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Abstract

This thesis describes relativistic corrections and the use of dynamical decoupling in
the context of trapped ion optical atomic clocks. The shifts that contribute to trapped
ion optical atomic clocks can be divided into relativistic effects and environmental
perturbations, which correspond to the two parts of this thesis.

In the first part, we investigate how to properly account for relativistic corrections
from an ab initio derivation. For that purpose, we start from a charged two-particle
system in external electromagnetic and gravitational fields described by the classical
Lagrangian for two particles interacting with the electromagnetic field. From this
starting point, we derive a quantum Hamiltonian including leading order relativistic
corrections in a systematic way. We then apply this Hamiltonian to describe the
relativistic coupling of external and internal dynamics of cold ions in Paul traps, in-
cluding the effects of micromotion, excess micromotion and trap imperfections. This
approach provides a systematic and fully quantum mechanical treatment of relativis-
tic frequency shifts in atomic clocks based on single trapped ions. Additionally, we
reproduce well-known formulae for the second-order Doppler shift for thermal states,
which were previously derived on the basis of semiclassical arguments. We comple-
ment and clarify recent discussions in the literature on the role of time dilation and
mass defect in ion clocks. Furthermore, we also study the problem of an ion in a
Penning trap for the case of a transition between manifolds with spin 0. Our Hamil-
tonian gives a basis for properly treating the relativistic effects of an ion that can be
applied to an extensive variety of experiments after the proper implementation.

The second part considers the mechanism of continuous dynamical decoupling, fo-
cusing on gaining insensitivity to some environmental perturbations, such as magnetic
field fluctuations and quadrupole shifts. This mechanism consists in the application
of a radio-frequency magnetic field orthogonal to the quantization axis of a given
spin manifold. We show how this is achieved for one manifold and then extend the
treatment to two manifolds. In that process, we make some approximations, consist-
ing of rotating wave approximations and neglecting the effect that the off-resonant
radio-frequency magnetic field of one manifold has on the other manifold and vice
versa. Nevertheless, we account for those approximations perturbatively by using
the so-called Magnus expansion, showing that they can be considered as an effective
shift of the Zeeman splitting of the manifolds. Afterwards, we can apply our formal-
ism to properly describe a quadrupole transition between two manifolds, where the
particular case of a transition between S = 1/2 and D = 5/2 of 40Ca+ is studied;
a comparison with experimental data will be presented elsewhere. We compare our
approximate treatment with the true solution of the periodic Hamiltonian presented
in the introductory part of the thesis, finding that the corrected dressed basis cor-
responds to the time-independent part of the Floquet states. We finish this part by
considering the implementation of a Mølmer-Sørensen gate within the framework of
continuous dynamical decoupling.

Keywords: Optical atomic clocks, Paul traps, trapped ions, relativistic correc-
tions, continuous dynamical decoupling, precision measurements
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1
Introduction

Research to make clocks more precise is an ongoing task for centuries. With each

improvement, the performance of existing applications can be improved and/or the

development of new applications is enabled. Today we take several applications for

granted such as the global positioning system (GPS), that was developed thanks to

the use of atomic clocks. But the applications of atomic clocks go beyond navigation

technology. About 400 highly precise atomic clocks help to define the International

Atomic Time (TAI), which, in combination with the consideration of the Earth’s ro-

tation, define the Coordinated Universal Time (UTC). Furthermore, there is great

interest in using optical clocks in space to perform tests of fundamental physics such

as Einstein’s theory of relativity. Also noteworthy are geodesy applications, where

the combination of the measurement of the gravity potential and its derivative, which

can be measured with a gravimeter, allows explorations of Earth, i.e., to explore the

surface and interior of the Earth. Another interesting field of study is the varia-

tion of fundamental constants, whose bounds are further limited by more precise

measurements and thus the improvement of atomic clocks. These applications of

atomic clocks are only a selected few of many, which further emphasize the versatil-

ity of atomic clocks: from mere applications to addressing questions of fundamental

physics.

After giving examples of these applications, we would like to focus on two physical

effects, the gravitational redshift and the mass defect. We want to gain some insight

into these effects and motivate how important it is to properly understand them for

the performance of their applications.

For the gravitational redshift we will focus on the GPS and what an improvement

in the precision would imply for this effect. Assuming an uncertainty of 10−7 s in

the time measurement translates to a precision of around 20 to 30 meters for the

GPS. But, to achieve this precision a theoretical understanding of the gravitational

redshift is required. If we do not account for general and special relativity, GPS

calculated positions would accumulate errors up to 10 km during a day. This shows

how important it is to properly understand the theory in order to characterize such

1



2 Chapter 1. Introduction

applications. Research on resolving the gravitational redshift has improved in the

previous years, going from tens of cm to hundreds of µm in about a decade. Being

able to resolve the gravitational redshift in the regime of a few tens of µm will allow

to probe the connection between quantum physics and general relativity, opening up

a whole new realm of physics to explore.

With respect to the mass defect, we want to motivate why it is important to

properly characterize it in order to gain further insight into the limitations of trapped

ion clocks. The mass defect, or second-order Doppler effect, comes into play if one

takes the mass-energy equivalence seriously, i.e., E = mc2. Accounting for that in our

Hamiltonian, gives rise to relativistic effects related to the so-called secular motion,

micromotion and excess micromotion, which are known to play an important role

in relativistic frequency shifts in trapped ion clocks. In particular, the uncertainty

in the excess micromotion is one of the main limiting factors in trapped ion clocks

nowadays, therefore, an ab initio derivation of relativistic corrections can lead to a

better understanding of this effect. Improving the knowledge on these effects, and

characterizing which other effects can play a significant role, is required to enable

the improvement in precision, allowing us to improve some of the aforementioned

applications.

As motivated above, the fields related to atomic clocks are constantly evolving,

and new ideas are proposed regularly to overcome previous limitations. Therefore,

the theoretical description and the experiments of all these applications have to be on

an equal footing of understanding and precision. With this in mind, the first question

we should ask ourselves is: What is limiting an atomic clock today? The answer is

systematic effects, which can be divided in two categories. The first category consists

of the shifts caused by environmental perturbations, e.g., due to electric or magnetic

fields. The second category consists of the shifts generated by relativistic effects. The

aim of this thesis is to gain deeper insight into some aspects of both categories of

shifts in order to understand and treat them properly. For this purpose, we have

divided the thesis into two parts:

In the first part, treated in chapter 3, we characterize the shifts generated by

relativistic effects. For that purpose, we derive a Hamiltonian for the external and

internal dynamics of an electromagnetically bound, charged two-particle system in

external electromagnetic and gravitational fields, including leading-order relativistic

corrections. We apply this Hamiltonian to describe the relativistic coupling of the

external and internal dynamics of cold ions in Paul traps, providing a systematic and

fully quantum mechanical treatment of relativistic frequency shifts in atomic clocks

based on single trapped ions. We also study the case of an ion in a Penning trap for

the case of a transition between manifolds with spin 0. We use our Hamiltonian to
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treat relativistic effects in trapped ions, but it also serves as a basis for treating such

effects in experiments with neutral atoms.

In the second part, treated in chapter 4, we study how to treat the shifts generated

by environmental perturbations. In particular, we describe a mechanism that makes

our clock transition insensitive to at least some of such shifts. We begin by considering

the mechanism of continuous dynamical decoupling, focusing on gaining insensitivity

to magnetic field fluctuations and quadrupole shifts. We show how this is achieved for

a given spin manifold and then extend the treatment to two manifolds. Afterwards,

we apply our formalism to properly describe a quadrupole transition between two

manifolds, where the particular case of a transition between S = 1/2 and D = 5/2 of
40Ca+ is studied; a comparison with experimental data will be presented elsewhere.

Additionally, we compare our approximate treatment with the true solution of the

periodic Hamiltonian presented in chapter 2. We finish this part by considering

the implementation of a Mølmer-Sørensen gate within the framework of continuous

dynamical decoupling.

For both parts, the treatment of time-dependent potentials, particularly time-

periodic potentials, is needed. These potentials are considered using the Floquet

theory. This mathematical framework is summarized in chapter 2.

While this introduction is kept in more general to give a motivation considering

the overall topic, the mentioned problems are motivated throughout the manuscript

in more detail at the beginning of every chapter.
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2
Mathematical methods for
time-dependent Hamiltonians

2.1 Motivation

Understanding the dynamics of a time-dependent problem is a topic of study in several

branches of science. In general, the time-dependent nature of the physical problem is

already present, but it can also be implemented as a tool to achieve some particular

properties, e.g., insensitivity to a particular effect inherent of our system by applying

external time-dependent fields. Therefore, the characterization of time-dependent

properties goes beyond simply understanding the physical problem we are facing and

additionally allows us to exploit the gained insight to obtain a desired effect.

Of particular relevance are the time-periodic contributions as they allow us to

use several different properties used for time-independent problems. The theory that

discusses time-periodic differential equations, i.e., time-periodic dynamics through the

Schrödinger equation, is the well-known Floquet theory, that begins with the work

of the French mathematician Achille Marie Gaston Floquet (1847–1920) on linear

differential equations with periodic coefficients [2]. This theory has been studied in

several works [3–5] and is used for different physical problems, for example in the

context of trapped ions [6–9]. We will need this theory as in the problems treated

in chapters 3 and 4 the system is subject to time-dependent fields. In the case that

the reader is more familiarized with Bloch’s theorem, which states the shape for

the eigenstates of the Hamiltonian with a periodic potential in space, we will try

to motivate the use of Floquet theory in a similar way, as it has a similar insight

exploiting a periodicity in time rather than in space. Therefore, it seems intuitive to

consider the time t as a coordinate in an equal footing to the x coordinate in order

to use its periodicity. This idea will be the foundation from which we will be able

to find connections between the properties of time-independent Hamiltonians and

time-periodic Hamiltonians.

5



6 Chapter 2. Mathematical methods for time-dependent Hamiltonians

Even though Floquet theory has been studied in several different works, we find

it useful to give a summary at this point to remind the reader of its main characteris-

tics. Additionally, we find it appropriate, as it is the theory that connects the different

projects studied in this thesis. Also, as Holthaus highlights in his work [5]: “. . . there

are some peculiarities of time-periodic quantum systems which, although they are

known in principle [4,8–15], appear to be rarely appreciated . . . .” Therefore, we aim

with this chapter to provide a proper mathematical framework that will allow us to

treat trapped particles in time-dependent potentials and the effect of implementing

time-dependent magnetic fields into two spin manifolds for driving quadrupole tran-

sitions. Furthermore, with our treatment, we provide an alternate perspective for

the aforementioned problems. To this goal, we will closely follow the introduction to

Floquet theory of Martin Holthaus [5] and the work of Hideo Sambe [4]. We redirect

the reader to those articles for a more detailed description of the notions presented

in this chapter.

This chapter starts in Sec. 2.2 with an introduction on how to consider time-

dependent problems in physics and the explanation of an approximate method to

treat time-dependent potentials, the rotating wave approximation, followed by a per-

turbative treatment that goes beyond the rotating wave approximation treated in

Sec. 2.3. After acquiring some insight on time-dependent problems, the basics of Flo-

quet theory are treated in Sec. 2.4. Both will be relevant for chapter 4. Exploiting the

periodicity allows us to find new constraints for the properties of the periodic Hamil-

tonians. Thanks to that, we define the so-called Floquet states with their so-called

quasienergies. Afterwards, we treat in Sec. 2.4.1 the problem of the ambiguity of the

quasienergies. We end by fixing this problem using the so-called extended Hilbert

space 2.4.2, which is of particular interest as it will be a key notion for chapter 3.

2.2 Rotating wave approximation

Before entering into the details of treating periodic potentials using Floquet theory, we

consider how to address time-dependent Hamiltonians and to explain an approximate

method. However, this approximation is not valid for every problem and, therefore,

the need of an exact solution using Floquet theory arises.

When dealing with a time-dependent Hamiltonian, the most natural question to

ask is the following: is there a reference frame in which the Hamiltonian of the system

is time-independent? The first step to answer this question is to study a change of

reference frame in general. Let H(t) be the Hamiltonian of our system. We want to

study the Hamiltonian from a reference frame which itself evolves under H0, where H0

can be contained in H(t) or not. If so, we are studying the Hamiltonian in a frame
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that is already undergoing part of the evolution of the system. Commonly, these

frames are rotations around some axis, hence the name ‘rotating frame’. During this

thesis, we will use the abbreviation RF to refer to the reference frame and to the

rotating frame. A rotating frame is a reference frame but the opposite is not always

true.

Let |φ(t)〉 be the set of states that, under the general Hamiltonian, will fulfill the

Schrödinger equation

i~
d

dt
|φ(t)〉 = H(t) |φ(t)〉 . (2.1)

We are interested in the states

|ψ(t)〉 = eitH0/~ |φ(t)〉 =: U |φ(t)〉 , (2.2)

which are the states |φ(t)〉 time evolved with respect to the Hamiltonian H0 and where

we defined the operator U . We ask ourselves what is the effective Hamiltonian (HRF )

that describes the dynamics of these new states. This new Hamiltonian can be time

dependent or not, but we will not write it explicitly. We will take the opportunity to

define a notation that is going to prove useful in chapter 4. This consists on rewriting

Eq. (2.1) as (
H(t)− i~

d

dt

)
|φ(t)〉 = 0, (2.3)

and considering H(t) − i~ d
dt

as the operator defining the Schrödinger equation. We

will introduce the shorthand notation

RU [A] := UAU †. (2.4)

for the conjugation of an operator A with U . Therefore, the transformed Schrödinger

equation for the states |ψ(t)〉 will be calculated by the transformation of the operator

H(t)− i~ d
dt

RU
[
H(t)− i~

d

dt

]
= U

[
H(t)− i~

d

dt

]
U †

= UH(t)U † − i~UU̇ − i~
d

dt

= eitH0/~H(t)e−itH0/~ −H0 − i~
d

dt
. (2.5)

As the previous expression corresponds to the transformation of the operator defining

the Schrödinger equation, the Hamiltonian in the reference frame is given by

HRF = eitH0/~H(t)e−itH0/~ −H0. (2.6)
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With this notation it will be easier to implement sequences of transformations of the

form RU1RU2 · · ·RUn
[
H(t)− i~ d

dt

]
, as will be relevant in chapter 4.

After understanding what a change of reference frame consists on, we would like

to introduce the so-called rotating wave approximation (RWA), which is a tool that

is also commonly used to deal with time-dependent Hamiltonians and that is going to

prove useful for us, as we will see in chapter 4. For that purpose we will write U in the

eigenstates |n〉 of the Hamiltonian H0, i.e., H0 =
∑

nEn |n〉 〈n|, where for simplicity

we will assume that there is no degeneracy in the eigenstates of H0. Therefore, we

can rewrite HRF by expanding in the eigenbasis of H0 as

HRF = −H0 +
∑
m,n

eiωmnt 〈m|H(t) |n〉 |m〉 〈n| , (2.7)

where we defined the frequencies ωmn = Em−En
~ . The RWA consists on neglecting the

terms that fufill

|〈m|H(t) |n〉| � |~ωmn|, (2.8)

as they will be off-resonant contributions, also known as fast-oscillating terms. In

order for the condition in eq. (2.8) to be sufficient we also assumed that the time

dependence of H(t) is slow on the time scale of ωmn.

In chapter 4 we will need to consider corrections beyond the RWA in order to have

sufficient accuracy for describing the precision measurements we are going to treat.

To this goal we will introduce now the Magnus expansion.

2.3 Magnus expansion

This section is meant to be a motivation on why the Magnus expansion [16] is a

useful approximation for time-dependent Hamiltonians and how to use it. For a more

detailed introduction of the Magnus expansion, we refer the reader to the pedagogical

introduction of S. Blanes et al. [17] and for a rigorous proof of the theorem, as well

as a detailed explanation of several applications, we refer the reader to another work

from the same author [18].

In order to characterize the evolution of any possible initial state |ψ(t0)〉, we need

to find the unitary time-evolution operator, U(t, t0), associated with the Schrödinger

equation, Eq. (2.1). With this operator, any initial state |ψ(t0)〉 can be propagated

in the form

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (2.9)
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If the time-evolution operator is well defined, it has to obey some properties. First,

for consistency, it needs to fulfill the initial condition U(t0, t0) = 1, where 1 denotes

the identity operator in the Hilbert space H. Additionally, the propagation of the

initial state at time t0 to a later time t2 has to be the same as propagating the initial

state to an intermediate time t1 and afterwards propagating it to the time t2. This

is known as the composition property,

U(t2, t0) = U(t2, t1)U(t1, t0), t2 ≥ t1 ≥ t0. (2.10)

If we evolve a normalized state, it is to be expected that the norm of the state

does not change with time, i.e.,

〈ψ(t0)|ψ(t0)〉 = 〈ψ(t)|ψ(t)〉 = 〈ψ(t0)|U †(t, t0)U(t, t0) |ψ(t0)〉 . (2.11)

In order to obey this condition, the time-evolution operator needs to be unitary

U †(t, t0)U(t, t0) = 1. (2.12)

Moreover, if we want the state to obey the Schrödinger equation at all times, the

time-evolution operator also needs to fulfill the Schrödinger equation

i~
d

dt
U(t, t0) = H(t)U(t, t0). (2.13)

If the Hamiltonian is time independent, then this has the easy solution

U(t, t0) = exp(−i(t− t0)H/~), (2.14)

which can be calculated by direct integration. When the Hamiltonian is time depen-

dent, we cannot obtain such a simple form. One can use time-dependent perturbation

theory to solve Eq. (2.13) by iteration giving the expansion, in powers of H(t) (or,

equivalently, in powers of ~−1)

U(t, t0) = 1+
∞∑
n=1

Pn(t, t0), (2.15)

where Pn(t0, t0) = 0. Then, one gets the expressions

Pn(t, t0) = (−i/~)n
∫ t

t0

dt2

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn). (2.16)

Truncating this sum will give an approximate result of our evolution operator. Never-

theless, the truncation of the series usually leads to a non-unitary evolution operator.

One of the main advantages of the Magnus expansion for the evolution operator

is that it consists of a systematic way to build approximations to the time-dependent
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Schrödinger equation in such a way that, in any order, the evolution operator is

unitary.

If we accept that a true exponential solution of Eq. (2.13) does exist in the form

U(t, t0) = exp(Ω(t, t0)) = 1+
∞∑
n=1

1

n!
Ωn(t, t0), (2.17)

with Ω(t0, t0) = 0, and if we rewrite Ω(t, t0) as Ω(t, t0) =
∑∞

k=1 Ωk(t, t0). Then we

can calculate Ωk(t, t0) by equating Eq. (2.15) and Eq. (2.17)

1+
∞∑
n=1

Pn(t, t0) = 1+
∞∑
m=1

1

m!

(
∞∑
k=1

Ωk(t, t0)

)m

. (2.18)

We can collect the terms with equal orders in ~−1 and equate them in both sides,

remembering that both Pk and Ωk are of order ~−k. With that we obtain, for the first

three orders,

P1(t, t0) = Ω1(t, t0) (2.19)

P2(t, t0) = Ω2(t, t0) +
1

2!
Ω2

1(t, t0) (2.20)

P3(t, t0) = Ω3(t, t0) +
1

2!
(Ω1(t, t0)Ω2(t, t0) + Ω2(t, t0)Ω1(t, t0)) +

1

3!
Ω3

1(t, t0). (2.21)

Rearranging and using the definitions of Pi(t, t0) we can show the expressions of

Ωi(t, t0) for the first three orders

Ω1(t, t0) = − i

~

∫ t

t0

H(t)dt1, (2.22)

Ω2(t, t0) = − 1

2~2

∫ t

t0

dt1

∫ t1

t0

dt2[H(t1), H(t2)], (2.23)

and

Ω3(t, t0) =
i

6~3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 ([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]) .

(2.24)

The expressions for Ωi can be interpreted as generating effective Hamiltonians of

order i fulfilling Heff
i = i~Ωi(t0 + T, t0)/T . Once more, we highlight that the effective

Hamiltonian Heff =
∑k

i=1H
eff
i is Hermitian for truncation at any value of k, and

therefore the evolution operator is unitary as well.
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Lastly, we want to highlight another interesting property of the Magnus expansion.

For the way it is constructed, if the commutator vanishes for a given order k then it

means that the series is finite and therefore, it is not an approximation any more and

we could find the exact solution of the evolution operator, and therefore, an exact

effective Hamiltonian driving the system. This can be really useful for some time-

dependent Hamiltonians for which the existence of this solution is not obvious. This

is the case for the Mølmer-Sørensen gate that we use in Sec. 4.5.

In the case that the time-dependent Hamiltonian is periodic then we can go even

further and treat the problem exactly using Floquet theory. We expect the eigenstates

coming from the RWA and the eigenstates further corrected using Magnus expansion

to be approximations of the quasienergy eigenstates defined by Floquet theory, which

we will study in the following. This comparison is going to be treated in chapter 4.

2.4 Introduction to Floquet theory

We want to study physical problems that are symmetric under discrete time trans-

lations, and, therefore, will allow us to use the Floquet formalism [2]. With that

purpose, we consider a quantum system defined on a Hilbert space H with a periodic

Hamiltonian H of periodicity T , i.e.,

H(t) = H(t+ T ). (2.25)

We will assume a finite-dimensional Hilbert space to avoid discussions about technical

subtleties that go beyond the intention of this introduction. Our goal is to study

which implications this periodicity has on the level of the time-dependent Schrödinger

equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 . (2.26)

As we are treating T -periodic Hamiltonians, we should try exploiting this property

to obtain stronger statements about the time-evolution operator attributes, this is

possible for the composition property, see Eq. (2.10).

If we consider the operator V (t) := U(t + T, 0)U−1(T, 0), where we fix the initial

time t0 = 0 for the rest of the chapter, it can be immediately seen that V (0) = 1 and

we can calculate the Schrödinger equation for the newly defined operator V (t)

i~
d

dt
V (t) = i~

d

dt
U(t+ T, 0)U−1(T, 0) = H(t+ T )U(t+ T, 0)U−1(T, 0) = H(t)V (t).

(2.27)
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We have shown that V (t) obeys the same differential equation and initial condition

as the time-evolution operator, and therefore, due to the existence and uniqueness

theorem, they are the same U(t + T, 0)U−1(T, 0) = V (t) = U(t, 0), proving the

modified composition property for periodic potentials

U(t+ T, 0) = U(t, 0)U(T, 0). (2.28)

This is a really strong statement, which is the core of Floquet theory as it implies that

knowing the evolution operator within the period T allows us to know the evolution

operator for all times.

As should be clear from our previous statement, the one-cycle evolution opera-

tor U(T, 0), which is also known as monodromy operator in the mathematical lit-

erature [19], plays a prominent role in Floquet theory. Therefore, we will need to

characterize it properly. To this goal, we will write the monodromy operator as an

exponential in the form

U(T, 0) = exp (−iGT/~) , (2.29)

where the operator G is Hermitian, and therefore, has real eigenvalues. This ensures

that exp(−iGT/~) is unitary. Now we can define a new unitary operator

P (t) := U(t, 0) exp(+iGt/~), (2.30)

which is also periodic in T , as can be seen from

P (t+ T ) = U(t+ T, 0) exp(+iG(t+ T )/~)

= U(t, 0) (U(T, 0) exp(+iG(T )/~)) exp(+iG(t)/~)

= P (t). (2.31)

By combining the T -periodic unitary operator P and the Hermitian operator G we

can define the time evolution operator U(t, 0) as

U(t, 0) = P (t) exp(−iGt/~). (2.32)

By writing the set of eigenvalues of U(T, 0) = exp(−iGT/~) as {e−iεnT/~}, and its

eigenstates as {|n〉}, we can write the monodromy operator in its spectral represen-

tation as

U(T, 0) =
∑
n

|n〉 e−iεnT/~ 〈n| , (2.33)

implying

e−iGT/~ |n〉 = e−iεnT/~ |n〉 . (2.34)
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Thanks to Eq. (2.33), the evolution of any initial state becomes easily evaluated in

the basis of eigenstates of U(T, 0). We can see this by writing any initial state in the

aforementioned basis

|ψ(0)〉 =
∑
n

|n〉 〈n|ψ(0)〉 =
∑
n

an |n〉 , (2.35)

where an = 〈n|ψ(0)〉 are the coordinates of our initial state with respect to the basis of

eigenvectors of the evolution operator. We apply U(t, 0) to study the time evolution

of our initial state

|ψ(t)〉 =U(t, 0) |ψ(0)〉 =
∑
n

anP (t)e−iGt/~ |n〉 =
∑
n

anP (t) |n〉 e−iεnt/~

=
∑
n

an |un(t)〉 e−iεnt/~, (2.36)

where we define the Floquet functions

|un(t)〉 := P (t) |n〉 , (2.37)

which are periodic due to the periodicity of the operator P (t), as can be seen in

Eq. (2.31). With that, we define the so-called Floquet states as

|ψn(t)〉 := |un(t)〉 e−iεnt/~, (2.38)

which are solutions of the time-dependent Schrödinger equation (2.26) and are also

known as quasistationary eigenstates. We will explain the origin of this name shortly.

The importance of this states is that, as |n〉 form a complete set, and P (t) is unitary,

the Floquet functions are a complete set for each instant of time t. Therefore, any

solution of the time-dependent Schrödinger equation with a T -periodic Hamiltonian

can be expanded with respect to the Floquet states

|ψ(t)〉 =
∑
n

an |un(t)〉 e−iεnt/~. (2.39)

The previous statement is commonly known as the Floquet theorem.

We can see that the occupation probability of a given Floquet state |ψn(t)〉 is

given by the norm squared of its coefficient an, i.e., |an|2, which is independent of

time, and therefore, the time-periodic action preserves the occupation probabilities

of the Floquet states. This implies that several techniques and concepts for time-

independent problems can be applied to periodic time-dependent problems. The first

comparison will be the phase factors in e−iεnt/~, which resembles the phase factors

in e−iEnt/~ corresponding to the time-evolution of energy eigenstates with energies

En in the case of time-independent Hamiltonians. For this reason, the quantities εn
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have been called quasienergies, and were named in 1966 almost simultaneously by the

Soviet physicists Yakov Borisovich Zel’dovich [8] and Vladimir Ivanovich Ritus [9].

Additionally, we can also highlight the analogy between the quasienergies and the

quasimomentum k, characterizing the Bloch eigenstates in a periodic solid.

2.4.1 Quasienergies ambiguity

Seeing the similarities of the Floquet states with the eigenstates of time-independent

Hamiltonians we want to try to find an appropriate frame in which the dynamics of

our problem are governed by a time-independent Hamiltonian. The difference here,

with respect to Sec. 2.2, is that no approximation is going to be used. To this goal,

we will start by performing the unitary transformation

|ψ(t)〉 = P (t) |ψ̃(t)〉 , (2.40)

so that

i~
d

dt
|ψ(t)〉 = i~Ṗ (t) |ψ̃(t)〉+ P (t)i~

d

dt
|ψ̃(t)〉 , (2.41)

where Ṗ (t) denotes derivation with respect to the time variable t. Using Eq. (2.30)

we can calculate Ṗ (t) and obtain

i~
d

dt
|ψ(t)〉 = H(t)U(t) exp(iGt/~) |ψ̃(t)〉 − U(t)G exp(iGt/~) |ψ̃(t)〉+ P (t)i~

d

dt
|ψ̃(t)〉 .
(2.42)

The first term on the right-hand side can be rewritten as H(t) |ψ(t)〉 and therefore,

cancels the term on the left-hand side, leading us to

i~
d

dt
|ψ̃(t)〉 = P−1(t)U(t) exp(iGt/~)G |ψ̃(t)〉 = G |ψ̃(t)〉 . (2.43)

Thanks to the transformation in Eq. (2.40), we managed to find a time-independent

Schrödinger equation for which the time-independent Hamiltonian consists of the

previously defined operator G, which is the generator of the monodromy operator

U(T ) defined in Eq. (2.29). That is the reasoning why the eigenstates of the operator

G are related to the Floquet states.

Nevertheless, Eq. (2.43) can be misleading, as it does not solve the problem

uniquely. The key resides in the definition of G. The Floquet multipliers {e−iεnT/~}
are not uniquely defined. Even though they are the eigenvalues of the monodromy

operator U(T, 0), and therefore, well defined, the complex logarithm needed to ex-

tract its quasienergies is multi-valued. Since ez = ez+m2πi, where m = 0,±1,±2, . . .
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is an arbitrary integer, the Floquet multipliers thus fix the quasienergies up to an

integer multiple of 2π~/T . Therefore, introducing the angular frequency

ω =
2π

T
. (2.44)

In reality, every quasienergy will be an entire class labeled by m, where

ε(n,m) :=εn +m~ω; m = 0,±1,±2, . . . . (2.45)

Of course, εn = ε(n,0) has to be selected by some convention, and any other member

of the class is an equally valid representative. One option for this representative is

the so-called first quasienergy Brillouin zone, which corresponds to the representative

of every class that lays within the range −~ω/2 < ε ≤ +~ω/2. Sometimes, it is

not even desirable to single out one particular representative of a quasienergy class

because it is precisely the ~ω-indeterminacy that allows for a physically most trans-

parent description of some physical problems. This is the case, e.g., for multiphoton

transitions induced by a periodic potential [5]. Therefore, we saw that it will depend

on the particular problem how to try to define the quasienergies properly.

2.4.2 The extended Hilbert space

Seeing the problems regarding the proper definition of the quasienergies, see Eq. (2.45),

we will try to formulate the theory in an invariant manner, such that unnatural dis-

tinctions of individual quasienergy representatives are not made.

We will start by inserting the Floquet states (2.38) into the Schrödinger equa-

tion (2.26), obtaining (
H(t)− i~

d

dt

)
|un(t)〉 = εn |un(t)〉 . (2.46)

The key now is to consider t not as the evolution variable, but rather as a coordinate on

the same footing as x. In that case, Eq. (2.46) becomes an equation in an extended

Hilbert space HT = L2(R3)⊗ T , where T is the space of T -periodic functions of

time. This idea of extended Hilbert space was introduced in the literature by Hideo

Sambe [4] and plays a major role in the mathematical analysis of periodically time-

dependent quantum systems.

Now, we want to study what happens to the degeneracy of the quasieigenstates

in this extended Hilbert space. We take one particular T -periodic solution |un(t)〉 to

Eq. (2.46) with eigenvalue εn and, multiplying by eimωt, where m is an integer and
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ω is the angular frequency defined in Eq. (2.44), the product |un(t)〉 eimωt is again

T -periodic, obeying(
H(t)− i~

d

dt

)
|un(t)〉 eimωt = (εn +m~ω) |un(t)〉 eimωt. (2.47)

Therefore, all the quasienergy representatives of a given class appear as individual

solutions to this eigenvalue equation in HT = L2(R3)⊗ T . Nevertheless, all of them

lead to the same Floquet state (2.38) in H, since(
|un(t)〉 eimωt

)
e−i[εn+m~ω]t/~ = |un(t)〉 e−iεnt/~, (2.48)

so that the ~ω-indeterminacy drops out.

After showing how the indeterminacy can be dropped in the extended Hilbert

space, we want to properly characterize it and show how some theorems corresponding

to the Hilbert space H can still be applied in the extended Hilbert space HT . First,

we need to define the scalar product in the enlarged Hilbert space, which will involve

a time average over one period T . This scalar product will be indicated as

〈〈ψ|ϕ〉〉 =
1

T

∫ T

0

dt 〈ψ(t)|ϕ(t)〉 , (2.49)

for |ψ〉 , |ϕ〉 ∈ HT , where 〈ψ(t)|ϕ(t)〉 is the usual scalar product in L2(R3).

Accordingly, the average of an operator A(t) with respect to a state |ψ〉 ∈ HT has

to be understood as

〈〈A〉〉ψ =
1

T

∫ T

0

dt 〈ψ(t)|A(t)|ψ(t)〉 , (2.50)

where 〈ψ(t)|A(t)|ψ(t)〉 is the average value in L2(R3).

One theorem that will be used during our work is the Feynman-Hellmann theorem.

This theorem can be expressed in the context of the extended Hilbert space. If the

Hamiltonian H(t, λ) of a system depends on a time-independent parameter λ and the

periodic relation H(t + T, λ) = H(t, λ) holds for any λ, then the solution |un(t)〉 of

Eq. (2.46) satisfies the relation

dεn
dλ

=
〈〈un(t)|∂H

∂λ
|un(t)〉〉

〈〈un(t)|un(t)〉〉
. (2.51)

The proof of this theorem is the same as for the time-independent theorem and

therefore, it will not be shown here. It is worth highlighting that the solutions |un(t)〉
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can be chosen to be normalized. Combining the normalization with the notation

introduced above (2.50), we can simplify the previous expression as

dεn
dλ

=
〈〈∂H
∂λ

〉〉
un
. (2.52)

Working in the extended Hilbert space will be a key feature in chapter 3 as it will

allow us to calculate T -periodic creation and annihilation operators for a given basis

of our system, allowing us to calculate the average of any quantity we desire. With

this mathematical introduction, we described some of the tools we need to treat the

physical problems that will appear throughout this thesis.
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3
Ab initio quantum theory of
mass defect and time dilation
in trapped-ion optical clocks

3.1 Motivation and research problem

Optical ion clocks [20] have shown systematic uncertainties below 10−18 [21]. This

fulfills an early prediction of Dehmelt from 1982 [22]:

“Thus the current promise of an atomic line spectral resolution of about 1 part

in 1018 or ∼ 108 times better than achieved to date may be realized in the not too

distant future.”

This achieves an important milestone on the way toward a possible redefinition of

the SI second based on an optical transition [23]. Clocks at this level of uncertainty

open the way to many applications, such as relativistic geodesy [24–30], tests of

general relativity [31–33], and explorations of physics beyond the standard model

[34]. At the same time, systematic relativistic frequency shifts and their uncertainty

play a significant and even dominant role [35–41]. These concern in particular the

special-relativistic second-order Doppler shift −v2/2c2, which accounts for moving

clocks ticking slower than stationary clocks, and the general-relativistic gravitational

redshift [20]. Both shifts can be seen as an effect of time dilation, which occurs

when the proper time measured by the clock atom along its world line is Lorentz

transformed into the reference frame of the laboratory or that of another distant clock.

This reasoning is entirely correct and rigorous, but implicitly assumes a semiclassical

approach in which the center of mass motion of the atom is ascribed to a classical

world line and only its internal (electronic) degree of freedom is treated quantum

mechanically.

An alternative perspective can be gained by placing not time dilation but the mass

defect, i.e., the equivalence of internal (binding) energy and external (kinematic as

well as gravitational) mass, at the center of reasoning [42]. The mass defect concept

19
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optical clocks

has been in the literature since 1960. Already from treatments of the Mössbauer ef-

fect [43,44], it is known that the mass defect gives rise to a frequency shift of internal

transitions that is equivalent to the second-order Doppler effect. In the context of ion

clocks, this equivalence was highlighted recently in [45]. The advantage of this per-

spective is that the mass defect can be represented by a simple Hamiltonian coupling

between electronic and center of mass (COM) degrees of freedom (DOFs), which is

treated as a relativistic perturbation to the standard Hamiltonian of nonrelativistic

quantum optics. The basic formulae of the known relativistic corrections can then be

reproduced on the grounds of this perturbed Hamiltonian, as shown in [46,47], which

enforces the notion that the mass defect is an alternative to time dilation. Treatments

based on the mass defect, however, also led to considerations of possible new types

of systematic shifts [46], and alleged fundamental limits on the accuracy of atomic

clocks [48], beyond what is known from time dilation. Apart from the disparities be-

tween mass defect and time dilation, approaches relying on the mass defect have not

yet obtained a rigorous treatment of the micromotion and excess micromotion, which

play an important role in relativistic frequency shifts in trapped ion clocks [35, 39].

These effects are intrinsic to the trapping mechanism in a Paul trap and will be

defined during this chapter. Therefore, it is natural to raise the following questions:

• Are time dilation and mass defect equivalent perspectives of the same effect?

• How can we be sure that these corrections provide a complete picture and we

are not missing other effects of the same magnitude?

Moreover, while these approaches have the potential to provide a fully quantum-

theoretical picture of relativistic shifts, there does not appear to be a self-contained

derivation of the perturbed Hamiltonian that covers the case of a trapped ion to

date. Here, we set out to give a systematic derivation of the Hamiltonian for an ion

in external electromagnetic and gravitational fields, including relativistic corrections

involving external and internal DOFs.

Sonnleitner & Barnett [49] derived a Hamiltonian starting from the classical La-

grangian for two particles with charges e1 and e2 interacting with the electromagnetic

potentials with vanishing total charge, i.e., Q = e1 +e2 = 0, we extended this work to

consider a total charge Q 6= 0. In another work, Schwartz & Giulini [50] expanded the

work from Sonnleitner & Barnnet to account for a weak gravitational field. Based on

this work, we derive a Hamiltonian for a composite two particle system with a total

net charge Q 6= 0 interacting with electromagnetic fields in the presence of a weak

gravitational field. We apply this Hamiltonian to the context of an ion clock and give

a rigorous quantum mechanical derivation of the relativistic frequency shifts, includ-

ing the effects of micromotion and excess micromotion in the framework of Floquet
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theory [4, 6–9]; we calculate the shifts associated with these relativistic corrections

and reproduce, for the special case of thermal states of motion, the shifts known in

the literature, e.g., from [35,39]. Further frequency shifts or fundamental limitations

do not arise from this proper treatment.

The derivation of the Hamiltonian closely follows that in [49, 50], and merely

extends this work to composite systems with nonvanishing total charge. Starting

from the classical Lagrangian of an electromagnetically bound two-particle system,

this derivation establishes the mass defect as the only relevant relativistic correction to

the standard quantum-optical Hamiltonian, which couples COM and internal degrees

of freedom. The thus corrected Hamiltonian strictly refers to the laboratory frame and

completely covers all relativistic frequency shifts. A further correction of time dilation

is unnecessary. The quantum-mechanical description developed in the present study

also covers the effects of zero-point fluctuation as well as other arbitrary quantum

states of motion. We hope that the logic developed here will also prove useful in

other, more complex systems, such as multi-ion clocks or optical lattice clocks, to

obtain a stringent analysis of special and general relativistic effects.

This chapter will be mainly focused on Paul traps, nevertheless, there are other

relevant trapping mechanisms, such as Penning traps. The question is how this

formalism could be applied to Penning traps. The problem is that the presence

of a magnetic field to realize the confinement of the ion makes the description of

the spin indispensable, which is not included in our formalism. Nevertheless, there

are some recent proposals to have a clock transition with both clock states having

I = J = F = 0, where I, J , and F are the conventional quantum numbers specifying

nuclear, electronic, and total angular momentum, respectively, see e.g. [51], making

our description relevant for that case too.

The confinement in a Penning trap is characterized by three different motions

defined by the axial, the modified cyclotron and the magnetron frequencies. The

associated energy of the magnetron motion has a different sign than the rest, therefore,

this opens the question: Could one null the second-order Doppler effect by increasing

the magnetron motion? The fact that the fractional frequency shift could be nulled by

adding motion to the system seems at first sight unintuitive. Thanks to the treatment

developed here, one can treat the relativistic corrections for this case properly and

address the previous question. Unfortunately, the answer is negative.

We start this chapter by summarizing the derivation of the relativistic Hamil-

tonian of a charged composite system in external electromagnetic and gravitational

fields in Sec. 3.2. Once the relativistic corrections have been properly understood we

continue by explaining the role of the coupling between internal and external DOF

in ion clocks in Sec. 3.3, we do so by studying the interrogation scheme, in this case
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Ramsey spectroscopy 3.3.1, and by properly describing the quantum theory of a Paul

trap 3.3.2. With this description, we are able to calculate the fractional frequency

shift due to the mass defect, applied direct current (dc) forces and gravity, recovering

the second-order Doppler effect with micromotion 3.3.3, the excess micromotion 3.3.5

and the gravitational redshift 3.3.6, respectively. With our treatment, we can also

calculate the variance of the fractional frequency shift and consider fundamental lim-

its in ion clocks 3.3.7. We will finish our discussion of Paul traps by talking about

possible imperfections in the trap 3.3.8, and proceed by arguing how the mass defect

can be applied in the case of Penning traps in Sec. 3.4. Finally, we will present our

conclusions in 3.5 and examine further ideas and possible continuations of this work

in 3.6.

3.2 Hamiltonian of a charged composite system

in external electromagnetic and gravitational

fields

To properly clarify the effects of relativistic corrections, we need to develop a sys-

tematic and fully quantum mechanical treatment of relativistic frequency shifts in

atomic clocks based on single trapped ions. The first step in this direction will be

to derive the Hamiltonian for an ion coupled to external electromagnetic and gravi-

tational fields including first order relativistic corrections, i.e., corrections of O(c−2).

Summarizing the derivation of this Hamiltonian will be the goal of this section, the

full details will be shown in Appendix A and B. The relativistic coupling of internal

(relative) and external (COM) degrees of freedom will be responsible for generating

a fractional frequency shift when measuring the energy difference between a ground

and an excited state of an ion, therefore, special focus will be placed on this coupling.

As motivated in the introduction, we adopt the model of Sonnleitner & Barnett

[49] for a hydrogenlike atomic ion as an electromagnetically bound two-body system

composed of a core (charge e1, coordinates r1) and an electron (e2, r2), see Fig. 3.1.

Bold symbols denote three-vectors. In contrast to Sonnleitner & Barnett we will allow

for a non-vanishing net charge Q = e1 + e2 6= 0, and consider a non-zero gravitational

field. For the latter, we follow the treatment of Schwartz & Giulini [50], who extended

the calculation from Sonnleitner & Barnett by a weak gravitational background field

described by the Eddington-Robertson parameterized post-Newtonian (PPN) metric,

thus covering first order relativistic corrections to the Minkowski metric. The notation

used in this section will correspond to the one of [50].
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r1

r2

r

R

e1

e2

O

Figure 3.1: In this figure we show the coordinates and positions that we will use in
the following derivation. O stands for the center of coordinates, r1 and r2 are the
positions of the two particles of charges e1 and e2, respectively, and (R, r) is the center
of mass coordinate system.

We note that the mass defect Hamiltonian can be derived also on other grounds,

based, e.g., on effective field theory for composite systems [42, 52], or on approaches

to formalize time dilation within quantum theory [53,54]. The account of [49,50] that

we follow here proceeds in the spirit of conventional atomic structure calculations and

has the benefit of systematically providing all relevant relativistic corrections, not just

the mass defect. Relativistic corrections due to spin are not covered here, however,

and would require suitable extensions of treatments of composite particles based on

the Dirac equation along the lines of [55,56].

3.2.1 Classical Lagrangian and quantization of a composite
system

Our starting point is the classical Lagrangian for two particles interacting with the

electromagnetic field

L = −
∑
i=1,2

mic
√
−gµν(ri)ṙµi ṙνi +

∫
d3r

√
−g(r)

(
Jµ(r)Aµ(r)− 1

4µ0

Fµν(r)F µν(r)
)
.

(3.1)

We use four-vector notation, with gµν(r) being the metric tensor, g(r) its determinant,

Jµ(r) the electric four-current, Aµ(r) the electromagnetic four-potential, and Fµν(r)

the field strength tensor. Here, the first term gives the Lagrangian for the point

particles, which describes the motional dynamics of the two particles with masses

mi and positions rµi = (ct, ri) in spacetime with corresponding velocities ṙµi , where

the derivative is taken with respect to the time coordinate t. The terms in the

integral represent the dynamics governed by the electromagnetic field. The first

contribution is the interaction of the electromagnetic field and the particles and the

second contribution is the Lagrangian of the electromagnetic field, which is obtained

by minimally coupling the special-relativistic action for electromagnetism to a general
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spacetime metric [50]. The Eddington-Robertson metric is defined with respect to

the Minkowski metric as the background structure, and has the form

g00(r) = −1− 2
φ(r)

c2
− 2β

φ2(r)

c4
+O(c−6),

gjj(r) = 1− 2γ
φ(r)

c2
+O(c−4) (j = 1, 2, 3).

(3.2)

All off-diagonal components vanish for a flat background metric up to O(c−5). The

scalar Newtonian potential is denoted by φ(r). We include here also the Eddington-

Robertson parameters β and γ, which account for possible deviations from general

relativity, and fulfill β = γ = 1 in general relativity.

Following [50], the Lagrangian (3.1) is written in the Coulomb gauge and expanded

in inverse powers of c, maintaining terms up to second order. The corresponding clas-

sical Hamiltonian function is quantized canonically, which yields the approximately

relativistic Hamiltonian operator for two charged particles minimally coupled to the

electromagnetic field

Ĥ =
∑
i=1,2

(
ˆ̄p2
i

2mi

+miφ(r̂i) + eiΦ (r̂i)

)
+
e1e2

4πε0

1

r̂

− e1e2

16πε0c2m1m2

(
ˆ̄p1 ·

1

r̂
ˆ̄p2

(
ˆ̄p1 · r̂

) 1

r̂3

(
r̂ · ˆ̄p2

)
+ (1↔ 2)

)
+
∑
i=1,2

(
−

ˆ̄p4
i

8m3
i c

2

+
2γ + 1

2mic2
ˆ̄pi · φ(r̂i)ˆ̄pi + (2β − 1)

miφ
2(r̂i)

2c2
+ (γ + 1)φ(r̂i)

e1e2

8πε0c2r̂

)
. (3.3)

We define ˆ̄pi = p̂i − eiÂ
⊥ (r̂i) and the relative distance between the particles r̂ =

r̂1− r̂2, with norm r̂ = |r̂|. The electromagnetic three-potential Â⊥ (r̂) (transverse in

the Coulomb gauge) and the electric potential Φ (r̂) are taken as classical variables

describing externally applied fields 1. We refer the reader to Appendix A and B for a

comprehensive derivation of this result. The first line in Eq. (3.3) is the nonrelativistic

two-body Hamiltonian, the second line gives the dominant relativistic corrections

without a gravitational field and the last line shows the relativistic corrections due to

the interplay with gravity.

3.2.2 Hamiltonian for internal and external degrees of free-
dom (DOFs)

We need to express the Hamiltonian (3.3) in the multipolar representation of the

light-particle interaction, this can be achieved via a Power-Zienau-Woolley (PZW)

1This has to be understood in the sense of a mean-field treatment with respect to an externally
applied electromagnetic field. The effects of the radiation reaction such as spontaneous emission or
Lamb shifts are lost in this approximation.
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transformation. The advantage of this representation is that, without relativistic

corrections, the resulting Hamiltonian can be separated into terms referring to internal

and external DOFs corresponding to COM and relative coordinates. However, with

relativistic corrections, these coordinates no longer separate the two DOFs fully, so,

after this change, relativistic variants of these coordinates have to be introduced.

Since a system’s energy content is part of its inertia, the proper way to discuss this

problem should be to express the Hamiltonian in the center of energy frame, but this

is not a canonical transformation, as is explained in [49]. Nevertheless, there exists

a choice of coordinates via a canonical transformation that allows the separation of

COM and relative dynamics up to our order of approximation, as shown by Close and

Osborn [57] for the case of neutral systems Q = 0. We show that this transformation

can be generalized to the case Q 6= 0 in Appendix A.

In terms of these relativistic corrected coordinates, the Hamiltonian can be written

as

Ĥ = Ĥcom + Ĥint + Ĥat-emf + Ĥmetric + Ĥmass defect, (3.4)

where we separated the Hamiltonian terms as follows: Ĥcom and Ĥint refer to the

terms that depend only on the COM and only on the internal DOF, respectively. The

interaction of the atom with the external electromagnetic field is described by Ĥat-emf.

The relativistic coupling of internal and COM dynamics, which will be responsible

for the fractional frequency shift, is covered by the two terms Ĥmetric and Ĥmass defect.

In the following, we will give the explicit form of all these terms in the relevant limit

m1 � m2.

The first contribution in (3.4) is the COM Hamiltonian

Ĥcom(M) = Ĥ(0)
com + Ĥ(1)

com, (3.5)

given by the nonrelativistic COM Hamiltonian

Ĥ(0)
com =

ˆ̄P2

2M
+Mφ(R̂), (3.6)

and the leading relativistic corrections

Ĥ(1)
com = − 1

2Mc2

(
ˆ̄P2

2M

)2

+ (2β − 1)
M(φ(R̂))2

2c2
+

2γ + 1

2Mc2
ˆ̄P · φ(R̂) ˆ̄P, (3.7)

where we defined the total rest mass M = m1 +m2 and

ˆ̄P = P̂−QÂ⊥(R̂). (3.8)

The first two terms in (3.7) correspond to the first order relativistic corrections to the

kinetic energy and the gravitational potential energy and the last term corresponds
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to the cross talk between them. The explicit definition of the relativistically corrected

COM variables R̂ and P̂ is given in Eq. (A.50). The COM Hamiltonian in Eq. (3.5)

simply corresponds to the approximately relativistic Hamiltonian for a charged point

particle of mass M in a gravitational field, minimally coupled to the electromagnetic

field. For later use when discussing the so-called mass defect, the COM Hamiltonian

in Eq. (3.5) is written in the form Ĥcom(M) with the total mass M as an argument.

The second contribution in Eq. (3.4) is the Hamiltonian for the internal DOF

Ĥint = Ĥ
(0)
int + Ĥ

(1)
int , (3.9)

where again we make the distinction between the nonrelativistic internal Hamiltonian

Ĥ
(0)
int =

p̂2

2µ
+
e1e2

4πε0

1

r̂
, (3.10)

consisting on the kinetic and Coulomb energies, respectively, and their first order

relativistic corrections given by

Ĥ
(1)
int = − 1

2µc2

(
p̂2

2µ

)2

+
e1e2

4πε0

1

2µMc2

(
p̂ · 1

r̂
p̂ + (p̂ · r̂)

1

r̂3
(r̂ · p̂)

)
, (3.11)

where p̂ is the canonical momentum associated with r̂ and µ is the reduced mass. We

can determine the electronic energy levels of the atom by diagonalizing this Hamil-

tonian. One should highlight here that in a complete description, other well-known

relativistic corrections (e.g. concerning spin) will contribute to this Hamiltonian too.

In the following, we assume that these corrections are accounted for in the diago-

nalization of Ĥint, and therefore, will be included when writing this Hamiltonian in

terms of its eigenbasis.

The interaction of the atom with the electromagnetic field in the dipole approxi-

mation is given by

Ĥat-emf = QΦ(R̂)− d̂ · E(R̂) +
1

2M

[
ˆ̄P ·
(
d̂×B(R̂)

)
+ H.c.

]
+ Ĥother, (3.12)

where d̂ =
∑

i=1,2 ei

(
r̂i − R̂

)
is the electric dipole moment. The first two terms

correspond to the electric potential and dipole energy, respectively, the third term

represents the minimally coupled Röntgen term [58]. We suppress here further con-

tributions involving the electromagnetic fields in Ĥother, which are given explicitly and

discussed in Appendix A and are not effective in the configuration of a Paul trap.

Finally, the last two terms of Eq. (3.4), Ĥmetric and Ĥmass defect, describe the rel-

ativistic coupling of COM and internal DOF and thus are the pivotal points of the

following discussion. The first of these two terms is

Ĥmetric = γ
φ(R̂)

c2

(
2
p̂2

2µ
+
e1e2

4πε0

1

r̂

)
. (3.13)
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It is of metric origin and a consequence of spacetime curvature, as is already evident

from its proportionality to the PPN parameter γ in the Eddington-Robertson metric

in Eq. (3.2). We remind the reader that γ = 1 in general relativity. More formally,

the term follows when the Hamiltonian for the internal DOF is written in terms of

distances measured with respect to the metric given in Eq. (3.2), and expanded up

to O(c−4),

g−1
ij (R̂)p̂ip̂j

2µ
+
e1e2

4πε0

1√
gij(R̂)r̂ir̂j

' Ĥ
(0)
int + Ĥmetric. (3.14)

Here, summations run only over the spatial indices i, j = 1, 2, 3. We refer the reader

to the work of Zych et al. [59] for a more detailed discussion and reference to previous

literature discussing the metric correction Ĥmetric.

As a consequence of the virial theorem, the metric correction (3.13) turns out to

be purely off-diagonal in the basis of stationary states with respect to the internal

Hamiltonian Ĥint in Eq. (3.9). This can be inferred from the identity

i

~
[r̂ · p̂, Hint] = 2

p̂2

2µ
+
e1e2

4πε0

1

r̂
+O(c−2). (3.15)

Since the average of the left-hand side with respect to eigenstates of Ĥint vanishes, the

same holds for the right-hand side and thus also for Eq. (3.13). Further constraints

on the off-diagonal matrix elements can be concluded from noting that Ĥmetric is

rotationally invariant. We do not go into further detail on this since the off-diagonal

form of the metric term makes it ineffective as far as energy-nondegenerate states are

concerned. For this case it can be neglected in a rotating wave approximation with

corrections scaling as c−4.

The second term describing the relativistic coupling of COM and internal DOF is

Ĥmass defect =

(
Mφ(R̂)−

ˆ̄P2

2M

)
⊗ Ĥ

(0)
int

Mc2
. (3.16)

This can be interpreted as a result of the mass defect of the COM DOF due to the

binding energy of the internal DOF. This interpretation is supported formally by the

observation that, up to corrections of O(c−4), the term Ĥmass defect can be absorbed

in the COM Hamiltonian

Ĥcom(M) + Ĥmass defect ' Ĥcom(M + Ĥint

c2
). (3.17)

We remind the reader that Ĥcom(M) is defined as a function of M in Eq. (3.5). Thus,

the COM mass M is effectively replaced with M + Ĥint

c2
, which is the so-called mass
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defect correction, motivated in the literature through the equivalence between mass

and energy. We note that the expression on the right-hand side of Eq. (3.17) is often

used as a justification of the mass-defect term on the left-hand side, i.e., one usually

states equivalence between mass and energy and substitutes the mass accordingly,

as e.g., in the context of ion clocks [45–47]. We would like to stress that it is the

left-hand side of Eq. (3.17) that justifies the right-hand side to order c−2, which is

derived ab initio from Eq. (3.1) following [50].

When Â⊥(R̂) = 0, an alternative and no less justified interpretation of Ĥmass defect

is that of a shift of the internal energies due to the gravitational redshift and due to

the second-order Doppler effect, as is evident from

Ĥint + Ĥmass defect ' Ĥint ⊗
(

1− V̂2

2c2
+
φ(R̂)

c2

)
, (3.18)

up to O(c−4), where V̂ corresponds to the velocity of the COM. These corrections are

often added on a semiclassical basis as a result of time dilation when transforming

from the COM rest frame to the laboratory frame [20]. We emphasize that the

relativistic correction (3.16) thus accounts equally and fully for the time dilation due

to the gravitational redshift and the second-order Doppler effect. This addresses one

of the questions that we made ourselves at the beginning of the chapter, showing

that the mass defect and time dilation are the same effect and one should not take it

into account twice. Of course, we still need to answer the question if with previous

approaches we were missing some other effects; we have not found new unexpected or

relevant terms in the Hamiltonian so far, but to study the role of these corrections,

one will need to properly describe the interrogation scheme and how the particle is

trapped in a fully quantum manner. This will be the goal of the next section.

Before that, let us rewrite the interplay between the mass defect and the internal

Hamiltonian in what will be a more useful form

Ĥint + Ĥmass defect ' Ĥint ⊗
(

1 +
1

c2

∂Ĥcom(M)

∂M

)
=

~ω0

2
σ̂z ⊗

(
1 +

δν̂

ν0

)
, (3.19)

which is also valid in the presence of a magnetic vector potential. This equation clearly

shows the effect of the coupling between internal and external degrees of freedom

and it will be a useful form to work with. In the last step, we performed a two-level

approximation by restricting the description to two stationary bound states |g〉 and |e〉
with (negative binding) energies hνg and hνe, respectively, and a transition frequency

ω0 = 2πν0 = 2π(νe−νg). In these eigenstates and energies, we consider the relativistic



3.3. Relativistic coupling of internal and external DOF in ion clocks 29

corrections from Eq. (3.11), and further relativistic corrections including spin, already

included. We define the operator corresponding to the fractional frequency shift

δν̂

ν0

=
1

c2

∂Ĥcom(M)

∂M
, (3.20)

and implicitly absorb a constant energy offset in the internal Hamiltonian. In the

next section, we will show that relativistic corrections due to coupling of internal and

external DOFs in precision spectroscopy and frequency metrology can be discussed

entirely on the basis of the fractional frequency shift operator in Eq. (3.20).

3.3 Relativistic coupling of internal and external

DOF in ion clocks

In this section, we consider an optical clock based on a single ion in a Paul trap.

Treating this particular case, we should study the previous general Hamiltonian in a

slightly different manner. We are dealing with a physical system, and therefore, it will

have some physical constraints, which will make some terms irrelevant, either because

they are null for that system or because they can be neglected. That means we have

to apply the relativistically corrected Hamiltonian in Eq. (3.4) to the specific case

of a charged composite particle subject to several external fields: first, an external

time-dependent electric potential realizing the confinement Φ(R̂, t), second, a weak

gravitational field φ(R̂), and third, pulsed laser fields E(R̂, t) driving the internal

transition. In a Paul trap, there is no vector potential, so that we can replace ˆ̄P by P̂

in Eq. (3.4) and, therefore, the point of view of Eq. (3.18), which supports the mass

defect as that of a shift of the internal energies due to the gravitational redshift and

the second-order Doppler effect, is valid. The resulting Hamiltonian for a Paul trap,

including the relevant relativistic corrections is given by

Ĥ = Ĥcom(M, t) +
~ω0

2
σ̂z

(
1 +

δν̂

ν0

)
− d̂ · E(R̂, t), (3.21)

where the fractional frequency shift is given in Eq. (3.20), and we collect all terms

referring to the COM degree of freedom in

Ĥcom(M, t) =
P̂2

2M
+Mφ(R̂) +QΦ(R̂, t). (3.22)

Here, we neglect or suppress the following relativistic corrections: (i) Terms in Eq. (3.7)

affecting the COM DOF only are negligible for the small COM velocities of a cold

ion and will affect the internal DOF in O(c−4) only. (ii) In contrast, the correspond-

ing terms of the internal DOF in Eq. (3.11) are significant and contribute to its fine



30
Chapter 3. Ab initio quantum theory of mass defect and time dilation in trapped-ion

optical clocks

structure. We consider these terms to be absorbed in the internal states and energies.

(iii) The metric term in Eq. (3.13) is dropped in a rotating-wave approximation, as

explained earlier. (iv) The Röntgen term in the atom-field interaction, Eq. (3.12),

scales as P/Mc and is negligible for a cold ion. Furthermore, it merely rescales the

Rabi frequency of the pulses in a Ramsey interrogation (to be discussed in the next

section) and will be compensated by their proper calibration.

3.3.1 Ramsey spectroscopy

Before treating fully quantum mechanically the trap configuration, we need to treat

and understand the interrogation scheme in order to show that Eq. (3.20) is sufficient

and complete to characterize the relativistic corrections in an ion clock. For frequency

spectroscopy, we treat a Ramsey interrogation scheme [60], which amounts to a se-

quence of unitary evolutions |ψout〉 = ÛR(ωLTR)Û(TR)ÛR(0) |ψin〉, where |ψout(in)〉
is the final (initial) state of internal and external DOF. For now, we consider pure

states without loss of generality. Here, ÛR(ϕ) denotes the unitary during a Ramsey

laser pulse, where ϕ is the laser phase with respect to the atomic reference. Since

such a pulse can be considered instantaneous compared to the duration TR of the

Ramsey interrogation time, relativistic corrections can be neglected during a Ramsey

pulse. Therefore, ÛR(ϕ) = exp
(
−iπ

2
(− cosϕσ̂y + sinϕσ̂x)

)
, and the laser phase in the

second Ramsey pulse is ϕ = ωLTR, where ωL is the laser frequency. During Ramsey

interrogation, the ion evolves in the dark according to Û(TR) = exp(− i
~ĤTR) with

the Hamiltonian in Eq. (3.21), where E(R̂, t) = 0 as there are no lasers during the

interrogation time. This sequence is depicted on the Bloch sphere in Fig. 3.2.

At this point, one needs to be careful with how this sequence is evaluated and

which assumptions can be made. In a Ramsey interrogation scheme, we will be

interested in the variance of the inferred frequency deviation of the clock laser from

the atomic reference (∆ω)2. After the second Ramsey pulse, the ion’s internal state

population σ̂z is measured with average 〈σout
z 〉 = 〈ψout|σ̂z|ψout〉 and deviation ∆σout

z .

With these quantities we can evaluate

(∆ω)2 =
(∆σout

z )
2∣∣∣∂〈σout

z 〉
∂ω

∣∣∣2 . (3.23)

Therefore, we need to study the time evolution of the internal operators according

to the Hamiltonian in Eq. (3.21), taking into account that during the free evolution

time we have E(R̂, t) = 0.
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free evolution(a)

(b)

Figure 3.2: Simple Ramsey interrogation scheme: For clarity, we show in this
figure the Ramsey interrogation scheme in a frame rotating around z with the laser
frequency ωL. In a) we can see the series of transformations introduced in the main
text, the two π/2 rotations ÛR(0) and ÛR(ωlTR) and the free evolution Û(TR), but
now in the rotating frame and where we assumed the simplified case in which the free
evolution corresponds to the Hamiltonian Ĥ = ~ω0

2
σ̂z, here φ = (ω0 − ωL)TR. At the

end of the Ramsey sequence 〈σz〉 is measured. In b) we see the representation of the
Ramsey interrogation scheme on the Bloch sphere.

In the Heisenberg picture, the vector of Pauli operators ~̂σ evolves as

d

dt
~̂σ(t) = (ω0 + δω̂(t))

 0 1 0
−1 0 0
0 0 1

 ~̂σ(t), (3.24)

where we define the mass-defect (time-dilation) shift operator in angular frequency

δω̂ = 2πδν̂, (3.25)

where δν̂ is defined in Eq. (3.20). The angular frequency fulfills

d

dt
δω̂(t) = − i

~
[Ĥcom, δω̂(t)] , (3.26)

where Ĥcom is given in Eq. (3.22). The solution of this equation is denoted by δω̂(t)

and is independent of the internal DOFs.

We define a time-averaged frequency shift due to the mass-defect

δω̂ =
1

TR

∫ TR

0

dt δω̂(t), (3.27)
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by which the Pauli vector at the end of the Ramsey sequence can be expressed in first

order of the mass defect as

~̂σ(TR) = Rz(ω0TR)

1 + TRδω̂

 0 1 0
−1 0 0
0 0 1

~̂σ(0) ' Rz

((
ω0 + δω̂

)
TR
)
~̂σ(0). (3.28)

Here, Rz(θ) is the matrix corresponding to a rotation around the z axis by an angle θ.

The last equivalence holds to first order in the mass defect and should be understood

as short-hand notation for the previous equation.

The complete Ramsey sequence is given by

~̂σout =Û †R(0)Û †(TR)Û †R(ωLTR)~̂σinÛR(ωLTR)Û(TR)ÛR(0)

=R~n(π/2)Rz

((
ω0 + δω̂

)
TR
)
R−y(π/2)~̂σin

=Rz(ωLTR)R−y(π/2)Rz

((
ω0 − ωL + δω̂

)
TR
)
R−y(π/2)~̂σin, (3.29)

where ~n = − cos(ωLTR)σ̂y+sin(ωLTR)σ̂x. From here, we can now calculate Eq. (3.23).

When taking averages, we assume an initial product state of internal and COM DOFs.

Moreover, for the stationary COM states considered here, the time average of the mass

defect Hamiltonian is irrelevant and can be dropped.

For repeated measurements at a particular value of the detuning ∆L = ω0 − ωL,

the variance of the inferred frequency deviation of the clock laser from the atomic

reference follows to be

(∆ω)2 =
cos2 [(∆L + 〈δω̂〉)TR] ∆σ2

z + sin2 [(∆L + 〈δω̂〉)TR] ∆σ2
y + T 2

Ru
2 sin2 (∆LTR)

〈σz〉2T 2
R sin2 [(∆L + 〈δω̂〉)TR]

.

(3.30)

This formula generalizes Eq. (20) from Ref. [60] for the mass defect. We define the

variance associated with the mass-defect operator u2 = 〈δω̂2〉 − 〈δω̂〉2. Averages in

Eq. (3.30) concerning the internal DOF are taken with respect to the initial state |ψin〉.
We will first discuss the general scenario to not lose any insight and afterwards we will

consider the case of standard Ramsey spectroscopy, 〈σz〉 = −1 and therefore ∆σ2
z = 0

and ∆σ2
y = 1. Furthermore, the expression for the inferred frequency deviation

holds in leading (quadratic) order of the mass-defect shift in both the numerator and

denominator of Eq. (3.30). Averages of ω̂ have to be understood with respect to

the COM state, averaged over the interrogation time in the interaction picture with

respect to the COM Hamiltonian, that is Eq. (3.22).

Equation (3.30) implies that the Ramsey resonance curve is shifted by 〈δω̂〉 and

exhibits a projection noise slightly increased by

u sin (∆LTR)

〈σz〉 sin [(∆L + 〈δω̂〉)TR]
' u

〈σz〉
, (3.31)
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where the last approximation is valid in first order of 〈δω̂〉. Thus, to evaluate the

magnitude and relevance of these effects, it is sufficient to consider the statistics of the

operator corresponding to the fractional frequency shift in Eq. (3.20) with respect to a

given COM state. This closes our discussion on how to properly treat the relativistic

corrections and which terms one should take into account from the Hamiltonian. The

next step will be to have a proper description of the trap. Additionally, to evaluate

the average systematic frequency shift with respect to an eigenstate |ψ〉 of the COM

Hamiltonian with eigenenergy Eψ(M), we can use the Feynman-Hellmann theorem,

which states 〈
δν̂

ν0

〉
ψ

=
1

c2

∂Eψ (M)

∂M
. (3.32)

Of course, in the context of quasieigenstates we will have to adapt the previous

theorem for the extended Hilbert space as shown in Eq. (2.52). Nevertheless, after

treating in the next subsection the ion trap quantum mechanically, we will show that

Eq. (3.32) is not needed, although it will be useful to use as a reference to compare

with.

3.3.2 Quantum theory of an ion trap

In order to rigorously discuss the statistics of the fractional frequency shift, we are

going to make an introduction to the quantum theory of an ideal Paul trap. For this

purpose, we will closely follow the notation of Leibfried et al. [7] and we will adapt

the quantum mechanical treatment by Glauber [6]. Further below, we will consider

also corrections to the potentials in an ideal Paul trap (such as spurious dc electric

fields and gravitational sag).

Before starting with the actual expression of the trap potentials, it is relevant

to introduce the important concepts of micromotion and excess micromotion. Due

to the Laplace equation, we cannot have a static confinement in three orthogonal

directions, therefore, in a Paul trap the confinement is achieved by having a static

confinement in one direction and a time-dependent confinement in the other two that

will, on average, confine the particle, as will be shown below. The effect of this time-

dependent confinement moving the particle is what we simply refer to as micromotion.

If one considers some spurious dc field present in the trap, or equivalently that the

confinement is not quadratic but also has a linear contribution, the so-called excess

micromotion will be generated.

The potentials of a Paul trap contain direct current and alternating current (ac)

components Φ(R̂, t) = Φdc(R̂) + Φac(R̂, t), which at the trap center have the form of
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quadrupole fields

Φdc(R̂) + Φac(R̂, t) =
1

2
R̂TU R̂ +

1

2
cos(Ωt)R̂T Ũ R̂. (3.33)

Here, Ω corresponds to the trap frequency. U and Ũ are in general symmetric trace-

less matrices representing the dc and ac components of the quadrupole field tensors,

respectively. For an ideal trap geometry they are diagonal, U = U0diag(α1, α2, α3)

and Ũ = Ũ0diag(α′1, α
′
2, α

′
3), with dimensionless coefficients αi and α′i. The resulting

COM Hamiltonian (neglecting gravity for the moment)

Ĥcom(M, t) =
P̂2

2M
+QΦ(R̂, t) (3.34)

is explicitly time dependent and periodic with period T = 2π/Ω. We assume a stable

trap configuration, which supports quasistationary eigenenergy states |n, t〉 satisfying

the generalized eigenvalue problem discussed in Sec. 2.4.2, i.e.,(
Ĥcom(M, t)− i~∂t

)
|n, t〉 = En(M) |n, t〉 . (3.35)

The states |n, t〉, labeled by n = (n1, n2, n3), are T -periodic Fock states whose time

dependence accounts for the micromotion.

Let us remind the reader a few notions discussed in chapter 2. In the fol-

lowing, it will be important to note that the generalized Hamiltonian on the left-

hand side of Eq. (3.35) has to be considered as acting on an enlarged Hilbert space

HT = L2(R3)⊗ T , where T is the space of T -periodic functions of time. We take

care to construct the quasienergy eigenstates |n, t〉 within this space.

In an ideal case, the potentials in the Paul trap are separable, therefore it is

sufficient to discuss the one-dimensional problem. We will follow the treatment of

Glauber [6], which is summarized in [7]. The main deviation from these treatments

is that we strive to identify T -periodic creation and annihilation operators in order

to ensure that all states are elements of the enlarged Hilbert space HT .

We consider the (zeroth-order) Hamiltonian

Ĥ(0)(t) =
P̂ 2

2m
+
m

2
W (t)X̂2, (3.36)

with a real periodic function W (t + T ) = W (t). Specifically, we have W (t) =
Ω2

4
(a− 2q cos (Ωt)), where ai(M) = 4QU0αi

MΩ2 and qi(M) =
2QŨ0α′i
MΩ2 denote the so-called

Mathieu parameters, but we only wrote them in the one-dimensional case so we can

drop the index i. Here, we generalized the trapping potential contribution to the

COM Hamiltonian in Eq. (3.34) in a way that is easier to work with. If we combine
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the equations of motion of the operators X̂ and P̂ in the Heisenberg picture, we

obtain

¨̂
X(t) = −W (t)X̂(t). (3.37)

We will solve this equation by replacing the operator with a time-dependent function

u(t), i.e., ü(t) = −W (t)u(t), this will allows us to find a solution for the operator X̂.

By the Floquet theorem, solutions can be constructed of the form

u(t) = eiωtv(t), (3.38)

where 0 ≤ ω < Ω and v(t + T ) = v(t). Following [7], we write this as ω = βΩ
2

and

v(t) =
∑∞

n=−∞C2neinΩt. Inserting Eq. (3.38) into Eq. (3.37) allows us to calculate

the real-valued coefficients β and C2n with the following recursion relations

C2n+2 + C2n−2 −
1

q

(
a− (2n+ β)2)C2n = 0. (3.39)

We also adopted the normalization condition

u(0) =
∑
n

C2n = 1, (3.40)

which implies for the time derivative

u̇(0) = iν and ν = Ω
∑
n

C2n(β/2 + n). (3.41)

With u(t), also u∗(t) is a linearly independent solution, which is likewise assumed

to be normalized u∗(0) = 1, so that u̇∗(0) = −iν. The Wronskian w = u(t)u̇∗(t) −
u∗(t)u̇(t) is time independent, since ẇ = u(t)ü∗(t) − u∗(t)ü(t) = −W (t)u(t)u∗(t) +

W (t)u∗(t)u(t) = 0. Thus, w = u(0)u̇∗(0)− u∗(0)u̇(0) is fixed by the initial conditions

for the linearly independent solutions in u(t) and u∗(t). For the specific choice made

above, we thus have for all times

u(t)u̇∗(t)− u∗(t)u̇(t) = −2iν. (3.42)

Thanks to these relations, and assuming C±4 ≈ 0, we can find in lowest order of the

Mathieu parameters, i.e., |a|, q2 � 1,

β '
√
a +

q2

2
, v(t) '

1 + q

2
cos(Ωt)

1 + q

2

, ν ' ω.
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Based on this solution, we define the explicitly time-dependent operator (in the

Schrödinger picture)

â(t) =
ie−iωt

√
2~mν

(
u(t)P̂ −mu̇(t)X̂

)
, (3.43)

which effectively depends on the functions v(t) and v̇(t) only, and therefore, is by

construction periodic in time with period T . Note that for t = 0 this corresponds to

the expression for the annihilation operator for a harmonic oscillator with frequency

ν, that is, â(0) =
√

mν
2~ X̂ + i 1√

2~mν P̂ . Now we need to show that this T -periodic

operator in Eq. (3.43) plays an equivalent role to the annihilation operator in a

harmonic oscillator for our T -periodic Hamiltonian. This will allow us to write any

function of the position and momentum operators in terms of a and a†, and therefore,

calculate their expectation values and variances. We will see that this will be crucial

for discussing the effect of the mass defect on the performance of the clock.

Due to the constant value of the Wronskian (3.42), â(t) and its adjoint operator

â†(t) satisfy bosonic commutation relations at equal times
[
â(t), â†(t)

]
= 1. The

operator â(t) has a unique (up to a global phase) eigenstate |0, t〉 of eigenvalue 0,

â(t) |0, t〉 = 0, which can be constructed by projecting this equation into the position

representation

(i~u(t)∂x +mu̇(t)x) 〈x|0, t〉 = 0, (3.44)

giving the normalized solution

〈x|0, t〉 =
(mν
π~

)1/4 eiωt/2

u(t)1/2
exp

[
im

2~
u̇(t)

u(t)
x2

]
(3.45)

=
(mν
π~

)1/4 1

v(t)1/2
exp

[
−ωm

2~

(
1− i

ω

v̇(t)

v(t)

)
x2

]
. (3.46)

The global phase in (3.45) is chosen to make the state |0, t〉 periodic with period

T and have |0, t〉 ∈ T ⊗ H. This is made to assure that all states are elements of

the enlarged Hilbert space HT . The periodicity is evident in the second line. Using

Eq. (3.45), it can be shown by direct calculation that(
Ĥ(0)(t)− i~∂t

)
|0, t〉 = E0 |0, t〉 , E0 =

~ω
2
. (3.47)

We easily verify that the creation and annihilation operators satisfy eigenoperator

equations with respect to the generalized Hamiltonian, i.e.,[
Ĥ(0)(t)− i~∂t, â(t)

]
= −~ωa(t), (3.48a)[

Ĥ(0)(t)− i~∂t, â†(t)
]

= ~ωa†(t). (3.48b)
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The bosonic commutation relation and the commutators in (3.48) are identical to

those of a time-independent harmonic oscillator. Thus, the same algebra used there

can be applied here to show that(
Ĥ(0)(t)− i~∂t

)
|n, t〉 = En |n, t〉 , (3.49)

En = ~ω
(
n+

1

2

)
, |n, t〉 =

1√
n!

(
a†(t)

)n |0, t〉 . (3.50)

As mentioned before, it is crucial to construct the annihilation operators to be T

periodic, as otherwise, the Fock states would not be proper elements of HT . Note

that the quasienergy eigenvalues should respect En < ~Ω, which will be violated for

some n. However, for the physically relevant case where ω � Ω, that is, β � 1, this

is of no concern practically.

Therefore, considering the three space directions, each variable and parameter

gets an index i and the corresponding eigenenergies of Eq.(3.35) are

En(M) =
3∑
i=1

~ωi(M)

(
ni +

1

2

)
, (3.51)

where now we highlighted the mass dependence of the motional eigenfrequencies, or

trapping frequencies ωi(M) = Ωβi(M)
2

, as remember β2
i (M) ' ai(M) +

q2
i (M)

2
and the

dimensionless Mathieu parameters are ai(M) = 4QU0αi
MΩ2 and qi(M) =

2QŨ0α′i
MΩ2 in lowest

order |ai|, q2
i � 1.

When evaluating the effects of relativistic corrections, it will be necessary to calcu-

late matrix elements of T -periodic operators with respect to T -periodic states. The

corresponding scalar products have to be understood within the enlarged Hilbert

space HT , and therefore involve a time average over one period T as explained in

chapter 2. As a reminder, the average of an operator A(t) with respect to a state

|ψ〉 ∈ HT has to be understood as

〈〈A〉〉ψ =
1

T

∫ T

0

dt 〈ψ(t)|A(t)|ψ(t)〉 , (3.52)

where 〈ψ(t)|A(t)|ψ(t)〉 is the average value in L2(R3).

3.3.3 Fractional frequency shift due to mass defect: Second-
order Doppler effect

We are now ready to evaluate the fractional frequency shift (3.20) due to the mass

defect for a given COM state. Here, we will consider in particular Fock states |n, t〉
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and thermal mixtures of Fock states at (pseudo)temperatures Ti for motion along

axis i. However, as we were able to find the creation and annihilation operators,

the treatment is general and can be applied just as well to any other quantum state.

In view of Eqs. (3.34) and (3.20), the fractional frequency shift of a trapped ion is

entirely due to its kinetic COM energy since

δν̂

ν0

= − K̂

Mc2
, K̂ =

P̂2

2M
. (3.53)

Remember at this stage that we are treating first the case with no gravitational

sag and a perfect quadratic potential for the trap. The operator for the kinetic

energy can be expressed in terms of creation and annihilation operators by inversion

of Eq. (3.43). In this way, mean values and uncertainties can be easily evaluated,

and the only integrals that remain to be calculated are those over the period T of

micromotion.

For the average fractional shift due to a COM Fock state |n, t〉, the Feynman-

Hellmann theorem can be applied. With Eqs. (3.32) and (3.51) we find

〈〈δν̂
ν0

〉〉
n

=
1

c2

∂En (M)

∂M
= −

3∑
i=1

~ωi
(
ni + 1

2

)
2Mc2

(
1 +

q2
i

2ai + q2
i

)
, (3.54)

in leading order of ai and q2
i . In evaluating this and similar expressions, it is necessary

to deal with fractions of polynomials in ai and qi. To simplify these expressions, we

associated a small parameter ε via the substitutions ai → ε2ai and qi → εqi, assuming

q2
i , |ai| � 1. Finally, we performed a Taylor expansion of the rational function in

terms of ε and maintained the relevant contributions.

In Eq.(3.54), the first term corresponds to the secular motion and the last one

to the micromotion. The fractional frequency shift for a thermal state with average

occupation numbers n̄ = (n̄1, n̄2, n̄3) will have the same form as Eq. (3.54), where the

Fock state number ni is replaced by n̄i = 1/
(

exp
( ~ωi
kBTi

)
−1
)
. In the high-temperature

limit, we can approximate n̄i ≈ kBTi
~ωi , so that we arrive at

〈〈δν̂
ν0

〉〉
n̄

= −
3∑
i=1

kBTi
Mc2

ai + q2
i

2ai + q2
i

. (3.55)

This recovers the result of Berkeland et al. [35] (cf. the first term on the right-

hand side of Eq.(30)) on the second-order Doppler (time-dilation) shift for a thermal

state. In the opposite limit kBTi � ~ωi, zero-point fluctuations in both secular and

micromotion in the quantum ground state still cause a fractional shift, as follows

from Eq. (3.54) for ni = 0. Calculating the average of Eq. (3.53) directly, that is
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〈〈δν̂/ν0〉〉 = −〈〈K̂〉〉/Mc2, using the algebra of creation and annihilation operators

defined in Eq. (3.43) yields the same result in leading order of ai and q2
i .

So far, we have considered an ideal quadrupole potential for the trap in the form

of Eq. (3.33). In reality, various deviations from this ideal geometry will occur and

impact the second-order Doppler shift. In the following sections we will consider

additional linear potentials due to uncompensated dc electric fields (Sec. 3.3.5) and

gravity (Sec. 3.3.6) as well as their variances (Sec. 3.3.7). Afterwards we will also

consider spurious electric quadrupole fields or trap imperfections (Sec. 3.3.8).

3.3.4 Ion trap with a linear potential

Linear potentials can be included in several ways. In this section, we examine how

the annihilation and creation operators change under such a potential. Afterwards,

the averages of these operators will be used to calculate the fractional frequency shift.

A linear potential can also be included by solving the appropriate Mathieu equation.

This approach will be more useful if one wishes to use the Feynman-Hellmann theorem

and is discussed over the next sections and solved in Appendix C.

In order to study both the cases of dc forces and gravity, we will now consider a

trap with a general linear potential −FX̂ such that the generalized Hamiltonian is

Ĥ(t) = Ĥ(0) − FX̂ − i~∂t, (3.56)

where Ĥ(0) corresponds to the Hamiltonian in Eq. (3.36). By studying this general

case, we will be able to treat the effect of gravity and the spurious dc field.

We seek operators of the form

b̂(t) = â(t) + α(t), (3.57)

which fulfill the eigenoperator equation [Ĥ(t), b̂(t)] = −~ω̄b̂(t), with a T -periodic

function α(t) and a new eigenfrequency ω̄, which is to be determined. In order for

α(t) not to be an operator, one finds that ω̄ = ω. Therefore, α(t) needs to obey the

differential equation

α̇(t) + iωα(t) = − iFe−iωtu(t)√
2~mν

= − iFv(t)√
2~mν

. (3.58)

Imposing T periodicity on α (t), we find in lowest order of the Mathieu parameters

α(t) =− F√
2~mω

[
ω

ω2 − Ω2
e−iωtu(t)− 1

1 + q
2

1

ω (ω2 − Ω2)

(
Ω2 + i

q

2
ωΩ sin (Ωt)

)]
,

(3.59)
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where we used that in lowest-order approximation of the Mathieu parameters ν ∼
ω. With this solution, we have determined the eigenoperator of the trap potential

including a linear force. Again, this formalism needs to be applied for each Cartesian

direction i, where we need to use the replacement F → Fi and ω → ωi = βiΩ/2.

3.3.5 Fractional frequency shift due to dc forces and excess
micromotion

Here, we consider an additional linear dc electric potential due to uncompensated

stray fields [35], causing the so-called excess micromotion. We include such a spurious

potential by adding to the COM Hamiltonian a perturbation

Ĥdc = −QEdc · R̂, (3.60)

where Edc = (Edc,1,Edc,2,Edc,3) is the dc electric field at the trap center.

From a theoretical point of view this is equivalent to considering a non-perfect

quadrupole potential for the trap and the so-called spurious dc field will just be the

linear part of the real potential of the trap. We will comment more on this equivalence

when we consider additional quadrupole fields or, equivalently, imperfections of the

trap.

This problem can still be solved exactly. Just as in the previous sections, we

assume a stable trap configuration that supports quasistationary eigenenergy states

|n, t〉dc satisfying the generalized eigenvalue problem(
Ĥcom(M, t)− i~∂t + Ĥdc

)
|n, t〉dc = Edc

n (M) |n, t〉dc . (3.61)

By adding Eq. (3.59) to the annihilation operators in Eq. (3.43) and considering the

substitution Fi → QEdc,i, we derive the modified annihilation operators generating

the Fock states |n, t〉dc. The modified eigenenergies are Edc
n (M) = En(M) +Edc(M),

where the energy correction due to the dc field does not depend on the Fock number

n, and is given by

Edc(M) = −
3∑
i=1

4E2
dc,iQ

2

M(2ai(M) + q2
i (M))Ω2

. (3.62)

We note that this result can also be found in different ways, the first one is to solve

the new equation of motion generated in terms of a modified Mathieu equation, we

will show this way in Appendix C for the joint case of a spurious dc field and a gravity

contribution as well as considering imperfections of the trap. Another method consists

of accounting for the perturbation in Eq. (3.60) in second-order perturbation theory.

This is because the perturbation (3.60) is time independent and linear in position and
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the unperturbed Hamiltonian is quadratic in position and momentum. Therefore, the

exact energy eigenstates are suitably displaced Fock states and the quasienergies will

be shifted by a constant quadratic term in the perturbation. Of course, another way of

treating this would rely on using our generalized creation and annihilation operators.

Thus, the dc electric field causes a fractional frequency shift due to the excess

micromotion that can be evaluated as before using the Feynman-Hellmann theorem.

On top of the thermal shift in Eq. (3.54), the dc field adds a shift

〈〈δν̂
ν0

〉〉
dc

=
1

c2

∂Edc(M)

∂M
= −

3∑
i=1

(
2qiEdc,iQ

Mc(2ai + q2
i )Ω

)2

, (3.63)

and again reproduces the result of Berkeland et al. [35]. Here, we have used the

notation 〈〈〉〉dc, which emphasizes that the contribution is the same for all Fock states,

independent of the index n. The fractional frequency shift of a trapped ion in this

case is still entirely due to its kinetic COM energy, as shown in Eq. (3.53). With

the modified creation and annihilation operators one can easily verify Eq. (3.63) via

〈〈δν̂/ν0〉〉 = −〈〈K̂〉〉/Mc2 in leading order of ai and q2
i .

3.3.6 Fractional frequency shift due to gravity

In this section, we consider a contribution to the fractional frequency shift due to

an interplay between position fluctuations and gravitational redshift, as discussed

in [47]. The coupling to the gravitational field is described by adding to the COM

Hamiltonian

Ĥg = Mφ(R̂), (3.64)

where we approximate the gravitational potential in linear order φ(R̂) = φ0 + g · R̂.

Here, φ0 is the gravitational potential at the trap center, and g = (g1, g2, g3). In

this linear approximation, the effect of gravity can again be considered with the

accordingly modified creation operators, cf. Eq. (3.59) with the substitution Fi →
−giM .

Including gravity, the fractional frequency shift of a trapped ion is due to both,

its kinetic COM energy and the contribution due to gravity. Therefore, gravity adds

a shift

δν̂

ν0

= − K̂

Mc2
+
φ0 + g · R̂

c2
. (3.65)

This follows from Eqs. (3.20), (3.34), and (3.64). In this case, we can write the

fractional frequency shift as 〈〈 δν̂
ν0
〉〉 = 〈〈 δν̂

ν0
〉〉n + 〈〈 δν̂

ν0
〉〉g, where the first contribution is
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Figure 3.3: Redshift g2

ω2
i c

2 (red dotted line) and total fractional frequency shift, i.e.,

redshift plus second-order Doppler shift ~ωi(n̄+1/2)
2Mc2

, for n̄ = 0 (solid lines) and n̄ = 1
(dashed lines) for Al+ (thick blue lines), Yb+ (thin green lines), and neutral Sr (thick
orange lines) versus trapping frequency ωi. Here, we considered for simplicity a static
confinement qi = 0.

given in Eq. (3.54) and

〈〈δν̂
ν0

〉〉
g

= −
3∑
i=1

4ai + 3q2
i

4ai + 2q2
i

g2
i

ω2
i c

2
+
φ0

c2
. (3.66)

Here, we have used the notation 〈〈〉〉g, which emphasizes that the contribution is the

same for all Fock states, independent of the index n and dependent on gravity. Due to

the linearity in R̂ of the second term in Eq. (3.65), this shift affects all Fock states in

the same way and is therefore independent of temperature for thermal states. In the

case of a dc harmonic confinement, qi → 0, and neglecting the background redshift,

φ0 = 0, we recover the result of Haustein et al. [47].

It is noteworthy that the fractional frequency shift due to the kinetic energy (3.54)

grows linearly with the trapping frequency (corresponding to an increased kinetic en-

ergy for tighter trapping), while the trap-dependent contribution due to gravity (3.66)

decreases quadratically with the trap frequency due to a decreased fluctuation in po-

sition and therefore also in potential energy. The trade-off with respect to the trap

frequency has been discussed and optimized by Haustein et al. [47] in order to min-

imize the fractional frequency shift for the case of a harmonic dc potential. For the

parameter regime of a conventional ion trap, the redshift term (3.66) will be smaller

than the second-order Doppler shift (3.54), see Fig. (3.3).

With the present formulae, it is straightforward to extend this discussion to ac-

count for micromotion. For that we will first write together the contribution from the
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redshift and the second-order Doppler shift, convening Eqs. (3.54) and (3.66), and

neglecting the background redshift,〈〈δν̂
ν0

〉〉
n

= −
3∑
i=1

(
~ωi
(
ni + 1

2

)
2Mc2

(
1 +

q2
i

2ai + q2
i

)
+

4ai + 3q2
i

4ai + 2q2
i

g2
i

ω2
i c

2

)
. (3.67)

This expression can be minimized in the direction i obtaining a minimum value for a

trapping frequency

ωi =

(
g2
iM(4ai + 3q2

i )

~
(
n+ 1

2

)
(ai + q2

i )

)1/3

, (3.68)

where again, if we study the case of a dc harmonic confinement, qi → 0, we recover

the result from Haustein et al. [47]. Unfortunately, as mentioned before, for the

parameter regime of a conventional ion trap, the second-order Doppler effect is the

relevant contribution.

The results from the two previous sections can be easily combined to take into

account both the dc forces and gravity, which will lead to some cross terms between

the two effects

〈〈δν̂
ν0

〉〉
=
〈〈δν̂
ν0

〉〉
n

+
3∑
i=1

8gi (QEdc,i −Mgi)

MΩ2c2 (2ai + q2
i )
−
(

2 (QEdc,i −Mgi) qi
Mc (2ai + q2

i ) Ω

)2

. (3.69)

With this final expression, we characterize the fractional frequency shift with every

relativistic correction.

3.3.7 Variance of the fractional frequency shift

In the preceding section, we considered the average fractional frequency shift that

enters the inferred frequency deviation in Eq. (3.30) as a systematic shift of the

Ramsey resonance curves. Now we will address the role of the uncertainty in the

frequency shift u2 = 〈δω̂2〉 − 〈δω̂〉2, which has been suggested [48] to pose a funda-

mental limitation to the precision of an optical clock. The fractional frequency shift,

if characterized properly, can be accounted for as a shift for the clock signal, but the

variance of that fractional frequency shift describes the quantum fluctuations of that

shift, and therefore, it can bring a fundamental limitation. For the case of standard

Ramsey interrogation (where 〈σz〉 = −1, and therefore, ∆σ2
z = 0 and ∆σ2

y = 1) and

taking into account N independent interrogations, Eq. (3.30) can be rewritten for the

inferred relative frequency deviation(
∆ω

ω0

)2

=
1

N

(
1

ω2
0T

2
R

+
u2

ω2
0

)
, (3.70)
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which holds to leading order in u2. The first term on the right-hand side is the projec-

tion noise and the second term accounts for the variance of the fractional frequency

shift due to the mass defect.

By means of the ladder operators (3.43), it is straightforward to evaluate the

latter, and we find for a thermal COM state

u2

ω2
0

=
〈〈K̂2〉〉n̄ − 〈〈K̂〉〉

2
n̄

M2
0 c

4
=

3∑
i=1

2

(
~ωi(n̄i + 1

2
)

2Mc2

)2
[(

1 +
q2
i

2ai + q2
i

)2

+
3

4

q4
i

(2ai + q2
i )

2

]
.

(3.71)

This expression is given in leading order of Mathieu parameters, taking into account

one order more than in other cases as we are showing a variance and not the standard

deviation. The standard deviation associated with this variance can be interpreted

as the quantum fluctuations of the kinetic energy, ∆K̂/Mc2. To evaluate the second

moment of the kinetic energy, it is convenient to use 〈P̂4〉n̄ = 3〈P̂2〉2n̄ for Gaussian

statistics. Note that this identity only holds for the average in L2(R3), as the statistics

with respect to time are non-Gaussian. We caution that the fractional frequency

uncertainty for a COM Fock state (which is non-Gaussian) looks slightly different

but can still be easily evaluated by using creation and annihilation operators.

It is interesting to consider in Eq. (3.71) the contributions along different directions

i in the limit of a pure dc or ac potential. For a dc potential, qi = 0, one finds for

a thermal COM state that the standard deviation in the direction i corresponds

to
√

2 times the fractional frequency shift in the same direction. This agrees with

the expectation that without micromotion, the Gaussian statistics entail a variance

Var(K̂)i = 2〈〈K̂i〉〉2 for the kinetic energy along this direction. For a pure ac potential,

ai = 0, one finds instead a standard deviation in the direction i of the fractional

frequency shift of
√

19/8 times the fractional frequency shift in the same direction.

The slight increase compared to a dc potential is due to micromotion. In the same way,

the uncertainty in the fractional frequency shift can be evaluated for the contribution

to the excess micromotion (3.63).

The standard deviation of the fractional frequency shift u/ω0 implied by Eq. (3.71)

has the same order of magnitude as the average second-order Doppler fractional fre-

quency shift. However, in order to resolve the latter, a large number of measurements

N is required to average down the projection noise (first term in Eq. (3.70)) to the

level of the systematic second-order Doppler shift. It is important to note that in

the same course the uncertainty of the second-order Doppler shift is suppressed by

N . Thus, its contribution to Eq. (3.70) should not be misinterpreted to imply a

fundamental limit to the stability of an ion clock. Rather, the standard deviation
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of the fractional frequency shift should be considered as a - relatively small - correc-

tion to the quantum projection noise of a single measurement on a two-level system.

However, it does imply a limit to the short-term stability.

In the previous subsection we studied the interplay between the fractional fre-

quency shift due to gravity and the mass defect. But as we motivated before, a more

relevant quantity will be its variance or standard deviation. The regime in which a

minimum could be found for the fractional frequency shift is not relevant for usual ion

trap parameters. Nevertheless, one can also try to study and minimize this interplay

for the variance, although we expect it to be also in a non-exploitable regime, and

as we just show, it will only be relevant for the short-term stability. If we make the

same calculations in order to include also the effect of gravity, and we focus on the

case for qi → 0, as including the trap parameters complicates a lot the expressions

and does not give a better insight or changes the discussion because the micromotion

will give only a small correction, the variance becomes

u2

ω2
0

=
~

Mc2

(
n̄i +

1

2

)(
~ω2

i

2Mc2

(
n̄i +

1

2

)
+

g2
i

c2ωi

)
. (3.72)

If we minimize the variance considering the different scaling with the trapping fre-

quency ωi we obtain that the minimum is fulfilled for

ωi =

(
g2M

~
(
n+ 1

2

))1/3

. (3.73)

Comparing this with the minimization of the fractional frequency shift in Eq. (3.68),

we see that this frequency is smaller by a factor of 41/3, which makes it even less

relevant for the parameter regime of a conventional ion trap.

3.3.8 Effect of additional quadrupole fields

Finally, we address the effect of a spurious electric quadrupole field. Yudin &

Taichenachev [46] suggested that an additional quadrupole field beyond the ideal

dc and ac potentials in Eq. (3.33), in interplay with the mass defect, could lead to

systematic shifts that have not been considered before. Compared to Eq. (3.33), an

additional quadrupole electric field can manifest itself in a shift of the minima be-

tween the ac and dc potentials, a change in their curvature and/or a shift in their

axes.

To take this into account, we choose, without loss of generality, the origin of our

coordinates to coincide with the zero point of the ac contribution and the coordinate

basis to be aligned with its axes (i.e. with the eigenvectors of Ũ in Eq. (3.33)). This
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leaves the ac contribution unchanged from the previous sections. The total (intended

and accidental) dc potential is now expressed in an expansion around the origin,

Φdc(R̂) = Φdc

(
0̂
)

+ Edc · R̂ +
1

2
R̂TU R̂, (3.74)

where Uij = ∂2Φdc(0̂)
∂Ri∂Rj

and 0̂ stands for the center of the ac potential. The Φdc

(
0̂
)

will be

a constant shift in the Hamiltonian and therefore will have no effect. The linear com-

ponent can be interpreted as a contribution to the spurious Edc field studied before in

Sec. 3.3.5. Finally, without loss of generality, we write U = U0diag(α1, α2, α3) + W ,

with dimensionless coefficients αi and a purely off-diagonal perturbation W . The

diagonal terms determine the potential curvatures and hence the effective trap fre-

quencies, as in the previous sections. A calibration of the second-order Doppler effect,

based on trap spectroscopy and thermometry of the COM motion, will thus prop-

erly account for potential deviations of the αi from their nominal values. It is these

changes that were discussed in [46] in a perturbative account. We thus agree with

Yudin & Taichenachev that a change in potential curvature can enter the systematics

in relevant magnitude, but notice that these effects are already accounted for in the

operational calibration of an ion clock in the context of the second-order Doppler

effect.

It remains to discuss the effect of axis misalignments. For this, we treat the

nondiagonal correction as a perturbation to the Hamiltonian (3.34),

Ĥoff−diag = QR̂TW R̂. (3.75)

Assuming for simplicity a nondegenerate spectrum of motional eigenfrequencies ωi,

we can employ nondegenerate perturbation theory [4] in order to evaluate the cor-

rections to the energy levels of quasistationary states |n, t〉 in Eq. (3.51). Expressing

the position operator R̂ in terms of creation and annihilation operators, it follows

immediately (due to the off-diagonal nature of W ) that the first-order correction van-

ishes, i.e, 〈〈Ĥoff−diag〉〉n = 0. Of course, the eigenstates will change. In the case of

nominal degeneracies in the trap frequencies the off diagonal terms can be treated as

a perturbation on the level of the Mathieu equation, following the treatment shown

by Landa et al. [61]. This will lead to a lifting of the degeneracies, which will again

be accounted for in the trap calibration. Both cases are shown in Appendix C by

solving the Mathieu equation.
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3.4 Relativistic coupling of internal and external

DOFs in Penning traps

After applying our formalism to a Paul trap, an interesting question will be how

to consider other trapping schemes. Starting with this project, we did not consider

Penning traps because our derivation does not cover relativistic corrections due to

spin, which will be relevant in the presence of a magnetic field. Nevertheless, we

became aware of some recent work that proposes to have a clock transition with both

clock states having I = J = F = 0, where I, J , and F are the conventional quantum

numbers specifying nuclear, electronic, and total angular momentum, respectively,

see e.g. [51]. This makes our description relevant to that particular case.

3.4.1 Introduction to Penning traps

We will start by recapitulating how the confinement is generated in a Penning trap [62,

63]. A dc potential confines the particle along the z direction in a similar way as in

a Paul trap. We have a potential V (R̂) and an electric field E(R̂) of the form

V (R̂) =VRC2

(
ẑ2 − x̂2

2
− ŷ2

2

)
, E(R̂) =VRC2

 x̂
ŷ
−2ẑ

 . (3.76)

Where in general, the field is produced by applying a voltage VR to a set of typically

cylindrical electrodes with their axes also aligned along the z direction. For axial

confinement, the sign of the voltage needs to agree with the charge of the trapped

particle Q. C2 characterizes the geometry of the trap and defines a specific length for

the trap
√

1
C2

.

To realize confinement in the orthogonal plane, we apply a constant magnetic

field, with strength B0, along the z-axis with

A(R̂) =
B0

2

−ŷx̂
0

 , B(R̂) =B0

0
0
1

 , (3.77)

the vector potential and magnetic field, respectively.

The motional Hamiltonian for the Penning trap will look like

Hmot =

(
P̂−QÂ⊥(R̂)

)2

2M
+QV, (3.78)
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where we wrote P̂ instead of ˆ̄P = P̂ − QÂ⊥(R̂) because we want to maintain the

explicit dependence of the vector potential. First, we will study this part of the Hamil-

tonian and afterwards discuss what happens to the relativistic corrections calculated

in Sec. 3.2.

The Hamiltonian in Eq. (3.78) can be diagonalized, see e.g. [62], and decomposed

into three terms corresponding to independent harmonic oscillators, one for the mo-

tion along z and two for the transverse motion

Hmot = ~ωz
(
â†zâz +

1

2

)
+ ~ω+

(
â†câc +

1

2

)
− ~ω−

(
â†mâm +

1

2

)
, (3.79)

where we define the axial, modified cyclotron and magnetron frequency, respectively,

ωz =

√
2VRC2

Q

M
, ω+ =

ωc
2

+ Ωc, ω− =
ωc
2
− Ωc, (3.80)

where ωc = QB0

M
is the cyclotron frequency and Ωc > 0 is defined by Ω2

c = ω2
c

4
− ω2

z

2
. For

common trap parameters, we have the hierarchy ω+ � ωz � ω−. The annihilation

operators for the i = x, y, z directions are

âi =
1√

2~Mωi

(
MωiR̂i + iP̂i

)
, (3.81)

with ωx = ωy = Ωc. The modified cyclotron and magnetron frequency ladder opera-

tors can be written in terms of the x and y ladder operators in the form

âc =
âx + iây√

2
, âm =

âx − iây√
2

. (3.82)

It is worth noting the negative contribution in Eq. (3.79), this may lead to the

idea that one can erase the second-order Doppler effect that will come from this

Hamiltonian as the contribution from the different motions will have a different sign.

This is somehow physically unintuitive as it implies that one can get rid of the second-

order Doppler effect by increasing the motion in one of the directions. We will return

to this point at the end of the chapter.

3.4.2 Mass defect in Penning traps

Assuming a Ramsey interrogation scheme, our relativistic Hamiltonian in Eq. (3.4)

will be the perfect starting point to treat the fractional frequency shift in a Penning

trap, with the difference that we do not have a time dependent potential and therefore
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no micromotion or excess micromotion will appear. We will start by studying the

contributions of all terms in Eq. (3.4) in the case of a Penning trap.

The first contribution is provided by the nonrelativistic COM Hamiltonian

Ĥ(0)
com =

ˆ̄P2

2M
+Mφ(R̂), (3.83)

where we neglected the relativistic corrections affecting the COM DOF only, this

corresponds to the terms in Eq. (3.7) that will lead only to a common shift for the

ground and excited states. The main difference from the previous section is that now

we have a non-zero vector potential, and therefore, it needs to be accounted for in

the redefined momentum

ˆ̄P = P̂−QÂ⊥(R̂), (3.84)

as shown in Eq. (3.8).

In the same spirit as in the previous section, we will assume relativistic corrections

of the internal DOF, Eq. (3.11), to be absorbed in the internal states and energies

under the two-level approximation.

The interaction of the atom with the electromagnetic field in the dipole approx-

imation requires more discussion than in the previous section, remember that it is

given by

Ĥat-emf = QΦ(R̂)− d̂ · E(R̂) +
1

2M

[
ˆ̄P ·
(
d̂×B(R̂)

)
+ H.c.

]
+ Ĥother. (3.85)

The potential will create the trapping in a Penning trap, as explained in Sec. 3.4.1.

The Röntgen term scales as P/Mc and is negligible for a cold ion and will merely

rescale the Rabi frequency of the pulses in a Ramsey interrogation, as discussed in

the previous section. The contributions in Ĥother will be shown in Appendix A. These

terms involve the magnetic field and internal DOF, therefore, they are not effective in

the case of a Paul trap. In the case of a Penning trap, even though we have a magnetic

field, this field will be constant, and therefore independent of the external DOF, which

will make these contributions relativistic corrections to the internal Hamiltonian that

will be accounted for in the two-level approximation.

The metric term in Eq. (3.13) can be dropped in a rotating wave approximation,

as in the case of a Paul trap. The mass-defect term will have the same contribution

as in Eq. (3.16), with the difference that we have to account for the vector potential

in
¯̂
P . Therefore, the effect of the mass defect will be, in the two-level approximation,

Ĥint + Ĥmass defect ' Ĥint ⊗
(

1 +
1

c2

∂Ĥcom(M)

∂M

)
=

~ω0

2
σ̂z ⊗

(
1 +

δν̂

ν0

)
, (3.86)
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leading to a fractional frequency shift

δν̂

ν0

=
1

c2

∂Ĥcom(M)

∂M
, (3.87)

where again one need to consider that the expression of Ĥcom(M) is different from

the previous section as we will have a vector potential.

Taking this into account, the Hamiltonian for the Ramsey interrogation scheme

in the Penning trap will be

Ĥ = Ĥcom(M) +
~ω0

2
σ̂z

(
1 +

δν̂

ν0

)
− d̂ · E(R̂, t), (3.88)

with

Ĥcom(M, t) =
ˆ̄P2

2M
+Mφ(R̂) +QV (R̂). (3.89)

From now on we will drop the contribution from gravity as it will give the same

insight as in the case of a Paul trap, doing so this Hamiltonian corresponds to the

motional Hamiltonian in Eq. (3.78).

Now that we have properly treated the relativistic corrections, we are in a position

to study the fractional frequency shift for a Penning trap, i.e.,

δν̂

ν0

=
1

c2

∂Ĥmot(M0)

∂M
= − 1

Mc2

(
P̂−QÂ⊥(R̂)

)2

2M
= − 1

Mc2

(
Ĥmot −QV (R̂)

)
. (3.90)

Using the diagonal form of the motional Hamiltonian in Eq. (3.79) and combining the

definition of the ladder operators in the x and y directions (3.81) with the relations

of the modified cyclotron and magnetron ladder operators (3.82) in order to rewrite

the potential of the trap in terms of the latter, we can rewrite Eq. (3.90) as

δν̂

ν0

= − 1

Mc2

[
~ωz
2

(
a†zaz +

1

2

)
+ ~
(
ω+ +

ω2
z

4Ωc

)(
a†cac +

1

2

)
− ~
(
ω− −

ω2
z

4Ωc

)(
a†mam +

1

2

)
−~ωz

4

[(
a2
z + a†z

2
)
− ωz

Ωc

(
acam + a†ca

†
m

)]]
.

(3.91)

We can see that the effect of the mass defect is halving the fractional frequency shift

contribution from the motion in the z direction and shifting the contribution for the

cyclotron and magnetron motions. Apart from that, it also adds some terms that

involve a2
z and a†z

2
, which in the case of a combination of Fock states will lead to

mixing the effects of different Fock states.
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Assuming that ωc > ωz, which is fulfilled for usual Penning trap parameters, we

obtain

(
ω− −

ω2
z

4Ωc

)
< 0. (3.92)

Let us now return to the question that we raised after Eq. (3.79), which was that

the second-order Doppler effect maybe could be erased by adding magnetron motion.

Now we see that if one considers the mass defect properly, the sign in the fractional

frequency shift of the contributions of the different motions are the same, which will

make it impossible to compensate one contribution with another, which, at the same

time, makes more physical sense in our opinion.

Of course, one still has a negative contribution coming from the term involving

a2
z and a†z

2
, but the size of this contribution will be bounded by the value of aza

†
z and

therefore, the first term will always make the combined contribution positive.

3.5 Conclusion

In conclusion, we have presented a systematic and fully quantum mechanical treat-

ment of relativistic frequency shifts in atomic clocks based on trapped ions. We

started by deriving an approximate relativistic Hamiltonian for the center of mass

and internal dynamics of an electromagnetically bound, charged two-particle system

in external electromagnetic and gravitational fields. We applied this Hamiltonian to

an ion in a Paul trap, including the effects of micromotion, excess micromotion and

trap imperfections.

We recovered results known from semiclassical treatments based on time-dilation

arguments. The Hamiltonian ab initio treatment given here avoids the need for ad

hoc arguments based on time-dilation or mass-defect corrections. We would like

to emphasize that, as we strove to calculate creation and anhiliation operators, we

were able to go beyond what semiclassical treatments are capable of and managed

to have a proper discussion of the variance associated with the fractional frequency

shift. With that, we showed that the variance of the fractional frequency shift will

only provide a fundamental limitation in the short-term stability, and it should be

seen as a —relatively small— correction to the quantum projection noise of a single

measurement. Treating the possible imperfections of the trap, we agree with Yudin

& Taichenachev that these terms will have an impact, but as they only change the

effective trap frequencies, it will be absorbed in a proper calibration of the trap.

With our formalism, we were also able to treat the case of a spinless atom in a

Penning trap, allowing us to see that, with the proper use of the mass defect, one
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does not have contributions with opposite sign in the fractional frequency shift coming

from the different motions. Therefore, we conclude that it is not possible to null the

fractional frequency shift by adding magnetron motion.

3.6 Outlook: Further research directions

Finally, we would like to discuss which should be the next natural steps if one wants to

study this relativistic effects further. Regarding relativistic corrections for clocks, it

would be desirable to account for spin, this could be achieved along the lines of [55,56],

but taking into account the gravitational field. With these treatment one could treat

systems with spin, in particular for Penning traps where the interaction between the

spin and the magnetic field is relevant. In this work, we treated the simple case of

an ion, but more complicated systems such as atom clocks based on ion crystals [64]

as well as neutral lattice clocks [65, 66] are relevant. We hope that our treatment

provides a solid basis for these applications too, and therefore, this could be another

route for possible future studies.

Penning trap mass spectrometry has been used to detect metastable electronic

states in highly charged ions [67]. Using this technique, another possibility to extend

our work will be to model how the mass defect could be used as a tool for reading

out the internal states.



4
Quadrupole transitions with
continuous dynamical
decoupling(CDD)

4.1 Motivation and research problem

Optical clocks based on neutral atoms trapped in optical lattices have shown un-

certainties of a few parts in 10−18 [65]. At the same time, optical ion clocks [20]

have shown systematic uncertainties below 10−18 [21, 68–70]. Clocks at this level of

uncertainty open the way to many applications, such as relativistic geodesy [24–30],

tests of general relativity [31–33], and to explorations of physics beyond the standard

model [34]. However, in order to exploit these applications, the statistical uncertainty

of the clock must reach a certain level after some integration time, which will depend

on the phenomena under investigation.

The statistical uncertainty for a given clock species can be improved by extend-

ing the probe time, which will ultimately be limited by the lifetime of the excited

states. Nevertheless, in practice, it is usually limited by the coherence time of the

clock laser [71, 72]. We can also improve the statistical uncertainty by interrogating

many atoms simultaneously [73–76]. But increasing the number of ions stored in a

Paul trap entails further obstacles to overcome. Depending on the ion species chosen,

inhomogeneous or time-dependent frequency shifts, such as the Zeeman shift, the

Quadrupole shift, or the radio frequency (rf) electric field-induced tensor ac Stark

shift, pose a limitation. These effects can contribute to the decoherence of the state

or broaden the joint linewidth of the ions, thus limiting the usable probe time. Sev-

eral approaches exist to constrain these shifts even without exact knowledge of the

electric field gradient. One approach consists in averaging over different transitions

or directions to exploit the different scaling of the shift with the angular momentum

component [77, 78]. Another method dynamically changes the static offset B-field

53
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direction within the clock interrogation [79] to mimic the magic angle spinning tech-

nique of nuclear magnetic resonance spectroscopy [80].

In the field of quantum technology there have been ideas for protecting a quantum

system from its environment, and recently, some of these have been transferred to

atomic clocks. One of these ideas is known as dynamical decoupling protocols. These

protocols have been studied both theoretically [81–92] and experimentally [93–100],

and are based on tailoring the quantum properties of the system by applying external

pulses to eliminate the effect of environmental perturbations. Here, we will investi-

gate continuously applied time-periodic fields, also known as continuous dynamical

decoupling (CDD) [100–111]. CDD has been shown to be useful in the application of

qubit gates [112–114] and plays an important role in reducing environmental pertur-

bations in nitrogen vacancy centers in diamonds, which are promising candidates for

applications in the field of quantum information technologies [110,115–117].

The application of these protocols to atomic clocks has been studied in several

papers [92, 100, 110]. We will build on the work of Aharon et al. [92], where they

motivate robust optical clock transitions by applying CDD. For these artificial optical

quadrupole transitions, more complicated ion-laser interactions need to be addressed,

which will be the focus of the current work.

In Sec. 4.2, we start by reformulating the description of CDD to easily treat the

laser-ion interaction. We begin by recapitulating the dynamical decoupling principle

for a particular spin manifold, which is subject to a Zeeman splitting controlled by a

static dc magnetic field. Here, modulated external rf magnetic fields are employed to

mitigate the amplitude-induced line shifts [92]. We continue by showing the effective

Hamiltonian in the so-called doubly-dressed basis 4.2.1. Then, with the appropriate

CDD parameters, we quantify the suppression of Zeeman and quadrupole shifts in the

doubly-dressed basis 4.2.2. Having established the CDD formulation and notation,

we proceed to accurately describe the laser-ion interaction in Sec. 4.3. We consider

optical quadrupole transitions between two such spin manifolds and characterize the

laser-ion interaction necessary to drive the above transitions 4.3.1, showing that there

is no selection rule for transitions in the doubly-dressed basis; the only necessary

condition to drive a particular transition will be the proper detuning of the laser. The

suppression of Zeeman and quadrupole shifts will come at the cost of a reduction in the

effective Rabi frequency for transitions in the doubly-dressed basis, and therefore, the

characterization of these transitions will allow us to choose an appropriate candidate

for a clock transition. We continue by considering the approximations made during

the previous sections, namely, the rotating wave approximation during the derivation

of the doubly-dressed basis, which is also known as Bloch-Siegert effect, and the

cross-field effect, which consists in the effect that the rf fields applied for dynamic
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decoupling to the ground states manifold have on the excited states manifold and vice

versa. Both effects will be accounted for approximately using the so-called Magnus

expansion 4.3.2. To gain further insight into this scheme, we study and characterize

the particular case of a quadrupole transition between the S = 1/2 and D = 5/2

manifolds of 40Ca+ 4.3.3, comparisons with experimental data for this example will

be shown elsewhere [118]. We proceed by comparing our approximate solutions for a

single layer of dressing, i.e., the dressed basis and the dressed basis corrected by the

Bloch-Siegert effect approximately, with the true solutions of the Hamiltonian, the

Floquet states in Sec. 4.4. In addition, we address whether it is possible to combine

our CDD scheme with the implementation of a Mølmer-Sørensen gate in Sec. 4.5, in

order to implement entanglement between two ions.

4.2 Dynamical decoupling

In this section, we will recapitulate the principle of dynamic decoupling for the sup-

pression of Zeeman and quadrupole shifts of atomic levels by dressing with radio

frequency (rf) magnetic fields [92, 100, 110]. The present work aims to characterize

quadrupole transitions from a spin manifold of ground states to a manifold of excited

states. We will first study how these magnetic fields affect one spin manifold, which

will facilitate the discussion of the physical principle of dynamic decoupling. Fur-

thermore, treating one manifold will separate the effects inherent to the problem of

a single manifold and those that are connected to their cross coupling.

4.2.1 Doubly-dressed basis

We will consider a manifold of total spin S with basis states |M〉 (|M | ≤ S) and

quantization axis along z. If a static magnetic field B along the z-axis is present, the

internal states |M〉 will be shifted by a value proportional to their spin, due to the

linear Zeeman effect. Therefore, the Hamiltonian will have the expression

Hdc = gµBBSz = ω0Sz, (4.1)

where g is the gyromagnetic factor, the corresponding Larmor frequency is ω0 =

gµBB, with µB being the Bohr magnetron, and we set ~ = 1. The eigenstates of this

Hamiltonian will be referred to as bare states. A radio-frequency field Brf(t) is applied

in the x− y plane, which for the sake of generality we consider enclosing an angle α

with the x-axis. The rf field Brf(t) is assumed to comprise frequency components at

a fundamental frequency ω1 and sideband frequencies ω1 ± ω2, where ω2 < ω1, such
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that the Hamiltonian for the rf fields is

Hrf = g
(
Ω1 cos(ω1t)− Ω2 sin(ω1t) cos(ω2t)

)
(Sx cosα + Sy sinα), (4.2)

where Ω1 and Ω2 are set by the amplitudes of the fundamental and sideband compo-

nents of the rf-magnetic field, respectively. Therefore, the total Hamiltonian for the

spin S manifold in the laboratory frame (LF) is

HLF = Hdc +Hrf . (4.3)

To help characterize the rf or dressing fields, we are going to introduce a series of

transformations into several frames. We remind the reader that the transformations to

rotating frames have been introduced in Sec. 2.2. In this sequence of transformations

we will denote a unitary rotation around an axis n about an angle θ by

Un(θ) = exp (iθnS), (4.4)

and use the shorthand notation

Rn(θ)A := Un(θ)AU †n(θ), (4.5)

for the conjugation of an operator A with Un(θ), as we similarly did in chapter 2. As

in the previous chapter, we use bold symbols to denote three-vectors.

First, we go into a frame rotating around the z-axis at the rf frequency ω1 by trans-

forming the operator defining the Schrödinger equation, i.e., HLF − i d
dt

, as described

in chapter 2,

Rz(ω1t)
[
HLF − i d

dt

]
= ∆1Sz +

gΩ1

2
(Sx cosα + Sy sinα)

+
gΩ2

2
cos(ω2t)(Sy cosα− Sx sinα)− i

d

dt
. (4.6)

Here, we define the detuning of the rf-field with respect to the Larmor frequency ∆1 =

ω0−ω1. We also use a rotating wave approximation (RWA) and drop terms oscillating

at 2ω1, assuming 2ω1 � gΩ1/2,∆1
1. Remember that the RWA has been introduced

in Sec. 2.2. The effective contribution of these counter-rotating terms on the bare

states is addressed in Sec. 4.3.2. The time-derivative on the left-hand side of Eq. (4.6)

accounts for the terms that contribute to the transformed Hamiltonian due to the time

dependence of the transformation, i.e., Rz(ω1t)
[
H − i d

dt

]
= (Rz(ω1t)H)−ω1Sz − i d

dt
.

This notation is useful when dealing with sequences of transformations.

1To be precise one should consider the size of the eigenvalues of the operator Sx for the last
inequality, nevertheless, for the cases we are going to treat in this chapter they are going to be small
and therefore will not affect the inequality.
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In the next step, the Hamiltonian is rewritten in the dressed state basis corre-

sponding to the eigenstates of the time-independent part of the Hamiltonian on the

right-hand side of Eq. (4.6), which correspond to the first line in the right-hand side.

We achieve this by a rotation around an axis n1 = (− sinα, cosα, 0) and an angle

θ1 ∈ [0, π] defined by cos θ1 = ∆1/ω̄0, where

ω̄0 =
(
∆2

1 + g2Ω2
1/4
)1/2

. (4.7)

The Hamiltonian in this first dressed basis is calculated using the transformation

Rn1(θ1)Rz(ω1t)
[
HLF − i d

dt

]
= ω̄0Sz +

gΩ2

2
cos(ω2t)(Sy cosα− Sx sinα)− i

d

dt
. (4.8)

This Hamiltonian refers to a new time-dependent quantization axis enclosing an angle

θ1 with the z-axis. In Fig. 4.1 a) we find the representation of the quantization axis,

with the corresponding energies of the eigenstates depicted in Fig. 4.1 b). These

eigenstates, also called bare states, are separated by an energy splitting ~ω0, which

corresponds to the Zeeman splitting. To compare with the dressed basis, we can

observe the new quantization axis in Fig. 4.1 c) and the corresponding energies of the

eigenstates, in the rotating frame, in Fig. 4.1 d). These eigenstates, also called dressed

states, are separated by an energy splitting ~ω̄0, which corresponds to a combined

effect between the Zeeman splitting and the fundamental frequency ω1 in the rf field.

The next dressing layer consists of the same two types of transformations as the

first one. First, the system is transformed into a rotating frame with frequency ω2

around the new quantization axis, where fast oscillating terms 2ω2 � gΩ2/4,∆2 are

neglected,

Rz(ω2t)Rn1(θ1)Rz(ω1t)
[
HLF − i d

dt

]
= ∆2Sz +

gΩ2

2
(Sy cosα− Sx sinα)− i

d

dt
. (4.9)

The detuning at the second dressing layer is ∆2 = ω̄0 − ω2. Then, the time-

independent Hamiltonian is diagonalized. The transformation that achieves this cor-

responds to a rotation about an axis n2 = (− cosα,− sinα, 0) by an angle θ2 ∈ [0, π],

where

cos θ2 = ∆2/ ¯̄ω0, (4.10)

and

¯̄ω0 =
(
∆2

2 + g2Ω2
2/16

)1/2
. (4.11)

This results in the final, doubly-dressed Hamiltonian

H = Rn2(θ2)Rz(ω2t)Rn1(θ1)Rz(ω1t)
[
HLF − i d

dt

]
+ i

d

dt
= ¯̄ω0Sz. (4.12)
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We add i d
dt

in the last equation because we are transforming the operator defining the

Schrödinger equation, i.e., H − i d
dt

, as explained in chapter 2, and we want to recover

the Hamiltonian after the transformations. The quantization axis of the Hamiltonian

in Eq. (4.12) is now again rotated at an angle θ2 with respect to the previous one.

In principle, further dressing layers can be added, which will correspond to a similar

sequence of transformations. Applications of n layers of dressing have been discussed

by Cai et al. [110].

We emphasize that the dressing procedure involves two RWAs, which are implicit

in Eq. (4.12), and are based on 2ωi � gΩi/2
i for i = 1, 2. Thus, we have the hierarchy

of time scales ¯̄ω−1
0 > ω−1

2 > ω−1
1 . Nevertheless, the terms neglected during the RWA

will be accounted for perturbatively using a Magnus expansion in Sec. 4.3.2.

x y

z
Laboratory

Quantization axis

x y

z
Dressed basis

Quantization axis
θ1

a)

b)

c)

d)

∆1Ω1

ω0

E/~

m

ω̄0

E/~

m̄

Figure 4.1: Sketch of dynamical decoupling effect on a given manifold. Figs. a) and c)
correspond respectively to the quantization axis of Figs. b) and d). In Fig. b) we show
the level scheme of the bare basis, with coupling Ω1 between the bare states driven
by the time-dependent near-resonant magnetic field and the detuning ∆1 = ω0 − ω1.
In Fig. d) the level scheme in the dressed basis quantization axis is displayed. Note

that c) and d) are not to scale as ω̄0 � ω0, due to ω̄0 = (∆2
1 + g2Ω2

1/4)
1/2

.

4.2.2 Suppression of Zeeman and quadrupole shifts

In this section, we discuss how the two layers of dressing help to suppress linear

Zeeman and electric quadrupole shifts. We refer to the original work of Aharon et

al. [92] for a detailed discussion. Both effects can be modeled by an additional term
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V LF(t) added to the Hamiltonian in Eq. (4.3). This term may be time-dependent,

but is assumed to fluctuate slowly on the time scales of the dressed states energy

splitting ¯̄ω−1
0 . In the doubly-dressed basis and in an interaction picture with respect

to H, Eq. (4.12), such an additional term will be effectively described by

V IP = Rz(¯̄ω0t)Rn2(θ2)Rz(ω2t)Rn1(θ1)Rz(ω1t)V
LF =: D(ωi, gΩi, t, α)

[
V LF

]
. (4.13)

Remember that α is the enclosed angle with the x-axis of the radio-frequency field

in Eq. (4.2). The last (leftmost) rotation around z at frequency ¯̄ω0 accounts for

the interaction picture. We will abbreviate the complete sequence of transformations

corresponding to the dynamic decoupling and the change to the interaction picture as

D(ωi, gΩi, t, α). The goal of dynamic decoupling is to reduce V IP by an appropriate

choice of the driving parameters, which are the rf frequencies ωi and Rabi frequencies

gΩi, with i = 1, 2. This general reasoning can now be applied to linear-magnetic and

electric-quadrupole shifts.

Let us first study the shift of the bare states created through magnetic field fluc-

tuations. This shift can be described by

V LF
δB = gµBδB(t)S, (4.14)

where δB(t) is the time dependent part of the magnetic field, being the total magnetic

field for the bare states B(t) = (0, 0, B) + δB(t). To calculate the energy shift in the

interaction picture after the transformations, Eq. (4.13), the changes of the spin

vectors must be considered.

In a RWA one has Rz(ωt)S = Szez, therefore, applying the rotation and going to

an interaction picture for one layer with a general direction of rotation n = cosϕex +

sinϕey, we obtain

Rz(ωt)Rn(θ)Sz = cos θSz +
i

2
sin θ

(
eit(ω+ϕ)S+ − e−it(ω+ϕ)S−

)
' cos θSz. (4.15)

The RWA drops all the terms oscillating at frequency ω+ϕ. This can be applied for

the two dressing layers, as in Eq. (4.13), obtaining

V IP
δB = D(ωi, gΩi, t, α)

[
V LF
δB

]
= cos θ1 cos θ2 gµBδBz(t)Sz. (4.16)

Under the assumption that δB(t) fluctuates slowly on all relevant time scales, only

the component along z, the direction of the dc field, matters. The terms in the x and

y components of δB(t) can be neglected in a RWA after the first rotation around z

with frequency ω1. We would like to highlight that the same results are obtained if

the RWA is applied after performing all the transformations and no RWA is applied
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in between. This is a subtle but important point to make; if we want to make a

transformation, apply a RWA, and afterwards, apply the inverse transformation, the

result will be inconsistent, so either the relevant hierarchy of timescales regarding

the different transformations needs to be confirmed, or realizing the RWA after all

transformations has to give the same result when done properly. Eq. (4.16) shows

that magnetic field fluctuations can be suppressed and even nulled by choosing the

angle in the first and/or second stage of dressing to be θ1(2) = π/2, which is fulfilled

by a set of resonant parameters ∆1(2) = 0, cf. Eq. (4.10).

A similar cancellation can be achieved for electric-quadrupole shifts. Such cancel-

lation has been discussed previously in [92] and [100]. To the best of our knowledge,

in the case of the continuous dynamical decoupling scheme considered here, no ex-

pression for the quadrupole shift Hamiltonian in the doubly-dressed basis has been

derived. The quadrupole shift is described by the Hamiltonian

V LF
Q = Tr {QF (t)}, (4.17)

where Qij = 3
2

(SiSj + SjSi) − S (S + 1)1, with S (S + 1) = S2, Fij =
∂Ej
∂xi

and the

components of the electric field are denoted by Ej. The quadrupole operator becomes,

in a RWA,

Rz(ωt)Q '
3

2

S2
x + S2

y 0 0
0 S2

x + S2
y 0

0 0 2S2
z

− S(S + 1)1

=
S(S + 1)− 3S2

z

2

1 0 0
0 1 0
0 0 −2

 . (4.18)

The latter expression is useful for evaluating the quadrupole shift. This is further

simplified when using the Laplace equation Fxx + Fyy + Fzz = 0 in the quadrupole

shift Hamiltonian

Rz(ωt)V
LF
Q = Tr{Rz(ωt)[Q]F} ' 3Fzz

2

(
3S2

z − S(S + 1)
)
. (4.19)

Thus, in the first layer of dressing, one has to evaluate

Rz(ωt)Rn(θ)S2
z =

[
cos θSz +

i

2
sin θ

(
eit(ω+ϕ)S+ − e−it(ω+ϕ)S−

)]2

' cos2 θS2
z +

sin2 θ

4
(S+S− + S−S+)

=
sin2 θ

2
S(S + 1)− 1− 3 cos2 θ

2
S2
z . (4.20)
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Iterating this transformation once more yields the expression in the interaction picture

V IP
Q = D(ωi, gΩi, t, α)

[
V LF
Q

]
=

1

4

(
1− 3 cos2 θ1

)(
1− 3 cos2 θ2

)
× 3Fzz(t)

2

[
S(S + 1)− 3S2

z

]
. (4.21)

The first line on the right-hand side of Eq. (4.21), whose magnitude is at most one,

gives the reduction of the quadrupole shift due to dynamic decoupling. The last line

is just the standard expression for the quadrupole shift of the non-degenerate levels

in the RWA. With the so-called magic angle, cos2 θ1(2) = 1/3, the quadrupole shift

can be erased in either the first or the second dressing layer.

Generally, with two layers of dressing, it is possible to erase both Zeeman and

quadrupole shifts simultaneously by choosing cos θ1(2) = 0 and cos2 θ2(1) = 1/3. When

determining which effect to cancel in the first layer and which in the second, it is

important to consider time scales and time averaging. The first dressing layer involves

a coarse grain of time over a scale of ω−1
1 , while the second one averages over ω−1

2 >

ω−1
1 . Therefore, it will be advantageous to cancel the faster fluctuations first.

4.3 Laser-ion interaction

After properly describing the effect of two layers of dressing in a given manifold, we

will consider electric-quadrupole transitions between two Zeeman manifolds. We will

start by characterizing the laser-ion interaction and finding the conditions that drive

each transition. After that, we will take into account the counter-rotating terms

neglected in the previous section as well as the so-called cross-field effect, which

accounts for how the off-resonant fields applied to the ground manifold affect the

excited manifold and vice versa. We will finish the section by applying this formalism

to the particular case of 40Ca+ in order to visualize how these transitions will be

spread in the frequency spectrum.

m

M

∆M
+1
+0
−1
±2

Figure 4.2: Shows the possible combinations allowed by the quadrupole selection
rules in the bare basis states (m,M).
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4.3.1 Quadrupole transitions in doubly-dressed basis

We consider an ion with a manifold of ground states (s) and a manifold of excited

states (d) that exhibit an electric, quadrupole-allowed, optical transition at frequency

ωsd. The spin in the manifolds is denoted by Sκ (κ = s, d) and the angular momentum

operators are denoted by Sκ, such that (Sκ)2 = Sκ(Sκ + 1). The Zeeman states in

the two manifolds will be expressed with lower case letters for the ground states,

|m〉 (|m| ≤ Ss) and upper case letters for the excited states, |M〉 (|M | ≤ Sd). A

schematic for this transition between the two manifolds can be seen in Fig. 4.2 for

the case of 40Ca+ . The letters s and d are motivated for the manifolds S = 1/2 and

D = 5/2 of 40Ca+ , which is the example we will work with.

The dc magnetic field along the laboratory axis z splits the Zeeman states by

frequencies ωκ0 = gκµBB, where gκ is the gyromagnetic factor of spin manifold Sκ.

Both manifolds are subject to the respective dynamical decoupling rf-dressing fields

with angles ακ, rf frequencies ωκi , and Rabi frequencies gκΩ
κ
i , for i = 1, 2, as explained

in Sec. 4.2.1. Therefore, the Hamiltonian in the laboratory frame is

HLF = Hs
dc +Hs

rf +Hd
dc +Hd

rf , (4.22)

generalizing Eq. (4.3) to the case of two spin manifolds. We note that this neglects an

unavoidable cross-coupling through an off-resonant driving of the s manifold by the

rf dressing fields of the d manifold, and vice versa. This effect will be neglected in the

following, and is treated in Sec. 4.3.2. In the doubly-dressed basis, this Hamiltonian

becomes

H = ¯̄ωs
0S

s
z + ¯̄ωd

0S
d
z , (4.23)

generalizing Eq. (4.12).

The electric-quadrupole interaction (E2) of the ion with a laser of frequency ωL

and vector potential A(R, t) = A+(R)e−iωLt+c.c. is VE2 = ieωsd

2
(rirj∂iAj(R, t)− h.c.),

see e.g. [119]. By expanding the s and d manifolds in the bare basis, and in a frame

rotating at the optical transition frequency ωsd, one obtains, in optical RWA,

V LF
E2 = i

∑
m,M

(
ΩmM |M〉〈m| e−i∆Lt − h.c.

)
. (4.24)

The Rabi frequencies are ΩmM = 〈M |rirj|m〉 ∂iA+
j (R)/~. The matrix elements

〈M |rirj|m〉 imply the quadrupole selection rules |∆m| = |M −m| ≤ 2, see e.g.

figure 4.2. The laser detuning is ∆L = ωL − ωsd.

We are now in a position to discuss how the dynamical decoupling affects the

quadrupole interaction. To do so, we need to switch to the doubly-dressed basis and
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to an interaction picture with respect to (4.23), generalizing the procedure explained

in the previous section to two spin manifolds. Denoting by Dκ = Dκ(ωκi , gκΩκ
i , t, ακ)

the dressing procedure of the spin manifold κ, where D is defined in Eq. (4.13), the

laser-ion interaction becomes

V IP
E2 = Ds ⊗Dd

[
V LF
E2

]
= i
∑
¯̄m, ¯̄M

(∑
m,M

ΩmM 〈 ¯̄M |Ds ⊗Dd
[
|M〉〈m|

]
| ¯̄m〉 | ¯̄M〉〈 ¯̄m| e−i∆Lt − h.c.

)
. (4.25)

Here, we expanded the quadrupole interaction in the basis of doubly-dressed states.

Now, we need to calculate the matrix elements corresponding to a given pair of dressed

states, which we will write as

〈 ¯̄M |Ds ⊗Dd
[
|M〉〈m|

]
| ¯̄m〉 = Ud

¯̄MM
(t)(U s

¯̄mm(t))∗, (4.26)

with

Ud
¯̄MM

(t) = 〈 ¯̄M |Uz(¯̄ωd
0 t)Und

2
(θd

2)Uz(ω
d
2 t)Und

1
(θd

1)Uz(ω
d
1 t)|M〉 , (4.27)

and equivalently for U s
¯̄mm(t) with d↔ s and ¯̄M,M ↔ ¯̄m,m. As an example, we will

evaluate the matrix elements for the d-states

〈 ¯̄M |Uz(¯̄ω0t)Un2(θ2)Uz(ω2t)Un1(θ1)Uz(ω1t)|M〉

=
∑
M̄

〈 ¯̄M |Un2(θ2)|M̄〉 〈M̄ |Un1(θ1)|M〉 ei( ¯̄M ¯̄ω0+M̄ω2+Mω1)t, (4.28)

where we used the expansion of the identity 1 =
∑

M̄ |M̄〉〈M̄ |. Finally, the remain-

ing matrix elements of the unitary matrices corresponding to the rotations of the

quantization axis are

〈M̄ |Un1(θ1)|M〉 = 〈M̄ |eiθ1(− sinαSx+cosαSy)|M〉
= 〈M̄ |e−iαSzeiθ1SyeiαSz |M〉
= e−iα(M̄−M)dSMM̄(θ1), (4.29)

and

〈 ¯̄M |Un2(θ2)|M̄〉 = e−i(α−π/2)( ¯̄M−M̄)dS
M̄ ¯̄M

(θ2). (4.30)

Here, the Wigner d-matrix is used, which is defined as [120]

dSM̄M(θ) = 〈SM̄ | e−iθSy |SM〉

=
√

(S + M̄)!(S − M̄)!(S +M)!(S −M)!

×
∑
k

(−1)k cos
(
θ
2

)2S+M−M̄−2k[− sin
(
θ
2

)]M̄−M+2k

(S +M − k)!k!(M̄ −M + k)!(S − M̄ − k)!
. (4.31)
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The sum is over all k that do not make negative one of the factorials in the denom-

inator. We can also use that dS¯̄MM
(−θ) = dS

M ¯̄M
(θ). With that, we get to the final

expression for the laser-ion interaction in the doubly dressed basis

V IP
E2 = i

∑
¯̄m, ¯̄M

∑
m,M

∑
m̄,M̄

Ω̄mM,m̄M̄

¯̄m ¯̄M
| ¯̄M〉〈 ¯̄m| ei∆mM,m̄M̄

¯̄m ¯̄M
t − h.c.

 , (4.32)

where we introduced the effective Rabi frequency

Ω̄mM,m̄M̄

¯̄m ¯̄M
= ΩmMe−iαd( ¯̄M−M)−iπ

2
( ¯̄M−M̄)dMM̄(θd

1)dM̄ ¯̄M(θd
2)

× eiαs( ¯̄m−m)+iπ
2

( ¯̄m−m̄)dm̄m(θs
1)d ¯̄mm̄(θs

2). (4.33)

and the effective detuning

∆mM,m̄M̄

¯̄m ¯̄M
=−∆L + ¯̄M ¯̄ωd

0 + M̄ωd
2 +Mωd

1 − ¯̄m ¯̄ωs
0 − m̄ωs

2 −mωs
1. (4.34)

We can see that the effect of αν is only a common phase for the Rabi frequencies. It

is important to note that no RWA is applied in Eq. (4.32).

Thus, to drive a ¯̄m↔ ¯̄M transition in the doubly-dressed basis, the laser detuning

must be chosen such that ∆mM,m̄M̄

¯̄m ¯̄M
= 0, that is

∆L = ¯̄M ¯̄ωd
0 + M̄ωd

2 +Mωd
1 − ¯̄m ¯̄ωs

0 − m̄ωs
2 −mωs

1 (4.35)

is satisfied for one set of indices (m,M, m̄, M̄). The magnitude of the effective Rabi

frequency is∣∣∣Ω̄mM,m̄M̄

¯̄m ¯̄M

∣∣∣ =
∣∣dMM̄(θd

1)
∣∣∣∣dM̄ ¯̄M(θd

2)
∣∣|dm̄m(θs

1)||d ¯̄mm̄(θs
2)||ΩmM | ≤ |ΩmM |, (4.36)

since the Wigner d-matrix is unitary, and therefore, all its elements are smaller than

one in magnitude. To make efficient use of the laser power, it will be advantageous to

choose (m,M, m̄, M̄) such that the contribution of the Wigner d-matrix elements is

as large as possible. In doing so, m and M have to respect the quadrupole selection

rules, but not necessarily the pair (m̄, M̄).

4.3.2 Corrections to the bare frequencies

In this subsection, we want to study the consequence of accounting for the counter-

rotating terms, also known as Bloch-Siegert effect, and the so-called cross-field effect,

which accounts for the response that the excited states manifold (d) have due to the

presence of the rf fields applied to the ground states manifold (s) and vice versa. We

will do so using the so-called Magnus expansion [16], which allows us to treat these

effects in a perturbative way, and is explained in chapter 2.
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Let us start with the counter-rotating terms in the first RWA in Eq. (4.6). We

consider the Hamiltonian

Hco =
g

4

(
Ω1

(
ei(2ω1t−α)S+ + e−i(2ω1t−α)S−

)
+iΩ2 cos(ω2t)

(
ei(2ω1t−α)S+ − e−i(2ω1t−α)S−

))
. (4.37)

We will treat this term as a correction to the detuning, thus in a rotating frame with

respect to Hdet = ∆1Sz this transforms into

HRF
co = Rz(∆1t)[Hco] = cco(t)S+ + c∗co(t)S−, (4.38)

where

cco(t) =
g

4
(Ω1 + iΩ2 cos(ω2t)) ei((ω0+ω1)t−αd). (4.39)

Therefore, HRF
co will contain only terms oscillating fast at time scales ω0 + ω1 and at

sideband frequencies ω2 of these. The effect of these off-resonant driving terms, aver-

aged over a time scale T � (ω0 + ω1)−1, can be described by an effective Hamiltonian

Heff
co = − i

2T

∫ T

0

dt1

∫ t1

0

dt2 [HRF
co (t1), HRF

co (t2)]

= − i

T

∫ T

0

dt1

∫ t1

0

dt2 (cco(t1)c∗co(t2)− c.c.)Sz

' ω0
g2

8

(Ω1)2 + (Ω2)2

ω0(ω0 + ω1)
Sz. (4.40)

Further corrections are of higher order in Ωi/|ω0 + ω1| � 1. The form of the ef-

fective Hamiltonian (first line) corresponds to the first non-vanishing term in the

Magnus expansion of the time-evolution operator corresponding to the Hamiltonian

in Eq. (4.38). Therefore, the counter-rotating terms can be accounted for by suitably

shifted bare frequencies that absorb the contributions of Heff
co .

We continue by treating the non-resonant rf dressing fields of the d (s) spin man-

ifold affecting the s (d) manifold. Here, only the former case is covered. The corre-

sponding Hamiltonian on the s manifold is

Hd→s = gs

(
Ωd

1 cos(ωd
1 t)− Ωd

2 sin(ωd
1 t) cos(ωd

2 t)
)
(Ss

x cosαd + Ss
y sinαd). (4.41)

In a rotating frame with respect to the dc Hamiltonian Hs
dc = ωs

0S
s
z, we obtain

HRF
d→s = Rz(ω

s
0t)[Hd→s] = ccf(t)S+ + c∗cf(t)S−, (4.42)

where

ccf(t) =
gs

2

(
Ωd

1 cos(ωd
1 t)− Ωd

2 sin(ωd
1 t) cos(ωd

2 t)
)

ei(ωs
0t−αd). (4.43)
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Thus, HRF
d→s will contain only terms oscillating fast at time scales ωs

0±ωd
1 and at side-

band frequencies ωd
2 of these. The effect of these off-resonant driving terms, averaged

over a time scale T �
(
ωs

0 ± ωd
1

)−1
, can be described by an effective Hamiltonian

Heff
d→s = − i

2T

∫ T

0

dt1

∫ t1

0

dt2 [HRF
d→s(t1), HRF

d→s(t2)]

= − i

T

∫ T

0

dt1

∫ t1

0

dt2 (ccf(t1)c∗cf(t2)− c.c.)Ss
z

' ωs
0

g2
s

4

(
Ωd

1

)2
+
(
Ωd

2

)2

(ωs
0)2 −

(
ωd

1

)2 S
s
z. (4.44)

Corrections to this are of higher order in Ωd
i /
∣∣ωs

0 ± ωd
1

∣∣ � 1. The same result holds

for the effect on the other manifold with s ↔ d. Thus, the cross-driving can be

accounted for by suitably shifted bare frequencies absorbing the contributions of

Heff
d(s)→s(d). Therefore, if we combine the Bloch-Siegert effect and the cross-field effect

we obtain an effective Zeeman splitting for the bare s manifold

ωs
0eff = ωs

0

(
1 +

g2
s

4

(
Ωd

1

)2
+
(
Ωd

2

)2

(ωs
0)2 −

(
ωd

1

)2 +
g2

s

8

(Ωs
1)2 + (Ωs

2)2

ωs
0(ωs

0 + ωs
1)

)
. (4.45)

Once more via the replacement s ↔ d we can recover the effective shift for the d

manifold.

These corrections will be taken into account in the next section when we study

the particular case of 40Ca+ , and are indeed relevant to achieve agreement between

theoretical predictions and experimental data.

4.3.3 Application to 40Ca+

In this section, we will apply the above expressions to the case of the S1/2 to D5/2

transition in a 40Ca+ ion and compare them to measurements on the decoupled sys-

tem. The experiment has been developed in the laboratory group of Prof. Dr. Piet

Schmidt at PTB by Lennart Pelzer, Dr. Ludwig Krinner and Kai Dietze. For this

experiment we will have the total spin of the manifolds Ss = 1
2

and Sd = 5
2
. The

goal is to derive the frequency spectrum and the relative coupling strengths with

the parameters given in Table 4.1, for each possible transition with a set of indices(
m,M, m̄, M̄, ¯̄m, ¯̄M

)
.

Before showing the results for two layers of dressing, we first want to gain some

insight by explaining just one particular transition (m̄, M̄) in the case of a single

layer of dressing, with the parameters given in the first part of Table 4.1. We need

to translate the equations for the effective Rabi frequency (4.33) and the effective
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Dressing Parameters Value
gsµbBz 2π × 10 MHz

Ωs
1 2π × 46 805 Hz

1st layer Ωd
1 2π × 115 600 Hz

ωs1 2π × 10 002 090 Hz
ωd1 2π × 5 994 834 Hz
Ωs

2 2π × 3469 Hz

2nd layer
Ωd

2 2π × 6809 Hz
ωs2 2π × 72 050 Hz
ωd2 2π × 160 589 Hz

Table 4.1: Case study of double dressing for a 40Ca+ ion for the S1/2 and D5/2

manifolds. The upper part of the table refers to the variables in the first layer of
dressing and the lower part of the second layer of dressing. For this calculations
we will use the known values of the gyromagnetic factors gs = 2.00225664 [121] and
gd = 1.2003340 [122].

detuning (4.34) for the case of a single dressing. This can be achieved by fixing

ω
d(s)
2 = 0 and Ω

d(s)
2 = 0, which implies

Ω̄mM
m̄M̄ = ΩmMei(αdM−αsm)+iπ

2
(M̄−m̄)dMM̄(θd

1)dm̄m(θs
1) (4.46)

and

∆mM
m̄M̄ =−∆L + M̄ω̄0 +Mωd

1 − m̄ω̄0 −mωs
1, (4.47)

where we go to an interaction picture with respect to the Hamiltonian in the first

dressed basis (4.8).

The results are illustrated in Fig. 4.3, where Fig. 4.3 a) depicts a transition in

the first dressed basis with indices (m̄, M̄) = (−1/2,−1/2). This transition can be

driven in 10 different ways through the possible transitions in the bare basis for the

appropiate laser detuning. Using different transitions in the bare basis will imply

different effective Rabi frequencies. These effective Rabi frequencies are shown in

Fig. 4.3 b). The colors refer to the different possible selection rules shown in Fig. 4.2.

Due to the fact that the first dressed basis has no selection rules, each transition in

the doubly-dressed basis can be driven through 6×2 combinations of the first dressed

basis, which will result in the desired transition in the doubly-dressed basis. Therefore,

since there are also no selection rules between the doubly-dressed basis, a fixed initial

state in the doubly-dressed basis | ¯̄m〉 will have 6×12×10 possible transitions. For the

transitions with an initial state | ¯̄m〉 = |−1/2〉, Fig. 4.4 a) depicts the effective Rabi

frequencies relative to the Rabi frequencies of the transitions in the bare basis, i.e.,∣∣∣Ω̄mM,m̄M̄

¯̄m ¯̄M
/ΩmM

∣∣∣. This ratio is plotted against the laser detuning, that shows for which
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a)

m̄

M̄
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M̄
/Ω

m
M
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∆M̄ = M̄ − m̄ = 0, m̄ = −1/2

Figure 4.3: Fig. a) shows a particular transition in the dressed basis basis with
indices M̄ = −1/2 ↔ m̄ = −1/2. This transition can be driven using different
combinations of underlying states (m,M) in the bare basis, shown in Fig. 4.2, through
an appropriate laser detuning. The color code for the allowed transitions is the same
as in Fig. 4.2. Since the dressed states are a time dependent superposition of the bare
basis states, as shown in Fig. 4.1, their transition strength depends on the selection
rules of the bare basis. Fig. b) depicts the effective Rabi frequencies relative to the
Rabi frequencies of the transitions in the bare basis, i.e.,

∣∣Ω̄mM
m̄M̄

/ΩmM

∣∣. This ratio
is plotted against the laser detuning, which shows for which values the transitions
occur.

values the transitions are resonant. The shaded area corresponds to the region defined

by the pair (m,M) = (−0.5,−1.5), shown in more detail in Fig. 4.4 b). Similarly,

Fig. 4.4 c) shows the tuple (m,M, m̄, M̄) = (−0.5,−1.5,−0.5,−2.5), where we can

see the transition with higher effective Rabi frequency. Here, we can also observe

that there are no selection rules for ∆ ¯̄M . Noticeably, the relative Rabi frequencies

have different weights, making the characterization of these transitions necessary to

make efficient use of the laser power. Efficient use of laser power can be achieved

by choosing a transition with high effective Rabi frequency and, ideally, a small

effective Rabi frequency of the nearest neighboring transitions. As we can see, such

an optimization becomes simply a matter of engineering after the characterization of

the transitions.
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For the case of a single layer of dressing we compared the theoretical results

with the experimental data. After accounting approximately for the counter-rotating

terms and for the cross-field effect using Magnus expansion, we managed to obtain

an agreement between theory and experiment. With that, we verified the equations

derived throughout this chapter for the case of one layer of dressing. This comparison

can be found in detail in our article [118].
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Figure 4.4: In this figure we show the ratio of the Rabi frequencies
∣∣∣Ω̄mM,m̄M̄

¯̄m ¯̄M
/ΩmM

∣∣∣
for all possible transitions from a doubly-dressed ground state | ¯̄m〉 to a doubly-
dressed excited state | ¯̄M〉 at different laser detuning. Each color represents a different
selection rule for the pair (m,M). The green color stands for ±2 transitions, the blue
color for −1 transitions, the red color for +1 transitions and finally the black color
stands for +0 transitions. We initialized the ground doubly-dressed state in the state
| ¯̄m〉 = −1/2.

4.4 Dressed states vs Floquet states

In this section, we compare the description of a single layer of dressing in terms

of dressed states with another perspective based on Floquet states. As mentioned

already in chapter 2, we expect the dressed states to be an approximation of the

Floquet states.
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For this case our Hamiltonian will be equivalent to Eq. (4.2) with Ω2 = 0

Hrf = gΩ1 cos(ω1t)(Sx cosα + Sy sinα). (4.48)

Using QuTiP [123], we numerically calculate the Floquet states and compare them

with the first dressed basis. Additionally, we also want to compare the Floquet basis

with the first dressed basis including the counter-rotating terms in an approximate

way, as shown in Sec. 4.3.2, which we will refer to as corrected dressed states. We will

show these comparisons for the cases of total spin S = 1/2 and S = 5/2, which are

the relevant cases in our study. Taking into account several frequencies at the same

time is computationally and theoretically, from the point of view of Floquet theory, a

lot more demanding and goes beyond the scope of this work. Therefore, we will not

be able to study the so-called cross-field effect as it will involve the presence of two

different frequencies.

Before showing the numerical results, we want to give some analytical insight into

our problem. With this goal, let us study the expression of the Hamiltonian after

going to the rotating frame, and under the RWA, similar to Eq. (4.6), we obtain

Rz(ω1t)
[
HLF − i d

dt

]
= ∆1Sz +

gΩ1

2
(Sx cosα + Sy sinα)− i

d

dt
. (4.49)

By fixing α = 0 and ∆1 = 0, we have, simply, a Hamiltonian proportional to Sx

and therefore, the effect of the dynamical decoupling is such that the eigenstates of

our problem in a rotating frame at the frequency ω1 are just the eigenstates of Sx.

Of course, the dressed states will now be generated by a π/2 rotation transforming

Sx into Sz, but, to make the discussion easier, we will refer to the dressed states

as the eigenstates of Sx in the rotating frame. The Floquet states will be calculated

numerically from the total Hamiltonian, therefore, in order to compare them, the fact

that the dressed states are in a rotating frame must be taken into account.

The values for the numerical simulations presented in this section are shown in

Table 4.1, additionally, we fixed α = 0, ∆1 = 0 and the results are plotted for

the duration of one period T s(d) = 2π

ω
s(d)
1

. We first study the case of the manifold

S = 1/2, which presents a symmetry between its two eigenstates, and therefore we

are only going to present the results for m̄ = 1/2. Fig. 4.5 shows the infidelity, i.e.,

1 − | 〈m̄|umf (t)〉 |2, where umf (t) corresponds to the Floquet state with an average

value of Sx close to mf , and of course we will choose m̄ = mf = 1/2 for comparison.

We can see how accounting for the counter-rotating terms using the Magnus expansion

improves the fidelity considerably.

Coming back to the insight gained before, we are dealing with a Hamiltonian

that, in a rotating frame and under the RWA, takes the form of Sx. Therefore, to see
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Figure 4.5: In this figure we show the infidelity, 1−| 〈m̄|umf (t)〉 |2, with m̄ = mf = 1/2
(solid line) during one period T s = 2π

ωs
1
. We also show the infidelity between the same

Floquet state and the corresponding corrected dressed state (dashed line) including
Bloch-Siegert shifts.

how much they differ, it will be useful to study the average of Sz. This is motivated

because the corrections using Magnus expansion to the dressed states were absorbed

in the Zeeman splitting. The average of Sz is shown in Fig. 4.6, where we can see that

the Floquet states, in the rotating frame, can be envisioned in the Bloch sphere as

states pointing in the direction x but have some fluctuations around a particular value

of Sz, which is shifted from the equator. For the case of S = 1/2 both eigenstates

are shifted by the same magnitude but in opposite directions in the equator, as can

be seen in Figs. 4.6 a) and b). Something worth highlighting is that, if we take into

account the counter-rotating terms, i.e., the corrected dressed states, they correspond

to the time-independent part of the Floquet states, as can be seen in Fig. 4.6, where

the time average of the Floquet state corresponds to the corrected dressed state, up

to the level of 10−6. This statement is also justified by Fig. 4.5, where we can see how

the infidelity oscillates around an average value for the corrected dressed states.

We can now study the same effects for the total spin S = 5/2 manifold. For

this case we have a symmetry between Mf ↔ −Mf , and therefore, we will show

the plots only for the positive eigenvalues of the operator Sx of the Floquet states.

The infidelity is shown in Fig. 4.7 for the cases of Mf = 1/2 (orange), Mf = 3/2

(cyan) and Mf = 5/2 (purple). We can observe again that the Magnus expansion

leads to higher fidelity, as expected from studying the previous manifold. We observe

numerically that we have better fidelity for higher values of Mf . We have checked

this feature as well for the case of a spin manifold S = 3/2. Similarly to the previous
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Figure 4.6: Figs. a) and b) show the average of Sz of the dressed states (solid black
line), the corrected dressed states (dashed black line) and the Floquet states(solid
blue line) during one period T s = 2π

ωs
1
, for the cases of m̄ = −1/2 and m̄ = 1/2,

respectively.

case, Fig. 4.8 shows the value of Sz for the Floquet states, the dressed states and

the corrected dressed states. Also for the S = 5/2 manifold, the corrected dressed

states correspond to the time-independent part of the Floquet states. We can observe

once more that the fluctuations are also bigger for this manifold. The magnitude of

the fidelity for all states in this manifold is smaller than for the previous manifold,

we associate this with a higher dimension of the Hilbert space. By algebraically

calculating the Floquet states one could gain further insight on why this is the case,

as well as why there is better fidelity for higher values of Mf , but this goes beyond

the intention of this chapter.
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Figure 4.7: In this figure we show the infidelity, 1 − | 〈M̄ |uMf
(t)〉 |2, with M̄ = Mf

(solid line) during one period T d = 2π
ωd

1
for the cases of M̄ = 1/2 (orange), M̄ = 3/2

(cyan) and M̄ = 5/2 (purple). We also show the infidelity between the same Floquet
state and the corresponding corrected dressed state (dashed lines).
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Figure 4.8: Figs. a), b) and c) show the average of Sz of the dressed states (solid
black line), the corrected dressed states (dashed black line) and the Floquet states
(solid blue line) during one period T d = 2π

ωd
1
, for the cases of M̄ = 5/2, M̄ = 3/2 and

M̄ = 1/2, respectively.

4.5 Mølmer-Sørensen gates.

After having a reduction of the magnetic field oscillations and the quadrupole shift as

a consequence of the continuous dynamical decoupling, we ask ourselves if it would be

feasible to, on top of that mechanism, create a Mølmer-Sørensen (MS) gate to produce

entanglement between two ions. For creating the gate, it is necessary to drive the

appropriate sideband transitions. In the previous treatment, the ion was assumed to

be in a particular position R0 = 0. If we now consider the trap structure, the position

of the ion will be described by a position operator R̂, affecting the expression of the

vector potential, which will manifest the sideband transitions. The treatment can be

found e.g. in [7]. Assuming that the laser field is a plane wave E(R̂, t) = E0eikR̂eiωLt,

we obtain A+(R̂)e−iωLt = E0

iω
eikR̂e−iωt. For simplicity, we will consider the motion

along the direction x̂ and use the relation

kx̂ = η
(
âu?(t) + â†u(t)

)
, (4.50)
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where η is the Lamb Dicke parameter, u(t) is related with the motion of the ion and

defined in Eq. (3.38), and â is the ladder operator of the confinement and is defined

in Eq. (3.43). We can make an expansion around the position of the atom assuming

that we are in the Lamb Dicke regime, η � 1. We obtain, in a frame rotating at the

optical transition frequency ωsd ,

V LF
MS =i

∑
m,M

{
ΩmM |M〉〈m| e−i∆Lt

(
1 + iη̄

(
âe−iνt + â†eiνt

))
− h.c.

}
, (4.51)

where η̄ is the effective Lamb Dicke parameter for which we will assume that the

information about the trap parameters and the weight of the modes of motion is

encoded. ν is the trapping frequency, which fulfills the relations ωs1 ≈ 5ν and ν ≈ 20ωs2
for our case study. Nevertheless, (ωs2 � ν � ωs1) should always be fulfilled for the

nature of our problem.

The transformations to go to the second dressed basis are independent of the

ladder operators, and therefore, they will be encoded in the common denominator for

the carrier and sideband transitions.

To drive MS gates we must keep in mind the hierarchy of time scales. The resonant

condition with a sideband transition is ∆L = ¯̄M ¯̄ωd
0 + M̄ωd

2 + Mωd
1 − ¯̄m ¯̄ωs

0 − m̄ωs
2 −

mωs
1±ν. As we do not want to drive the sideband transition, we will assume a certain

detuning δ from resonance to be present, therefore, in order to drive the gate, the true

laser detuning will be ∆L± δ. This δ usually needs to fulfill δ � ν, but in this study,

in a first approach, it will have to fulfill δ � ¯̄ω0 as well, if we want to create a gate

at the level of the doubly-dressed basis. Expressing the above expression including

the dressing, after the appropriate transformations in the doubly-dressed basis and

in the interaction picture with respect to Eq. (4.23) we obtain

V IP
MS =−

∑
¯̄m, ¯̄M

∑
m,M

∑
m̄,M̄

η̄Ω̄mM,m̄M̄

¯̄m ¯̄M
| ¯̄M〉〈 ¯̄m|

(
âe−i(ωc+δ+ν)t + â†e−i(ωc+δ−ν)t

)
+ h.c.,

(4.52)

where we defined the carrier frequency as ωc = ∆L + ¯̄M ¯̄ωd
0 + M̄ωd

2 + Mωd
1 − ¯̄m ¯̄ωs

0 −
m̄ωs

2−mωs
1. In the last expression we did not write the carrier contribution, for which

we will have to ensure that it is off resonant for any indices. In a MS-gate without

dressing, the carrier is off resonant under the condition δ � ν, which will be fulfilled

as soon as we choose to be close to resonant to one particular sideband transition for

a given set of indices. With the CDD, neglecting the carrier is not as straightforward

as before due to the comb of possible transitions that can be seen in Fig. 4.4. As we

could be resonant with a different carrier, the comb structure needs to be considered

before neglecting all of the carrier transitions.
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We want to see which terms are going to be relevant once we fix a particular

sideband transition to be used as the gate. With a particular detuning δ, if we fix the

indices
(
m0,M0, m̄0, M̄0, ¯̄m0,

¯̄M0

)
we will be able to neglect all other contributions

in a RWA. In order to show that, let us write the more relevant contributions, which

will be the neighbors with the same indices except that they will have ¯̄M 6= ¯̄M0, as

the smallest frequency will be ¯̄ωd0 . The total expression with the first relevant terms,

using the appropriate laser detuning, can be written as

V IP
MS ≈−

∑
¯̄M

{
η̄Ω̄m0M0,m̄0M̄0

m0 ¯̄m0
¯̄MM ¯̄M0

| ¯̄M0〉〈 ¯̄m0| âe−i(δ+( ¯̄M− ¯̄M0) ¯̄ωd0)t + h.c.
}
. (4.53)

Therefore, we can neglect the neighbors in a RWA if the following relation is

fulfilled η̄Ω̄m0M0,m̄0M̄0

¯̄m0
¯̄M0

� ¯̄ωd0 , but, in general, for driving a MS-gate one of the require-

ments is that η̄Ω̄m0M0,m̄0M̄0

¯̄m0
¯̄M0

� δ. Taking into account that in our study we also have

to fulfill δ � ¯̄ω0, in order not to drive the neighboring sidebands, we will be able to

eliminate all the neighbors with a RWA, obtaining a final expression

V IP
MS ≈− η̄Ω̄m0M0,m̄0M̄0

¯̄m0
¯̄M0

| ¯̄M0〉〈 ¯̄m0| âe−iδt + h.c.. (4.54)

From now on we will define the sideband Rabi frequency for a fixed sideband transition

as Ωs = η̄Ω̄m0M0,m̄0M̄0

¯̄m0
¯̄M0

.

In order to drive MS gates we will assume N ions in a two level system approxi-

mation. With this in mind, we will approximate each particle to a two level system

defining σx = | ¯̄M〉〈 ¯̄m| + | ¯̄m〉〈 ¯̄M |. Via the Magnus expansion, the evolution operator

for the above Hamiltonian can be found in the second order,

U(t) = e
∑N
j=1 σ

(j)
x (αj(t)a†−α?(t)a)e−i

∑N
j,n=1 σ

(j)
x σ

(n)
x Φ(t), (4.55)

with

α(t) =
Ωs

δ

(
e−iδt − 1

)
(4.56)

the time-dependent displacement. Requiring α(Tg) = 0, gives a condition on the gate

time Tg.

Φ(t) =
Ω2
s

δ

[
t− 1

δ
sin (δt)

]
(4.57)

is the geometric phase. For these calculations, we assumed that the sideband Rabi

frequency is the same for all particles. For the case of δ � Ωs, the Rabi frequency of

the gate will be Ωg = Ω2
s

δ
. For the gate to make a complete cycle we need
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TgΩg = 2πK, (4.58)

where K stands for the number of loops. The gate duration will be approximately

Tg = 2πK
δ

Ω2
s

. (4.59)

In order to erase the displacement, we will also need to fulfill

δTg = 2nπ, (4.60)

for an integer n.

With the example treated in the previous section we ask ourselves which Tg will

be realistic with the parameters of the problem. Combining the previous mentioned

conditions, we want the detuning δ from the sideband transition to fulfill Ωs � δ �
¯̄ω0, therefore, we will assume for a case study 3Ωs = δ and 3δ = ¯̄ω0. We want to

highlight at this point that the properties of the comb, e.g., the different weights of

the transitions will permit us to allow less stringent conditions. Nevertheless, with

the previous mentioned condition and using Eq. (4.59) assuming one loop, i.e., K = 1,

we obtain

Tg = 2π
δ

Ω2
s

= 2π
9

δ
= 2π

27
¯̄ω0

≈ 3.375ms. (4.61)

While this will not be a competitive gate for quantum computing applications, it

may well be sufficient for applications in ion clocks. For ion clocks the gate time has

to be compared with the interrogation time. Assuming an interrogation time of one

second, the gate will be 300 times faster than the interrogation time. The extra time

of the gate will add to the dark time of the interrogation scheme.

4.6 Conclusion

In conclusion, we recapitulated the treatment of continuous dynamical decoupling,

which consists in applying an rf magnetic field perpendicular to the quantization

axis. We considered first one manifold, showing how it could be used for suppressing

Zeeman and quadrupole shifts. We managed to find a time-dependent frame in which

the effective Hamiltonian is time independent. Therefore, in that frame, and after

RWAs, we can find an effective basis for that Hamiltonian; we called this basis the

dressed basis (doubly-dressed basis if applying two layers of dressing). Afterwards,

we showed how it can be applied to two manifolds. We strove to write this mechanism
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with a formalism that allowed us to write the interaction between the laser and the

ion in an easier and intuitive way.

With this formalism, we properly characterized the laser-ion interaction to drive

quadrupole transitions between two manifolds, showing that there are no selection

rules for the dressed basis or doubly-dressed basis. Effectively, this mechanism cre-

ates a comb of possible transitions, which was not so intuitive to predict from the

general problem. After this characterization, one can drive the same transition in the

doubly-dressed basis using a different laser detuning, which is based on making the

same transition through different combinations of transitions in the bare and dressed

bases. We addressed the RWAs done in the first section as well as the cross-field

effect, i.e., how the off-resonant fields applied to the ground manifold affect the exci

ted manifold and vice versa. We did so by treating them in an approximate way using

the Magnus expansion. Both effects can be effectively interpreted as a shift of the

Zeeman splitting for both manifolds. This approximation proved useful to match the-

oretical and experimental data. After properly characterizing the CDD mechanism,

we applied it to the particular case of a quadrupole transition between the S = 1/2

and D = 5/2 manifolds of 40Ca+ . For this case, we managed to show the comb of

possible transitions and give intuition for the mechanism in a given example.

To gain more insight into our problem, we focused on only one layer of dressing

and one manifold. With that, we managed to compare the approximate solutions,

i.e., the dressed basis and the dressed basis accounting for the counter-rotating terms,

with the exact solution of the problem: the Floquet states. With this treatment, we

showed that the corrected dressed states are the time-independent part of the Floquet

states, which encourages the use of the corrected dressed states as a sufficiently good

approximation for our system.

We finished the chapter by studying the possibility of constructing MS-gates on

the level of the doubly-dressed basis, showing which gate times will be feasible with

this mechanism and concluding that further engineering needs to be done in order to

implement MS-gates on top of the CDD scheme with reasonable gate times.

4.7 Outlook: Further research directions

We would like to finish by contemplating further improvements that can be done to

this work or further directions of investigation. If one uses the CDD for a particular

pair of manifolds in a particular ion, once the actual parameters of the problem are

known, we can find the best possible transition by studying the comb of transitions

and choosing which properties do we want to optimize. Nevertheless, the opposite

is also true, we can try to play with the parameters of the problem in order to find
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adequate properties of a given transition. We did work within this concept, but

it proved to be a more intricate problem than expected considering the number of

variables involved in the problem.

Another work could consist on modeling the laser pulse and trying to optimize

it in order to have a more efficient transition. In this regard, we simulated Ramsey

sequences with different pulses and further work could be done in this direction.

For further insight on how good of an approximation the dressed states are, or

even to actually use the real solution to the complete CDD scheme, the Floquet states,

further work needs to be done in order to implement more than one frequency. It

is not evident how to do that. One starting point could be the generalized Floquet

theory, explained in the work of Peter Hänggi [3]. Another option is trying to come

up with some approximate treatment, as the different order of magnitude between

the frequencies makes it harder to treat or even simulate.

Finally, more work needs to be done to apply MS-gates. We would like to highlight

that we did not consider any technical noise for the sideband transitions. Therefore,

this approach gives us an order of magnitude that may be feasible to achieve after a

reasonable amount of experimental work. If properly considering the noise and the

experimental difficulties lead to a non-competitive gate we will have to consider a

different approach. One way of reducing the gate time is to apply only one layer of

dressing. With one layer of dressing, we will have access to faster gates by about an

order of magnitude. Of course, before considering applying only one layer of dressing

we should try to engineer an appropriate transition in the doubly-dressed basis by

exploiting the selection rules and using the parameters of the problem.



5
Summary and closing
statements

This thesis aimed to provide an insight into the treatment of systematic shifts in

the context of atomic clocks and precision measurements, contributing to extend the

theoretical tools and understanding that need to go hand in hand with experimental

improvements.

We started by introducing the mathematical methods required to treat various

effects studied during our work. Afterwards, the first part of the thesis focused on

providing an adequate treatment of relativistic corrections from an ab initio deriva-

tion. We succeed in fully characterizing the external and internal dynamics of an

electromagnetically bound, charged two-particle system in external electromagnetic

and gravitational fields, including leading order relativistic corrections. We focused

on the case of an ion in a Paul trap, but the advantage of our treatment is that it

provides a suitable tool that can be applied to several different systems. Of course,

it needs to be developed and adapted to any particular problem, but the underlying

general Hamiltonian derived in the first part of chapter 3 will serve as a basis for

several problems. With our treatment, we managed to recover semiclassical results

from the literature for the case of trapped ions in a Paul trap, which allowed us to

gain further insight into those effects and to extend the quantum states that can be

considered. Moreover, we managed to properly describe the dominant effects and

imperfections in the trap, addressing and closing open questions on the role of time

dilation and mass defect in ion clocks. We finished the first part by treating a par-

ticular case of a transition between two clock states with zero nuclear, electronic,

and total angular momentum in a Penning trap. This leads to an interesting result

in which the contribution of the magnetron motion to the fractional frequency shift,

which normally had a different sign than the rest of the contributions, changes sign

once the mass defect is considered, closing the argument about the attempt to cancel

the fractional frequency shift by adding magnetron motion to the system.

The second part of the thesis is focused on implementing a particular mechanism,
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the continuous dynamical decoupling, to null or reduce the shifts related to environ-

mental perturbations. The continuous dynamical decoupling consists in employing

a modulated external rf magnetic field to effectively erase unwanted effects. Even

though it is not a new mechanism in the literature, we managed to present it in a

form and notation that allowed us to easily apply the laser-ion interaction to drive

quadrupole transitions, fully understanding the underlying mechanism and the role of

various layers of dressing. After applying the mechanism to two manifolds simultane-

ously, and accounting perturbatively for some approximations we performed during

the calculations, we characterized the transition between two manifolds and studied

quadrupole transitions between the S = 1/2 and D = 5/2 manifolds of 40Ca+ as a

particular example. The suppression of the shift comes at the cost of a reduced Rabi

frequency. The transitions present themselves in the form of a comb, which requires

some engineering to select the best candidate for a clock transition. We showed in-

terestingly, for the case of one layer of dressing, that the corrected dressed states

correspond to the time-independent part of the Floquet states, which are the appro-

priate basis for describing the time-periodic Hamiltonian. We finished by discussing

the implementation of a Mølmer-Sørensen gate to achieve entanglement between two

ions at the level of the doubly-dressed basis.

We hope that this thesis provides some clarity to several topics in the field as well

as opens further research directions, such as

• The implementation of spin in the derivation of an ab initio Hamiltonian start-

ing from the Dirac equation, this has been done before, but not accounting for

a gravitational field so far.

• Expanding our Hamiltonian in order to study more complicated systems as ion

crystals or lattice clocks.

• Properly consider the mass defect as a tool for reading out internal states in

Penning trap mass spectrometry.

• Further study on how to calculate Floquet states in a system with more than

one frequency and compare them with the corrected dressed states.

• Engineering a way of implementing a Mølmer-Sørensen gate with the underlying

continuous dynamical decoupling using the comb properties.

The list of interesting projects for research could carry on, showing how extensive the

field is. Nevertheless, the field is being driven by experts all over the world in several

different directions, which foresees an exciting and promising future.



A
Hamiltonian for ion in
external electromagnetic
fields with first-order
relativistic corrections

In this appendix, we will show the full derivation of the multipolar light-atom Hamil-

tonian including first-order relativistic corrections, i.e., we will only keep terms up

to order c−2. Specifically, we consider a hydrogenlike atomic ion as an electromag-

netically bound two-body system composed of a core (charge e1, coordinates r1) and

an electron (e2,r2) as represented in Fig. 3.1, in external electromagnetic fields. The

changes due to gravity will be included in a different appendix. For the case of a

neutral atom, Sonnleitner & Barnett [49] recently gave a derivation of the multipo-

lar light-atom Hamiltonian with relativistic corrections. The individual steps of the

derivation can be found in textbooks [124], [125] and [126], or as individual articles

(for example [57] and [127]). We choose to follow the work of Sonnleitner & Barnett

because they have a transparent and comprehensive derivation. The treatment of

this problem has of course a long history, as can be seen in the references from [49].

In contrast to Sonnleitner & Barnett, we will allow for a non-vanishing net charge

Q = e1 + e2 6= 0. The approach we will follow here, is also present in the work of the

Bachelor thesis [128] by Simon Eilers, co-author of the article developed within this

topic.
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Appendix A. Hamiltonian for ion in external electromagnetic fields with first-order

relativistic corrections

A.1 Classical, approximately relativistic Lagrangian

for charges in external radiation fields

The starting point for the derivation is the classical Lagrangian for two particles

interacting with electromagnetic potentials φtot and Atot,

L = −
∑
i=1,2

mic
2
√

1− ṙ2
i /c

2 +
ε0

2

∫
d3x ((∂tAtot +∇φtot)

2 − c2(∇×Atot)
2)

+

∫
d3x (j ·Atot − ρφtot), (A.1)

where mi is the mass of the i-th particle with corresponding position ri and velocity

ṙi. The charge and current densities are defined as

ρ (x, t) =
∑
i=1,2

eiδ (x− ri (t)) and j (x, t) =
∑
i=1,2

eiṙi (t) δ (x− ri (t)) , (A.2)

where, δ refers to the Dirac delta function.

We refer to the potentials created by the two particles, A and φ, as internal

potentials, and consider all other contributions, A and Φ, as external, such that

Atot = A + A and φtot = φ + Φ. For both external and internal potentials we will

choose the Coulomb gauge, i.e., A = A⊥ and A = A⊥. This will allow to express

contributions with internal potentials in the form of the more conventional Coulomb

potential of charged particles.

The first term of the Lagrangian corresponds to the Lagrangian for the point

particles, which describes the dynamics due to their kinetic energy. The integral in the

first line represents the Lagrangian of the electromagnetic field, which describes the

dynamics due to the field energy of the electromagnetic potentials. Lastly, the second

line consists of the interaction between the electromagnetic field and the particles, it

contains the mutual electrostatic interaction between the particles and the interaction

with an external scalar potential.

After inserting the potentials, expanding the squares in Eq. (A.1) and recalling

the relation
∫

dx a⊥ · b‖ = 0, our Lagrangian becomes

L = −
∑
i=1,2

mic
2
√

1− ṙ2
i /c

2 +
ε0

2

∫
d3x

((
∂tA⊥ +∇φ

)2
+ 2

(
∂tA

⊥) · (∂tA⊥)
−c2

(
∇×A⊥

)2
+
(
∂tA

⊥)2 − 2c2
(
∇×A⊥

) (
∇×A⊥

)
− c2

(
∇×A⊥

)2
)

+

∫
d3x

(
j ·
(
A⊥ + A⊥

)
− ρ (φ+ Φ)

)
, (A.3)
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where we also neglect the effect of ∇Φ as only the internal potential is relevant for

the particle dynamics. A similar argument can be seen in [126] (p.141).

Using that the internal potentials satisfy Maxwell’s equations in the Coulomb

gauge

∇2φ = −ρ/ε0,

(
∇2 − 1

c2

∂2

∂t2

)
A⊥ = −µ0j

⊥, (A.4)

where j⊥ = j− j‖ = j− ε0∇ ∂
∂t
φ, we can calculate the second term of the Lagrangian

ε0

2

∫
d3x

(
∂tA⊥ +∇φ

)2
=
ε0

2

∫
d3x

((
∂tA⊥

)2
+ (∇φ)2

)
. (A.5)

By making the integration by parts and using Maxwell’s equation, we obtain

ε0

2

∫
d3x

((
∂tA⊥

)2 − φ∇2φ
)

=
1

2

∫
d3x

(
ε0

(
∂tA⊥

)2
+ ρφ

)
. (A.6)

Using the relation − ε0c2

2

∫
d3x

(
∇×A⊥

)2
= − 1

2µ0

∫
d3x A⊥ ·

(
∇×

(
∇×A⊥

))
, the

third term of (A.3) becomes

− 1

2µ0

∫
d3x A⊥ ·

(
∇×

(
∇×A⊥

))
= −1

2

∫
d3x A⊥ · j⊥ +

ε0

2

∫
d3x A⊥ ·

(
∂2
tA⊥

)
,

(A.7)

where we used the relation ∇2A = ∇ (∇ · A)−∇×(∇× A) and once more, Maxwell’s

equation.

Using the previous results, we can rewrite the Lagrangian (A.3) in the form

L =
∑
i=1,2

miṙ
2
i

2

(
1 +

ṙ2
i

4c2

)
+

1

2

∫
d3x

(
ε0

(
∂tA⊥

)2
+ ρφ

)
+
ε0

2

∫
d3x

((
∂tA

⊥)2

+2
(
∂tA

⊥) · (∂tA⊥)− 2c2
(
∇×A⊥

) (
∇×A⊥

)
− c2

(
∇×A⊥

)2
)

− 1

2

∫
d3x A⊥ · j⊥ +

ε0

2

∫
d3x A⊥ ·

(
∂2
tA⊥

)
+

∫
d3x

(
j ·
(
A⊥ + A⊥

)
− ρ (φ+ Φ)

)
, (A.8)

where we made a Taylor expansion of the first term and erased the term −
∑

imic
2,

which represents the negative rest energy of the particles, this can be done as changing

by a constant the Lagrangian expression does not change the dynamics of the problem.

Finally, using the relation A⊥ · ∂2
tA⊥ +

(
∂tA⊥

)2
= ∂2

t

(
A⊥
)2
/2, we obtain
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relativistic corrections

L = LDarwin + Lfield + Lint + Lcross,

LDarwin =
∑
i=1,2

miṙ
2
i

2

(
1 +

ṙ2
i

4c2

)
+

1

2

∫
d3x

(
j⊥ ·A⊥ − ρφ

)
, (A.9)

Lfield =
ε0

2

∫
d3x

((
∂tA

⊥)2 − c2
(
∇×A⊥

)2
)
, (A.10)

Lint =

∫
d3x

(
j⊥ ·A⊥ − ρΦ

)
, (A.11)

Lcross =
ε0

4

∫
d3x

∂2

∂t2
(
A⊥
)2

+ ε0

∫
d3x

(
∂tA

⊥ · ∂tA⊥ − c2
(
∇×A⊥

) (
∇×A⊥

))
.

(A.12)

The first contribution (A.9) is the well-known Darwin Lagrangian [124, 129], which

describes the approximately relativistic motion of the particles and their interaction

with the fields generated by their respective counterparts. This contribution can be

rewritten by inserting the equations of the generated fields by the particles

φ (x, t) =
1

4πε0

∫
d3x

′ ρ (x′, t)

|x− x′|
, (A.13)

A⊥ (x, t) =
µ0

8π

∑
i=1,2

ei

(
ṙi

|x− ri|
+

(x− ri) (ṙi · (x− ri))

|x− ri|3

)
, (A.14)

that can be found in [49], and using the definitions for ρ and j, obtaining

LDarwin =
m1ṙ

2
1

2
+
m1ṙ

4
1

8c2
+
m2ṙ

2
2

2
+
m2ṙ

4
2

8c2
− 1

4πε0

e1e2

r

(
1− ṙ1 · ṙ2

2c2

)
+
e1e2

4πε0

(ṙ1 · r) (ṙ2 · r)

2r3c2
, (A.15)

where r = r1 − r2 and r = |r|.
The second contribution Lfield describes the dynamics of the external fields and

Lint their interaction with the charged particles.

Finally, Lcross can be neglected in our problem. This is justified as the first term

is of order c−4 and the second term is a cross talk between the transverse electric and

magnetic fields generated by the moving charges and the external fields. Those terms

appear whenever the back-action of fields generated by a (moving) charged particle

on itself is considered. A more thorough argumentation can be found in [49].
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A.2 From classical Lagrangian to quantum Hamil-

tonian in minimal-coupling form

After deducing the classical Lagrangian, the next step is to derive the classical and

quantum Hamiltonian.

To obtain the classical Hamiltonian, we need the canonical momenta associated

with the particle coordinates ri and the external field A⊥,

pi =
∂

∂ṙi
L = miṙi +

miṙ
2
i

2c2
ṙi +

e1e2

8πε0c2r

(
ṙj +

r (ṙj · r)

r2

)
+ eiA

⊥ (ri) , (A.16)

Π⊥ =
∂

∂Ȧ⊥
L = ε0Ȧ

⊥, (A.17)

where i, j ∈ {1, 2} and i 6= j.

Now we can calculate the classical Hamiltonian

H =
∑
i=1,2

piṙi +

∫
d3x Π⊥ · Ȧ⊥ − L. (A.18)

Expressing it in terms of the conjugate variables, taking only corrections up to

O(c−2), and defining p̄i = pi − eiA⊥ (ri), we obtain

H =
∑
i=1,2

(
p̄2
i

2mi

− p̄4
i

8m3
i c

2

)
+

e1e2

4πrε0

− e1e2

8πε0rc2m1m2

(
p̄1 · p̄2 +

(p̄1 · r) (p̄2 · r)

r2

)

+
ε0

2

∫
d3x

((
Π⊥

ε0

)2

+ c2
(
∇×A⊥

)2

)
+
∑
i=1,2

eiΦ (ri) . (A.19)

Starting from the classical Hamiltonian, the quantum mechanical Hamiltonian

can be derived by imposing the canonical commutation relations

[r̂i,k, p̂j,l] = i~δi,jδk,l, (A.20)[
Â⊥k (x) , Π̂⊥l (x′)

]
= i~δk,lδ⊥ (x− x′) , (A.21)

where i, j ∈ {1, 2} are related to the particles and k, l ∈ {1, 2, 3} are related to

the operators’ components. Therefore, for the quantum Hamiltonian, the correct

ordering during the canonical quantization becomes relevant. This applies to a term

originating from
∫

d3x j ·A⊥. Using the symmetric version of A⊥ that can be found

in [49], we obtain the approximately relativistic Hamiltonian operator for two charged

particles minimally coupled to the electromagnetic field
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H[min.c.] =
∑
i=1,2

(
ˆ̄p2
i

2mi

−
ˆ̄p4
i

8m3
i c

2

)
+

e1e2

4πr̂ε0

+
ε0

2

∫
d3x

(Π̂⊥

ε0

)2

+ c2
(
∇× Â⊥

)2


− e1e2

16πε0c2m1m2

(
ˆ̄p1 ·

1

r̂
ˆ̄p2 +

(
ˆ̄p1 · r̂

) 1

r̂3

(
r̂ · ˆ̄p2

)
+ (1↔ 2)

)
+
∑
i=1,2

eiΦ (r̂i) ,

(A.22)

where (1↔ 2) denotes the preceding term with indices 1 and 2 switched. In

the main text, see e.g., Eq. (3.3), we did not write the dynamics of the field as it

will not affect the dynamics of our particles, but of course it will be present in the

Hamiltonian.

A.3 Power-Zienau-Woolley transformation to a mul-

tipolar Hamiltonian in center of mass coordi-

nates for charged composite particles

The Hamiltonian given in equation (A.22) describes the approximately relativistic

dynamics of charged composite particles of spin zero in the presence of external radi-

ation fields. To try to separate the relative and central dynamics, we want to express

our Hamiltonian into a multipolar form. We will achieve this by using a Power-

Zienau-Woolley (PZW) transformation, which was developed by Power, Zienau and

Woolley [130–132].

As we can see in [126], the PZW transformation is performed by the unitary

operator Û = e−
i
~ Λ̂, where the generating function Λ̂ is defined as

Λ̂ (t) =

∫
d3x P̂ (x, t) · Â (x, t) , (A.23)

where P̂ (x, t) is the polarization density and is defined as

P̂ (x, t) =
∑
i=1,2

ei

(
r̂i (t)− R̂ (t)

)∫ 1

0

dλ δ
(
x− R̂ (t)− λ

(
r̂i (t)− R̂ (t)

))
, (A.24)

with the center of mass coordinate R̂ = m1r̂1+m2r̂2

M
and M = m1 +m2 being the total

mass. This expression differs from the one given in [126], that is because in the end

we will want to express the result in the center of mass coordinates.

The interpretation of P as the polarization field is supported by

∇ · P̂ (x, t) = −ρ̂ (x, t) , (A.25)



A.3. Power-Zienau-Woolley transformation to a multipolar Hamiltonian in center of mass
coordinates for charged composite particles 87

such that the displacement field is D = ε0E + P = −Π + P . We also obtain

∂tP̂ (x, t) = ĵ (x, t)−∇× M̂ (x, t) +∇×
(

˙̂
R× P̂ (x, t)

)
, (A.26)

where the magnetization M̂ is defined as

M̂ (x, t) =
∑
i=1,2

ei

(
r̂i (t)− R̂ (t)

)
×
(

˙̂ri (t)− ˙̂
R (t)

)∫ 1

0

dλ λδ
(
x− R̂ (t)

−λ
(
r̂i (t)− R̂ (t)

))
. (A.27)

The last term in (A.26) is the so-called Röntgen current [58] and describes the

magnetization M̂Röntgen(x, t) = P̂(x, t)× ˙̂
R(t) generated by an electric polarization

when the center of mass has a velocity
˙̂
R.

The PZW transformation leads to the transformed multipolar Hamiltonian Ĥ[mult.] =

ÛĤ[min.c.]Û
†. Taking into account that the function Λ̂ only depends on the variables

r̂1, r̂2 and Â⊥, we find that the only terms that change in the Hamiltonian are the

canonical momenta associated with the particle coordinates ri and the external field

A⊥

p̂′i = Û ˆ̄piÛ
† = ˆ̄pi +

i

~

[
ˆ̄pi, Λ̂

]
= ˆ̄pi +

i

~

[
p̂i, Λ̂

]
= ˆ̄pi +∇r̂iΛ̂, (A.28)

Π̂′⊥ = ÛΠ̂⊥Û † = Π̂⊥ +
i

~

[
Π̂⊥, Λ̂

]
= Π̂⊥ +

i

~

[
Π̂⊥, Â⊥

]
P̂ = Π̂⊥ + P̂ , (A.29)

where ∇r̂i denotes derivation with respect to the position of the ith particle.

These new variables are no longer the conjugate variables as before. Performing

the integral with respect to d3x shows that Λ =
∑

j ej
∫ 1

0
dλ ˆ̄rj ·Â⊥

(
R̂ + λˆ̄rj

)
, where

ˆ̄rj := r̂j−R̂. Expanding to first order in ˆ̄rj (electric dipole approximation), we obtain

∇r̂i
ˆ̄rj · Â⊥

(
R̂ + λˆ̄rj

)
=
(
δij −

mi

M

)
Â⊥

(
R̂ + λˆ̄rj

)
+
(
λδij + (1− λ)

mi

M

)
×
[(

ˆ̄rj · ∇
)
Â⊥

(
R̂ + λˆ̄rj

)
+ ˆ̄rj ×

(
∇× Â⊥

(
R̂ + λˆ̄rj

))]
'
(
δij −

mi

M

) [
Â⊥(R̂) + λ

(
ˆ̄rj · ∇

)
Â⊥(R̂)

]
+
(
λδij + (1− λ)

mi

M

) [(
ˆ̄rj · ∇

)
Â⊥(R̂) + ˆ̄rj ×

(
∇× Â⊥(R̂)

)]
=
(
δij −

mi

M

)
Â⊥

(
R̂
)

+ 2

(
λδij +

(
1

2
− λ
)
mi

M

)[(
ˆ̄rj · ∇

)
Â⊥(R̂)

]
+
(
λδij + (1− λ)

mi

M

) [
ˆ̄rj ×

(
∇× Â⊥(R̂)

)]
. (A.30)
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Integrating over λ

∇r̂iΛ̂ =
∑
j

ej

[(
δij −

mi

M

)
Â⊥

(
R̂
)

+ δij

((
ˆ̄rj · ∇

)
Â⊥(R̂)

)
+

(
δij
2

+
mi

2M

)(
ˆ̄rj ×

(
∇× Â⊥(R̂)

))]
= ei

[
Â⊥

(
R̂
)

+
((

ˆ̄ri · ∇
)
Â⊥(R̂)

)
+

1

2

(
ˆ̄ri ×

(
∇× Â⊥(R̂)

))]
− (e1 + e2)

[mi

M
Â⊥

(
R̂
)]

+
e1ˆ̄r1 + e2ˆ̄r2

2

[mi

M
×
(
∇× Â⊥(R̂)

)]
, (A.31)

which leads to the Hamiltonian

H[mult.] =
∑
i=1,2

(
p̂
′2
i

2mi

− p̂
′4
i

8m3
i c

2

)
+

e1e2

4πr̂ε0

+
∑
i=1,2

eiΦ (r̂i)

+
ε0

2

∫
d3x

(Π̂⊥ + P̂
ε0

)2

+ c2
(
∇× Â⊥

)2


− e1e2

16πε0c2m1m2

(
p̂′1 ·

1

r̂
p̂′2 + (p̂′1 · r̂)

1

r̂3
(r̂ · p̂′2) + H.c.

)
, (A.32)

where

p̂′i = p̂i − eiÂ⊥ (r̂i) + ei

[
Â⊥

(
R̂
)

+
((

ˆ̄ri · ∇
)
Â⊥(R̂)

)
+

1

2

(
ˆ̄ri ×

(
∇× Â⊥(R̂)

))]
− (e1 + e2)

[mi

M
Â⊥

(
R̂
)]

+
e1ˆ̄r1 + e2ˆ̄r2

2

[mi

M
×
(
∇× Â⊥(R̂)

)]
, (A.33)

and i 6= j. Noticing that Â⊥
(
R̂
)

+
((

ˆ̄ri · ∇
)
Â⊥(R̂)

)
' Â⊥ (r̂i), we can reexpress

the last equation as

p̂′i = p̂i +
1

2

(
eiˆ̄ri + ejˆ̄rj +

mi

M
(ei + ej) ˆ̄ri

)
×
(
∇× Â⊥(R̂)

)
− (e1 + e2)

[mi

M
Â⊥

(
R̂
)]
.

(A.34)

To get a more compact form we will define the dipole moment d̂ =
∑

i=1,2 ei

(
r̂i − R̂

)
and the total charge Q = e1 + e2, obtaining

p̂′i = p̂i +
1

2

(
d̂ +

miQ

M
ˆ̄ri

)
×
(
∇× Â⊥(R̂)

)
− Qmi

M
Â⊥

(
R̂
)

= p̂i −
mi

M
QÂ⊥

(
R̂
)

+
1

2

(
d̂ +

Qmi

M
ˆ̄ri

)
× B̂(R̂). (A.35)

Before going to the center of mass and relative coordinates, we will rewrite the

external scalar potential and the polarization in a more comprehensible way, to this

goal we will apply once more the dipole approximation for these terms
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∑
i=1,2

eiΦ (r̂i) =
∑
i=1,2

eiΦ
(
R̂ +

(
r̂i − R̂

))
=
∑
i=1,2

eiΦ
(
R̂
)
−
∑
i=1,2

ei

(
r̂i − R̂

)
· E‖

(
R̂
)

+O
((

r̂i − R̂
)2
)

= QΦ
(
R̂
)
− d̂ · E‖ +O

((
r̂i − R̂

)2
)
, (A.36)

P̂ (x) =
∑
i=1,2

ei

(
r̂i − R̂

)∫ 1

0

dλ δ
(
x− R̂

)
+O

((
r̂i − R̂

)2
)

=
∑
i=1,2

ei

(
r̂i − R̂

)
δ
(
x− R̂

)
+O

((
r̂i − R̂

)2
)

= d̂δ
(
x− R̂

)
+O

((
r̂i − R̂

)2
)
. (A.37)

A.4 Change to the center of mass R and relative

r coordinates

Without relativistic corrections, the COM and relative coordinates are the natural

choice as they separate the external and internal DOF, respectively. Therefore, the

goal of this section is to express the Hamiltonian in these coordinates and study how

internal and external DOF couple due to the relativistic corrections.

These coordinates are the center of mass and the relative coordinate
(
R̂, r̂

)
and

their corresponding momenta
(
P̂, p̂

)
defined by

R̂ =
m1r̂1 +m2r̂2

M
, P̂ =p̂1 + p̂2, (A.38)

r̂ =r̂1 − r̂2, p̂ =
m2p̂1 −m1p̂2

M
. (A.39)

This gives us the relations p̂1,2 = m1,2

M
P̂ ± p̂, where the ± refers to + for the

subscript 1 and − otherwise. Substituting them in the previous expressions (A.35),

and defining the relative mass µ = m1m2

M
, we obtain

p̂′1,2 =
m1,2

M

(
P̂−QÂ⊥(R̂)

)
± p̂ +

1

2

(
d̂± Qµ

2M
r̂

)
× B̂(R̂). (A.40)
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We will substitute these expressions in the previous Hamiltonian (A.32) and neglect

terms of the form

d̂× B̂(R̂)

2mic2
∝ |d̂ · Ê(R̂)|

mic2

1

2c
, or p̂i

d̂× B̂(R̂)

2mimjc2
∝ |p̂i|

mic

|d̂ · Ê(R̂)|
mjc2

, (A.41)

that can be consistently neglected as they are of higher order in c−2, which can be seen

from
∣∣∣d̂ · Ê(R̂

)∣∣∣� e2/ (4πε0r)� mic
2. It is worth highlighting here that because we

allowed a non-vanishing total charge Q a considerable number of extra terms appear

in the Hamiltonian compared to [49]. Later, we realized that most of these terms are

absorbed if we wrote the Hamiltonian in the center of mass coordinates minimally

coupled to the electromagnetic field, i.e., writing it in terms of ˆ̄P = P̂ − QÂ⊥(R̂).

Therefore, the Hamiltonian in the center of mass coordinates becomes

Ĥ = Ĥcom + Ĥint + Ĥemf + Ĥpol + Ĥat-emf + Ĥmass defect + ĤX, (A.42)

Ĥcom =
ˆ̄P2

2M

(
1−

ˆ̄P2

4M2c2

)
, (A.43)

Ĥint =
p̂2

2µ

(
1− m3

1 +m3
2

M3

p̂2

4µ2c2

)
+
e1e2

4πε0

[
1

r̂
+

1

2µMc2

(
p̂ · 1

r̂
p̂ + (p̂ · r̂)

1

r̂3
(r̂ · p̂)

)]
, (A.44)

Ĥemf =
1

2

∫
d3x

(
ε0Ê

⊥2 +
1

µ0

B̂2

)
, (A.45)

Ĥpol =
1

2ε0

∫
d3x P̂⊥2, (A.46)

Ĥat-emf = QΦ(R̂)− d̂ · Ê(R̂) +

[
1

2M
ˆ̄P ·
(
d̂× B̂(R̂)

)
+ H.c.

]
− m1 −m2

4m1m2

[
p̂ ·
(
d̂× B̂(R̂)

)
+ H.c.

]
+

Q

4M

[
p̂ ·
(
r̂× B̂(R̂)

)
+ H.c.

]
+

1

8µ

(
d̂× B̂(R̂)

)2

− Q(m1 −m2)

4M2

(
d̂× B̂(R̂)

)(
r̂× B̂(R̂)

)
+
µQ2

8M2

(
r̂× B̂(R̂)

)2

, (A.47)

Ĥmass defect =−
ˆ̄P2

2M

1

Mc2

(
p̂2

2µ
+

e1e2

4πε0r̂

)
= −

ˆ̄P2

2M
⊗ Ĥ

(0)
int

Mc2
, (A.48)

ĤX = − 1

2M2c2

[
1

µ

(
ˆ̄P · p̂

)2

+
e1e2

4πε0r̂3

(
ˆ̄P · r̂

)2
]

+
m1 −m2

2µM2c2

[
1

µ

(
ˆ̄P · p̂

)
p̂2 +

e1e2

8πε0

(
ˆ̄P · 1

r̂
p̂ + ˆ̄P · r̂ 1

r̂3
r̂ · p̂ + H.c.

)]
.

(A.49)
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The Hamiltonian Ĥcom describes the Hamiltonian minimally coupled to the elec-

tromagnetic field for the COM with first relativistic corrections. Ĥint describes the

internal Hamiltonian with its first relativistic corrections; in the main text, this Hamil-

tonian will be written in a two-level approximation. Ĥemf is the electromagnetic field

Hamiltonian, which gives the energy of the radiation field. Ĥpol is a self-energy that

is known to contribute to the Lamb shift and may be absorbed in any renormalized

energy pertaining to the internal motion, as is discussed in [127]. Ĥat-emf contains the

interaction of the atom and the electromagnetic field, in the first line we have the

electric monopole and dipole interactions, and the minimally-coupled Röntgen term.

In the second line we have the magnetic-dipole interaction, the third and fourth lines

contain diamagnetic interaction terms. The Q-dependent terms can be interpreted

as modifying the electric dipole d̂ by d̂′ = d̂ + (µ/M)Qr̂ in the limit m1 � m2. They

cancel the implicit Q-dependence of d̂ such that d̂′ is equal to the dipole moment of a

neutral atom (if m1 � m2) [133]. Terms contributing also for neutral systems (Q = 0)

are reported and discussed in [127]. Ĥmass defect contains the coupling between internal

and external DOF that we are interested in, connecting the kinetic energy with Ĥ
(0)
int ,

which refers to the internal Hamiltonian without relativistic corrections. Finally, ĤX

contains extra couplings between internal and external DOF; but in this case, this

coupling appears because with relativistic corrections, the COM coordinates are not

the adequate choice of coordinates to study our Hamiltonian, as will be shown in the

next section.

A.5 Separation of central and relative dynamics

Since a system’s energy content is part of its inertia, the appropriate way to discuss

this problem should be to express the Hamiltonian in the center of energy frame, but

this is not a canonical transformation, as explained in [49]. Nevertheless, there exists

a choice of coordinates via a canonical transformation that allows the separation of

COM and relative dynamics up to our order of approximation, as shown by Close and

Osborn [57] for the case of neutral systems Q = 0. It consists of relativistic variants

of the COM and relative coordinates, as by themselves they no longer separate the

two DOF fully.

For a composite system with net charge Q 6= 0, we generalize this transformation

by seeking for new coordinates
ˆ̃
R and ˆ̃r with respective momenta

ˆ̃
P and ˆ̃p, which

fulfill
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R̂ =
ˆ̃
R +

m1 −m2

2M2c2

[(
ˆ̃p

2

2µ
ˆ̃r + H.c.

)
+

e1e2

4πε0
ˆ̃r

ˆ̃r

]

− 1

4M2c2

[(
ˆ̃r · ˆ̃

P
′)

ˆ̃p +

(
ˆ̃
P
′
· ˆ̃p
)

ˆ̃r + H.c.

]
,

P̂ =
ˆ̃
P + f

(
ˆ̃
R,

ˆ̃
P, ˆ̃r, ˆ̃p

)
,

r̂ =ˆ̃r +
m1 −m2

2µM2c2

[(
ˆ̃r · ˆ̃

P
′)

ˆ̃p + H.c.

]
−

ˆ̃r · ˆ̃
P
′

2M2c2

ˆ̃
P
′
,

p̂ =ˆ̃p +
ˆ̃p · ˆ̃

P
′

2M2c2

ˆ̃
P
′
− m1 −m2

2M2c2

[
ˆ̃p

2

µ
ˆ̃
P
′
+
e1e2

4πε0

(
1

ˆ̃r

ˆ̃
P
′
−

ˆ̃
P
′
· ˆ̃r

ˆ̃r
3

ˆ̃r

)]
. (A.50)

Here, we include a minimal coupling of the COM DOF to the electromagnetic field
ˆ̃
P
′

=
ˆ̃
P − QÂ⊥(

ˆ̃
R). To still have a canonical transformation, the definition of

the COM momentum involves an ansatz function f
(

ˆ̃
R,

ˆ̃
P, ˆ̃r, ˆ̃p

)
. Enforcing canon-

ical commutation relations
[

ˆ̃
Rk,

ˆ̃
Pl

]
=
[
ˆ̃rk, ˆ̃pl

]
= i~δkl and

[
ˆ̃
Rk, ˆ̃rl

]
=
[

ˆ̃
Rk, ˆ̃pl

]
=[

ˆ̃
Pk, ˆ̃pl

]
=
[

ˆ̃
Pk, ˆ̃rl

]
= 0, we find

f
(

ˆ̃
R,

ˆ̃
P, ˆ̃r, ˆ̃p

)
=
m1 −m2

2M2c2
Q

[(
ˆ̃p

2

2µ
∇ ˆ̃

R

(
ˆ̃r · Â⊥(

ˆ̃
R)
)

+ H.c.

)

+
e1e2

4πε0
ˆ̃r
∇ ˆ̃

R

(
ˆ̃r · Â⊥(

ˆ̃
R)
)]

− Q

4M2c2

[
ˆ̃r · ˆ̃

P
′
∇ ˆ̃

R

(
ˆ̃p · Â⊥(

ˆ̃
R)
)

+
ˆ̃
P
′
· ˆ̃p∇ ˆ̃

R

(
ˆ̃r · Â⊥(

ˆ̃
R)
)

+ H.c.

]
.

(A.51)

In principle, every function g
(

ˆ̃
R,

ˆ̃
P, ˆ̃r, ˆ̃p

)
= f

(
ˆ̃
R,

ˆ̃
P, ˆ̃r, ˆ̃p

)
+h

(
ˆ̃
R
)

that fulfills
∂hj
ˆ̃
Ri

−
∂hi
ˆ̃
Rj

= 0 is also a suitable choice besides f . We chose h to be zero in order to reproduce

for Q = 0 the coordinates used in [49]. In the main text, Eqs. (3.6) and (3.7), we used

the notation of the usual COM coordinates to refer to the relativistic corrected ones.

The only difference is that the vector potential Â⊥(R̂) and the scalar Newtonian

potential φ(R̂) should be evaluated in terms of the non-relativistic COM coordinates,

but as both change slowly over the size of the atom, this correction is negligible and

we can use the relativistic corrected variables instead.



B
Hamiltonian for ions in
gravitational fields

In Appendix A we derived the multipolar light-atom Hamiltonian including first-order

relativistic corrections, i.e., only keeping terms up to order c−2, for a hydrogenlike

atomic ion as an electromagnetically bound two-body system in external electro-

magnetic fields. For the case of Q = 0 Schwartz & Giulini [50] included a weak

gravitational field. Therefore, after our work in the previous appendix, there is still a

gap of including the gravitational field and allowing a total charge Q 6= 0, which will

be the aim of this appendix, and will be done by extending the work in [50].

Adapting the calculations to account for gravity was a work done by Simon Eilers,

a master student co-author of the paper involving this work. The goal of this appendix

is to summarize his work, that has been presented as part of his Master thesis [134],

in order to have a complete derivation in the current thesis.

Schwartz & Giulini considered the interaction of the composite system with a weak

gravitational field described by the Eddington-Robertson metric gµν , which is defined

by the Minkowski metric plus first-order relativistic corrections induced by a weak and

static scalar potential φ(r). The weak condition is fulfilled for φ(r)/c2 � 1. Here,

µ = 0 or ν = 0 correspond to time components of the metric and µ, ν ∈ {1, 2, 3}
correspond to space components. In isotropic coordinates, and for a particle in a

position r, it reads

gµν(r) =

(
−1− 2φ(r)

c2
− 2β φ

2(r)
c4

+O(c−6) O(c−5)

O(c−5)
(

1− 2γ φ(r)
c2

)
1+O(c−4)

)
, (B.1)

where β and γ are the so-called Eddington-Robertson parameters and will allow us

to test theories beyond general relativity, for which they have a value of 1.
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B.1 Classical Lagrangian

Our starting point is the classical Lagrangian for two particles interacting with the

electromagnetic and gravitational fields

L = −
∑
i=1,2

mic
√
−gµν(ri)ṙµi ṙνi +

∫
d3r

√
−g(r)

(
Jµ(r)Atot,µ(r)

− 1

4µ0

Ftot,µν(r)F µν
tot(r)

)
, (B.2)

which corresponds to Eq. 3.1 in the main text, with the difference that we now state

explicitly that Ftot and Atot correspond, respectively, to the total electromagnetic four-

potential and the total field strength tensor as in Appendix A. Of course, the difference

from the previous appendix, a part from the inclusion of gravity, is that we are now

in spacetime coordinates and therefore we have rµi = (ct, ri), Atot,µ = (φtot/c,Atot)

and Ftot,µν = ∂µAtot,ν − ∂νAtot,µ. Do not confuse φtot of the previous section with the

gravitational potential defined in this section φ.

It is worth noticing that, considering the relation between the electric current and

its density, namely, Jµ = jµ/
√
−g(r) combined with the prefactor of the integral in

Eq. (B.2) makes the electromagnetic interaction insensitive to gravity, and therefore,

will have the same expression as in Appendix A. Finally, after solving the Maxwell

equations similar to the previous section and combining the results, we obtain

L =
∑
i=1,2

(miṙ
2
i

2
+
miṙ

4
i

8c2

)
−
(

1 + (γ + 1)
φ(r1) + φ(r2)

2c2

) e1e2

4πε0r
+

e1e2

8πε0c2

( ṙ1 · ṙ2

r

+
(ṙ1 · r)(ṙ2 · r)

r3

)
−
∑
i=1,2

(
miφ(ri) +

2γ + 1

2

miφ(ri)

c2
ṙ2
i + (2β − 1)

miφ
2(ri)

2c2

)
+
ε0

2

∫
d3x

[(
1− (γ + 1)

φ

c2

)
(∂tA

⊥)2 − c2
(
1 + (γ + 1)

φ

c2

)
(∇×A⊥)2

]
+

∫
d3x

(
j⊥ ·A⊥ − ρΦ

)
. (B.3)

As we can see, the coupling between the charge density and the scalar potential

ρΦ will be the only new term which exclusively depends on Q after inserting the

explicit form of ρ, and therefore, will be the only term that differs from the derivation

in [50].
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B.2 Minimal-coupling Hamiltonian and multipo-

lar Hamiltonian

Going from the classical Lagrangian to the minimal-coupling Hamiltonian is done

similarly as in Appendix A. The only difference is that Eqs. (A.16) and (A.17) are

slightly altered to

pi = miṙi

(
1 +

ṙ2
i

2c2
− (2γ + 1)

φ(ri)

c2

)
+

e1e2

8πε0c2r

(
ṙj +

r(ṙj · r)

r2

)
+ eiA

⊥(ri), (B.4)

Π⊥ = ε0

(
1− (γ + 1)

φ

c2

)
Ȧ⊥. (B.5)

Following the same steps as in the case without gravity, we quantize the classical

Hamiltonian by imposing canonical commutation relations, as in Eqs. (A.20) and

(A.21), and we obtain in minimal-coupling form

Ĥ[min.c.] =
∑
i=1,2

( ˆ̄p2
i

2mi

−
ˆ̄p4
i

8m3
i c

2

)
+
(

1 + (γ + 1)
φ(r̂1) + φ(r̂2)

2c2

) e1e2

4πε0r̂

− e1e2

16πε0c2m1m2

[
ˆ̄p1 ·

1

r̂
ˆ̄p2 + ˆ̄p1 · r̂

1

r̂3
r̂ · ˆ̄p2 + (1↔ 2)

]
+
∑
i=1,2

(
miφ(r̂i) +

2γ + 1

2mic2
ˆ̄pi · φ(r̂i)ˆ̄pi + (2β − 1)

miφ
2(r̂i)

2c2

)
+
ε0

2

∫
d3x

(
1 + (γ + 1)

φ

c2

)[(Π̂
⊥

ε0

)2

+ c2(∇× Â⊥)2
]

+
∑
i=1,2

eiΦ(r̂i),

(B.6)

where ˆ̄pi = p̂i− eiA⊥(ri) and (1↔ 2) denotes the preceding term with indices 1 and

2 switched.

We expand the gravitational potential φ(r̂i) around the center of mass coordinate

R̂ and assume that the potential does not vary over the extension of the ion, as done

in [50], leading to

φ(r̂1) = φ(r̂2) = φ
(
R̂
)

+O(c−2). (B.7)

With that, one can make the same steps as in Appendix A, including the dipole

approximation, to obtain the multipolar Hamiltonian
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Ĥ[mult.] =
∑
i=1,2

( p̂
′2
i

2mi

− p̂
′4
i

8m3
i c

2

)
+
(

1 + (γ + 1)
φ(R̂)

c2

) e1e2

4πε0r̂
− e1e2

16πε0c2m1m2

[
p̂′1 ·

1

r̂
p̂′2

+ p̂′1 · r̂
1

r̂3
r̂ · p̂′2 + (1↔ 2)

]
+
∑
i=1,2

(
miφ(R̂) +

2γ + 1

2mic2
p̂′i · φ(R̂)p̂′i

+ (2β − 1)
miφ

2(R̂)

2c2

)
+
ε0

2

∫
d3x

(
1 + (γ + 1)

φ(R̂)

c2

)[(Π̂
⊥

+ P̂⊥

ε0

)2

+ c2(∇× Â⊥)2
]

+QΦ(R̂)− d̂ · Ê(R̂), (B.8)

where p̂′i is defined as in Eq. (A.35).

B.3 Hamiltonian in center of mass frame

By transforming the Hamiltonian to the center of mass and relative coordinates in

the same spirit as in Appendix A, we obtain

Ĥ = Ĥcom + Ĥint + Ĥemf + Ĥpol + Ĥat-emf + Ĥmass defect + Ĥmetric + ĤX,

(B.9)

Ĥcom =
ˆ̄P2

2M

(
1−

ˆ̄P2

4M2c2

)
+Mφ(R̂)

(
1 + (2β − 1)

φ(R̂)

2c2

)
+

2γ + 1

2M0c2
ˆ̄P · φ(R̂) ˆ̄P, (B.10)

Ĥemf =
1

2

∫
d3x

(
1 + (γ + 1)

φ(R̂)

c2

)(
ε0Ê

⊥2 +
1

µ0

B̂2

)
, (B.11)

Ĥpol =
1

2ε0

∫
d3x

(
1 + (γ + 1)

φ(R̂)

c2

)
P̂⊥2, (B.12)

Ĥmass defect =

(
Mφ(R̂)−

ˆ̄P2

2M

)(
p̂2

2µ
+

e1e2

4πε0r̂

)
=

(
Mφ(R̂)−

ˆ̄P2

2M

)
⊗ Ĥ

(0)
int

Mc2
,

(B.13)

Ĥmetric = γ
φ(R̂)

c2

(
2
p̂2

2µ
+
e1e2

4πε0

1

r̂

)
, (B.14)

where we only write explicitly the terms that differ from Appendix A and the new

contribution Ĥmetric.

The changes in the Hamiltonian Ĥcom describe the gravitational potential energy

and the relativistic interaction between the kinetic COM minimally coupled to the



B.3. Hamiltonian in center of mass frame 97

electromagnetic field and the gravitational field. The changes in Ĥemf and Ĥpol can

be interpreted as having the electromagnetic field minimally coupled to gravity when

expressing them in local coordinates. Ĥmass defect now also contains another coupling

between internal and external DOF, namely, connecting the gravitational potential

with Ĥ
(0)
int , which refers to the internal Hamiltonian without relativistic corrections.

Finally, Ĥmetric contains gravitational corrections that have their origin in the correct

measure of the coordinates r̂ and p̂ with respect to the metric gµν [50]. The Hamilto-

nian ĤX that we removed in Appendix A by implementing relativistically corrected

coordinates, will not depend on gravity, and therefore, the transformation to these

coordinates will be the same.

This closes the gap between our work in the previous appendix and the work

of Schwartz & Giulini, where we now include the gravitational corrections for the

relativistic Hamiltonian of a charged composite system.
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C
Equation of motion for a
trapped ion

As mentioned in the main text there are several ways of calculating the quasienergies

of the quasienergy eigenstates. The goal of this appendix is to use the approach of

solving the inhomogeneous Mathieu equation. By doing so, we will also solve the case

where we have imperfections in the trap.

The treatment will follow the derivation in [61] (Appendix A), applied to our

particular case, where they solve the general problem in the classical and quantum

cases. We also redirect the interested reader to [61] for a treatment of the quantization

(section III), where also the inhomogeneous equation is solved.

We want to find the quasieigenenergies corresponding to the Hamiltonian for a

trapped ion

Ĥ =
P̂2

2M
+Q

(
Φdc

(
R̂
)

+ Φac

(
R̂, t

))
+Mφ0 +Mg · R̂, (C.1)

which combines all the cases studied in the main text, i.e., mass defect, spurious dc

potential, gravity contribution and imperfections in the trap. This last contribution

will be effective once we substitute the trap potential, choosing the center of coordi-

nates to be the zero of the ac potential and its eigenvectors to be the basis. Following

from Eq. (3.74)

Ĥ =
P̂2

2M
+Q

(
Φdc

(
0̂
)
− Edc · R̂ +

1

2
R̂TU R̂ + Φac

(
R̂, t

))
+Mφ0 +Mg · R̂,

(C.2)

where remember U = U0diag(α1, α2, α3) +W with dimensionless coefficients αi and a

purely off-diagonal perturbationW . Contrary to Eq. (3.74) we wrote the minus sign in
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front of the linear contribution to be consistent with the spurious dc field introduced

in the main text. From this Hamiltonian, we derive the equation of motion for a

trapped ion

∂2~u

∂τ 2
+

[
A+

4Q

MΩ2
W − 2K cos(2τ)

]
~u = − 4

MΩ2
(−QEdc +Mg) , (C.3)

where we used the matrix K to avoid confusion with the total charge Q, the matrices

A and K are diagonal A = diag(a1, a2, a3), K = diag(q1, q2, q3) and τ = Ωt
2

.

To solve the equation of motion, we need to start by solving the homogeneous

part.

C.1 Homogeneous solution

We will treat the term 4Q
MΩ2W as a perturbation of A, therefore, the homogeneous

case becomes

∂2~u

∂τ 2
+ [A− 2K cos(2τ)] ~u = 0. (C.4)

We seek for solutions in the form of a sum of two linearly independent complex

solutions

~u =
∞∑

n=−∞

~C2n

[
bei(2n+β)τ + ce−i(2n+β)τ

]
, (C.5)

where b and c are complex constants determined by the initial conditions, which for

stable modes must fulfill the condition b = c∗, ~C2n are all real, and β is the so-called

characteristic exponent, which in general may be complex as is discussed in [61].

Combining (C.4) with (C.5), we obtain the recursive relation

K ~C2n−2 = R2n
~C2n −K ~C2n+2, (C.6)

where R2n = A − (2n+ β)2
1. As the matrices A and K are diagonal, we get three

independent equations, following the same reasoning as in [7]. The lowest order

approximation in the case |aj| � 1, q2
j � 1, ∀j ∈ {1, 2, 3} can be found by assuming

C±4 ' 0, getting

βj =

√
aj +

q2
j

2
, (C.7)
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which gives a quasienergy eigenvalue for a Fock state (n1, n2, n3) of

E =
3∑
j=1

~Ω

2
βj(nj +

1

2
). (C.8)

The next step is to consider W as a perturbation of the matrix A in Eq. (C.4).

We will define the small parameter ε = 4
MΩ2 and for clearness in notation we will also

define the variables ξj = β2
j , considering for the perturbation the following expansions

~C2n =
∞∑
l=0

~C
(l)
2nε

l, ξj =
∞∑
l=0

ξ
(l)
j ε

l. (C.9)

Introducing them in (C.5) we obtain the same recursive relation (C.6), changing R2n

to R2n = A+ εQW − (2n+ β)2
1. Keeping only the terms up to first order on ε, we

obtain

(
A− ξ(0)1+

K2

2

)
~C

(0)
0 + ε

[(
A− ξ(0)1+

K2

2

)
~C

(1)
0 +

(
QW − ξ(1)1

)
~C

(0)
0

]
= 0.

(C.10)

The first part of the previous equation vanishes, therefore, the part proportional

to ε has to vanish as well. Without loss of generality, we will assume ~C
(1)
0 = (a, b, c)

and solve the equation. With that we obtain, for the case of non-degenerate eigen-

values, ξ(1) = 0 and a correction to the eigenvector ~C0. Therefore, our principal axes

compared with the non-perturbed case are rotated by an amount proportional to the

terms in the perturbation W . For example, the corrected βx eigenvector is

~C0 = (1, 0, 0)− 4

MΩ2
(0,

QWxy

β
2(0)
y − β2(0)

x

,
QWxz

β
2(0)
z − β2(0)

x

). (C.11)

In the case of degenerate eigenvalues, we can assume without loss of generality

ξ
(0)
x = ξ

(0)
y = ξ(0). The excess field will break the degeneracy, implying two different

eigenvectors with two different corrections. To apply the perturbation in this case,

we can assume ~C
(0)
0 = (α, γ, 0) and ~C

(1)
0 = (a, b, c), where this a, b and c do not need

to be the same as before, and α2 + γ2 = 1. Without losing generality, we can assume

γ > 0 and we get two pair solutions

ξ(1) = ±QWxy, α = ± 1√
2
. (C.12)
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Therefore, we see that in the case of degenerate eigenvalues, the perturbation εQW

gives a correction to the eigenvalues β2
x and β2

y . Being a correction to the eigenvalues

of the trap implies that it will be accounted for during the trap calibration.

The correction to the eigenvector will be

~C
(1)
0 = −(0, 0, Q

Wxzα +Wyzγ

β
2(0)
z − β2(0)

). (C.13)

C.2 Quasienergie values for the inhomogeneous case

After solving the homogeneous case, we need to find a periodic solution of equation

(C.3) in order to have a complete solution. Inserting a solution of the form ~uπ =∑
n∈Z

~B2ne
i2nτ , and considering that the effect of W has already been treated as a

perturbation of A, the lowest-order correction can be found under the assumptions

B±4 ' 0, obtaining

~uπ = − 4

MΩ2

[
1− 1

2
Ke2τ i

](
¯̄β2
)−1

(−QEdc +Mg) , (C.14)

where we defined the matrix ¯̄β = diag(βx, βy, βz). As can be found in [61] (section

C), the new wavefunction will be

ψ(~u) = exp
{

i~̇uπ · ~x+ iαπ(τ)
}
ϕ(~x), (C.15)

where ϕ is the wavefunction whose energy is given by the solution of the homogeneous

case, ~x = ~u− ~uπ, and α has the expression

απ(τ) =

∫ τ

0

1

2

[(
~̇uπ

)2

+ ~uπ ·
(
~̈uπ −

4

MΩ2
(−QEdc +Mg)

)]
dτ ′ . (C.16)

Under the usual approximation |qj| � 1 ∀j ∈ {1, 2, 3}, that we can find in [35], we

obtain an energy contribution due to the periodic solution

Edc,g = −
3∑
i=1

~Ω

4

(
4

MΩ2

)2
1

β2
i

(QEdc,i −Mgi)
2 . (C.17)



C.2. Quasienergie values for the inhomogeneous case 103

In [61] they worked with ~ = 1, M = 1 and other rescaled variables, therefore we need

to multiply by MΩ
2~ in order to recover the energy units, ending up with an energy

contribution from the periodic solution of

Edc,g = −
3∑
i=1

2

MΩ2

1

β2
i

(QEdc,i −Mgi)
2 . (C.18)

After applying the Feynman-Hellman theorem (3.32) we recover the result in

Eq. (3.69) that was also calculated via the averages of creation and annihilation

operators.
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Address: Arnold-Böcklin-Straße 16, 28209 Bremen

Education

07/2018–present Doktor der Naturwissenschaften, Dr. rer. nat.
Leibniz Universität Hannover
Thesis: Relativistic corrections and precision
measurements in optical atomic
clocks and trapped ions,
Supervisor: Prof. Dr. K. Hammerer

9/2012–01/2018 Bachelor’s degree of Mathematics
University of Barcelona

9/2012–01/2018 Bachelor’s degree of Physics
University of Barcelona

2010–2012 International Baccalaureate

Bell-lloc del Pla Girona

1998–2012 School
Bell-lloc del Pla Girona


	Introduction
	Mathematical methods for time-dependent Hamiltonians
	Motivation
	Rotating wave approximation
	Magnus expansion
	Introduction to Floquet theory
	Quasienergies ambiguity
	The extended Hilbert space


	Ab initio quantum theory of mass defect and time dilation in trapped-ion optical clocks
	Motivation and research problem
	Hamiltonian of a charged composite system in external electromagnetic and gravitational fields
	Classical Lagrangian and quantization of a composite system
	Hamiltonian for internal and external degrees of freedom (DOFs)

	Relativistic coupling of internal and external DOF in ion clocks
	Ramsey spectroscopy
	Quantum theory of an ion trap
	Fractional frequency shift due to mass defect: Second-order Doppler effect
	Ion trap with a linear potential
	Fractional frequency shift due to dc forces and excess micromotion
	Fractional frequency shift due to gravity
	Variance of the fractional frequency shift
	Effect of additional quadrupole fields

	Relativistic coupling of internal and external DOFs in Penning traps
	Introduction to Penning traps
	Mass defect in Penning traps

	Conclusion
	Outlook: Further research directions

	Quadrupole transitions with continuous dynamical decoupling(CDD)
	Motivation and research problem
	Dynamical decoupling
	Doubly-dressed basis
	Suppression of Zeeman and quadrupole shifts

	Laser-ion interaction
	Quadrupole transitions in doubly-dressed basis
	Corrections to the bare frequencies
	Application to 40Ca+ 

	Dressed states vs Floquet states
	Mølmer-Sørensen gates. 
	Conclusion
	Outlook: Further research directions

	Summary and closing statements
	Hamiltonian for ion in external electromagnetic fields with first-order relativistic corrections
	Classical, approximately relativistic Lagrangian for charges in external radiation fields
	From classical Lagrangian to quantum Hamiltonian in minimal-coupling form
	Power-Zienau-Woolley transformation to a multipolar Hamiltonian in center of mass coordinates for charged composite particles
	Change to the center of mass R and relative r coordinates
	Separation of central and relative dynamics

	Hamiltonian for ions in gravitational fields
	Classical Lagrangian
	Minimal-coupling Hamiltonian and multipolar Hamiltonian
	Hamiltonian in center of mass frame

	Equation of motion for a trapped ion
	Homogeneous solution
	Quasienergie values for the inhomogeneous case

	Bibliography

