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Abstract

Research infrastructures and services provide access to (meta)data via user inter-
faces and APIs. The more advanced services also support access through (Python,
R, etc.) packages that users can use in computational environments. For scientific
information as a particular kind of research data, the Open Research Knowledge
Graph (ORKG) is an example of an advanced service that also supports accessing
data from Python scripts. Since many research communities use R as the statistical
language of choice, we have developed the ORKG R package to support accessing
and processing ORKG data directly from R scripts. Inspired by the Python library,
the ORKG R package supports a comparable set of features through a similar pro-
grammatic interface. Having developed the ORKG R package, we demonstrate its
use in various applications grounded in life science and soil science research fields.
As an additional key contribution of this work, we show how the ORKG R package
can be used in combination with ORKG templates to support the pre-publication
production and publication of machine readable scientific information, during the
data analysis phase of the research life cycle and directly in the scripts that produce
scientific information. This new mode of machine readable scientific information pro-
duction complements the post-publication Crowdsourcing-based manual and NLP-
based automated approaches with the major advantages of unmatched high accuracy
and fine granularity.

Keywords: ORKG, machine-readable, structured, scholarly knowledge, R-Package,
pre-publication
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Zusammenfassung

Forschungsinfrastrukturen und -dienste ermöglichen den Zugang zu (Meta-)Daten
über Benutzerschnittstellen und APIs. Die fortgeschritteneren Dienste unterstützen
auch den Zugang über (Python-, R- usw.) Pakete, die die Nutzer in Rechenumgebun-
gen verwenden können. Für wissenschaftliche Informationen als eine besondere Art
von Forschungsdaten ist der Open Research Knowledge Graph (ORKG) ein Beispiel
für einen fortgeschrittenen Dienst, der auch den Zugriff auf Daten über Python-
Skripte unterstützt. Da viele Forschungsgemeinschaften R als statistische Sprache
der Wahl verwenden, haben wir das ORKG R-Paket entwickelt, um den Zugriff
auf ORKG-Daten und deren Verarbeitung direkt aus R-Skripten zu unterstützen.
Inspiriert von der Python-Bibliothek, unterstützt das ORKG R-Paket eine vergle-
ichbare Reihe von Funktionen durch eine ähnliche programmatische Schnittstelle.
Nachdem wir das ORKG R-Paket entwickelt haben, demonstrieren wir seine Ver-
wendung in verschiedenen Anwendungen in den Bereichen Biowissenschaften und
Bodenforschung. Als weiteren wichtigen Beitrag dieser Arbeit zeigen wir, wie das
ORKG R-Paket in Kombination mit ORKG-Vorlagen verwendet werden kann, um
die Erstellung und Veröffentlichung maschinenlesbarer wissenschaftlicher Informa-
tionen vor der Veröffentlichung zu unterstützen, und zwar während der Datenanaly-
sephase des Forschungslebenszyklus und direkt in den Skripten, die wissenschaftliche
Informationen produzieren. Diese neue Art der Erstellung maschinenlesbarer wis-
senschaftlicher Informationen ergänzt die auf Crowdsourcing basierenden manuellen
und NLP-basierten automatisierten Ansätze nach der Veröffentlichung mit den großen
Vorteilen einer unübertroffen hohen Genauigkeit und feinen Granularität.

Stichworte: ORKG, maschinenlesbar, strukturiert, wissenschaftliches Wissen,
R-Packet, Vorveröffentlichung
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Chapter 1

Introduction

A knowledge graph can be defined as a huge network of interconnected real-world en-
tities along with their semantic types and properties ([5], [15], [22], [24]). Knowledge
graphs make it easier to aggregate heterogeneous data from various sources, even if
they are of varying quality, into interlinked data that is more manageable and can
be shared and reused effectively. This data enables users to see subtler patterns that
were previously concealed. Knowledge graphs also bring other advantages, such as
eliminating the need to sift through mounds of paperwork to locate the one document
one needs by displaying just the most relevant information. Moreover, Knowledge
Graphs are the gold standard for depicting complex networks due to their capac-
ity to rapidly and precisely describe relationships and the fact that they are highly
customizable.

The FAIR principles are guidelines to ensure that (meta)data is findable, accessi-
ble, interoperable, and reusable. A number of requirements must be satisfied for data
to be readily discoverable, including having a persistent identifier (such as a DOI or
URL), being described by rich metadata that complies to established standards, and
being featured on regional and national data discovery portals. Next, data is consid-
ered accessible if it can be obtained by humans and machines with little effort and
according to well-defined, ideally standardized protocols. With interoperability, it is
possible to merge diverse kinds of data, for instance in the same web application.
This is ensured by the use of a standard programming language, a constrained vo-
cabulary, and open file formats. It is essential that both data and metadata comply
to standards to enhance its utility for later applications (reusability). Both the data
and the metadata, as well as the use licenses and any other information relevant to
the area of interest for the data, should be stated in detail[30].
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Chapter 1. Introduction

Knowledge graphs and the FAIR principles were introduced to demonstrate how
a Knowledge Graph-driven FAIR scientific information platform like ORKG1 can be
a game changer, how this next-generation digital infrastructure [13] can reach its
full potential with more efficient ways to publish accurate and granular scientific
information buried in scholarly articles in structured manner with pre-publication
approaches that ensure scientific information is produced FAIR. These approaches
have considerable advantages over post-publication Crowdsourcing-based manual ex-
traction or NLP-based automated extraction techniques, specifically: technological
simplicity, high accuracy and quality, and unmatched granularity of information.

1.1 Problem statement

The problem at hand is the production of FAIR scientific information and the prob-
lem known as the “data acquisition bottleneck.” The conversion of the vast amounts
of scientific information in PDF files into machine readable formats is a major bot-
tleneck in the data acquisition process, for a variety of technical as well as human
factors, since it remains unclear how users will produce FAIR scientific information
and the role of machines in this process. Researchers are unlikely willing to ensure
scientific information is machine readable, which is an important factor in the data
acquisition bottleneck. The lack of structured scientific information is a big impedi-
ment to the efficiency of science, since the reuse of scientific information is expensive
and relies on extracting, at high cost, information previously buried in text [20].

Key objective of this work is to create solutions that ensure scientific information
is produced machine readable when information is created in data analysis. The
intuition is that during the data analysis the data consumed and produced is in
structured form, meaning that all the necessary data, and more specifically scientific
information ultimately published in papers, is available and processable. It is thus
far cheaper and more accurate to ensure scientific information is produced in machine
readable form in this manner as opposed to manually or automatically extracting
information from articles at a later stage. Post-publication extraction is expensive
(e.g. in building extraction models or performing extraction manually), inaccurate
(especially NLP-based extraction, but also manual extraction is prone to errors), and
is unable to extract rich information with high granularity.

1https://orkg.org/
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1.2. Research questions

1.2 Research questions

RQ1) How can we ensure that scientific information is produced machine
readable?

This is in contrast to more traditional post-publication approaches, where re-
searchers write papers and semi-automated processes then extract information from
papers to create structured information. To address this question, our approach in-
tegrates machine-readable information production into data analysis. For this, we
develop the ORKG R package to support the ORKG template-based production
of machine readable scientific information, which is then published and harvested,
specifically by ORKG.

RQ2) How to dynamically generate programmatic interfaces in R based
on ORKG template?

To guide users in the production of machine readable scientific information in R
scripts, it is beneficial if the ORKG R package provides programmatic interfaces that
reflects the specification of ORKG templates. Since ORKG templates can be created
or modified, the interface needs to be created dynamically. This avoids the need to
modify and redeploy the ORKG R package in local computational environments.

RQ3) How to ensure that machine readable scientific information is pub-
lished and can be harvested, given article DOIs?

Linking machine readable scientific information to articles is an important step
so that systems such as ORKG can easily discover and harvest such content.

1.3 Software availability statement

During the course of this thesis, an ORKG R package was implemented, and the
release v1.0.0 2 is the final version before the thesis is submitted.

1.4 Structure

The thesis is structured as follows. Chapter 2 addresses the related work briefly
and puts this study in perspective. Chapter 3 introduces the architecture in gen-
eral terms, followed by a more technologically detailed presentation of the essential
components. Chapter 4 presents the findings of the study as well as the implementa-
tion, which includes the ORKG R package. Chapter 5 discusses the application and

2https://gitlab.com/TIBHannover/orkg/orkg-r/-/releases/v1.0.0
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Chapter 1. Introduction

shows two use cases, one in life science and one in soil science. Chapter 6 discusses
the findings and their application, highlighting the benefits, limitations, and some
future work. We provide concluding remarks in Chapter 7.
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Chapter 2

Related Work

This chapter presents work related to this thesis. We discuss methods related to
machine readable scientific information production (especially NLP and crowdsourc-
ing based approaches) as well as research infrastructures that manage, curate, and
publish scientific information (both bibliographic metadata and data).

This thesis is not the first initiative focusing on efficient access and reuse of
research data in computational environments. Many research infrastructures or data
repositories, such as the NEON1 project, have identified the problem and developed
approaches. In contrast to these, our focus on making scientific information machine
readable at production in computational environments is, however, novel.

2.1 Scholarly information infrastructures

2.1.1 Infrastructures for metadata

With the OpenAIRE Research Graph2, funders, organizations, researchers, re-
search communities, and publishers have access to a semantic graph database that
collects a range of research data attributes (metadata, linkages) from the OpenAIRE
Open Science infrastructure [19]. Information on research life-cycle objects is gath-
ered via the OpenAIRE technological infrastructure from a wide variety of sources,
including scholarly journals, software metadata, dataset metadata from data reposi-
tories, and full-text data journals. OpenAIRE’s internal metadata model is applied
to collected metadata to produce the OpenAIRE Research Graph, which is available
through the OpenAIRE site and APIs [3].

1https://www.neonscience.org/
2https://graph.openaire.eu
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Chapter 2. Related Work

The PID Graph3 provides access to heterogeneous PID Systems, including Dat-
aCite4, Crossref5, ORCID6 and ROR7. Persistent Identifiers guarantee that entities
are referred to consistently through time and metadata about the identified entities
is persistently available, even if the entity itself is not. PID Graph increases the
value of PIDs by linking them via metadata not just about the identified resources
themselves, but also about their connections, uniting varied entities in the research
environment and providing researchers and academic institutions with access to new
information[6, 9]. The PID Graph is powered by a GraphQL-based API operated
DataCite, Users need to parse the JSON responses supplied by the API in order to
export the data into a computational environment [8].

The Springer Nature SciGraph8 offers a comprehensive depiction of the rela-
tionship between various interconnected datasets, hence enhancing the discoverabil-
ity of Springer Nature papers and enabling researchers and developers to overcome
data silos through data access. It is designed for both developers and linked data spe-
cialists, who can locate machine-readable representations of SN SciGraph resources
by using the Linked Data API to retrieve RDF, downloading the published bulk
data, or accessing JSON-LD using REST via the Springer Nature Meta API. With
the SN SciGraph Explorer providing an overview of the variety of available data and
how the data is structured SciGraph also caters the general research community [28].

OpenAlex9 is an open data, API, and source code repository for scholarly meta-
data and an open scientific knowledge graph. The OpenAlex dataset is made up of
five different kinds of academic entities and the relationships between them, forming
a heterogeneous directed network. Works are academic writings such as articles,
books, datasets, and theses; authors are the people who produce these works; venues
are the physical locations where these works are presented; institutions are the orga-
nizations to which authors claim affiliations; and concepts are the overarching ideas
that these works explore. These entities may be located in a web-based graphical
user interface (GUI) or in a downloadable data dump, obtained from a REST API
as a JSON object, all of which use the same permanent OpenAlex ID as the main
key in the dataset [23].

3https://www.project-freya.eu/en/pid-graph/the-pid-graph
4https://datacite.org/
5https://www.crossref.org/
6https://orcid.org/
7https://ror.org/
8https://www.springernature.com/de/researchers/scigraph
9https://openalex.org/
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2.1. Scholarly information infrastructures

Full Name URL Field

Hi-Knowledge Hi-Knowledge https://hi-knowledge.org/
Invasion Biology

(Science and nature)

CoDa Cooperation Databank https://cooperationdatabank.org/
Cooperation in social

dilemmas

Plazi Plazi https://plazi.org/
Biodiversity

(Taxonomic literature)

COVID-AQS
COVID-19 Air Quality

Data Collection
https://covid-aqs.fz-juelich.de/

The impacts of COVID-19
lockdowns on air quality

Papers With Code Papers With Code https://paperswithcode.com/ Machine learning/AI

Table 2.1: Platforms that provide information extracted from papers.

2.1.2 Infrastructures for scientific information

The scholarly information infrastructures for metadata presented so far focus on
identifying and describing entities, such as articles, datasets, and people. The assets
themselves are, from the point of view of these systems, binary objects. Specifically,
the scientific information expressed in articles is not made accessible and processable
by these systems. There exist many community-driven infrastructures and services
supporting the publishing and reuse of machine readable scientific information. These
services are typically tailored for specific research fields and even research questions.
Except ORKG, which serves as the infrastructure for this thesis, the following in-
frastructures are summarised in the table 2.1.

Hi-Knowledge10is an example in biodiversity and supports the visualization of
relationships between hypothesis in invasion biology, and their support or questioning
in the literature. The presented data is scientific information extracted from hundreds
of published articles. The services provides the data as downloadable CSV files.

The Cooperation Databank11is an example in social science with scientific
information about human cooperation extracted from approx. 2000 published articles
[29]. Being a more advanced infrastructure, the Cooperation Databank is powered
by a triple store database with a SPARQL endpoint that supports flexible querying
of content. While such an endpoint makes it easy to fetch data, users still don’t
get directly a language-specific data structure such as a DataFrame in Python or R.
Rather, users need to iterate over the results provided in XML.

Plazi12 is an organization that helps to preserve and make accessible to the
public published works in the context of digital taxonomy. Its purpose is to define
data useful for comprehending global biodiversity and to construct a catalog of all

10https://hi-knowledge.org/
11https://cooperationdatabank.org/data/
12https://plazi.org/
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Chapter 2. Related Work

known species on Earth. This taxonomic literature is transformed into semantically
enhanced XML documents that may be accessed [1].

The COVID-19 Air Quality Data Collection (COVID-AQS)13 publishes the
scientific information extracted from approximately 150 articles, that address the
impacts of COVID-19 lockdowns on air quality, through a downloadable CSV dataset
that is freely and openly accessible for scientific use. Using this data, the service
provides filtering and visualizations of the data, including by Country/Region. [10].

Papers With Code14 is a knowledge-sharing platform that collects algorithms-
based machine learning research papers of authors or communities in the field of
artificial intelligence in a manner that all of their summary, code implementation,
result, and data are extracted for scientific articles and presented by innovative ser-
vices visualizing the trends of algorithm performance for machine learning tasks.

The Open Research Knowledge Graph (ORKG) is being developed as an
Open Source project by the German National Library of Science and Technology
(TIB) with the intention of expressing scientific information published in articles in
machine readable form as a knowledge graph rather than a traditional set of docu-
ments [13]. By organizing scientific information in a knowledge graph, services can
more easily support users in searching, comparing, visualizing and reusing scientific
information. In addition, ORKG provides an ORKG Python package 15, which was
initially developed to support adding, changing, and reading ORKG content, includ-
ing loading ORKG comparison data into data analysis environment such as Jupyter
notebooks, to support subsequent data analysis to easily produce advanced visual-
izations or data products, as well as execute complex data-enabled activities that
integrate ORKG data with other data analysis tools [4, 7].

2.2 Data repositories

Numerous data repositories provide tailored libraries in Python or R that support
the direct access to data and loading into computational environment, making thus
easier to reuse, process, integrate and visualize published data [12]. Examples are
NEON and PANGAEA16.

PANGAEA has existed as a repository offering access to georeferenced data from
the Earth, environmental, and biodiversity sciences for nearly three decades. R and

13https://covid-aqs.fz-juelich.de/
14https://paperswithcode.com/)
15https://orkg.readthedocs.io/en/latest/introduction.html
16https://www.pangaea.de
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2.3. Methods

Python packages are given to communicate with the PANGAEA database. Pan-
gaear is a R package that provides an interface for retrieving data from PANGAEA.
It facilitates metadata queries and the download of tabular PANGAEA datasets.
Pangaeapy is a Python package used to obtain and analyze metadata and data from
the tabular PANGAEA dataset[12, 26].

The National Ecological Observatory Network is a distributed site-based Research
Infrastructure (RI) of observatories throughout the continent that will gather and
transmit ecological data on the consequences of climate change, land use change,
and invasive species during the next three decades[12, 25]. Through the NEON Data
Portal or API, R and Python packages (NEON-utilities) can access NEON data. The
Data Portal provides monthly zip files of data, whereas the API provides individual
files. These packages help find, download, and format data for analysis. This covers
API data downloads, table merges, and format conversions.

However, the data accessed from these two data repositories through such libraries
is typically primary research data, such as observational or simulation data, rather
than scientific information. In other words, the access data is not extracted from the
articles.

2.3 Methods

2.3.1 Manual extraction

Crowdsourcing is a helpful research approach since it enlists the general public’s
participation in reading research articles, even if they are not professionally qualified
specialists, and displaying the results of that study. There is no denying that the
capacity to gather or analyze data on a much larger scale is the most significant
advantage of crowdsourcing. Gains in speed, throughput, and cost are possible due
to the presence of many people. If researchers want to employ crowdsourcing, they
may do it by using a variety of resources already available online. Researchers may
use these resources to crowdsource tasks like data collection, image classification,
systematic reviews, new ideas, and financing, but there are caveats to keep in mind
and biases to account for [18].

In systematic reviews, the unit of interest are articles. Hence, it is required
to identify and integrate results from typically hundreds of related articles. It is
essential to perform exhaustive research, the quality of which is dependent on the use
of suitable scientific review methodologies. Systematic reviews gather and assemble
information on relevant studies, including their methodologies, possible bias, and
conclusions, in order to address research questions. Therefore, the presentation and
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analysis of data from these studies has a substantial effect on the conclusions of a
systematic review. Since systematic reviews are retroactive research, they are not
immune to bias. Because of this, time-consuming systematic reviews may be too
deceiving, ineffective, or even dangerous if data are improperly managed [17, 31].

2.3.2 Automated extraction

NLP is a technique used by ORKG for automatic extraction. The goal of natural
language processing (NLP) is to convert unstructured content into a machine-
readable representation so that a computer system can use it to carry out a number
of tasks. This is accomplished by employing computational methods to evaluate
texts and by researching how individuals comprehend and use language. Common
NLP tasks include: Named Entity Recognition, Entity Linking, Topic Modeling,
Text Summarization. The primary objective of Named Entity Recognition (NER)
is identifying and classifying important information (called entities) from sentences,
paragraphs, text reports, and other unstructured text formats into specified cate-
gories [16]. Entity Linking, on the other hand, aims to provide context to data by
providing annotations for ideas, concept instances, and relations between the two
[27]. Third, Topic Modeling is an unsupervised method for extracting information
from textual materials and displaying it as categories [2]. Finally, Text Summariza-
tion is the act of condensing a large piece of literature into a shorter version while
preserving its meaning and information value [14]. [21]

We highlight the benefits and drawbacks of pre-publication scholarly knowledge
production in comparison to automated extraction using NLP as a tool:

• Given the depth and precision provided by the fact that researchers and writ-
ers are typically the ones who explain their work, this method of describing
scientific knowledge is relatively affordable and accurate at a level that NLP
extraction would rarely accomplish.

• Compare this to the expensive and time-consuming process of training models
in natural language processing; in ORKG, the researchers and authors’ biggest
challenge will be choosing the right structure to best represent their paper;
everything else is easy once they have the script down and understand how it
works and have their input data ready.

• However, this strategy is not readily scalable because to the difficulty of per-
suading and pressuring academics and writers to participate. This is the battle
where natural language processing (NLP) may be most beneficial. If it achieves

10
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a high degree of accuracy and can be automated, hundreds of papers may be
processed in a couple of hours, but our technique based on persuasion may
need more time to achieve shared aims.
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Chapter 3

Approach

This chapter explains the architecture and the technical specifics of the proposed
implementation. We thus distinguish the architecture of the system, which is abstract
and emphasizes the key components and their interactions, from the more detailed
technical description of a proposed implementation, which includes all of the used
components and their connections.

3.1 Architecture

As shown in Figure 3.1, it all starts with a research infrastructure. Data from this
infrastructure should be accessible to researchers for analysis or as guidelines for
making unstructured data machine-readable. This research infrastructure should
offer a possible entry point. For example, a library in a given language allows the
researcher to access this information in a specific computational environment. Once
the research manuscript has been published with the retrieved and processed data
and some new results, this information is often only available in an unstructured
form (text) in the research paper. A second researcher would then resort to data
mining to obtain the same information. In light of this, the architecture significantly
encouraged the creation of data that could be reused. This information has to
be stored in a machine-readable manner. To save this last, the researcher would
have to submit the acquired data as additional material alongside the paper to the
publication. The publishing of all submitted content would result in a DOI that
would offer the metadata of the article as normal, but would also include a new link
to this supplementary material. This link should subsequently be discoverable by
distributed systems, which will display this research on their platform, utilizing both
the traced machine-readable data and its metadata.
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Figure 3.1: Scholarly knowledge graph-driven platform with researchers, publishers,
and a distributed system, as well as their connection via intermediate components,
as the four primary elements to be interpreted in the system architecture.

3.2 Implementation

Initially, The implementation will be described as a whole. Afterward, the description
of some of the primary components, which may not be immediately apparent, and
some of their relationships will be presented.
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Figure 3.2: This more thorough design focuses on ORKG as the infrastructure for
scholarly knowledge, as well as the template approach and serialization into JSON-
LD, to which the DOI will connect alongside the metadata of its paper.

3.2.1 Overall system

The implementation will be outlined according to three phases of the research life
cycle: early data analysis phase, later data analysis phase, and publication phase.
During the early phase of data analysis, researchers collect data from various sources.
ORKG may be such a source, specifically for scientific information. Researchers
may utilize ORKG libraries in Python or R to obtain data from ORKG into a
data structure specific to the computing environment in which the analysis is being
conducted. Following loading data, the data is ready to be processed, visualized, used
in the manuscript or stored for the next phase of the research life cycle. The next
step in the research life cycle is for the researcher to compile all the gathered data
and further organize it by using it to fill the templates, the specifications of which are
to be retrieved from ORKG. These templates aid in the creation of machine-readable
data by making it apparent what information the template needs from its user and
by streamlining the process of serializing data into JSON-LD, the recommended
supplementary format. When it comes time for publishing, this machine-readable
data will be submitted alongside the manuscript to the publisher. Following that, a
DOI will be made public. By processing the DOI metadata, both the metadata of the
article and the supplementary material should be traceable, at least by ORKG, given
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that this feature is already available, and maybe by other systems if this approach
is more often adopted.

3.2.2 ORKG REST API

ORKG provides a REST API1 to access the raw data. It is essential to note that this
is not the data format expected in a computing environment, but rather the source
format of the scientific information retrieved from ORKG.

Because we are more concerned with retrieving information from ORKG rather
than making changes to it, GET is the only HTTP verb from the API that are taken
into consideration here.

When considering the purpose of the fetching, GET requests are divided into two
categories: the first is for retrieving data that can be used for research purposes. For
instance, computing mean of basic reproduction number given some retrieved inputs
or directly retrieving this and visualizing it. The second purpose is for retrieving the
specification of templates, which support the production of machine-readable scien-
tific information in the computational environment using the Python or R package.

The Figure 3.2 shows these two connections to the ORKG API, the first in the
workflow the read of data, which may be utilized in the early stages of data analy-
sis phase, and then second the fetch template specification to be filled to generate
machine-readable structured scientific information.

Suppose both of these different GET Requests from the ORKG API were to
occur in the workflow since the first type is unnecessary. In that case, they should
happen at two different time points, so the first one, where data gets fetched from
ORKG for comparisons, occurs much earlier in the workflow. Data analysis requires
that all of the data is already gathered. However, fetching the templates needed for
producing structured scientific information is probably the last step of data analysis.
Nonetheless, they are both in the pre-publication phase.

3.2.3 R/Python Package

It may be useful to begin with an explanation of why these specific programming
languages were selected.

Since Python2 became popular, there has been heated discussion on whether R3

is superior than Python or serves a different purpose. However, some users choose

1http://tibhannover.gitlab.io/orkg/orkg-backend/api-doc/
2https://www.python.org/
3https://www.r-project.org/
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to disregard R and avoid using it because of its restrictions, which largely consist of
how slowly it works in comparison to Python and its difficult maintenance. Aside
from the theoretical interest, none of this should be seen as a reason to always use
Python instead of R. Therefore, as long as there are scientists and users in general
using R for data analysis, it is useful to support this community in using ORKG as
a platform and ORKG data in R computing environments.

Furthermore, seeing how R and Python somewhat complement each other, with
R being a good fit for data scientists interested in statistical calculation and data
visualization and Python being a better fit for data scientists interested in big data,
artificial intelligence, and deep learning algorithms, made that choice even clearer.

TheORKG Python library4, described in the Chapter 2 is the first initiative to
facilitate the interaction between ORKG and a computational environment, allowing
users to create and modify data.

To support the R community, we developed the ORKG R package5. Its imple-
mentation and its supported features are inspired by the Python library, particularly
in aspects of fetching the data. However, due to differences in Python and R lan-
guages, the two packages are not entirely equal, regarding their approach to the same
features .

The two packages are essentially binders between the ORKG API and Python
or R computing environments. Their features are: (1) loading ORKG comparison
data into Dataframes and (2) dynamically create a programmatic interface reflecting
one or more ORKG templates, as well as creating template-based data serialized in
JSON-LD.

3.2.4 ORKG templates

It is difficult to structure academic scientific content. The extent to which a research
contribution must be described, the issues that must be resolved, the conclusions
gained, and the resources and approaches used are all aspects that must be con-
sidered. It is also critical to characterize research contributions to the same topic
consistently. This is why ORKG tackles this issue by introducing a new approach
to guidelines called Templates, which resembles schemes. All that is required of the
user is to fill these templates with inputs that adhere to their specifications. Fol-
lowing these templates allows the researcher to provide material in a more organised
manner. Furthermore, having that specification of each template makes it straight-

4https://gitlab.com/TIBHannover/orkg/orkg-pypi/
5https://gitlab.com/TIBHannover/orkg/orkg-r
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forward for distributed systems to know how to show this knowledge. Finally, by
sharing the same structure, it makes data easier to compare [4].

In ORKG, Format, Properties, and Description are the three sections that make
up a template (Figure 3.3). The template’s general information, such as its name
and target class, are specified in the Description Tab. The name of the template is
used to find it while the target class is what the template’s instances will be based
on. Furthermore, users can specify for which research fields and research problems
this template is relevant.Template

ORKG

The Open
Research
Knowledge
Graph aims to
describe
research papers
in a structured
manner

About

About us
Help center
Data protection
Terms of use
Imprint

Technical

Data Access
Changelog
GitLab
Accessibility
License

More

Follow us
Contact us
Report an issue
Version v0.86.2

Warning: You are using a testing environment. Data you enter in the system can be deleted without any notice.

 Edit

p-value

Description Properties Format

Template use cases

Name of template

p-value

Target class (optional)

These fields are optional, the property is used to link the contribution resource to the
template instance. The research fields/problems are used to suggest this template in
the relevant papers.

Property (optional)

Research fields (optional)

Research problems (optional)

obo:OBI_0000175

No Property

No research fields

No research problem

Figure 3.3: It can be inferred from the p-value template description that the OBI
ontology term “OBI 0000175” is the target class of this template.

The properties tab is where we define the fields that users will be asked to fill in,
along with their respective allowed values and cardinality. For example, in Figure
3.4, the property “value specification” is an instance of a template, the target class
of which is an OBI ontology term. This component can only appear once in the
p-value template.
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Figure 3.4: The one property of the p-value template is the value specification.

Although the format tabs in the templates are optional, they do allow users
to generate a label according to the template’s specifications6. The approach is
elaborated on in the subsequent chapter 5.

3.2.5 Publishing and harvesting machine-readable informa-
tion

The collected and resulting data from the data analysis are used to populate specified
templates. This template data is then serialized as machine-readable scientific data
in JSON-LD7. JSON-LD8 files are one example of supplementary contents that may
be submitted with the article to be published. The JSON-LD standard’s main focus
is on making it easier for Linked Data9 to be stored in JSON-based systems. After
the serialization, the researcher submits both the manuscript and the serialized data
as supplementary material to the publisher.

6https://orkg.org/about/19/Templates
7https://www.w3.org/TR/json-ld11/
8https://www.w3.org/TR/json-ld11/
9Linked data refers to information that has been made publicly accessible in a predefined format

for the purpose of reuse and linking. https://www.w3.org/standards/semanticweb/data

18

https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/standards/semanticweb/data


3.2. Implementation

When these materials are published, the machine-readable scientific information
generated during the data analysis phase is then linked as supplementary material
to the paper through DOI metadata by means of the “IsSupplementedBy” relation
type for related identifiers. This allows the machine-readable scientific knowledge to
be discovered via the article’s DOI, and thus enabling harvesting.

Now, from the perspective of the system, given an article DOI, machines read DOI
metadata, follow “IsSupplementedBy” links to discover machine-readable scientific
material, and then incorporate this data into its system.
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Chapter 4

Results

This chapter presents the ORKG R package, particularly its functionality. Special
emphasis is given on using the package to retrieve ORKG comparison data as well
as to create ORKG template-based scientific information in data analysis.

4.1 ORKG R package

The ORKG R package also tends to help the data meet more than three of the FAIR
principles, especially when it comes to accessibility, interoperability, and reuse. This
is explained by the fact that the package allows access to ORKG contents via their
IDs and converts these entities to R data structures. Tested in both R Console and
Jupyter Notebook, this permits the data to be processed and visualized.

Since the package is not published in CRAN, it is required to have the source code
and install this package locally with “devtools” in the user’s console. The Listing
illustrates the two steps required to install this package. 4.1.

Listing 4.1: These steps helps install locally the package.

devtools::document()

devtools::install()

To initialise the ORKG connector, the package should be imported, and then the
instance of ORKG should be initialised with a host, which is of type string. For now a
host can either be a local host, https://orkg.org or https://sandbox.orkg.org.
These steps are displayed in the Listing 4.2.
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Listing 4.2: Simply by adding these two lines, an ORKG connector will be initialised.
Remember to add a host address.

library(orkg)

orkg = ORKG(host="<host_address>")

4.2 Retrieving ORKG content

The ORKG R package provides access to a variety of ORKG content types, specifi-
cally resources, classes, statements, literals, predicates, comparisons, and templates.
The latter two types will be discussed in more detail in this chapter.

The first five types listed share almost the same strategy for retrieval. The entity
may be retrieved by its ID using the method by id. This returns a list containing
label, creation data, and so on. By default, a list of 20 entities can be retrieved too
when calling the get (or get all in some cases) method with the index ”content.”

id label classes shared

R0 Gruber's design of ontologies 1

R172 Oceanography ResearchField 152

R173 Physics ResearchField 8

R174 Astronomy and Astrophysics ResearchField 1

R175 Atomic, Molecular and Optical Physics ResearchField 132

R176 Biological and Chemical Physics ResearchField 2

R177 Condensed Matter Physics ResearchField 1

R178 Cosmology, Relativity, and Gravity ResearchField 2

In [13]: library(orkg)

orkg <- ORKG(host="https://orkg.org")

orkg$resources$get()$content[1:8,1:4]


Figure 4.1: A portion of what the method get produces as an output, in the case of
resources.

Only the statements and resources as entities stand out due to their extra retrieval
methods, such as get by predicate or get by object etc. for the statement, which
were advantageous for the display of certain types of resources, which leads to the
following result.
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4.3 Retrieving tabular data as R data.frame

If the retrieved resource is of type orkg:Table, the method as dataframe() converts
the retrieved tabular data into an R data.frame.

When a resource is requested using the method by id that returns the retrieved
resource using the ID in a list format, the as dataframe method is appended to
the list for reference. This is because the method simply returns the result of this
conversion that occurred during the resource retrieval.

As an example of use, in the following code snippet, the test-oriented tempo-
rary resource with the ID R70800, which is shown in the Figures 4.2 and 4.3, is
fetched. The as dataframe method will gather all of the values and present them
in a Dataframe format, as seen in Figure 4.4.

Listing 4.3: This is the code snippet for retrieving the resource into a dataframe.

orkg = ORKG(host="https://sandbox.orkg.org")

orkg$resources$by_id("R70800")$as_dataframe()

Resource view

Contribution 1 
 12 March 2021 - 21:21  Referred 1 time  Created by  Anouar Ganfoud

Statements

Show object statements

ORKG

The Open Research
Knowledge Graph
aims to describe
research papers in a
structured manner

About

About us
Help center
Data protection
Terms of use
Imprint

Technical

Data Access
Changelog
GitLab
Accessibility
License

More

Follow us
Contact us
Report an issue
Version v0.86.2

Warning: You are using a testing environment. Data you enter in the system can be deleted without any notice.

 Create resource  Contribution view  Edit

ID R71526

 Preferences

employs Regression

yields Maximum significant p-value

Summary of research infrastructures

Add new  Sign inView Tools About Search...

Resource id R70800

Instance of Table

Description No description yet

This website uses cookies to ensure you get the best experience on our website. By using this site, you agree to this use. More Info OK

Figure 4.2: This is the targeted resource.
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Figure 4.3: This is how it is displayed in ORKG.
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In [3]:

In [ ]:

RI Full Name URL Field

Plazi Plazi https://plazi.org/
Biodiversity
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literature)

COVID-
AQS

COVID-19 Air
Quality Data

Collection
https://covid-aqs.fz-juelich.de/

The impacts of
COVID-19

lockdowns on air
quality

Papers With
Code

Papers With
Code https://paperswithcode.com/ Machine

learning/AI

CoDa Cooperation
Databank https://cooperationdatabank.org/ Cooperation in

social dilemmas

Hi-
Knowledge Hi-Knowledge https://hi-knowledge.org/

Invasion Biology
(Science and

nature)

df

 

Untitled7 Logout

R  TrustedFile Edit View Insert Cell Kernel Widgets Help

Code        Run    

Figure 4.4: This is the resulting Dataframe after executing the snippet of code in
the Listing 4.3 in the Jupyter Notebook.

4.4 ORKG Comparisons

As previously stated, comparisons are one of the entities that can be retrieved using
the ORKG R package. However, unlike other entities, it was far more efficient to
have it displayed directly as a matrix rather than in a list format, where it would be
harder to work on, process, and compare with other data.

In order to retrieve a comparison, the ORKG connector will be utilized once again,
and its attribute “comparisons” will be given the ID of the required comparison. As
a result, a matrix is returned containing the corresponding ORKG comparison data
(Figure 4.5).

The conversion of ORKG comparison data into a Dataframe reduces friction in
using comparison data, since the data are readily available in a data structure that is
native to the language of the computing environment, in our case R. Hence, the au-
tomated conversion increases the interoperability of data and eases data integration
and processing.
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In [22]: library(orkg)

orkg <- ORKG(host="https://orkg.org")

orkg$comparisons$get("R196200")[2:5,1:3]


Figure 4.5: The matrix displayed after retrieving the comparison with the ID
R196200.

4.5 Materializing templates

Template materialization is the approach that enables generating code dynamically
based on the ORKG template specifications. This was solved using two approaches
that are standard functions in R: “eval parse text paste”1 and “function that in-
stantiates instances in a list format”. The first allows the conversion of a string into
executable code. Having that feature allows both naming variables with string values
and using these variables by calling their name in string format. So that allows the
use of the properties of a given template, which are in a string format. The second
approach resulted from the inability to create new classes or alter existing ones due
to a locked environment during the import of the ORKG package. This approach,
put simply, is building a constructor for lists. This means having a function that
initializes a list, which will play the role of the new class. The reason is that we can

1https://goodscienceblog.wordpress.com/2016/12/02/a-very-useful-function-eval-parse-text-
paste/
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attribute to lists a new class that will refer to the type list. In addition, these lists
can have indexes that can point to variables and functions. Having a constructor
allows checking the type of arguments given by the specification of a template. With
these two strategies in hand, the next moves are: First, we retrieve the template’s
name, properties, and types etc. from the template specification. Second, we deter-
mine if any of its components are themselves nested templates; if so, we repeat the
previous step for each nested template until we locate one that is not nested. Using
the first method, we begin constructing the function for this last by concatenating
these pieces of data in a manner that will allow it to be executed later. This string
is then executed with the appraoch “eval parse text paste” to define the constructor
function. We key the preprocessed name of the templates in the hash list that in-
dexes to its function definition. Preprocessed name refers to a name that has been
modified so that it can be given to a variable. Finally, we repeat that process indef-
initely until all of the templates have been visited. After completing all of the steps,
the hash list will contain all of the functions needed to construct a template-based
list for each of the templates acquired during this process.

To restate, ”materialising the templates” in the R package refers to the pro-
cess of creating a function with type-specific arguments that follows the template’s
specification and builds list instances, when populated with the given values.

Before populating the templates, the user should have the possibility of printing
documentation in scripts about the template. Thus, each instance will be provided
with its doc-string, which can be displayed by passing the value ”doc” to the ar-
gument ”text” of the function that creates this instance, which is stored in the
materialized templates of the attribute templates of the ORKG connector (the
first block in the Figure 4.6).

4.6 Using templates and serializing data

After materialising the templates, printing their documentation, and populating
them with the appropriate data, a template-based list is generated. The class of
this list will be the preprocessed name of its template. This list will contain the
filled properties of the templates, the host used to access these templates, and in-
dexes pointing to two functions.

Pretty print, the first function, aids in printing this list as JSON data. And
as indicated in the last chapter, the package includes a feature that allows data
serialisation, which is the second function. It refers to the process of converting
these template-based data structures into JSON-LD, a storable format.
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Chapter 4. Results

Figure 4.6 illustrates the steps of template population and the template data
serialization into JSON-LD (Listing 4.4). In the example, the “p-value” template
was already selected and materialized, along with its nested-template “scalar value
specification”. Then, a string and a numeric value were assigned to the template’s
parameters, the value specification and the label, respectively. As a result, an in-
stance, or the template-based data, was created, which was afterwards serialized into
JSON-LD using the method serialize to file.

Creates a template of type R12006 (p-value) 

:param label: the label of the resource of type string 

:param value_specification: a nested template, use orkg.templates.sc

alar_value_specification 

:return: a string representing the resource ID of the newly created 

resource


tp = orkg$templates$list_templates()
tp$pvalue(text= 'doc')

tp = orkg$templates$list_templates()
instance = tp$pvalue(label= paste('the p-value', sep=''), 
                     value_specification = tp$scalar_value_specification(
                         label = "0.0000000131112475", 0.0000000131112475)
                    )

instance$serialize_to_file('article.contribution.json', format='json-ld')

Figure 4.6: The documentation of the template and the serialization process.

Listing 4.4: The output of the serialization of an instance of the p-value template,
the JSON-LD file.

{

"@id": "_:n1",

"label": "the p-value",

"@type": [

"https://orkg.org/class/C1003"

],

"P9003": [

{

"@id": "_:n2",
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"label": "0.0000000131112475",

"@type": [

"https://orkg.org/class/C1004"

],

"P9004": [

"1.31112475e-08"

]

}

],

"@context": {

"label": "http://www.w3.org/2000/01/rdf-schema#label",

"P9003": "https://orkg.org/property/P9003",

"P9004": "https://orkg.org/property/P9004"

}

}

4.7 The conversion from R’s Dataframe to anno-

tated table

Metadata about a table may be stored independently from the table itself, expanding
the use of an annotated model of tabular data2. If an implementation is provided
a file containing tabular data, this CSVW annotation helps machines parse and
interpret its contents. An annotated table (Listing 4.5) is the fundamental annotated
data type, with core annotations including an id and label, a type of https://

orkg.org/class/Table, and annotated columns and rows. Each annotated column
(Listing 4.6) in this table has a unique identifier, a descriptive name, and a numeric
position relative to the other annotated columns in this table; these are all of the
https://orkg.org/class/Column constant type. And then, there are annotated
rows (Listing 4.7), which are defined by a title that correspond to the name of
the row, if there is one; otherwise, it would be assigned using this format: “Row X”,
where X represents its index; and annotated cells(Listing 4.8). These final attributes
are characterized by a constant type https://orkg.org/class/Cell, a value and a
column index.

2https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
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Listing 4.5: Annotated table.

"P4015": [

{

"@id": "_:n4",

"label": "To fill",

"@type": [

"https://orkg.org/class/Table"

],

"columns": [...],

"rows": [...]

} ]

Listing 4.6: Annotated Column.

"columns": [

{

"@type": [

"https://orkg.org/class/Column"

],

"label": "non-failing heart (NF)",

"name": "non-failing heart (NF)",

"number": 1

},...]

Listing 4.7: Annotated Row.

"rows": [

{

"@type": [

"https://orkg.org/class/Row"

],

"title": "Row 1",

"label": "Row 1",

"number": 1,

"cells": []

},...

]
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Listing 4.8: Annotated Cell.

"cells": [

{

"@type": [

"https://orkg.org/class/Cell"

],

"value": "99.0"

},..

]

4.8 Tabular data display in ORKG

CSVW compliant data can be displayed as a table in ORKG. An additional feature
of the ORKG interprets and displays this annotation alongside other resources. This
annotation implies that its instance is of class ORKG: Table. In terms of structure,
this instance is displayed similarly to other resources. However, it can be, in addition,
visualized in a tabular chart (Figure 4.3) by clicking the table icon next to the
resource’s label (Figure 4.2).
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Applications

In this chapter, we demonstrate the presented ORKG R package in practice by means
of two applications, one in life science and the other in soil science. The two applica-
tions are good examples that demonstrate the key features of the ORKG R package:
ORKG template-based production of machine readable scientific information and use
of ORKG data, in particular resources with ORKG:table type, in R scripts.

5.1 Life science application

The life science use case is based on the paper by Haddad et al. titled “Iron-regulatory
proteins secure iron availability in cardiomyocytes to prevent heart failure” [11].
Specifically, we focus on the result stating that “IRE binding activity was significantly
reduced in failing hearts”.

We acquired some data, which was plotted in the article, in CSV format from
the principal investigator of the original work (see Figure 5.1). The tabular data is
for the two groups Non-Failing Hearts (NF) and Failing Hearts (F) and is the input
data in the t-test with dependent variable IRE binding activity and with output
p-value (approximated as p < 0.001 in Figure 1 B in the original work). Our goal is
to represent information about the t-test conducted in the original work in machine
readable form, using the ORKG R package and the ORKG Student’s t-test template1.
This template contains the following properties:

• label: A label for the t-test

1https://orkg.org/template/R12002
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• has dependent variable: The study design dependent variable, which in this
case is iron-responsive element binding, and will be provided with a URI, which
is considered an R Character Class.

• has specified input: An instance of ORKG:table, which will be assigned
the tabular input

• has specified output: It has a template p-value, and the p-value is nested
to the template value specification, which will then have the script’s approxi-
mation of the p-value.

Figure 5.1: The targeted Dataframe from the research paper.

We developed an R script to replicate the t-test as shown in Listing 5.1.

Listing 5.1: Here we read the CSV file and use its content to compute the P-value.

df = read.csv("data.csv", check.names=FALSE)

tt = t.test(df[["non-failing heart (NF)"]],

df[["failing heart (F)"]],

var.equal=FALSE)

pvalue = tt$p.value
pvalue_ceil = ceiling(pvalue * 1000) / 1000.0

pvalue_str = format(pvalue, digits=9, big.mark = ",", scientific =

FALSE)

Given the computed p-value, we materialize the student’s t-test (R12002) using
the ORKG R package as shown in Listing 5.2. This automatically materialises all
nested templates, specifically the p-value and value specification templates.
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Listing 5.2: So here we set the host and materialize the template Student’s t-test
and all its nested templates.

orkg <- ORKG(host="https://sandbox.orkg.org")

orkg$templates$materialize_template(template_id = "R12002")

Finally, we instantiate the template to produce a machine readable description
of the t-test conducted in the original work. The values are assigned to the corre-
sponding arguments of the template, as shown in Listing 5.3. Note that the last
line serializes the machine readable description to a JSON-LD file name article.

contribution.1.json.

Listing 5.3: The portion of code that illustrated how information is inserted into the
template.

instance <- tp$students_ttest(
label=paste("Statistically significant hypothesis test with IRE

binding dependent variable on failing and non-failing hearts

(p<",pvalue_ceil,")", sep=""),

has_dependent_variable="http://purl.obolibrary.org/obo/GO_0030350",

has_specified_input=tuple(df, "Summary data showing

iron-responsive element (IRE) binding activity in LV tissue

samples"),

has_specified_output=tp$pvalue(paste("the p-value of the

statistical hypothesis test (p<",pvalue_ceil,")", sep=""),

tp$scalar_value_specification(pvalue_str, pvalue)

),

)

instance$serialize_to_file("article.contribution.1.json",
format="json-ld")

The serialized data file can be submitted, together with the original manuscript,
to a journal for review. Upon acceptance, the publisher can ensure that the arti-
cle relates to machine readable scientific information as supplementary material in
DOI metadata. This linking can be implemented by using the “IsSupplementedBy”
relation available in DOI metadata. Listing 5.4 demonstrates the linking of a test
DataCite DOI2 for the article by Haddad et al. and the supplementary material
in form of a JSON-LD file containing a machine readable description of the t-test
conducted in the original work.

2https://api.test.datacite.org/dois/10.7484/16y2-1t51
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Listing 5.4: Portion of the metadata of the DOI, where it shows the life science
supplementary material.

"relatedIdentifiers": [

{

"relationType": "IsSupplementedBy",

"relatedIdentifier":

"https://zenodo.org/record/7337659/files/article.contribution.ls.json",

"relatedIdentifierType": "URL"

}[...]

][...]

Given the article DOI, systems such as ORKG can now simply harvest the con-
tent. Specifically, in ORKG we can add the paper by DOI lookup (Figure 5.2). As a
result, the metadata including the title of the paper and authors etc. are displayed.
The machine readable contribution description (here for the t-test) is also harvested.
After selecting the research field, users will see the contribution data automatically
displayed (Figure 5.3).

General paper data

Paper DOI or BibTeX 

Lookup result

By DOI Manually

https://api.test.datacite.org/dois/10.7484/16y2-1t51

Edit

Paper title: Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure

Authors: Haddad, Saba, Wang, Yong, Galy, Bruno, Korf-Klingebiel, Mortimer, Hirsch, Valentin, Baru, Abdul M., Rostami, Fatemeh, Reboll, Marc R., Heineke, Jörg, Flögel, Ulrich, Groos,
Stephanie, Renner, André, Toischer, Karl, Zimmermann, Fabian, Engeli, Stefan, Jordan, Jens, Bauersachs, Johann, Hentze, Matthias W., Wollert, Kai C., Kempf, Tibor

Publication date:

Published in: Oxford University Press (OUP)

Next step

Lookup

Select Hide Delete Hide Except Delete Except Format Text Undo Undo All Save Text Pieces View More Web Style Preview Close Print Edit WE Tools Help

Figure 5.2: Metadata after looking up the DOI link.

As specified by the template for Student’s t-test, the three properties of the
contribution “Statistically significant hypothesis test with IRE binding dependent
variable on failing and non-failing hearts (p < 0.001)” are included in contribution
data with corresponding values. Since ’has specified input’ is of type table, ORKG
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shows a table icon next to its label (see arrow in Figure 5.3). When this button is
pressed and the table is shown (Figure 5.4), it is straightforward to see that it is
identical to the original Dataframe used in the conducted t-test.

ORKG

The Open Research
Knowledge Graph aims to
describe research papers in
a structured manner

About

About us
Help center
Data protection
Terms of use
Imprint

Technical

Data Access
Changelog
GitLab
Accessibility
License

More

Follow us
Contact us
Report an issue
Version v0.86.0

Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure 
 August 2016  40 citations  Life Sciences  Saba Haddad  Yong Wang  Bruno Galy  Mortimer Korf-Klingebiel

 Valentin Hirsch  Abdul M. Baru  Fatemeh Rostami  Marc R. Reboll  Jörg Heineke  Ulrich Flögel  Stephanie Groos

 André Renner  Karl Toischer  Fabian Zimmermann  Stefan Engeli  Jens Jordan  Johann Bauersachs  Matthias W. Hentze

 Kai C. Wollert  Tibor Kempf

Published in: European Heart Journal DOI: https://doi.org/10.1093/eurheartj/ehw333

Statistically significant hypothesis test with IRE binding dependent variable on failing and non-failing

 Preferences

has specified input https://github.com/markusstocker/doi-10-1093-eurheartj-

ehw333/blob/main/data.csv 

Summary data showing iron-responsive element (IRE)

binding activity in LV tissue samples

has specified output the p-value of the statistical hypothesis test (p<0.001)

has dependent variable http://purl.obolibrary.org/obo/GO_0030350 

Share

This website uses cookies to ensure you get the best experience on our website. By using this site, you agree to this use. More Info OK

Select Hide Delete Hide Except Delete Except Format Text Undo Undo All Save Text Pieces View More Web Style Preview Close Print Edit WE Tools Help

Figure 5.3: Properties filled automatically, after setting the research field and a
directional arrow pointing to the visualization button.

And then, for instance, this Dataframe is to be directly retrieved from ORKG,
with one of the results mentioned, which is converting tables into a R Dataframe.
In order to illustrate how this can be useful for the aims of the data analysis, the
resulting Dataframe is then plotted in a boxplot. These two steps are depicted in
two figures: Figure 5.5 and Figure 5.6.
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View paper
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View dataset: Summary data showing iron-responsive
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nan 11

« ‹ › »1 of 1

Figure 5.4: The tabular visualization of the life science use case, after clicking press-
ing the visualization button.

In [35]:

In [ ]:

df <- orkg$resources$by_id('R219781')$as_dataframe()
df$NF <- df[['non-failing heart (NF)']]
df$F <- df[['failing heart (F)']]
boxplot(df[3:4],
        data=df,
        cex.lab=0.65,
        xlab="Fig. 1 IRE binding activity for non-failing (NF) and failing (F) hearts.",
        ylab="IRE binding activity (%)",
        col="orange",
        border="brown",
        boxwex = 0.4,
        ylim = c(0, 120)
)

Figure 5.5: Here is a sample of code that displays the table in a boxplot after
retrieving it from ORKG.
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In [35]:

In [ ]:

df <- orkg$resources$by_id('R219781')$as_dataframe()
df$NF <- df[['non-failing heart (NF)']]
df$F <- df[['failing heart (F)']]
boxplot(df[3:4],
        data=df,
        cex.lab=0.65,
        xlab="Fig. 1 IRE binding activity for non-failing (NF) and failing (F) hearts.",
        ylab="IRE binding activity (%)",
        col="orange",
        border="brown",
        boxwex = 0.4,
        ylim = c(0, 120)
)

Figure 5.6: The boxplot represents a summary of the data shown in the ORKG table.

5.2 Soil science application

The soil science use case will go through the same process, but in this instance two
contributions will be produced. As a result, the article DOI will relate to two JSON-
LD files as supplementary material. The data utilised in this use case is a subset of
the data provided by the researcher, whose work will shortly be published. These
two Dataframes will be utilised to construct the two contributions and are displayed
in the two figures (Figure 5.7 and Figure 5.8).

Figure 5.7: The Dataframe used for the first contribution.

Both contributions make use of the model fitting template3, whose materialization
is represented in the Listing 5.5. This template relies on three other nested templates

3https://orkg.org/template/R222407
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Figure 5.8: The Dataframe used for the second contribution.

to complete its structure: the statistical model template4, the formula template5, and
the value specification template6. Each doc-string of these templates are displayed
in the Figure 5.9

Listing 5.5: This listing shows the population of the template and its serialization
for one contribution.

orkg <- ORKG(host="https://sandbox.orkg.org/")

orkg$templates$materialize_template(template_id = "R222407")

tp = orkg$templates$list_templates()

 Creates a template of type R222437 (Formula) 

	 :param label: the label of the resource of type string 

	 :param has_value_specification: a nested template, use orkg.templates.value_specification 

	 :return: a string representing the resource ID of the newly created resource


 Creates a template of type R222407 (Model Fitting) 

	 :param label: the label of the resource of type string 

	 :param  has_output_dataset : a parameter of type Table (which is here considered tuple )

	 :param has_input_model: a nested template, use orkg.templates.statistical_model

	 :param  has_input_dataset : a parameter of type URI (which is here considered character ) 

	 :return: a string representing the resource ID of the newly created resource


 Creates a template of type R222432 (Statistical Model) 

	 :param label: the label of the resource of type string 

	 :param is_denoted_by: a nested template, use orkg.templates.formula 

	 :return: a string representing the resource ID of the newly created resource


 Creates a template of type R222439 (Value Specification) 

	 :param label: the label of the resource of type string 

	 :param  has_specified_value : a parameter of type String (which is here considered character ) 

	 :return: a string representing the resource ID of the newly created resource


In [27]: 


Figure 5.9: The doc-string of the templates used in the soil science use case.

4https://orkg.org/template/R222432
5https://orkg.org/template/R222437
6https://orkg.org/template/R222439
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Therefore, in order to follow the example more in-depth, below is a snippet of
code that illustrates the first contribution that will assist in making the template’s
structure more clear.

Nota bene: Since this work has not yet been published and we are primarily
interested in the Dataframe, just the data extraction will be discarded in that snippet
of code. In addition to that, df1 represents the first Dataframe extracted from the
data provided in the data analysis phase.

Listing 5.6: This listing shows the population of the template and its serialization
for one contribution.

instance <- tp$model_fitting(
label="Linear mixed model fitting with MWD as response, CC

variant as predictor variable, and soil depth as random

variable",

has_input_dataset=

"https://github.com/markusstocker/gentsch22cover/blob/main/df.MWD.csv",

has_input_model=tp$statistical_model(
label="A linear mixed model with MWD as response and CC

variant as predictor variable",

is_denoted_by=tp$formula(
label="The formula of the linear mixed model with MWD as

response and CC variant as predictor variable",

has_value_specification=tp$value_specification(
label="MWD_cor ~ cc_variant + (1|depth)",

has_specified_value="MWD_cor ~ cc_variant + (1|depth)"

)

)

),

has_output_dataset=tuple(df1, "Results of LMM with MWD as response

and CC variant as predictor variable")

)

After populating the template for each contribution and serializing their instances
as shown in the Listing 5.6 (which was done for only one contribution), two JSON-
LD files will be generated: article.contribution.1.json and article.contribution.2.json,
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which will be referred by the test DataCite DOI7, as shown in the following List-
ing 5.7.

Listing 5.7: The presentation of the two supplementary materials in DOI.

relatedIdentifiers": [

{

"schemeUri": null,

"schemeType": null,

"relationType": "IsSupplementedBy",

"relatedIdentifier":

"https://zenodo.org/record/7366513/files/article.contribution.1.json",

"resourceTypeGeneral": null,

"relatedIdentifierType": "URL",

"relatedMetadataScheme": null

},

{

"schemeUri": null,

"schemeType": null,

"relationType": "IsSupplementedBy",

"relatedIdentifier":

"https://zenodo.org/record/7366513/files/article.contribution.2.json",

"resourceTypeGeneral": null,

"relatedIdentifierType": "URL",

"relatedMetadataScheme": null

}

]

The final step is to add the two contributions to ORKG alongside the metadata
of the paper, after which it’s all out of hand because ORKG will do the job of
discovering both the metadata and these contributions via the given DOI, which
is exactly what happened, as shown in the Figure 5.10. The properties are filled
exactly as implied by the instances produced in the computational environment, and
the Dataframe with the type of table can be visualized as indicated in the Figure
5.11)

Then, this ORKG table resource displayed in Figure 5.11 will be analysed by
retrieving it directly from ORKG and displaying it as three bar plots (Figure 5.13).
Figure 5.12 illustrates the corresponding code.

7https://api.test.datacite.org/dois/10.7484/s06c-8y98
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Figure 5.10: The exhibition of the soil science use case and the button that lead to
the tabular visualization.
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Figure 5.11: The tabular visualization of the second Dataframe presented in the soil
science use case in ORKG.
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Figure 5.12: In this snippet of code, the ORKG table was retrieved and then plotted
in three bar graphs.

Figure 5.13: The source of the three bar graphs was the table retrieved from ORKG.
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Chapter 6

Discussion

We first revisit the research questions and discuss how we have addressed them with
the proposed solutions. We then present the advantages of the solutions in contrast
to the presented related works. Finally, we discuss the limitations and highlight
potential further work.

6.1 Discussion of research questions

RQ1 aims to ensure that scientific information is produced machine readable. the
“pre-publication production of the scientific information” is the answer to this first
question. This was demonstrated by the aforementioned two use cases, in which the
supplementary information was supplied with the manuscript and injected into the
DOI metadata, where it was subsequently discovered and harvested automatically
by ORKG.

RQ2 aims to dynamically generate programmatic interfaces in R based on ORKG
templates. This question was resolved by obtaining all the information about the
ORKG template from the API and using it to construct a function that complies with
the template definition and, when filled with data, generates lists. These instances
of type list represent the template based data.

RQ3 aims to ensure that machine readable scientific information is published
and can be harvested, given article DOIs. The publication of this scientific knowl-
edge is ensured by submitting the produced supplementary material together with
the manuscript to a journal for review. Alternatively, researchers can deposit this
supplementary material in a research data repository of their choice. The supple-
mentary material in our case was the JSON-LD file, which was the output of the
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serialization of the template-based data. As for the Harvesting of this information,
it is enabled by linking supplementary material in the DOI metadata of the article.

6.2 Advantages of the proposed approach

Having this scientific data produced in a machine-readable form directly from the
content producer is the key difference compared to NLP- or crowdsourcing-based
post-publication information extraction approaches. Because they are inaccurate
(the performance of automated approaches is generally low), result in shallow infor-
mation (coarse rather than fine granular information), and are hard to scale (crowd-
sourcing relies on massive collaboration).

The fact that the machine-readable information produced during the data anal-
ysis phase does not go directly to ORKG is also significant because it implies that
researchers submit supplementary material to publishers and published alongside the
original work. Due to the availability of these links and the machine-readable meta-
data, any system can use this to harvest the content and exploit it to generate value,
which is inexpensive.

The R package provides additional useful features. With automatic conversion
of ORKG tabular data resources and comparisons data into data frames we ensure
least friction in reusing ORKG content for the widest possible types of use. This is
useful not only for publication-related matters, but also for any user who wants to
work with this data, visualise it, or compare it to other data.

Finally, creating code dynamically based on the most current version of ORKG
template specifications is a significant feature, as it scales well and saves a great deal
of effort in the event that a researcher wishes to modify a template’s specification or
add and use new ones. As soon as the template’s specification is adjusted, it can be
used without having to deploy or update the package.

6.3 Limitations of the work

One of the limitation of the presented approach is the challenge in ensuring that re-
searchers submit structured, machine-readable data alongside their research papers;
in other words, adopt the ORKG R package in data analysis. Considerable awareness
and capacity needs to be built to ensure broad adoption.

Additionally, the serialization of given data into JSON-LD, a feature provided
by both the R package and the Python package, is still restricted to certain data
types, such as strings and numeric values, that are easily identifiable and, at the
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highest level, data frames that adhere to the CSVW data model so that they can be
interpreted as a table and visualized as a table by ORKG. However, all other sorts
of data types are considered as strings by default.

The R package, unlike the Python package, has not yet been published in CRAN,
therefore it cannot be imported directly. Instead, the user must construct a binary
package from the source code, which is not intuitive, and then install and import this
binary package locally. Not to mention that this package still has missing features, as
it focuses on only retrieving and not altering or creating directly entities into ORKG
from a given computational environment.

6.4 Future work

As indicated earlier, the serialization is still restrictive, supporting only a few data
types or restricting each research contribution to a single template(nested template).
Instead of having anything serialized interpreted as a research contribution, the out-
put of a template serialization could be just a part of a research contribution. There-
fore, a further improvement is to enhance the capacity of serialization by expanding
its content in terms of the various types of data that it feeds into an annotated model
on one side. And on the flip side, the capacity of a single research contribution can
be enhanced in terms of the number of serializations it can acquire. This can be
achieved by combining template-based data within a single research contribution.
The package can also be maintained to have more interactions with the ORKG API
than those currently supplied, such as sending POST requests to create and alter
resources directly in ORKG. As for encouraging researchers to use the proposed
approach, one possibility is to make it first a standard norm in the institute where
ORKG originated to serve as an example for other academic institutions and thereby
encourage them to follow suit.
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Conclusion

This thesis developed an ORKG R package and demonstrated its use in data sci-
ence, in particular to efficiently reuse ORKG content in data analysis and to en-
sure scientific information produced in data analysis is produced machine readable.
This approach stands in stark contrast with post-publication information extraction
approaches, and has several advantages, in particular the production of rich ma-
chine readable scientific information (fine granular), the unmatched accuracy, the
technological simplicity (especially in contrast to NLP-based approaches), and user
friendliness (since no manual data entering in ORKG is needed).

We have presented work related to this thesis along three subgroups: scholarly
information infrastructure (Section 2.1), data repositories (Section 2.2), and methods
(Section 2.3), including manual and automated extraction. Each was briefly com-
pared to ORKG, which served as the benchmark platform. Before presenting the
architecture, a more thorough design containing ORKG’s environment for a tangible
perspective (Section 3.2), a generic strategy was offered to cope with this latter (Sec-
tion 3.1). Afterward, the findings that exhibit approaches used in this architecture
were displayed (Chapter 4), including, for example, ORKG comparison retrieval, dy-
namic materialization of templates, and serialization of the instance produced by the
filling of these templates, all of which were addressed by the R package implemented
during this thesis. We have demonstrated the proposed approach and tools in two
applications in different disciplines: life science and soil science (Chapter 5). As
the applications clearly show, the proposed solution successfully contributes to the
research questions driving this work. The applications underscore the effectiveness
of the technique in terms of time savings, reusability, and interoperability. Despite
the significant advantages that come with this approach, it must be integrated into
research workflows in order for its utility to be readily apparent. This can be ac-
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complished by building capacity among researchers as well as increasing the number
of systems that make effective use of the published machine readable scientific infor-
mation (Chapter 6).
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