(1−FP (ST )) · fP (ST ). We derive w′′(1−FP (ST )) and

w′(1−FP (ST )) analytically by fitting the nonparametrically estimated probability weights
to the two-parameter linear-in-log-odds probability weighting function (Tversky and
Fox, 1995; Bleichrodt and Pinto, 2000). In Panels D to F, we repeat all estimations for
wealth percentiles instead of wealth levels. We assume a return horizon of one year.

Equation 4.2) does not depend on w′(1−FP (ST )) or w′′(1−FP (ST )). Hence,

changes in ARAu (Panels B and E) solely depend on ARAw (Panels C and

F). In contrast to our main specification, we find the probabilistic risk

attitude to be less pronounced for low wealth levels.24 Thus, for a wealth

level of 0.50, we find ARAu ≈ 15, whereas in our main specification it
24 See Dierkes and Sejdiu (2019) for differences in the probabilistic risk attitude of

various probability weighting functions for probabilities near zero.
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holds ARAu ≈ 5. Most importantly, ARAu remains positive throughout

wealth levels and all but the highest wealth percentile, again implying a

monotonically decreasing pricing kernel. Moreover, except for some noise,

ARAu is monotonically decreasing. Even though ARAu is not significant

for wealth levels greater than 1.77, it should again be noted that there

is only little probability mass for these wealth levels (see Fig. 4.1). We

therefore conclude that our findings are robust to a different functional

assumption.

In Fig. 4.11, we present the resulting risk aversion functions when

w′(1 − FP (ST )) and w′′(1 − FP (ST )) are derived numerically, i.e. without

fitting probability weights to a parametric weighting function. A word of

caution is in order. As mentioned in Section 4.2.4, we estimate probability

weights on the interval p ∈ {0.01,0.02, . . . ,0.99}. Hence, we are not able to

estimate probability weights unless it holds for at least one volatility that

FP (ST ) ≥ 0.01 or FP (ST ) ≤ 0.99. Moreover, to derive w′(1 − FP (ST )) and

w′′(1−FP (ST )) numerically, we lose two more observations. We therefore

propose a fine grid for the two probabilities at the extremes and a regular

grid in between, i.e. p ∈ {0.001,0.002,0.01,0.02, . . . ,0.99,0.998,0.999}.

By this means, we obtain the probabilistic risk attitude for at least one

volatility and wealth levels between 0.72 and 2.00. Consequently, Fig. 4.11

is also limited to this range.

In Panel A, we report the absolute risk aversion which is slightly

increasing for wealth levels below 0.78 and greater than 1.47. Note that,

even though ARA does not depend on w′(1 − FP (ST )) or w′′(1 − FP (ST )),

the function differs from Fig. 4.4 and 4.10. The rationale is given by the
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Fig. 4.11: Implied Absolute Risk Aversion, Numerical Solution, 1 Year
Horizon
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Implied Absolute Risk Aversion, 1 Year Horizon (Numerical)

Fig. 4.11 plots implied risk aversion functions estimated from the Pan (2002) stochastic
volatility and jumps model. In Panel A, we report the absolute risk aversion (ARA) over
wealth levels, averaged across volatilities from 0.01 to 0.60 and calculated following
Jackwerth (2000) and Equation (4.2): ARA = F′P (ST )/FP (ST )− F′Q(ST )/FQ(ST ). In Panel
B, we report ARA functions adjusted for the probabilistic risk attitude (as outlined by
Equation 4.5), i.e. ARAu = ARA−w

′′(1−FP (ST ))
w′(1−FP (ST )) ·fP (ST ). In contrast to our main specification,

we derive w′′(1−FP (ST )) and w′(1−FP (ST )) numerically. In Panels D to F, we repeat all
estimations for wealth percentiles instead of wealth levels. We assume a return horizon
of one year.

fact that for wealth levels below 0.78 and above 1.47, w′(1−FP (ST )) and

w′′(1−FP (ST )) are only known for some of the examined volatilities. For

wealth levels between 0.78 and 1.47, ARA is equal to Fig. 4.4. Resulting

from the estimation instabilities described above, the probabilistic risk

attitude is less smooth and locally increasing (Panel C). Nevertheless, we

find the global shape, i.e. ARAw > 0 for small wealth levels and ARAw < 0

for high wealth levels, to be preserved. As a consequence, ARAu remains
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significantly positive for the vast majority of wealth levels (Panel B). Panels

D to F present results for wealth percentiles. Except for the highest wealth

percentile, ARAu is consistently positive and significant throughout the

vast majority of wealth percentiles. Even though the estimation procedure

is less stable, our results are thus robust to a numerical solution. In

unreported results, we repeat our calculations for return horizons of three

and six months and find our conclusions to hold.25

4.4.4 Sensitivity Analysis

Our simulation approach is not only based on the Pan (2002) model, but

also relies on the corresponding parameter estimates. Although results

in Section 4.4.1 hint that our findings related to gamma extend to the

1996-2020 period, a reasonable concern of our approach is that Pan (2002)

employed options data from 1989 to 1996 and the market environment

has changed thereafter. Below, however, we show that this concern is not

warranted as we re-run our simulation with alternative parameters. More

precisely, we adjust each parameter for ± one standard error (σ̂SE) and

summarize results in Table 4.3.26

We find our results to be remarkably robust. For example, variation

in parameters related to the interest rate r and the dividend yield q does

not involve any considerable impact on probability weighting and risk

aversion functions. Moreover, our conclusions remain unaffected by
25 Confidence intervals in the numerical solution tend to increase. However, ARAu

remains significantly positive for the vast majority of wealth levels and percentiles.
26 We thereby assume the remaining parameters to be constant. Strictly speaking, a

changed market environment will also result in different standard errors. However,
given our results in section 4.4.1, we assume sufficient accuracy.
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Table 4.3: Sensitivity Analysis

Parameter Estimate (Std. Error) Comments

Panel A: Pan (2002), Table 3

κv 6.4 (1.8) In case of κ̂v − 1σ̂SE , gamma increases for
√
V > 0.50. Proba-

bility weighting remains strongly inverse S-shaped.

v̄ 0.0153 (0.0029) In case of ˆ̄v − 1σ̂SE , our code becomes numerically unstable
for
√
V > 0.45. ARAu > 0, but not significant for wealth levels

> 1.75 (probability mass is below 1%).

σv 0.30 (0.04)

ρ −0.53 (0.07)

ηs 3.6 (2.4) In case of η̂s + 1σ̂SE , our code becomes numerically unstable
for
√
V > 0.53 and gamma increases for

√
V > 0.43. Probabil-

ity weighting remains strongly inverse S-shaped.

ηv 3.1 (2.2) In case of η̂v − 1σ̂SE , even ARA is always positive. In case
of η̂v + 1σ̂SE , ARA (and also ARAw) are strongly negative.
ARAu is slightly negative for wealth levels > 1.50. ARAu over
wealth percentiles, however, remains positive for all but the
highest percentile.

λ∗ = λ 12.3 (1.9)

µ (%) −0.8 (2.4)

σJ 0.0387 (0.0072) In case of σ̂J + 1σ̂SE , our code becomes numerically unstable
for
√
V > 0.48. Numerically derived ARAu is < 0 for wealth

levels > 1.92 (corresponding probability mass is almost zero).

µ∗ (%) −19.2 (1.8)

Panel B: Pan (2002), Table 6

κr 0.20 (0.15)

r̄ 0.058 (0.016)

σr 0.0415 (0.0009)

κq 0.24 (0.33)

q̄ 0.025 (0.011)

σq 0.0269 (0.0004)

Table 4.3 presents parameter estimates from the Pan (2002) stochastic volatility and
jumps model (see her Tables 3 and 6). To check whether our results are robust to
variations of these parameters, we re-run our calculations with ±1σ̂SE . While

√
V

indicates volatilities, ARA, ARAu , and ARAw denote the absolute risk aversion, the
adjusted risk aversion (related to the utility function), and the probabilistic risk attitude,
respectively. We assume a return horizon of one year and derive w′′(1 − FP (ST )) and
w′(1−FP (ST )) analytically by fitting nonparametrically estimated probability weights to
the two-parameter probability weighting function of Prelec (1998).
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variation in the jump risk premium λVt(µ−µ∗), the volatility coefficient

σv , and the correlation between Brownian shocks ρ. Nevertheless, there

are some minor instabilities which we want to outline hereafter.

Considering the mean reversion rate of the variance process, κ̂v −1σ̂SE

results in an increasing gamma for volatility levels greater than 0.50.

The average probability weighting function, however, is still strongly

inverse S-shaped and ARAu is not affected. With respect to the average

volatility, we find that ˆ̄v − 1σ̂SE results in an unstable estimation of the

DDE for v > 0.45. Moreover, ARAu is positive but not significant for

wealth levels greater than 1.75 (with a corresponding probability mass

of below 1%). In case of η̂S + 1σ̂SE (related to the premium for Brownian

risk), estimating the DDE becomes numerically unstable for v > 0.53

and gamma increases for v > 0.43. Nevertheless, probability weighting

remains strongly inverse S-shaped. The largest impact on our results is

given by a variation of the variance risk premium η̂v . In case of η̂v − 1σ̂SE ,

even ARA is consistently positive, while for η̂v + 1σ̂SE both ARA and the

probabilistic risk attitude are strongly negative. As a result, ARAu is

slightly negative for wealth levels greater than 1.50. Importantly, ARAu

over wealth percentiles remains positive for all but the highest percentile.

Finally, variation in the jump size volatility (σ̂J + 1σ̂SE) causes the DDE to

become unstable for v > 0.48. Despite that, our conclusions with respect

to ARAu and probability weighting functions remain unaffected.

In summary, we find some specifications for which solving the DDE be-

comes numerically unstable in case of large volatilities. Our conclusions,

however, remain largely unaffected. We still find a strongly negative (pos-
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itive) relationship between volatility and gamma (probability weighting),

and after accounting for probability weighting, risk aversion functions

are mostly significantly positive. Lastly, note that volatilities greater than

0.50 only occur with a probability of less than one percent.27

4.5 Concluding Remarks

We contribute to a large body of literature on time-varying risk pref-

erences and the pricing kernel puzzle. Following Ziegler (2007), we

obtain risk neutral and physical densities from the Pan (2002) stochastic

volatility and jumps model for a large set of volatilities. Thereafter, we

employ these densities to estimate nonparametric probability weights,

which we fit to three well-known probability weighting functions: the

two-parameter Prelec (1998) function, the two-parameter linear-in-log-

odds function, and the one-parameter Tversky and Kahneman (1992)

function. Even though the Pan (2002) model was not designed to account

for CPT preferences, our results are strikingly clear. Implied probability

weighting functions are strongly inverse S-shaped and the curvature pa-

rameter gamma almost monotonically decreases in volatility, suggesting

that skewness preferences are more pronounced in volatile market envi-

ronments. Moreover, we estimate probabilistic risk attitudes, equivalent

to the share of risk aversion related to probability weighting. In doing so,

we fit the estimated probability weights to the functional assumption of

Prelec (1998) and calculate derivatives analytically. This enables us to ad-
27 Given daily VIX closing prices from January 1990 to August 2022, the probability for

volatilities greater than 0.50 (0.45) is 0.90% (1.36%).
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just pricing kernel and risk aversion functions for probability weighting

and to shed further light on the pricing kernel puzzle. We find the raw

pricing kernel, implied by the Pan (2002) model, to display a pronounced

U-shape, implying episodes of negative risk aversion. After taking into

account probability weighting, however, the pricing kernel is monotoni-

cally decreasing in wealth and risk aversion functions remain significantly

positive. Our results are robust to alternative return horizons, wealth

percentiles, an alternative functional assumption and both a numerical

approach to estimate the probabilistic risk attitude and variations of the

Pan (2002) coefficient estimates. Moreover, we provide an out-of-sample

test by implementing a nonparametric empirical setting for the period

from 1996 to 2020, confirming that Pan (2002)’s parameter estimates are

still appropriate. We therefore conclude that probability weighting is not

only closely related to volatile market environments, but is also a key

driver of the pricing kernel puzzle.
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4.A Appendix

4.A.1 Estimation of Physical and Risk Neutral Densities

To estimate physical and risk neutral densities, we closely follow Ziegler

(2007) who provides time-t conditional Fourier transforms of ln(ST ).28

Given the notation outlined in Section 4.2.2 and initial values for the

interest rate r, the dividend yield q, the volatility v, and the return horizon

τ = T − t, Ziegler (2007) provides the time-t conditional transform under

the physical measure as

ψ(S;v,r,q,τ) = exp
(
αr(S) +αq(S) +αv(S) + βr(S)r + βq(S)q+ βv(S)v

)
,

(4.A.1)

where αi and βi (i = r,q,v) are defined as

αr = −κr r̄
σ2
r

(
(γr −κr)τ + 2ln

(
1− (γr −κr)

1− exp(−γrτ)
2γr

))
, (4.A.2)

αq = −
κqq̄

σ2
q

(
(γq −κq)τ + 2ln

(
1− (γq −κq)

1− exp(−γqτ)

2γq

))
, (4.A.3)

αv = −κv v̄
σ2
v

(
(γv + b)τ + 2ln

(
1− (γv + b)

1− exp(−γvτ)
2γv

))
, (4.A.4)

βr = −
2(1− S)(1− exp(−γrτ))

2γr − (γr −κr)(1− exp(−γrτ))
, (4.A.5)

βq = −
2S(1− exp(−γqτ))

2γq − (γq −κq)(1− exp(−γqτ))
, (4.A.6)

βv = −
a(1− exp(−γvτ))

2γv − (γv + b)(1− exp(−γvτ))
, (4.A.7)

28 See his Appendix B, where transforms are based on Pan (2002)’s Appendix B and
Duffie et al. (2000).
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with

γr =
√
κ2
r + 2(1− S)σ2

r , (4.A.8)

γq = κ2
q + 2Sσ2

q , (4.A.9)

γv =
√
b2 + aσ2

v , (4.A.10)

a = S(1− S)− 2λ
(

exp(SµJ + S2
σ2
J

2
)− 1− Sµ∗

)
− 2SηS , (4.A.11)

b = σvρS −κv . (4.A.12)

Given the parameter estimates reported in Table 4.1 and the level of

the underlying S, the physical density fP can be obtained via numerical

integration of

fP (S;v,r,q,τ) =
1

2π

∫ ∞
−∞
ψ(iz;v,r,q,τ)exp(−izS)dz. (4.A.13)

To obtain the risk neutral density fQ, some of the parameters have to

be replaced by their risk neutral counterparts. The time-t conditional

transform under the risk neutral measure is then given by

ψ∗(S;v,r,q,τ) = exp
(
αr(S) +αq(S) +α∗v(S) + βr(S)r + βq(S)q+ β∗v(S)v

)
,

(4.A.14)

where αr , αq, βr , and βq are defined as in Equation (4.A.1) and

α∗v = −κ
∗
v v̄
∗

σ2
v

(
(γ∗v + b∗)τ + 2ln

(
1− (γ∗v + b∗)

1− exp(−γ∗vτ)
2γ∗v

))
, (4.A.15)

β∗v = −
a∗(1− exp(−γ∗vτ))

2γ∗v − (γ∗v + b∗)(1− exp(−γ∗vτ))
, (4.A.16)
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with

κ∗v = κv − ηv , (4.A.17)

v̄∗ = κv v̄/κ
∗
v , (4.A.18)

a∗ = S(1− S)− 2λ
(

exp(Sµ∗J + S2σ2
J /2)− 1− Sµ∗

)
, (4.A.19)

b∗ = σvρS −κ∗v , (4.A.20)

γ∗v =
√

(b∗)2 + a∗σ2
v . (4.A.21)

Given the parameter estimates reported in Table 4.1 and the level of the

underlying S, fQ can again be obtained via numerical integration:

fQ(S;v,r,q,τ) =
1

2π

∫ ∞
−∞
ψ∗(iz;v,r,q,τ)exp(−izS)dz. (4.A.22)
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4.A.2 Alternative Maturities: Distributions

Fig. 4.A.1: Physical and Risk Neutral Distributions, 6 Months Horizon
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Average Density and Distribution Function, 6 Months Horizon

Fig. 4.A.1 plots physical and risk neutral densities (Panel A) and distribution functions
(Panel B), estimated from the Pan (2002) stochastic volatility and jumps model and
averaged over volatilities from 0.01 to 0.60. Physical (risk neutral) densities are denoted
by fP (ST ) (fQ(ST )), whereas physical (risk neutral) distribution functions are denoted by
FP (ST ) (FQ(ST )). We assume a return horizon of six months.

Fig. 4.A.2: Physical and Risk Neutral Distributions, 3 Months Horizon
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Panel B: Average Distribution Function
Average Density and Distribution Function, 3 Months Horizon

Fig. 4.A.2 plots physical and risk neutral densities (Panel A) and distribution functions
(Panel B), estimated from the Pan (2002) stochastic volatility and jumps model and
averaged over volatilities from 0.01 to 0.60. Physical (risk neutral) densities are denoted
by fP (ST ) (fQ(ST )), whereas physical (risk neutral) distribution functions are denoted by
FP (ST ) (FQ(ST )). We assume a return horizon of three months.
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4.A.3 Alternative Maturities: Pricing Kernels

Fig. 4.A.3: Average Pricing Kernel, 6 Months Horizon
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Fig. 4.A.3 plots pricing kernels estimated from the Pan (2002) stochastic volatility and
jumps model. Following the literature (e.g. Jackwerth, 2000; Baele et al., 2019), we
estimate the pricing kernel (PK, Panel A) as the ratio of the risk neutral to the physical
probabilities, i.e P K = fQ/fP . In Panel B, we follow Equation (4.4) and calculate the
pricing kernel, net of probability weighting, as P K = fQ(ST )/fP (ST ) ·w′(1−FP (ST )). We
assume a return horizon of six months.

Fig. 4.A.4: Average Pricing Kernel, 3 Months Horizon
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Fig. 4.A.4 plots pricing kernels estimated from the Pan (2002) stochastic volatility and
jumps model. Following the literature (e.g. Jackwerth, 2000; Baele et al., 2019), we
estimate the pricing kernel (PK, Panel A) as the ratio of the risk neutral to the physical
probabilities, i.e P K = fQ/fP . In Panel B, we follow Equation (4.4) and calculate the
pricing kernel, net of probability weighting, as P K = fQ(ST )/fP (ST ) ·w′(1−FP (ST )). We
assume a return horizon of three months.
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Chapter 5

Idiosyncratic Skewness and Market

Timing of Capital Structure Decisions

This chapter refers to the working paper:

Dierkes, Maik and Jan Krupski (2022): ‘Idiosyncratic Skewness and Mar-
ket Timing of Capital Structure Decisions’, Working Paper, Leibniz
Universität Hannover.

Abstract
We investigate the impact of market timing on capital structure

by employing idiosyncratic skewness as a proxy for firm-specific
mispricing. Consistent with the market timing theory, idiosyncratic
skewness is significantly positively related to equity issues, while the
impact on debt issues is negative and of less importance. Moreover,
we find equity issues to be accompanied by debt retirement pro-
grams. Contrasting the market timing theory, these effects are not
persistent and vanish after about three years. Both the short-term
and the long-term results are robust to a wide range of robustness
checks. In line with Alti (2006), our results are therefore consistent
with a modified version of the trade-off theory, including market
timing as a short-term factor.

Keywords: Idiosyncratic Skewness, Market Timing, Persistence, Capital
Structure

JEL Classification: G14, G32, G41.
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5.1 Introduction

Building on the seminal study of Modigliani and Miller (1958) and market

imperfections, there are three prevalent theories of capital structure. The

pecking order theory of Myers and Majluf (1984) predicts that, due to

asymmetric information, managers may refuse to issue equity because the

costs to old shareholders outweigh a project’s positive net present value.

Firms therefore primarily fund investments with internal funds. If these

are not sufficient, they prefer debt over equity issues. According to the

trade-off theory, firms choose their optimal mix of debt and equity by

balancing the costs (e.g. bankruptcy costs) and benefits (e.g. tax benefits)

of debt.1 At the optimum, the marginal benefit of one additional dollar of

debt equals its marginal costs.2 The market timing theory predicts that

managers attempt to exploit temporary fluctuations in the cost of equity

and therefore issue (repurchase) equity when shares are perceived to be

overvalued (undervalued). Consequently, proxies for misvaluation should

be positively related to equity issues.3 According to Baker and Wurgler

(2002), market timing should have a long-lasting impact.

We provide new evidence on the implications of firm-specific mispric-

ing on financing decisions and capital structure. We employ idiosyncratic

skewness as a proxy for mispricing and find a strong effect of market

timing in the short run. More precisely, idiosyncratic skewness is sig-

nificantly positively related to equity issues and negatively related to
1 See Lemmon and Zender (2010).
2 See Fama and French (2002).
3 See Baker and Wurgler (2002) and Elliott et al. (2008).
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debt issues, with the former effect being the predominant one.4 Notably,

equity issuance is accompanied by debt retirement programs, resulting

in a negative impact on both the leverage level and changes in leverage.

However, in contrast to the predictions of the market timing theory, we

find that the effect is not persistent and vanishes after about three years.

Consequently, our results are consistent with a long-term validity of the

trade-off theory, including market timing as a short-term factor.5

Our study relates to the vast amount of literature on capital struc-

ture theory. For example, Lemmon and Zender (2010) show that, after

accounting for debt capacity, the pecking order theory appropriately de-

scribes financing behavior. Moreover, Shyam-Sunder and Myers (1999)

conclude that the pecking order is of first-order importance. Contrary to

the pecking order theory, Frank and Goyal (2003) find that there are more

equity issues than debt issues and that these track the financing deficit

more closely (especially in the 1990s).6

Supporting the trade-off theory, Hovakimian et al. (2001) find that

firms adjust their capital structure based on a target debt ratio and Fama

and French (2002) show that leverage is mean reverting. These results

align well with survey evidence from Graham and Harvey (2001) and

Graham (2022) who find that 81% and 72% of firms follow some type

of target leverage, respectively. Flannery and Rangan (2006) and Warr

et al. (2012) find that adjustment to these targets proceeds at a fast rate

of around 35% per year, implying a half-life of deviations from target
4 This finding is consistent with Dong et al. (2012).
5 See Alti (2006).
6 See also Huang and Ritter (2009), Welch (2004), and Byoun (2008).
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of only 1.6 years. In contrast, Fama and French (2002) document a rate

of 10-18% (for book leverage), while Huang and Ritter (2009) report an

annual adjustment of 17%.7 Further studies find the speed of adjustment

to depend on the relative position to the target (Byoun, 2008), adjust-

ment costs (Leary and Roberts, 2005; Korteweg et al., 2022), and equity

mispricing (Warr et al., 2012).

Contrasting the trade-off theory, Rajan and Zingales (1995) and Ho-

vakimian et al. (2001) find that firms typically issue stock when their

valuation is high and thus the perceived cost of equity is low.8 In line

with this, Graham and Harvey (2001) find that overvaluation is one of

the main reasons to issue equity, while managers are reluctant to issue

shares when they consider their stock to be undervalued. Baker and

Wurgler (2002) conclude that capital structure is the cumulative outcome

of past attempts to time the equity market. Firms issue (repurchase)

equity instead of debt when they perceive their market value - in terms

of the market-to-book ratio - to be high (low).9 Long-term returns of

equity issuers are usually negative, suggesting that market timing, on

average, is successful. Baker and Wurgler (2002) propose two versions of

market timing. First, a dynamic version of Myers and Majluf (1984) with

rational managers and investors, where the extent of adverse selection
7 Hovakimian and Li (2011) find a rate of only 5-8% and Kayhan and Titman (2007)

conclude that a firm’s history influences observed debt ratios for at least ten years.
Chang and Dasgupta (2009) argue that the results of prior studies can be reproduced
by random simulations, but Huang and Ritter (2009) and DeAngelo and Roll (2015)
refute this finding.

8 See also Kayhan and Titman (2007) and Huang and Ritter (2009).
9 See also Hovakimian et al. (2001), Elliott et al. (2008), and Warusawitharana and

Whited (2016).
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varies across firms and time. Second, irrational investors (or managers)

and time-varying (perceived) mispricing. Importantly, for this version to

hold, the market does not necessarily need to be inefficient. Instead, it

is sufficient that managers believe they can time the market. Baker and

Wurgler (2002) consider this explanation to be more likely. Subsequently,

there has been a substantial amount of studies to study the impact of

equity mispricing on financing decisions and capital structure. Elliott

et al. (2008) confirm that mispricing is driven by investors’ irrationality

rather than information asymmetries and Alti and Sulaeman (2012) find

that equity issuance depends on both a high valuation and high institu-

tional investor demand. Dong et al. (2012) show that overvaluation is

more important than undervaluation and Kim and Weisbach (2008) and

Bolton et al. (2013) conclude that overvaluation implies equity issues even

if firms do not have financial needs.10

Contrasting the market timing theory, Flannery and Rangan (2006)

and Alti (2006) show that firms subsequently rebalance away from the

influence of market timing decisions by issuing more debt and less equity.

As a result, the impact of market timing disappears after only a few

years. Hovakimian (2006) and Mahajan and Tartaroglu (2008) confirm

this finding for the U.S. and international equity markets, respectively.

Our study contributes to both the extensive literature on mispricing

proxies and the persistence of market timing. To the best of our knowl-

edge, we are the first to employ idiosyncratic skewness – as a proxy for
10 Moreover, DeAngelo et al. (2010), Khan et al. (2012), and Dittmar et al. (2020) find that

high valuations have a significantly positive impact on the probability for seasoned
equity offerings (SEOs).
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mispricing – in a broad study of financing decisions and capital structure.

We motivate using this measure for several reasons. Most importantly,

Barberis and Huang (2008) show that investors with prospect theory

preferences demand securities with highly right-skewed payoffs (such as

IPOs), which induces them to hold more concentrated portfolios and leads

to an overvaluation of securities with a skewed return distribution.11 In

line with this prediction, Boyer et al. (2010), Conrad et al. (2013), and

Chang et al. (2013) find a negative relation between skewness and sub-

sequent average returns.12 Moreover, Autore and DeLisle (2016) find

idiosyncratic skewness to significantly predict returns following an SEO

and Green and Hwang (2012) document that IPOs with high expected

idiosyncratic skewness (based on their industry) earn high first-day (low

long-term) returns.13 Notably, they also find that expected idiosyncratic

skewness predicts future return skewness. Consequently, firms recogniz-

ing the mispricing will exploit it by issuing more equity, resulting in a

lower leverage. To investigate the impact of firm-specific mispricing on

financing decisions and capital structure, we therefore employ the skew-

ness measure of Green and Hwang (2012) and replace industry returns

by firm-specific returns.

Our results provide further evidence for the implications of market

timing. After accounting for control variables motivated by the literature,
11 See also Mitton and Vorkink (2007), Brunnermeier and Parker (2005), and Brunner-

meier et al. (2007).
12 These studies employ the expected idiosyncratic skewness, the risk neutral idiosyn-

cratic skewness, and the risk neutral market skewness, respectively. See also Kumar
et al. (2022) who find that skewness significantly predicts the mispricing component
of a combined measure of eleven prominent anomalies.

13 See also Dierkes et al. (2022).
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we find idiosyncratic skewness to be significantly positively related to

equity issues, while the impact on debt issues is negative. However, in

line with Dong et al. (2012), the effect on equity issues is more important,

both economically and statistically (t = 8.08 vs. t = −3.01).14 Addition-

ally, we confirm Hovakimian et al. (2001) as we find equity issues to be

accompanied by debt retirement programs. As a result, idiosyncratic

skewness negatively predicts both the leverage level and changes in lever-

age. Furthermore, there is a significantly positive impact on the change in

cash holdings, suggesting that firms do not issue equity to meet financial

needs.15 While we base our main analysis on book leverage, our results

also apply to market leverage and several robustness checks motivated

by the literature (e.g. subperiods, size splits, Fama and MacBeth (1973)

regressions, an alternative skewness measure, and alternative leverage

definitions). We therefore conclude that our results are consistent with a

strong impact of market timing in the short run.

However, in stark contrast to the market timing theory, we find that

the impact on leverage (leverage changes) completely vanishes after only

three (four) years.16 In line with this finding, we find an annual speed of

adjustment of 32%, implying a half-life of deviations from target leverage

of only 1.8 years.17 Notably, rebalancing is not only driven by more debt

issues but also by reduced debt retirements. Again, our conclusions are
14 We derive the same conclusion when considering logit regressions (t = 6.86 vs. t =
−3.76).

15 This finding is in line with Kim and Weisbach (2008) and Bolton et al. (2013).
16 As there is a positive drift in leverage, we adjust changes in leverage for firm fixed

effects.
17 Following Flannery and Rangan (2006), we include firm fixed effects.
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robust to several alternative specifications. In line with Alti (2006), we

therefore conclude that the impact of firm-specific mispricing – and thus

market timing – is not persistent. Instead, our results support the idea of

a modified version of the trade-off theory, including market timing as a

short-term factor.

5.2 Data and Methodology

5.2.1 Idiosyncratic Skewness

Following Green and Hwang (2012), we measure idiosyncratic skewness

(and thus firm-specific mispricing) as

Skewi,t =
(P99 − P50)− (P50 − P1)

(P99 − P1)
, (5.1)

where Pj denotes the j’th percentile of the daily log return distribution

of firm i over the last 250 trading days preceding the end of its fiscal

year.18 Green and Hwang (2012) favor this measure over the traditional

third moment of skewness because it is solely based on the tail of the

distribution and thus better captures the idea that skewness-seeking

investors primarily care about tail events. Realizations of Skewi,t are

positive if the right tail of the distribution (P99) is further away from the

median (P50) than the left tail (P1) and negative if the opposite is true.

The denominator controls for the dispersion of the firm-specific return

distribution and normalizes estimates to values between −1 and 1.
18 We obtain returns from the Center for Research in Security Prices (CRSP) and remove

stocks with a share code other than 10 or 11.
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However, note that our estimation approach differs from Green and

Hwang (2012) in two important ways. First, instead of cross-sectional

returns within firm i’s industry, we employ the return distribution of the

firm itself. Even though Green and Hwang (2012) argue that their measure

captures idiosyncratic skewness, it rather represents the skewness of stocks

that are comparable to firm i. As we aim to capture firm-specific mispricing,

it is therefore natural to make use of firm-specific returns. Second, instead

of monthly log returns over the three months preceding the month of the

IPO, we employ daily log returns over the 250 trading days preceding the

end of the fiscal year. The reasoning for this adjustment is straightforward.

On the one hand, it allows us to capture mispricing throughout the firm’s

fiscal year and, on the other hand, using monthly returns would lead to

estimates that are not meaningful. In the following, we drop the firm

index i.

5.2.2 Sample Construction

Our initial sample is based on all firms that are covered by Compustat

between 1971 to 2020.19 In line with previous studies, we remove finan-

cial firms with SIC codes between 6000 and 6999 and firms with a book

value of assets below ten million dollars. Following Hovakimian et al.

(2001), we define book debt as short-term debt (item 34) plus long-term

debt (item 9).20 Book equity is defined as total assets (item 6) minus total

liabilities (item 181), preferred stock (item 10), and deferred taxes (item
19 We choose this sample period because cash flow data becomes available in 1971.
20 See also Hovakimian (2006), Flannery and Rangan (2006), Rajan and Zingales (1995),

Byoun (2008), Hovakimian and Li (2011), and Warr et al. (2012).

169



Skewness and Market Timing of Capital Structure Decisions

35).21 Market equity equals the share price (item 24) times the number

of outstanding shares (item 25). Book leverage (Levt) is defined as book

debt divided by total assets and market leverage (LevMkt,t) is book debt

divided by total assets minus book equity plus market equity. Finally,

∆Levt (∆LevMkt,t) denotes the change in book leverage (market leverage)

from the end of the previous fiscal year (t − 1) to the end of the current

fiscal year (t). We choose this approach because it excludes non-debt lia-

bilities which, according to Hovakimian (2006), are not a good indicator

of whether a firm is at risk of default. Moreover, Kayhan and Titman

(2007) note that a broader definition of leverage (as in Baker and Wurgler,

2002) likely overstates the financial leverage.

Throughout most of our empirical analysis, we follow Baker and Wur-

gler (2002) and Alti (2006) and focus on book leverage. We do this for two

reasons. First, the calculation of idiosyncratic skewness is return-based

and the relationship with market leverage is thus, in part, mechanical.

Second, book leverage reflects active rebalancing (e.g. through issues

and repurchases), whereas market leverage includes factors that are not

under the control of the firm (e.g. stock returns and option exercising).22

However, to verify our results, we also investigate the impact of idiosyn-

cratic skewness on market leverage. Additionally, our robustness analysis

includes the leverage approach of Baker and Wurgler (2002).23 We drop

observations for which either of the two leverage ratios is below zero or
21 If missing, preferred stock is replaced by the redemption value of preferred stock

(item 56).
22 See Chang and Dasgupta (2009).
23 We refer to their study for more details on the estimation procedure.
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above one and we require at least two observations per firm.24 Our final

sample comprises 110,782 firm-year observations and displays an average

leverage of 24.3% (with a standard deviation of 19.2%).

Raw equity issues correspond to the change in book equity minus the

change in retained earnings (item 36), divided by total assets. Accordingly,

raw debt issues are defined as the change in book debt divided by total

assets. Following Hovakimian et al. (2001), we define substantial equity

(e/At) and debt issues (d/At) as those exceeding 5% of total assets.25

Likewise, substantial repurchases are defined as negative equity (−e/At)

and debt issues (−d/At) exceeding 1.25% and 5% of total book assets,

respectively.26 The equity share in new issues (ESt) is the ratio of equity

issues to total issues. However, to reduce the number of missing values,

we base the equity share on raw issues.27 Finally, the change in cash

holdings (∆Casht/At) corresponds to the change in cash and short-term

investments (item 1) and investments (Invt/At) are equivalent to capital

expenditures (item 128). Both measures are scaled by total assets.

5.2.3 Control Variables

The choice of control variables follows the literature, most importantly

Rajan and Zingales (1995), Fama and French (2002), and Alti (2006).

Firm size (SIZEt) is the natural logarithm of sales in million dollars
24 See Baker and Wurgler (2002).
25 See Leary and Roberts (2005) and Hovakimian (2006).
26 See Leary and Roberts (2005). Our conclusions remain unchanged if equity repur-

chases are defined according to a threshold of 5%.
27 We obtain 85,593 firm-year observations. If we included the threshold, this number

would shrink to 38,437 observations. Our conclusions are not affected by this choice.
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(item 12) and should be positively related to leverage since larger firms

are more diversified and have a better reputation in debt markets.28

Asset tangibility (TNGt) is defined as net property, plant, and equipment

(item 8) divided by total assets and should positively predict leverage as

tangible assets may serve as collateral. Profitability (P RFt) is measured as

EBITDA (item 13) divided by total assets. According to the pecking order

theory, there should be a negative impact on leverage because firms prefer

internal funds. With respect to the trade-off theory, however, the impact

should be positive as suppliers are more willing to lend to profitable

firms. The market-to-book ratio (MBt) is defined as market value (total

assets minus book equity plus market equity) divided by book assets.

MBt may either serve as a proxy for mispricing or growth opportunities.

In both cases, the impact on leverage should be negative. Following

Baker and Wurgler (2002) and Alti (2006), we drop market-to-book ratios

larger than ten. Finally, R&D expenses (RDt) are defined as research and

development expense (item 46, replaced by zero when missing) divided

by total assets and RDDt is a dummy variable that takes the value one if

R&D expenses are missing.29 According to Hovakimian et al. (2001), RDt

also corresponds to future growth opportunities and should therefore be

negatively related to leverage.
28 If sales are below one million dollar, we assign a value of zero.
29 See Alti (2006).
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5.3 Results

5.3.1 Short-Term Impact of Market Timing

Based on the previous literature on market timing and the pricing impli-

cations of skewness, we expect a strong impact of idiosyncratic skewness

on financing decisions, and thus capital structure, in the short run. To

have a first look at this prediction, Table 5.1 presents summary statistics

for issuance decisions and leverage ratios, where firms are sorted into

quintiles based on the idiosyncratic skewness of their returns in fiscal year

t. Since idiosyncratic skewness acts as a proxy for overvaluation, Quintile

1 comprises the most undervalued firms and Quintile 5 contains the most

overvalued firms. We report the equal-weighted average in a given quintile

as well as full sample means. Although some firm-year observations have

a skewness of close to −1 or 1 (not reported), the majority of firms displays

values between −0.14 (Quintile 1) and 0.22 (Quintile 5).

Most importantly, we find a strong pattern for all measures under

consideration. Average equity issues (e/At, Row 6) increase from 3.60%

of total book assets for the most undervalued firms to 5.31% for the most

overvalued ones.30 Notably, the difference of 1.71 percentage points is

highly significant (t = 11.05) and mostly driven by overvaluation. More-

over, in line with Dong et al. (2012), we find that equity issues are more

sensitive to mispricing than debt issues (d/At, Row 7). Nevertheless, mar-

ket timing in debt issues is still significant at the 1%-level (t = −3.18)

and mostly driven by undervaluation. As a result, the equity share in
30 Average equity issues are below 5% since non-substantial issues are treated as zeros.
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Table 5.1: Summary Statistics

Skewness Quintile

Full Sample 1 2 3 4 5 High − Low t−value

(1) Skewt 0.04 −0.14 −0.02 0.04 0.11 0.22 0.35

(2) Levt 24.68 25.30 24.78 24.48 24.44 24.40 −0.89*** (−4.72)

(3) LevMkt,t 21.53 22.01 21.84 21.25 21.20 21.33 −0.68*** (−3.60)

(4) ∆Levt 0.44 1.20 0.63 0.49 0.22 −0.38 −1.58*** (−16.75)

(5) ∆LevMkt,t 0.61 2.72 1.35 0.71 −0.09 −1.70 −4.42*** (−49.96)

(6) e/At 4.18 3.60 3.63 4.10 4.29 5.31 1.71*** (11.05)

(7) d/At 3.62 3.80 3.57 3.60 3.58 3.53 −0.26*** (−3.18)

(8) ESt 57.61 53.31 56.32 57.87 58.76 61.75 8.44*** (18.01)

(9) −e/At 1.01 1.31 0.98 1.03 0.89 0.86 −0.45*** (−5.54)

(10) −d/At 1.89 1.60 1.76 1.75 1.99 2.35 0.75*** (9.10)

Table 5.1 presents summary statistics for financing decisions and leverage ratios, where
firms are sorted into quintiles based on their idiosyncratic skewness in fiscal year t. We
report the equal-weighted average in a given quintile as well as full sample means. The
notation and construction of leverage ratios and issuance decisions follows Section 5.2.2.
Except for Skewt , values are stated in percent and – in the High−Low column – stars
indicate significance at the 10% (*), 5% (**), and 1% (***) level. We cover a sample period
from 1971 to 2020.

new issues (ESt, Row 8) substantially increases in idiosyncratic skew-

ness (t = 18.01). Repurchase decisions mirror these findings. Equity

repurchases (−e/At, Row 9) significantly decrease in skewness (t = −5.54)

and the effect is mostly driven by undervaluation. This finding is well

in line with Baker and Wurgler (2013) who note that overvaluation is a

motive for equity issues, while undervaluation facilitates repurchases.31

In contrast, the impact on debt retirements (−d/At, Row 10) is positive

and largely driven by overvaluation (t = 9.10), suggesting that equity
31 See also Warusawitharana and Whited (2016).
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issues are accompanied by debt retirement programs.32 Consequently, we

find a significantly negative impact on both book leverage (Levt, Row 2)

and market leverage (LevMkt,t, Row 3). At a first glance, it is somewhat

surprising that the effect on the change in leverage (∆Levt, Row 4) is

even stronger. However, we attribute this finding to the positive drift in

leverage of around 0.44 percentage points per year.

So far, our results provide evidence for a strong market timing effect

in the short run. To study this finding in a multivariate setting, Table 5.2

adds several control variables motivated by the literature (as outlined in

Section 5.2.3) and industry fixed effects.33 We adjust standard errors for

both firm and year clusters. Following Alti (2006), among others, we lag

control variables by one year as contemporaneous controls may be noisy.

Moreover, for the sake of brevity, we focus our analysis on the impact of

idiosyncratic skewness.34

As documented in Table 5.1, the market timing effect is driven by sub-

stantial over- and undervaluation, which is why we evaluate the economic

impact of moving from the lowest (Skewt = −0.14) to the highest skew-

ness quintile (Skewt = 0.22). Our results confirm that companies time

their issuance and repurchase decisions based on idiosyncratic skewness

(and thus equity mispricing). Most importantly, the impact on leverage

(Models 1 and 2), the change in leverage (Models 3 and 4), and debt issues
32 This finding is in line with Hovakimian et al. (2001).
33 In line with Alti (2006), Models (3) to (7) additionally control for the lagged leverage.
34 In Model (1), which constitutes the most common leverage regression, all controls are

highly significant and signs are in line with the expectations outlined in Section 5.2.3.
The negative sign of P RFt−1 contrasts the trade-off theory, but is a common empirical
finding.
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Table 5.2: Short-Term Impact of Market Timing on Capital Structure

Dependent variable:

Levt LevMkt,t ∆Levt ∆LevMkt,t e/At d/At ESt

(1) (2) (3) (4) (5) (6) (7)

Skewt −0.04∗∗∗ −0.08∗∗∗ −0.04∗∗∗ −0.12∗∗∗ 0.04∗∗∗ −0.01∗∗∗ 0.20∗∗∗

(−3.97) (−5.97) (−11.47) (−13.55) (8.08) (−3.01) (7.76)

SIZEt−1 0.01∗∗∗ 0.0002 −0.0001 −0.003∗∗∗ −0.01∗∗∗ −0.004∗∗∗ −0.01∗∗∗

(5.53) (0.09) (−0.26) (−3.15) (−10.23) (−8.63) (−3.09)

TNGt−1 0.20∗∗∗ 0.19∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.005 −0.07∗∗∗

(18.30) (17.97) (5.35) (5.36) (5.24) (1.63) (−3.35)

P RFt−1 −0.21∗∗∗ −0.19∗∗∗ −0.02∗∗∗ −0.01 −0.28∗∗∗ 0.01 −0.15∗∗∗

(−8.50) (−7.46) (−3.21) (−1.23) (−14.75) (1.57) (−5.46)

MBt−1 −0.02∗∗∗ −0.04∗∗∗ 0.0004 0.0001 0.03∗∗∗ 0.01∗∗∗ 0.02∗∗∗

(−12.63) (−17.25) (0.75) (0.17) (17.33) (9.91) (6.57)

RDt−1 −0.32∗∗∗ −0.33∗∗∗ −0.06∗∗∗ −0.07∗∗∗ 0.33∗∗∗ −0.03∗∗∗ 0.36∗∗∗

(−8.35) (−8.77) (−6.88) (−7.03) (11.91) (−4.22) (8.81)

RDDt−1 0.03∗∗∗ 0.03∗∗∗ 0.003∗∗∗ 0.005∗∗∗ 0.01∗∗∗ 0.01∗∗∗ −0.02∗∗∗

(6.04) (5.70) (3.39) (4.20) (6.94) (5.44) (−3.05)

Levt−1 −0.13∗∗∗ 0.03∗∗∗ 0.03∗∗∗ −0.09∗∗∗

(−28.12) (5.53) (8.60) (−4.18)

LevMkt,t−1 −0.12∗∗∗

(−12.43)

SIC fixed effects Yes Yes Yes Yes Yes Yes Yes

Cluster adj. Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.24 0.34 0.06 0.08 0.36 0.03 0.07

Table 5.2 presents results for OLS regressions of leverage ratios and financing decisions
on idiosyncratic skewness (Skewt) and several control variables motivated by the litera-
ture. In line with Baker and Wurgler (2002) and Alti (2006), we lag control variables by
one year as contemporaneous controls may be noisy. The notation and construction of
dependent variables and controls follows Sections 5.2.2 and 5.2.3, respectively. Stars
indicate significance at the 10% (*), 5% (**), and 1% (***) level and t-values (in parenthe-
ses) are based on cluster-adjusted standard errors. We cover a sample period from 1971
to 2020 and do not report the intercept.

(Model 6) remains significantly negative (at the 1%-level), while equity

issues (Model 5, t = 8.08) and the equity share (Model 7, t = 7.76) are

significantly positively affected. Note that the impact on book leverage

(Models 1 and 3) is not driven by returns and thus only depends on active
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financing decisions caused by mispricing (and retained earnings). Im-

portantly, our results are also economically powerful. In Model (1), the

coefficient estimate of −0.04 implies that moving from an undervalued

firm (in the first skewness quintile) to an overvalued firm (in the fifth

skewness quintile) reduces book leverage by 0.04×0.35 = 1.40 percentage

points (which exceeds the univariate impact). With the same coefficient

estimate of −0.04, the economic impact on ∆Levt is comparable (Model 3).

Due to the mechanical relationship between idiosyncratic skewness and

market leverage, the economic impact in Models (2) and (4) increases to

2.80 and 4.20 percentage points, respectively. Apart from that, overvalua-

tion increases equity issues (Model 5) by 1.40 percentage points, whereas

the impact on debt issues (Model 6) is economically negligible (−0.35 per-

centage points). Finally, the equity share in new issues (Model 7) increases

by economically important 7.00 percentage points. In unreported results,

we repeat this framework for repurchases. In line with Table 5.1, we find

that Skewt is significantly negatively (positively) related to equity repur-

chases (debt retirements). However, economically, the issuance decision

is more important.35

Finally, we investigate the impact of idiosyncratic skewness on the

probability for issues and repurchases by performing independent logit

regressions (i.e. the debt-equity choice is evaluated separately). In line

with Section 5.2.2, we define a firm as issuing equity (debt) if equity issues

(debt issues) exceed 5% of total assets. A firm is defined as repurchasing

equity (retiring debt) if repurchases exceed 1.25% (5%) of total assets.
35 The corresponding t-statistics are −3.71 and 3.13, respectively.
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Table 5.3: Short-Term Impact of Market Timing on the Probability for
Issues and Repurchases

Dependent variable:

Issues Repurchases

P (et) P (dt) P (−et) P (−dt)
(1) (2) (3) (4)

Skewt 0.99∗∗∗ −0.48∗∗∗ −0.96∗∗∗ 0.58∗∗∗

(6.86) (−3.76) (−6.83) (4.62)

SIZEt−1 −0.13∗∗∗ −0.07∗∗∗ 0.23∗∗∗ 0.005

(−9.88) (−4.77) (11.85) (0.31)

TNGt−1 0.18∗ 0.59∗∗∗ −0.93∗∗∗ −0.25∗∗

(1.82) (7.20) (−7.21) (−2.55)

P RFt−1 −2.53∗∗∗ 0.33∗∗ 1.01∗∗∗ −1.55∗∗∗

(−11.19) (2.05) (2.64) (−6.02)

MBt−1 0.47∗∗∗ 0.06∗∗∗ −0.03 −0.30∗∗∗

(22.01) (4.15) (−1.10) (−10.64)

RDt−1 3.43∗∗∗ −1.49∗∗∗ −1.98∗∗∗ −2.01∗∗∗

(7.94) (−4.51) (−4.05) (−5.51)

RDDt−1 0.10∗∗∗ 0.13∗∗∗ −0.04 0.08∗∗∗

(2.99) (4.41) (−1.02) (2.95)

SIC fixed effects Yes Yes Yes Yes

Cluster adj. Yes Yes Yes Yes

Pseudo R2 0.18 0.02 0.05 0.24

Table 5.3 presents results for logit regressions of issuance and repurchase decisions on
idiosyncratic skewness (Skewt) and several control variables motivated by the literature.
In line with Baker and Wurgler (2002) and Alti (2006), we lag control variables by
one year as contemporaneous controls may be noisy. The notation and construction
of controls follows Section 5.2.3. We define substantial equity (e/At) and debt issues
(d/At) as those exceeding 5% of total book assets. Substantial repurchases are defined as
negative equity (−e/At) and debt issues (−d/At) exceeding 1.25% and 5% of total book
assets, respectively (Leary and Roberts, 2005). Stars indicate significance at the 10% (*),
5% (**), and 1% (***) level and t-values (in parentheses) are based on cluster-adjusted
standard errors. We cover a sample period from 1971 to 2020 and do not report the
intercept.

Table 5.3 presents results. In line with our previous results, the probabil-

ity for equity issues (t = 6.86) and debt retirements (t = 4.62) increases

in idiosyncratic skewness, while the impact on debt issues (t = −3.76)

178



Skewness and Market Timing of Capital Structure Decisions

and equity repurchases (t = −6.83) is significantly negative.36 In terms

of marginal effects (not reported), the probability to issue equity (debt)

increases (decreases) by economically important 0.35×0.118 = 4.13 (3.08)

percentage points when comparing an overvalued firm (in the fifth skew-

ness quintile) to an undervalued firm (in the first skewness quintile).

In contrast, the probability for equity repurchases (debt retirement) de-

creases (increases) by 3.96 (2.28) percentage points.

Taken together, we find that idiosyncratic skewness – and thus mispric-

ing – plays an important role in both issuance and repurchase decisions.

When stocks are overvalued, firms issue significantly more equity (less

debt) and retire more debt (repurchase less equity). As a result, idiosyn-

cratic skewness is significantly negatively related to both the leverage

level and changes in leverage. Our results thus confirm a strong market

timing effect in the short run.

5.3.2 Persistence of Market Timing

In contrast to the literature on short-term implications of market timing,

findings on the persistence of market timing are less conclusive. While,

for example, Baker and Wurgler (2002) document a long-lasting effect,

Alti (2006) and Hovakimian (2006) conclude that market timing is not

persistent. In this section, we therefore aim to shed some light on this

yet open research question. In Table 5.4, we provide first evidence by

investigating the impact of idiosyncratic skewness on the level of book

leverage in fiscal years t + 1 to t + 4.
36 Our findings are also in line with Hovakimian et al. (2001) and Elliott et al. (2008).
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Table 5.4: Persistence of Market Timing - Leverage Level

Dependent variable:

Levt+1 Levt+2 Levt+3 Levt+4

(1) (2) (3) (4)

Skewt −0.03∗∗∗ −0.02∗∗ −0.01 −0.004

(−3.90) (−2.20) (−1.30) (−0.46)

SIZEt−1 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(5.13) (5.00) (5.12) (5.15)

TNGt−1 0.18∗∗∗ 0.17∗∗∗ 0.16∗∗∗ 0.15∗∗∗

(15.65) (14.16) (12.96) (12.02)

P RFt−1 −0.19∗∗∗ −0.17∗∗∗ −0.16∗∗∗ −0.16∗∗∗

(−7.65) (−6.80) (−6.24) (−6.18)

MBt−1 −0.02∗∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗∗

(−10.03) (−9.33) (−8.73) (−7.76)

RDt−1 −0.31∗∗∗ −0.28∗∗∗ −0.26∗∗∗ −0.27∗∗∗

(−7.53) (−6.74) (−5.75) (−5.93)

RDDt−1 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(5.79) (5.45) (4.83) (4.58)

SIC fixed effects Yes Yes Yes Yes

Cluster adj. Yes Yes Yes Yes

Adjusted R2 0.22 0.21 0.20 0.20

Table 5.4 presents results for OLS regressions of future leverage ratios on idiosyncratic
skewness (Skewt) and several control variables motivated by the literature. In line
with Baker and Wurgler (2002) and Alti (2006), we lag control variables by one year as
contemporaneous controls may be noisy. The notation and construction of leverage ratios
and controls follows Sections 5.2.2 and 5.2.3, respectively. Stars indicate significance
at the 10% (*), 5% (**), and 1% (***) level and t-values (in parentheses) are based on
cluster-adjusted standard errors. We cover a sample period from 1971 to 2020 and do
not report the intercept.

While both the coefficient estimates and the statistical significance of

control variables remain largely unchanged, the impact of idiosyncratic

skewness gradually decreases from Levt+1 to Levt+4. Although the impact

on Levt+1 (Model 1) remains highly significant and is comparable to the

short-term effect (t = −3.90), statistical significance with respect to Levt+2

(Model 2) already reduces to the 5%-level (t = −2.20) and the coefficient
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estimate is cut in half. After only three years (Model 3), significance dis-

appears completely (t = −1.30). Finally, in Model (4), both the economic

and the statistical effect are close to zero. Our results are thus in line with

Alti (2006), Hovakimian (2006), and Mahajan and Tartaroglu (2008) who

also find that the impact of market timing is not persistent.37

In Table 5.5, we follow Alti (2006) and replace leverage levels by

the cumulative change in leverage from fiscal year t − 1 to t + τ .38 In

Panel A, we employ the control variables outlined in Section 5.2.3 as well

as industry fixed effects. Again, the impact of idiosyncratic skewness

gradually decreases from Model (1) to Model (4). However, contrasting

the results in Table 5.4, the economic significance in t + 1 (Model 1) even

slightly increases. Moreover, the impact on the cumulative change in

leverage from t −1 to t + 4 (Model 4) remains significant at the 5% level

(t = −1.97) and finally turns insignificant in t + 6 (not reported). At a

first glance, this finding implies a higher persistence of market timing

effects than previously documented. However, as outlined in Section 5.3.1,

there is a positive drift in Levt, which is why a long-lasting impact on

∆Levt+τ does not necessarily imply that market timing effects persist. In

Table 5.A.1 (reported in the Appendix), we provide summary statistics

for the cumulative change in leverage. Most importantly, we find that the

drift increases in τ and exceeds the impact of idiosyncratic skewness after

only two years. As a result, the change in leverage remains positive even

if the highest skewness quintile is considered. In Panel B of Table 5.5, we
37 In unreported results, we compute the external-finance-weighted average idiosyncratic

skewness in the spirit of Baker and Wurgler (2002) and do not find a significant impact.
38 τ denotes the number of fiscal years ahead.
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Table 5.5: Persistence of Market Timing - Change in Leverage

Panel A: Industry Fixed Effects
Dependent variable:

∆Levt+1 ∆Levt+2 ∆Levt+3 ∆Levt+4
(1) (2) (3) (4)

Skewt −0.05∗∗∗ −0.03∗∗∗ −0.02∗∗∗ −0.02∗∗

(−9.39) (−3.56) (−3.25) (−1.97)

Controls Yes Yes Yes Yes
SIC fixed effects Yes Yes Yes Yes
Firm fixed effects No No No No
Cluster adj. Yes Yes Yes Yes
Adjusted R2 0.06 0.07 0.11 0.13

Panel B: Firm Fixed Effects
Dependent variable:

∆Levt+1 ∆Levt+2 ∆Levt+3 ∆Levt+4
(1) (2) (3) (4)

Skewt −0.04∗∗∗ −0.02∗∗∗ −0.01∗∗ −0.01
(−7.82) (−3.18) (−2.06) (−1.00)

Controls Yes Yes Yes Yes
SIC fixed effects No No No No
Firm fixed effects Yes Yes Yes Yes
Cluster adj. Yes Yes Yes Yes
Adjusted R2 0.30 0.35 0.38 0.44

Table 5.5 presents results for OLS regressions of the change in leverage (from t − 1
to t + τ) on idiosyncratic skewness (Skewt) and several control variables motivated by
the literature. In line with Baker and Wurgler (2002) and Alti (2006), we lag control
variables by one year as contemporaneous controls may be noisy. The notation and
construction of leverage ratios and controls follows Sections 5.2.2 and 5.2.3, respectively.
For brevity, we only report results for Skewt . In Panel A, we account for industry fixed
effects, while Panel B controls for firm fixed effects. Stars indicate significance at the 10%
(*), 5% (**), and 1% (***) level and t-values (in parentheses) are based on cluster-adjusted
standard errors. We cover a sample period from 1971 to 2020 and do not report the
intercept.

therefore control for firm fixed effects in ∆Levt+τ Not surprisingly, the

persistence of idiosyncratic skewness is clearly reduced and comparable

to Table 5.4. More precisely, both the economic and the statistical impact

in t + 1 (Model 1) are in line with the short-term results and Skewt turns

insignificant in t + 4 (Model 4, t = −1.00).
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Table 5.6: Long-Term Impact of Market Timing on Issues and
Repurchases

Panel A: Issues and the Equity Share
Dependent variable:

et+1/At et+2/At dt+1/At dt+2/At ESt+1 ESt+2
(1) (2) (3) (4) (5) (6)

Skewt 0.04∗∗∗ 0.01∗ 0.01∗∗ 0.01∗∗∗ 0.06∗ −0.05∗

(5.34) (1.83) (2.45) (3.89) (1.78) (−1.90)

Controls Yes Yes Yes Yes Yes Yes
SIC fixed effects Yes Yes Yes Yes Yes Yes
Cluster adj. Yes Yes Yes Yes Yes Yes
Adjusted R2 0.27 0.24 0.02 0.02 0.06 0.05

Panel B: Repurchases
Dependent variable:

−et+1/At −et+2/At −dt+1/At −dt+2/At
(1) (2) (3) (4)

Skewt −0.0003 0.002 −0.01∗∗ −0.01∗∗∗

(−0.09) (0.90) (−2.10) (−3.44)

Controls Yes Yes Yes Yes
SIC fixed effects Yes Yes Yes Yes
Cluster adj. Yes Yes Yes Yes
Adjusted R2 0.002 0.004 0.03 0.02

Panel A of Table 5.6 presents results for OLS regressions of future equity (Models 1 and
2) and debt issues (Models 3 and 4), as well as the equity share in new issues (Models
5 and 6), on idiosyncratic skewness (Skewt) and several control variables motivated by
the literature. In line with Baker and Wurgler (2002) and Alti (2006), we lag control
variables by one year as contemporaneous controls may be noisy. The notation and
construction of controls follows Section 5.2.3. For brevity, we only report results for
Skewt . In Panel B, we replace the dependent variables by equity repurchases (Models
1 and 2) and debt retirements (Models 3 and 4). We define substantial equity (e/At)
and debt issues (d/At) as those exceeding 5% of total book assets. Substantial equity
repurchases (−e/At) and debt retirements (−d/At) are characterized by negative equity
and debt issues exceeding 1.25% and 5% of total book assets, respectively (Leary and
Roberts, 2005). Stars indicate significance at the 10% (*), 5% (**), and 1% (***) level
and t-values (in parentheses) are based on cluster-adjusted standard errors. We cover a
sample period from 1971 to 2020 and do not report the intercept.

In order to identify whether the lack of persistence is driven by actual

financing decisions, we now investigate the impact of idiosyncratic skew-

ness on issues and repurchases in subsequent years. Table 5.6 presents

results. In Panel A, we first focus on the issuance decision. In line with
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Alti (2006), firms issue significantly more debt in both t + 1 (Model 3,

t = 2.45) and t+2 (Model 4, t = 3.89). However, in t+1, firms also continue

to issue more equity (Model 1, t = 5.34). While this result may seem coun-

terintuitive, it could simply reflect the fact that planning for an SEO can

take time until the next fiscal year (Alti and Sulaeman, 2012). Moreover,

as shown by Green and Hwang (2012), idiosyncratic skewness predicts

future return skewness. Consequently, firms may anticipate the demand

for lottery-like stocks in t+1 and issue more equity. As a result, the impact

on the equity share remains positive in t+ 1, but turns negative in t+ 2. In

both cases, however, statistical significance is rather low. In Panel B, we

focus on repurchases. While idiosyncratic skewness is unrelated to future

equity repurchases (Models 1 and 2), there is a negative impact on debt

retirement in both t + 1 (Model 3, t = −2.10) and t + 2 (Model 4, t = −3.44).

Taken together, we find that firms immediately take action in debt mar-

kets to rebalance away from the effects of market timing (Flannery and

Rangan, 2006). However, firms also continue to issue equity, which likely

explains why market timing effects in t + 1 (Table 5.4) remain similar to

those reported in Table 5.2. In unreported results, we repeat this analysis

based on logit regressions and find our conclusions to hold.39

So far, our results point in the direction of a long-term validity of the

trade-off theory, but do not provide a direct test. We therefore follow

Flannery and Rangan (2006) and Huang and Ritter (2009) and run a

partial adjustment analysis in order to estimate the speed of adjustment
39 The statistical significance for equity issues increases, but is still exceeded by debt

issues in t + 2. Moreover, the impact on equity repurchases remains statistically
negative in t + 1, but is offset by a more negative impact on debt repurchases.
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(SOA) to firm-specific leverage targets. For brevity, we limit our analysis

to two approaches. First, we estimate the standard partial adjustment

regression

Levi,t = (1−λ)Levi,t−1 +λβXi,t−1 + εi,t, (5.2)

where either book or market leverage in fiscal year t (Levi,t) is regressed

on leverage in t −1 (Levi,t−1), idiosyncratic skewness, and the standard set

of control variables (Xi,t−1).40 εi,t denotes residuals. In the following, we

drop the firm index i and define the speed of adjustment as one minus

the coefficient estimate of Levt−1. Second, we follow Flannery and Rangan

(2006) and control for firm-fixed effects (αi)

Levi,t = (1−λ)Levi,t−1 +λαi +λβXi,t−1 + εi,t. (5.3)

We include these unobserved characteristics to capture potential effects

on the firm-specific target leverage that are intertemporally constant but

cannot be measured directly. Moreover, according to Flannery and Rangan

(2006) and Byoun (2008), firm fixed effects explain a large proportion

of the cross-sectional variation in target leverage. We therefore base our

conclusions on Equation (5.3). Table 5.7 presents results.

In Model (1), we estimate Equation (5.2) based on the level of book

leverage. While the economic impact of Skewt is similar to Table 5.2,

statistical significance strongly increases (t = −11.10). The coefficient

estimate for Levt−1 is 0.88, implying an annual adjustment of 12% and a

half-life of deviations from target of about 5.4 years (log(0.5)/ log(0.88)).
40 These variables have been shown to predict firm-specific leverage ratios. Excluding

idiosyncratic skewness does not affect our results.
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Table 5.7: Speed of Adjustment to Leverage Targets

Dependent variable:

Levt LevMkt,t

(1) (2) (3) (4)

Skewt −0.04∗∗∗ −0.04∗∗∗ −0.12∗∗∗ −0.11∗∗∗

(−11.10) (−8.58) (−13.21) (−10.58)

SIZEt−1 −0.0000 0.004∗∗∗ −0.003∗∗∗ −0.001

(−0.09) (3.02) (−3.09) (−0.28)

TNGt−1 0.02∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.04∗∗∗

(5.61) (3.92) (5.62) (4.70)

P RFt−1 −0.03∗∗∗ −0.03∗∗∗ −0.01 −0.01

(−4.33) (−3.81) (−1.18) (−1.57)

MBt−1 0.001 −0.0000 0.0001 −0.001

(1.34) (−0.02) (0.16) (−0.91)

RDt−1 −0.05∗∗∗ −0.05∗∗∗ −0.07∗∗∗ −0.04∗∗∗

(−6.97) (−3.99) (−6.87) (−4.74)

RDDt−1 0.004∗∗∗ 0.001 0.01∗∗∗ −0.001

(4.83) (0.70) (4.46) (−0.56)

Levt−1 0.88∗∗∗ 0.68∗∗∗

(188.63) (62.59)

LevMkt,t−1 0.88∗∗∗ 0.67∗∗∗

(94.64) (54.09)

SIC fixed effects Yes No Yes No

Firm fixed effects No Yes No Yes

Cluster adj. Yes Yes Yes Yes

Adjusted R2 0.79 0.82 0.80 0.82

Table 5.7 presents results for partial adjustment regressions. In Models (1) and (3), we
estimate

Levi,t = (1−λ)Levi,t−1 +λβXi,t−1 + εi,t ,

where either book or market leverage in fiscal year t (Levi,t) is regressed on the leverage
ratio in t − 1 (Levi,t−1), idiosyncratic skewness, and several control variables motivated
by the literature (Xi,t−1). εi,t denotes residuals. In Models (2) and (4), we account for
firm fixed effects (αi) to capture potential effects on the firm-specific target leverage

Levi,t = (1−λ)Levi,t−1 +λαi +λβXi,t−1 + εi,t .

Following Flannery and Rangan (2006) and Huang and Ritter (2009), we interpret Λ =
1−λ as the speed of adjustment toward target leverage. The notation and construction of
leverage ratios and controls follows Sections 5.2.2 and 5.2.3, respectively. Stars indicate
significance at the 10% (*), 5% (**), and 1% (***) level and t-values (in parentheses) are
based on cluster-adjusted standard errors. We cover a sample period from 1971 to 2020
and do not report the intercept.
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Since the coefficient estimate for market leverage (Model 3) remains the

same, the speed of adjustment is not affected by the choice of leverage.

As of yet, our results correspond to those of Fama and French (2002) and

DeAngelo and Roll (2015). However, as the standard partial adjustment

framework does not capture unobserved effects on the firm-specific target

leverage, we include firm fixed effects in Model (2). Most importantly,

we find that the estimated speed of adjustment strongly increases. The

coefficient estimate of 0.68 implies an annual speed of adjustment of

32% and a half-life of deviations from target leverage of only 1.8 years.

According to Warr et al. (2012), it would thus take 1/0.32 = 3.125 years

to reach the target. With a coefficient estimate of 0.67, results for the

market leverage (Model 4) are very similar. The estimated SOAs are

therefore well in line with both Table 5.4 and the previous literature

(Flannery and Rangan, 2006; Byoun, 2008; Lemmon et al., 2008; Warr

et al., 2012). However, it should be noted that Huang and Ritter (2009)

find both estimators to be biased.41 While the standard partial adjustment

approach (Equation 5.2) produces downward biased estimates of the

speed of adjustment (upward biased estimates of λ), the SOA for the

firm fixed approach (Equation 5.3) is upward biased, especially when the

number of observations per firm is low. We justify using the firm fixed

approach for several reasons. First, we find that the median firm is listed

in Compustat for eight years, which is two years longer than reported by

Huang and Ritter (2009). Second, Flannery and Rangan (2006) recognize
41 Instead, they propose a long-differencing estimator.
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this problem and find the SOA to be barely affected.42 Third, if we account

for firm fixed effects, the estimated speed of adjustment closely resembles

our previous findings. To capture the effect of market timing on future

leverage ratios, it therefore seems reasonable to include firm fixed effects.

Finally, we follow Huang and Ritter (2009) and investigate the inter-

action effect of market timing (measured by idiosyncratic skewness) and

financing conditions (measured by positive financing deficits) on current

and future leverage ratios. To some extent, this allows us to discrimi-

nate between the three prevalent theories of capital structure. Following

Frank and Goyal (2003), the financing deficit (FD) is defined as dividend

payments plus investments and the change in working capital minus

internal cash flows.43 We measure the firm-specific financing deficit as

a proportion of total assets and define positive financing deficits (FD+)

as FD if FD > 0 and zero otherwise.44 We then repeat our standard re-

gression framework with FD+ and Skewt ×FD+ as additional regressors.

According to the pecking order theory, financing decisions should not be

affected by mispricing. Leverage ratios should therefore only depend on
42 Flannery and Rangan (2006) focus on market leverage and use the lagged book

leverage as an instrumental variable.
43 Cash dividends correspond to Compustat item 127. Investments equal item 128 +

item 113 + item 129 + item 219 - item 107 - item 109 if the format code is 1 to 3 and
item 128 + item 113 + item 129 - item 107 - item 109 - item 309 - item 310 if the
format code is 7. The change in working capital is defined as item 236 + item 274 +
item 301 if the format code is 1 and -item 236 + item 274 + item 301 if the format
code is 2 or 3. If the format code is 7, the change in working capital equals - item 302 -
item 303 - item 304 - item 305 - item 307 + item 274 - item 312 - item 301. Internal
cash flows are defined as item 123 + item 124 + item 125 + item 126 + item 106 +
item 213 + item 217 + item 218 if the format code is 1 to 3 and item 128 + item 113
+ item 129 - item 107 - item 109 - item 309 - item 310 if the format code is 7. Since
many firm-years suffer from at least one missing, we replace missing values by zeros.

44 This approach follows Huang and Ritter (2009).
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the financing deficit, while the interaction term is supposed to be insignif-

icant. In contrast, if the market timing theory holds, the interaction term

should display a significantly negative impact that persists for several

years. Lastly, according to the static trade-off theory, firms should only

issue equity to rebalance toward their target leverage. Thus, after includ-

ing control variables, the interaction term should be insignificant.45 In

contrast, if the trade-off theory holds in the long-term and market timing

is included as a short-term factor, we should see a significantly negative

interaction effect in the short run, but no significant impact in the long

run. Table 5.8 presents results.

The interaction term (Skewt x FD
+
t ) displays a significantly negative

impact on the current book leverage (Model 1), again supporting a short-

term market timing effect. To evaluate the economic importance of this

effect, we follow Huang and Ritter (2009) and compare the effect for a

firm that is severely undervalued and thus displays very high cost of

equity (Skewt = −1) and a firm that is severely overvalued and therefore

exhibits very low cost of equity (Skewt = 1).46 Moreover, we also assume

a financing deficit of ten percent. In general, the impact on leverage

is defined as (βSkewt×FD+
t
× Skewt + βFD+

t
) × FD+

t , where βSkewt×FD+
t

and

βFD+
t

denote the coefficient estimates for the interaction term and FD+
t ,

respectively. Hence, the increase in leverage for a severely undervalued

firm is (−0.36×−1+0.38)×0.10 = 7.4 percentage points, whereas the same

financial deficit for a severely overvalued firm would result in an increase
45 The dynamic trade-off theory allows for short-term deviations from target leverage.
46 Huang and Ritter (2009) compare the impact of the highest and lowest equity risk

premium, respectively. We assume control variables to remain constant.
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Table 5.8: Interaction Effect of Market Timing and Financing Conditions

Dependent variable:
Levt Levt+1 Levt+2 Levt+3 Levt+4
(1) (2) (3) (4) (5)

FD+
t 0.38∗∗∗ 0.38∗∗∗ 0.37∗∗∗ 0.35∗∗∗ 0.32∗∗∗

(15.77) (16.08) (15.13) (17.39) (14.41)
Skewt −0.02∗∗ −0.03∗∗∗ −0.02∗ −0.01 −0.005

(−2.10) (−2.74) (−1.66) (−0.95) (−0.49)
Skewt x FD+

t −0.36∗∗∗ −0.25∗∗∗ −0.16∗ −0.18∗∗ −0.10
(−5.12) (−3.58) (−1.87) (−2.37) (−1.25)

SIZEt−1 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(7.41) (7.10) (6.90) (6.77) (6.52)
TNGt−1 0.18∗∗∗ 0.17∗∗∗ 0.16∗∗∗ 0.15∗∗∗ 0.14∗∗∗

(17.68) (14.99) (13.47) (12.28) (11.38)
P RFt−1 −0.14∗∗∗ −0.12∗∗∗ −0.11∗∗∗ −0.10∗∗∗ −0.11∗∗∗

(−5.78) (−5.03) (−4.40) (−4.10) (−4.20)
MBt−1 −0.03∗∗∗ −0.02∗∗∗ −0.02∗∗∗ −0.02∗∗∗ −0.02∗∗∗

(−16.73) (−15.03) (−13.58) (−12.77) (−11.38)
RDt−1 −0.42∗∗∗ −0.40∗∗∗ −0.38∗∗∗ −0.35∗∗∗ −0.35∗∗∗

(−10.30) (−9.36) (−8.59) (−7.53) (−7.62)
RDDt−1 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(5.21) (4.95) (4.71) (4.23) (4.05)

SIC fixed effects Yes Yes Yes Yes Yes
Cluster adj. Yes Yes Yes Yes Yes
Adjusted R2 0.28 0.26 0.24 0.23 0.22

Table 5.8 presents results for OLS regressions of current and future leverage ratios on
idiosyncratic skewness (Skewt), positive financing deficits (FD+

t ), the interaction effect
(Skewt x FD

+
t ), and several control variables motivated by the literature. Following Frank

and Goyal (2003), the financing deficit is defined as the sum of dividend payments,
investments, and the change in working capital minus internal cash flows (scaled by
total book assets). For more details, see Footnote 43. In line with Baker and Wurgler
(2002) and Alti (2006), we lag control variables by one year as contemporaneous controls
may be noisy. The notation and construction of leverage ratios and controls follows
Sections 5.2.2 and 5.2.3, respectively. Stars indicate significance at the 10% (*), 5% (**),
and 1% (***) level and t-values (in parentheses) are based on cluster-adjusted standard
errors. We cover a sample period from 1971 to 2020 and do not report the intercept.

of only 0.2 percentage points. Given that the residual impact of Skewt is

significantly negative (t = −2.10), the total effect is even higher. Altogether,

the magnitude of the short-term market timing effect is economically
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important and comparable to Huang and Ritter (2009).47 In Model (2), we

investigate the impact on book leverage in t + 1. In line with our previous

results, the impact of both the interaction effect (t = −3.58) and Skewt

(t = −2.74) remains highly significant and economically important.48

However, in subsequent periods (Models 3 to 5), the impact of Skewt×FD+
t

(and also Skewt) gradually decreases and finally becomes insignificant

in t + 4. This finding contrasts Huang and Ritter (2009) who find the

interaction term to become insignificant in t + 8. Table 5.8 therefore

confirms a strong short-term market timing effect that disappears after

four years.

5.3.3 Further Tests

We conclude our main analysis by investigating the impact of idiosyncratic

skewness on the change in cash holdings, the change in retained earnings,

and investments. The calculation of these measures follows Alti (2006)

and is outlined in Section 5.2.2. Table 5.9 presents results.

Idiosyncratic skewness – and thus mispricing – significantly positively

predicts the current change in cash holdings (Model 1, t = 10.79), suggest-

ing that firms issue equity even if the capital is not needed immediately.

This finding is well in line with Alti (2006), Kim and Weisbach (2008),

and Dittmar et al. (2020).49 While being smaller in size, the effect extends
47 Huang and Ritter (2009) report increments of 6.62 and 0.83 percentage points, respec-

tively.
48 A financial deficit of ten percent now results in a leverage increase of 6.30 and 1.30

percentage points, respectively.
49 In contrast, DeAngelo et al. (2010) document that most firms would have run out of

cash if they did not issue equity.
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Table 5.9: Impact of Market Timing on Liquidity and Investments

Dependent variable:
∆Casht/At ∆Casht+1/At ∆REt/At ∆REt+1/At Invt/At Invt+1/At

(1) (2) (3) (4) (5) (6)

Skewt 0.06∗∗∗ 0.01∗∗∗ 0.06∗∗∗ 0.05∗∗∗ −0.003 0.02∗∗∗

(10.79) (2.99) (6.22) (3.72) (−1.53) (5.97)

SIZEt−1 0.003∗∗∗ 0.001∗ 0.004∗∗∗ 0.01∗∗∗ −0.005∗∗∗ −0.004∗∗∗

(4.37) (1.87) (3.27) (4.81) (−15.41) (−14.01)

TNGt−1 0.03∗∗∗ 0.02∗∗∗ −0.01 0.01 0.15∗∗∗ 0.14∗∗∗

(6.53) (3.61) (−1.02) (1.23) (33.62) (32.86)

P RFt−1 0.10∗∗∗ 0.07∗∗∗ 0.62∗∗∗ 0.43∗∗∗ 0.08∗∗∗ 0.08∗∗∗

(4.51) (4.85) (10.97) (14.90) (10.47) (10.36)

MBt−1 0.01∗∗∗ 0.002 0.003 −0.004 0.01∗∗∗ 0.01∗∗∗

(7.69) (1.28) (1.32) (−1.22) (12.01) (9.29)

RDt−1 0.15∗∗∗ 0.09∗∗∗ −0.12∗ −0.19∗∗∗ 0.02∗∗∗ 0.03∗∗∗

(3.82) (3.21) (−1.73) (−3.83) (2.88) (3.76)

RDDt−1 0.01∗∗∗ 0.003∗ 0.005 −0.0001 −0.001 −0.001

(4.01) (1.85) (1.06) (−0.03) (−1.05) (−0.79)

SIC fixed effects Yes Yes Yes Yes Yes Yes

Cluster adj. Yes Yes Yes Yes Yes Yes

Adjusted R2 0.03 0.01 0.19 0.11 0.37 0.36

Table 5.9 presents results for OLS regressions of the change in cash (∆Casht+τ /At , Models
1 and 2), the change in retained earnings (∆REt+τ /At , Models 3 and 4), and investments
(Invt+τ /At , Models 5 and 6) on idiosyncratic skewness (Skewt) and several control
variables motivated by the literature. ∆Casht+τ /At is defined as the change in cash
and short-term investments (item 1) scaled by total book assets (item 6). ∆REt+τ /At
and Invt+τ /At correspond to the change in retained earnings (item 36) and capital
expenditures (item 128), both scaled by total book assets. τ is either zero or one. In line
with Baker and Wurgler (2002) and Alti (2006), we lag control variables by one year
as contemporaneous controls may be noisy. The notation and construction of controls
follows Section 5.2.3. Stars indicate significance at the 10% (*), 5% (**), and 1% (***)
level and t-values (in parentheses) are based on cluster-adjusted standard errors. We
cover a sample period from 1971 to 2020 and do not report the intercept.

to t + 1 (Model 2, t = 2.99) and is likely explained by the positive impact

of idiosyncratic skewness on subsequent equity issues (as reported in

Table 5.6).50 Besides that, idiosyncratic skewness is positively related

to the change in retained earnings (Models 3 and 4). At a first glance,

this implies that our results are – at least partially – driven by Skewt’s
50 Note that ∆Casht+1 involves the change in cash from t to t + 1, not from t − 1 to t + 1.
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impact on retained earnings. However, as with the change in leverage,

this conclusion is misleading since the average change in retained earn-

ings is roughly −1%. If we replace ∆REt+τ /At by REt+τ /At, there is no

impact at all.51 In Models (5) and (6), we investigate the impact of id-

iosyncratic skewness on investments. In line with Kim and Weisbach

(2008) and DeAngelo et al. (2010), there is a significantly positive impact

on future investments (Model 6, t = 5.97), while the relationship with

contemporaneous investments is flat (Model 5, t = −1.53).52

Finally, Table 5.A.2 (in the Appendix) investigates the impact of

skewness-induced mispricing on current and future stock returns (cumu-

lative from t to t + τ), adjusted for Fama and French (1993) risk factors.53

In line with the literature on the pricing implications of skewness (e.g.

Boyer et al., 2010; Conrad et al., 2013) and the predictions of the market

timing theory (Baker and Wurgler, 2002), the impact of Skewt on current

returns (Model 1) is positive, whereas the impact on long-term returns

(Models 2 to 4) is significantly negative. This suggests that, on average,

market timing is successful.54

5.4 Robustness

Our main analysis provides strong evidence for the long-run validity of

the trade-off theory, while short-run decisions are determined by market

timing. However, our findings could be driven by, for example, the sam-
51 The corresponding t-statistics are −1.19 and 0.08, respectively.
52 In unreported results, we find no impact of idiosyncratic skewness on dividends.
53 To limit the impact of outliers, we trim returns at the 1% and 99% level.
54 See also Loughran and Ritter (1995) and Lewis and Tan (2016).
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ple period, specific firm characteristics, or our measure of idiosyncratic

skewness. We therefore repeat our baseline analysis (Tables 5.2 and 5.4)

with several adjustments motivated by the literature.

5.4.1 Robustness of Short-Term Results

We first investigate the robustness of the short-term effect and present

results in Table 5.10. For brevity, we only report coefficient estimates and

t-statistics for Skewt.

First of all, we perform a simple subperiod test by splitting our sample

period in half. The first subsample thus covers the period from 1971 to

1995 (Row 1a), whereas the second subsample ranges from 1996 to 2020

(Row 1b). Frank and Goyal (2003) and Huang and Ritter (2009) find that,

starting in the 1990s, equity issues track the financing deficit more closely

than debt issues, suggesting that the market timing effect might be driven

by the second subsample. While this indeed is the case for equity issues

(Model 5), we find a similar – if not smaller – effect on both the leverage

level (Models 1 and 2) and changes in leverage (Models 3 and 4).55

Next, we perform a robustness check based on firm size. Thereby,

we follow Alti (2006) and split our sample at annual sales of 50 million

dollars (Rows 2a and 2b). While Alti (2006) finds the market timing

effect to be comparable across firm size, Dong et al. (2012) report that

mispricing is more pronounced for small firms.56 Since the economic
55 In unreported results, we investigate the impact of SEC rule 415, which was introduced

in October 1983 and permits firms to register a certain amount of securities for SEOs
by filing a shelf registration statement. While we indeed we find a stronger effect on
equity issues in the post-1983 era, the impact on leverage is less pronounced.

56 Dong et al. (2012) derive their conclusion from sorts based on total assets.
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Table 5.10: Robustness of the Short-Term Impact

Dependent variable:

Levt LevMkt,t ∆Levt ∆LevMkt,t e/At d/At ESt

(1) (2) (3) (4) (5) (6) (7)

(1a) Subperiod1971−1995
−0.04*** −0.10*** −0.04*** −0.14*** 0.02*** −0.02*** 0.26***

(−3.54) (−4.83) (−8.94) (−11.43) (4.06) (−3.88) (6.97)

(1b) Subperiod1996−2020
−0.03*** −0.08*** −0.04*** −0.10*** 0.05*** 0.00 0.16***

(−3.00) (−7.64) (−7.20) (−10.27) (6.33) (−0.55) (6.64)

(2a) SizeSales ≤ $50 mio.
−0.06*** −0.13*** −0.05*** −0.13*** 0.09*** −0.01 0.18***

(−4.34) (−7.27) (−5.80) (−13.03) (6.23) (−1.28) (5.90)

(2b) SizeSales > $50 mio.
−0.03*** −0.07*** −0.04*** −0.12*** 0.02*** −0.01*** 0.21***

(−3.39) (−5.49) (−9.90) (−13.41) (5.72) (−3.28) (7.16)

(3a) Adjustment CostsLow
−0.02** −0.06*** −0.03*** −0.09*** 0.03*** −0.005 0.17***

(−2.02) (−6.67) (−6.58) (−11.86) (6.22) (−1.03) (6.47)

(3b) Adjustment CostsHigh
−0.06*** −0.11*** −0.05*** −0.14*** 0.05*** −0.02*** 0.24***

(−5.45) (−6.12) (−11.26) (−12.52) (6.18) (−3.48) (6.84)

(4) Fama and MacBeth (1973)
−0.02*** −0.08*** −0.03*** −0.10*** 0.03*** −0.01*** 0.16***

(−3.92) (−11.34) (−12.13) (−23.93) (5.40) (−2.91) (10.77)

(5) No Gaps
−0.04*** −0.09*** −0.05*** −0.13*** 0.04*** −0.01*** 0.21***

(−3.92) (−5.92) (−9.38) (−12.42) (7.24) (−2.62) (6.92)

(6) Alternative Skewness
−0.003*** −0.006*** −0.003*** -0.009*** 0.004*** −0.001** 0.012***

(−3.60) (−7.00) (−7.36) (−13.84) (5.18) (−2.48) (6.39)

(7) Baker & Wurgler (2002)
0.01 −0.10*** −0.04*** −0.20*** 0.04*** −0.04*** 0.24***

(1.17) (−4.90) (−8.25) (−14.19) (7.81) (−3.71) (10.02)

(8) Alternative Leverage
−0.92*** −1.04***

(−6.91) (−10.19)

Table 5.10 presents robustness checks for the short-term impact of market timing (see
Table 5.2). More specifically, we employ subperiods (Rows 1a and 1b), a size split
(Rows 2a and 2b), and a split based on adjustment costs. Thereby, firms with low
adjustment costs are characterized by having rated debt (Row 3a), whereas firms with
high adjustment costs are not rated (Row 3b). Moreover, we re-estimate our regression
framework based on the Fama and MacBeth (1973) methodology (Row 4) and without
gaps in any of the relevant variables (Row 5). To ensure that our results do not depend
on the specific measure of idiosyncratic skewness, we repeat our analysis with the
traditional third moment of skewness (Row 6). Finally, we adapt the Baker and Wurgler
(2002) methodology (Row 7) and replace our measure of leverage by Debt-to-EBITDA
(Row 8), as suggested by Graham (2022). In Row (8), we only report results for Models
(1) and (3) since, by construction, Debt-to-EBITDA is a measure of book leverage and
the impact on equity and debt issues complies with those in Table 5.2. The notation
and construction of dependent variables and controls follows Sections 5.2.2 and 5.2.3,
respectively. For brevity, we only report results for Skewt . Stars indicate significance
at the 10% (*), 5% (**), and 1% (***) level and t-values (in parentheses) are based on
cluster-adjusted standard errors. We cover a sample period from 1971 to 2020.
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effect of idiosyncratic skewness on leverage, changes in leverage, and

equity issues (Models 1 to 5) is stronger for small firms, our results point

in the direction of the latter. However, for large firms, the market timing

effect is still important and statistically comparable.57

To investigate the impact of adjustment costs, we split our sample

based on whether a firm has rated debt or not. According to Byoun (2008),

the existence of bond ratings proxies for financial constraints and Elliott

et al. (2008) note that rated firms have access to greater quantities of debt

at lower costs.58 Lemmon and Zender (2010) find that the ability to issue

public (rated) debt indicates a larger debt capacity. As a result, rated

firms (Row 3a) should be less prone to issue equity and the market timing

effect should be weaker than for non-rated firms (Row 3b). Economically,

we find strong evidence for this hypothesis as the impact on issuance

activities and both the leverage level and changes in leverage is strongly

increased. Statistically, however, the market timing effect is very similar

(except for Models 1 and 6).

Additionally, we re-estimate our regression framework based on the

Fama and MacBeth (1973) methodology, since according to Fama and

French (2002) standard errors would otherwise be understated.59 Results

are presented in Row (4). While, in economic terms, the market timing
57 In fact, the negative impact on debt issues is rather driven by large firms.
58 See also Faulkender and Petersen (2006).
59 Fama and French (2002) note that year-by-year variation in slopes, determining

the standard errors, includes estimation errors due to cross-sectional correlation of
residuals. In contrast, Fama and MacBeth (1973) standard errors are heteroscedasticity
consistent. Coefficients are based on the time series average of annual cross-sectional
regressions and standard errors are calculated based on the annual coefficients. See
Fama and MacBeth (1973) and Fama and French (2002) for more details.
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effect is somewhat reduced, statistical significance is comparable to our

main results. We attribute this finding to the fact that we have already

accounted for both firm and year clusters in our OLS regressions.

Frank and Goyal (2003) show that not allowing for gaps in relevant

variables has a negative impact on the validity of the pecking order theory,

suggesting that the effects of market timing may amplify. In Row (5),

we therefore omit all firms with discontinuous data on variables that are

needed to calculate leverage ratios and find our conclusions to hold.60

To study whether our conclusions depend on the specific measure of

idiosyncratic skewness, we repeat our analysis with the traditional third

moment of skewness. Results are presented in Row (6). Again, statistical

significance is comparable to our main analysis and conclusions remain

unchanged.

Next, we recalculate leverage measures and issuance decisions based

on Baker and Wurgler (2002) and report results in Row (7). Except for

Model (1), conclusions closely resemble our main analysis. Idiosyncratic

skewness significantly positively (negatively) affects equity issues (debt

issues) and the impact on leverage measures in Models (2) to (4) is sig-

nificantly negative. In fact, the economic significance even increases.61

However, in Model (1), the impact of idiosyncratic skewness is not signifi-

cant (and even positive). We attribute this finding to the large correlation

between the Baker and Wurgler (2002) leverage and SIZEt−1 (30.7%).
60 These variables are total assets, short-term debt, long-term debt, total liabilities,

preferred stock, deferred taxes, stock prices, and shares outstanding.
61 Note that the average level of the Baker and Wurgler (2002) leverage is higher (46.5%

vs. 24.3%) and therefore leaves more room for impact.
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After omitting SIZEt−1 (not reported), idiosyncratic skewness turns out

to be highly significant, both statistically (t = −4.40) and economically.62

Similarly, we find a significantly negative impact if SIZEt−1 is replaced by

an adjusted measure of firm size (not reported) that simply scales annual

sales by total book assets (t = −5.04, with a coefficient estimate of −0.05).

Finally, Graham (2022) documents that – in contrast to the conven-

tional wisdom – CFOs prefer the ratio of debt to EBITDA to evaluate

leverage. In Row (8), we therefore report results for this alternative mea-

sure.63 Notably, the impact of idiosyncratic skewness is even stronger. We

thus conclude that the short-run effects of market timing, as measured by

idiosyncratic skewness, are robust to a wide range of adjustments.

5.4.2 Robustness of Long-Term Results

Table 5.11 provides robustness checks for the persistence analysis. Again,

we only report coefficient estimates and t-statistics for Skewt.

In Rows (1a) and (1b), we investigate the persistence of market timing

with respect to the two subperiods proposed in Section 5.4.1. Although

the economic impact is similar to our main results, persistence in the

first subperiod is reduced to only one year. In Rows (2a) and (2b), we

repeat the size split. While the short-term impact was stronger for small

firms, the persistence of market timing effects is actually lower. This

tendency is in line with Alti (2006).64 With respect to adjustment costs,
62 The coefficient estimate is −0.05.
63 We only report results for Models (1) and (3) since, by construction, Debt-to-EBITDA

is a measure of book leverage and the impact on equity and debt issues corresponds
to Table 5.2.

64 However, in his study both subsamples become insignificant in t + 1 (his Table 9).
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Table 5.11: Robustness of the Long-Term Impact

Dependent variable:
Levt+1 Levt+2 Levt+3 Levt+4

(1) (2) (3) (4)

(1a) Subperiod1971−1995
−0.04*** −0.02 −0.01 0.01
(−3.75) (−1.60) (−1.11) (0.58)

(1b) Subperiod1996−2020
−0.03*** −0.02** −0.02 −0.02
(−2.94) (−1.97) (−1.05) (−1.33)

(2a) SizeSales ≤ $50 mio.
−0.05*** −0.03 −0.02 −0.01
(−3.45) (−1.64) (−0.98) (−0.38)

(2b) SizeSales > $50 mio.
−0.03*** −0.02** −0.01 0.00
(−3.46) (−2.07) (−1.25) (−0.37)

(3a) Adjustment CostsLow
−0.02** −0.02 −0.01 -0.01
(−2.13) (−1.36) (−0.60) (−0.43)

(3b) Adjustment CostsHigh
−0.06*** −0.03*** −0.03** -0.01
(−5.48) (−2.99) (−2.45) (−1.33)

(4) Market Leverage
−0.06*** −0.04*** −0.03** −0.02*
(−5.05) (−3.25) (−2.36) (−1.84)

(5) Fama and MacBeth (1973)
−0.02*** −0.02*** −0.01 0.00
(−4.92) (−2.96) (−1.57) (−0.01)

(6) No Gaps
−0.04*** −0.02** −0.02* −0.01
(−4.18) (−2.45) (−1.69) (−1.29)

(7) Alternative Skewness
−0.003*** −0.002*** −0.002** −0.001

(−4.43) (−3.12) (−2.05) (−0.75)

(8a) Baker & Wurgler (2002)Book
−0.01 0.00 0.00 0.00

(−0.70) (0.00) (0.07) (−0.15)

(8b) Baker & Wurgler (2002)Mkt
−0.08*** −0.05** −0.04** −0.04**
(−4.02) (−2.43) (−2.02) (−2.01)

(9) Alternative Leverage
−0.72*** −0.42*** −0.27** −0.11
(−5.79) (−2.96) (−2.08) (−0.76)

Table 5.11 presents robustness checks for the persistence of market timing (see Table 5.4).
More specifically, we employ subperiods (Rows 1a and 1b), a size split (Rows 2a and
2b), and a split based on adjustment costs. Thereby, firms with low adjustment costs
are characterized by having rated debt (Row 3a), whereas firms with high adjustment
costs are not rated (Row 3b). In Row (4), we replace book leverage by market leverage.
Moreover, we re-estimate our regression framework based on the Fama and MacBeth
(1973) methodology (Row 5) and without gaps in any of the relevant variables (Row
6). To ensure that our results do not depend on the specific measure of idiosyncratic
skewness, we repeat our analysis with the traditional third moment of skewness (Row
7). Finally, we adapt the Baker and Wurgler (2002) methodology for both book leverage
(Row 8a) and market leverage (Row 8b) and replace our measure of leverage by Debt-
to-EBITDA (Row 9), as suggested by Graham (2022). In Row (9), we only report results
for Models (1) and (3) since, by construction, Debt-to-EBITDA is a measure of book
leverage and the impact on equity and debt issues complies with those in Table 5.2. The
notation and construction of leverage ratios and controls follows Sections 5.2.2 and 5.2.3,
respectively. For brevity, we only report results for Skewt . Stars indicate significance
at the 10% (*), 5% (**), and 1% (***) level and t-values (in parentheses) are based on
cluster-adjusted standard errors. We cover a sample period from 1971 to 2020.
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the expected effect is straightforward. If a firm is rated (Row 3a), it can

issue debt at a lower cost and market timing effects should be rebalanced

more quickly than for non-rated firms (Row 3b). Our results provide clear

evidence in this direction. For firms with low adjustment costs, the impact

of idiosyncratic skewness on leverage in t + 1 is only significant at the

5%-level and turns insignificant in t + 2. In contrast, for firms with high

adjustment costs, statistical significance extends to t + 3. In Row (4), we

replace book leverage by market leverage. As mentioned in Section 5.2.2,

market leverage includes factors that are not under the control of the

firm, whereas book leverage reflects active rebalancing. We therefore

expect an increased persistence of market timing effects. In line with

Welch (2004), we indeed find this to be the case. However, in t + 4, the

coefficient estimate is only significant at the 10%-level and finally turns

insignificant in t + 5 (not reported). Next, we re-estimate the regression

framework based on the Fama and MacBeth (1973) methodology. Results

(reported in Row 5) correspond to both our main analysis and Table 5.10.

While the economic impact is slightly reduced, statistical significance is

even increased. However, the impact of idiosyncratic skewness still turns

insignificant in t + 3. When firms are restricted to have continuous time

series (Row 6), the persistence of market timing effects extends to t + 3

(but only at the 10%-level). This result is in line with our expectations in

Section 5.4.1. A similar finding is achieved when idiosyncratic skewness

is replaced by the traditional third moment of skewness (Row 7). In this

case, however, the statistical significance in t + 3 improves to the 5%-level.

In Rows (8a) and (8b), we extend our analysis to the Baker and Wurgler
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(2002) methodology. While, not surprisingly, there is no impact on book

leverage (Row 8a), results for the market leverage (Row 8b) correspond to

those reported in Row (4).65 Finally, we replace book leverage by Debt-to-

EBITDA (Row 9). In line with the amplified short-term impact reported

in Table 5.10, the persistence of the market timing effect extends to t + 3.

In conclusion, our evidence on the persistence of market timing is robust

to a wide range of robustness checks.66

5.5 Concluding Remarks

We provide new evidence on the broad implications of firm-specific mis-

pricing on financing decisions and capital structure. By employing id-

iosyncratic skewness as a proxy for mispricing, we find a strong short-term

effect of market timing. More specifically, idiosyncratic skewness is sig-

nificantly positively related to equity issues and negatively related to

debt issues, with the former effect being the predominant one. More-

over, in line with Hovakimian et al. (2001), we find equity issues to be

accompanied by debt retirement programs.

However, in contrast to the predictions of Baker and Wurgler (2002),

these effects are not persistent and disappear after about three years.

Both partial adjustment models (to estimate the speed of adjustment

to target leverage) and interaction effects of idiosyncratic skewness and

the firm-specific financing deficit confirm this finding. Finally, our re-
65 Again, the impact of idiosyncratic skewness turns insignificant in t + 5 (not reported).
66 In unreported results, we winsorize idiosyncratic skewness at the 5%-level and 10%-

level, respectively, and find our conclusions to hold.
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sults are robust to a wide range of adjustments, including sample splits,

adjustment costs, Fama and MacBeth (1973) regressions, and both an

alternative measure of skewness and alternative definitions of leverage.

Our results are thus consistent with a long-run validity of the trade-off

theory, including market timing as a short-term factor.
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5.A Appendix

Table 5.A.1: Summary Statistics - Change in Leverage

Skewness Quintile

Full Sample 1 2 3 4 5 High − Low t−value

Skewt 0.04 −0.14 −0.02 0.04 0.11 0.22 0.35

∆Levt+1 1.15 2.11 1.30 1.29 0.81 0.24 −1.87*** (−13.12)

∆Levt+2 1.48 2.23 1.67 1.43 1.27 0.81 −1.41*** (−6.64)

∆Levt+3 1.62 2.26 1.78 1.64 1.46 0.95 −1.31*** (−6.56)

∆Levt+4 1.82 2.37 1.95 1.93 1.61 1.28 −1.09*** (−4.81)

Table 5.A.1 presents summary statistics for the change in leverage from fiscal year t − 1
to t + τ . We sort firms into quintiles based on their idiosyncratic skewness in a given
fiscal year and report the equal-weighted average within each quintile. The construction
of leverage ratios follows Section 5.2.2. Except for Skewt , values are stated in percent
and stars indicate significance at the 10% (*), 5% (**), and 1% (***) level. We cover a
sample period from 1971 to 2020.

Table 5.A.2: The Impact of Idiosyncratic Skewness on Stock Returns

Dependent variable:

RETt RETt+1 RETt+2 RETt+3

(1) (2) (3) (4)

Skewt 0.88∗∗∗ −0.17∗∗∗ −0.30∗∗∗ −0.33∗∗∗

(14.55) (−3.89) (−5.10) (−3.64)

MktRft 0.78∗∗∗ −0.31∗ −0.80∗∗∗ −0.76∗∗∗

(9.87) (−1.68) (−3.49) (−3.77)

SMBt 0.71∗∗∗ 0.28 0.39∗ 0.49∗∗

(5.29) (1.16) (1.82) (2.11)

HMLt 0.03 −0.05 −0.41∗∗ −0.30

(0.30) (−0.34) (−2.02) (−1.12)

SIC fixed effects Yes Yes Yes Yes

Cluster adj. Yes Yes Yes Yes

Adjusted R2 0.13 0.01 0.01 0.001

Table 5.A.2 presents results for OLS regressions of current (Model 1) and future stock
returns (cumulative returns from t to t + τ , Models 2 to 4) on idiosyncratic skewness
(Skewt) and Fama and French (1993) risk factors. To limit the impact of outliers, we
trim returns at the 1% and 99% level. Stars indicate significance at the 10% (*), 5% (**),
and 1% (***) level and t-values (in parentheses) are based on cluster-adjusted standard
errors. We cover a sample period from 1971 to 2020 and do not report the intercept.
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