
Vol.:(0123456789)1 3

Engineering with Computers
https://doi.org/10.1007/s00366-022-01633-6

ORIGINAL ARTICLE

Analysis of three‑dimensional potential problems
in non‑homogeneous media with physics‑informed deep collocation
method using material transfer learning and sensitivity analysis

Hongwei Guo2,3,4 · Xiaoying Zhuang2,3,4 · Pengwan Chen5 · Naif Alajlan1 · Timon Rabczuk1

Received: 2 August 2021 / Accepted: 12 February 2022
© The Author(s) 2022

Abstract
In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous
media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of
the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the
physics-informed neural network including smooth activation functions, sampling methods for collocation points genera-
tion and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with differ-
ent material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to
identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally,
we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing
different material variations.

Keywords  Deep learning · Collocation method · Potential problem · PDEs · Sampling method · Activation function · Non-
homogeneous · Transfer learning · Sensitivity analysis · Physics-informed

 *	 Timon Rabczuk
	 timon.rabczuk@uni-weimar.de

	 Hongwei Guo
	 hongwei.guo@iop.uni-hannover.de

	 Xiaoying Zhuang
	 zhuang@iop.uni-hannover.de

	 Pengwan Chen
	 pwchen@bit.edu.cn

	 Naif Alajlan
	 najlan@ksu.edu.sa

1	 ALISR Laboratory, College of Computer and Information
Sciences, King Saud University, PO Box 51178,
Riyadh 11543, Saudi Arabia

2	 Computational Science and Simulation Technology, Institute
of Photonics, Leibniz Universität Hannover, Appelstr. 11,
30167 Hannover, Germany

3	 Department of Geotechnical Engineering, Tongji
University, 1239 Siping Road, Shanghai 200092,
People’s Republic of China

4	 Key Laboratory of Geotechnical and Underground
Engineering of Ministry of Education, Tongji
University, 1239 Siping Road, Shanghai 200092,
People’s Republic of China

5	 State Key Laboratory of Explosion Science and Technology,
Beijing Institute of Technology, No. 5, South Street,
Zhongguancun, Haidian District, Beijing 100081,
People’s Republic of China

Nomenclature
k(x)	� Position-oriented material function
�	� Potential function
q	� Flux of potential field
n	� Unit normal vector to a surface
wl
jk

	� Weight between neuron k in hidden layer l − 1
and neuron j in hidden layer l

bl
j
	� Bias of neuron j in layer l

�	� Activation function

�	� Hyperparameters including all weights and
biases

Loss(�)	� Loss function for training
x Ω	� Collocation points to discretize the physical

domain
x Γ	� Collocation points to discretize the boundaries
MSE	� Mean square error loss form
�h(x;�)	� Potential function approximated by Neural

networks

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01633-6&domain=pdf

	 Engineering with Computers

1 3

G(x)	� Governing equation
𝜙̃, q̃	� Potential field and flux prescribed at boundaries
�i	� Learning rate
EEi	� Elementary effect for each input factor
�∗
i
	� Mean of the distribution of the elementary

effects of each input
�i	� Standard deviation of the distribution of the

elementary effects of each input
Λj	� Spectral curve of the Fourier progression
SFAST
i

	� First-order FAST sensitivity indices
STi	� Total order FAST sensitivity indices
e	� Relative error to measure the model accuracy
Ea	� Analytical solution
Ea	� Predicted solution
‖⋅‖	� L2-norm

1  Introduction

Recent years have witnessed the vast growing application of
neural networks in physics, this is partly due to the fact that
by training the neural network, high-dimensional raw data
can be converted to low-dimensional codes [1], and thus
the high-dimensional PDEs can be directly solved using a
‘meshfree’ deep learning algorithm, which improves com-
puting efficiency and reduces the complexity of problems.
The deep learning method deploys a deep neural network
architecture with nonlinear activation functions that intro-
duces the nonlinearity that the system as a whole needs for
learning nonlinear patterns. This lends some credence to the
application of a physics informed machine learning method
in discovering the physics behind the potential problems in
non-homogeneous media, which is a wide range of problems
in physics and engineering.

The current wave of deep learning started around 2006,
when Hinton et al. [2, 3] introduced deep belief nets and
unsupervised learning procedures that could create layers of
feature detectors without needs of labelled data. Equipped
with deep learning model, information can be extracted from
complicated raw input data with multiple levels of abstrac-
tion through a layer-by-layer process [4]. Various variants,
such as multilayer perceptron (MLP), convolutional neural
networks (CNN) and recurrent/recursive neural networks
(RNN) [5], have been developed and applied to, e.g. image
processing [6, 7], object detection [8, 9], speech recognition
[10, 11], biology [12, 13] and even finance [14, 15]. Over
the past decade, it has been widely used in applications due
to high performance demonstrated. Deep learning can learn
features from data automatically, and the features can be
used to get the approximation of solutions to differential
equations [16], which cast light on the possibility of using
deep learning as functional approximators.

Artificial neural networks (ANN) stand at the center of
the deep learning revolution, it can be traced back to the
1940s [17], but they became especially popular in the past
few decades due to the vast development in computational
power and sophisticated machine learning algorithms, such
as backpropagation technique and advances in deep neural
networks. Due to the simplicity and feasibility of ANNs to
deal with nonlinear and multi-dimensional problems, they
were applied in inference and identification by data scientists
[18]. They were also adopted to solve partial differential
equations (PDEs) [19–21], but shallow ANNs are unable
to learn the complex nonlinear patterns effectively. With
improved theories incorporating unsupervised pre-training,
stacks of auto-encoder variants, and deep belief nets, deep
learning with enhanced learning abilities can also serve as
an interesting alternative to classical methods such as FEM.

According to the universal approximation theorem [22,
23], any continuous function can be approximated by a
feedforward neural network with one single hidden layer.
However, the number of neurons of the hidden layer tends
to increase exponentially with increasing complexity and
non-linearity of a model. Recent studies show that DNNs
render better approximations for nonlinear functions [24].
Some researchers employed deep learning for the solution
of PDEs. E et al. developed a deep learning-based numerical
method for high-dimensional parabolic PDEs and back-for-
ward stochastic differential equations [25, 26]. Raissi et al.
[27] introduced physics-informed neural networks for super-
vised learning of nonlinear partial differential equations.
Beck et al. [28] employed deep learning to solve nonlinear
stochastic differential equations and Kolmogorov equa-
tions. Sirignano and Spiliopoulos [29] provided a theoreti-
cal proof for deep neural networks as PDE approximators,
and concluded that they converge as the number of hidden
layers tend to infinity. Karniadakis et al. presented physics-
informed neural networks for various applications includ-
ing fluid mechanics [30]. For problems in solid mechanics,
we presented a Deep Collocation Method (DCM) in [31,
32], which has been the basis for a stochastic deep collo-
cation method with neural architecture search strategy for
stochastic flow analysis in heterogeneous media. We found
that physics-informed deep learning model can account for
stochastic disturbance/uncertainties efficiently and stably in
[33]. An alternative to physics informed neural networks
based on the strong form, such as the DCM, the Deep
Energy Method (DEM) [34–37] takes advantage of the total
potential energy in the loss instead of a BVP.

The problems of potential represent a category of physical
and engineering problems. For some physical parameters in
potential problems, for example, heat conductivity, perme-
ability, permittivity, resistivity, magnetic permeability, tends
to have a spatial distribution, and they can vary with respect

Engineering with Computers	

1 3

to one or more coordinates. To deal with these problems, the
non-homogeneous problems are translated into homogene-
ous problems with some classes of material variations. The
steady-state heat conduction analysis of FGMs analysis is
a representative of potential problems. Due to the inherent
mathematical difficulties, closed-form solutions exist in a
few simple cases. Some traditional powerful methods, such
as the finite element method (FEM), the boundary element
method (BEM), and the method of fundamental solutions
(MFS) and the dual reciprocity method (DRM) were used
to solve the potential problems [38, 39]. The ‘meshfree’
physics-informed neural networks offered a novel and robust
approach in discovering the nonlinear patterns behind the
potential patterns, especially for higher dimensions.

The learning ability of deep neural networks strongly
relies on the optimization algorithm and the neural network
configurations, such as the activation function, number of
neurons and layers, weight initialization methods, number
of iterations, and so on. In this paper, we therefore compare
different parameters to offer suggestions on the choice of
a favourable configuration for the physics-informed neural
network. Moreover, to increase the generality and robust-
ness of the physics-informed deep learning based colloca-
tion method, the material transfer learning technique is inte-
grated in the model, which will reduce the computation costs
for different material variation types and help to improve
the numerical results. Further, to unveil those influencing
parameters for the proposed model, a global sensitive analy-
sis is supplemented in the paper, which will be instructive
for setting up physics-informed neural networks.

The paper is organised as follows: First, the three-dimen-
sional potential problem with in-homogeneous media is
presented. Then we introduce the physics-informed deep
learning-based collocation method, which includes the
neural network architecture, activation functions, sampling
methods, a convergence proof, the material transfer learning
and sensitivity analysis. Subsequently, a sufficient survey of
numerical examples is presented, which investigated differ-
ent neural network configurations, material transfer learning

and model sensitivity analysis. Finally, the effectiveness of
the deep learning method is demonstrated for solving three-
dimensional potential problems in non-homogeneous media.

2 � The governing equation for 3D problems
of potential

The general partial differential equation for potential func-
tion � defined on a region Ω bounded by surface � , with an
outward normal n , can be written as:

where k is a position-oriented material function. Equa-
tion (1) is the field equation for a wide range of problems
in physics and engineering, such as heat transfer, incom-
pressible flow, gravity field, shaft torsion, electrostatics and
magnetostatics, some of which are shown in Table 1 [40].

The Dirichlet �D and Neumann boundary �N conditions
are given as:

where n is the unit outward normal to �N . The material
properties of functionally graded materials (FGMs) vary
gradually in space. Classical variations of k(x) take the form
k(x) = k0f (x) , k0 denoting a reference value and f (x) is the
material property variation function. Among the most com-
mon variation functions are the quadratic, exponential and
trigonometric:

The governing equations for different material variations in
the z−direction are summarized in Table 2:

(1)(k(x)�,i),i = k(x)�,ii + k,i(x)�,i = 0,

(2)
𝜙(x, t) = 𝜙̄, x ∈ 𝜏D,

− k(x)
𝜕𝜙(x, t)

𝜕n
= q̄, x ∈ 𝜏N ,

(3)

Parabolic ∶ f (x) = (a1 + a2x)
2

Exponential ∶ f (x) = (a1e
�x + a2e

−�x)2

Trigonometric ∶ f (x) = (a1cos�x + a2sin�x)
2.

Table 1   Problems belong to the category of problems of potential

Problems Scalar function � k(x) Boundary condition

Dirichlet Neumann

Heat transfer Temperature T Thermal conductivity (k) T = T̄ Heat flow q = −k
�T

�n

Ground water flow Hydraulic head H Permeability (k) H = H̄ Velocity flow q = −k
�H

�n

Electrostatic Electrostatic potential V Permittivity ( �) V = V̄ Electric flow q = −k
�V

�n

Electric conduction Electropotential E Resistivity (k) E = Ē Electric current q = −k
�E

�n

Magnetostatic Magnetic potential M Magnetic permeability ( �) M = M̄ Magnetic flux density q = −k
�M

�n

	 Engineering with Computers

1 3

3 � Physics‑informed deep learning‑based
collocation method

3.1 � Feed forward neural network

The basic architecture of a fully connected feedforward neu-
ral network is shown in Fig. 1. It comprises multiple layers:
an input layer, one or more hidden layers and an output layer.
Each layer consists of one or more nodes called neurons,
shown in Fig. 1 by the small colored circles. For an intercon-
nected structure, every two neurons in neighboring layers
have a connection, where the weights between neuron k in
hidden layer l − 1 and neuron j in hidden layer l is denoted
by wl

jk
 , see Fig. 1. No connection exists among neurons in

the same layer as well as in the non-neighboring layers.
Input data, defined from x1 to xN , flow through this neural
network via connections between neurons, starting from the
input layer, through the hidden layers l − 1 , l, to the output
layer, which eventually outputs data from y1 to yM.

The activation function is defined for an output of each
neuron in order to introduce a non-linearity into the neural
network and make the back-propagation possible, where gra-
dients are supplied along with an error to update weights and
biases. The activation function in layer l will be denoted by
� here.

There are many activation functions � proposed for
inference and identification with neural networks, such as

sigmoids function [41], hyperbolic tangent function (Tanh)
[41], Rectified linear units (Relu) , to name a few. And some
recent smooth activation functions, such as Swish [42],
LeCuns Tanh [41], Bipolar sigmoid [41], Mish [42], Arctan
[43], listed in Appendix B Table 9 have been studied and
compared in the numerical example section. All selected
activation functions must be smooth enough to avoid gradi-
ent vanishing during backpropagation, since the governing
equation is introduced in the loss which includes the second-
order derivatives of the field variable. Afterward, the value
on each neuron in the hidden layers and output layer can
be yielded by adding the weighted sum of values of output
values from previous layer to basis. An intermediate quantity
for neuron j on hidden layer l is defined as

and its output is given by the activation of the above
weighted input

where yl−1
k

 is the output from previous layer.
Based on the previous derivation and description, we can

draw a definition which will be used in Section 3.3:

Definition 3.1  (Feedforward Neural Network) A generalized
neural network with activation function can be written in
a tuple form

(
(f1, �1),… , (fn, �n)

)
 , fi referring to an affine-

line function (fi = Wix + bi) that mapps Ri−1
→ Ri . The tuple

formed neural network in all defines a continuous bounded
function mapping Rd to Rn:

where d indicates the dimension of the inputs, n the number
of field variables, � = {W;b} consisting of hyperparameters
such as weights and biases and ◦ denotes the element-wise
operator.

The universal approximation theorem [22, 23] states that
this continuous bounded function F with nonlinear activa-
tion � can be adopted to capture the nonlinear property of the

(4)al
j
=
∑

k

wl
jk
yl−1
k

+ bl
j
,

(5)yl
j
= �

(
al
j

)
= �

(
∑

k

wl
jk
yl−1
k

+ bl
j

)
,

(6)FNN ∶ ℝ
d
→ ℝ

n, with Fn(x;�) = �n◦fn◦⋯◦�1◦f1

Table 2   Governing equation
deduced by considering various
forms of k(x)

k(x) Differential equation

k0(a1 + a2z)
2 (a1 + a2z)∇

2� + 2a2�z = 0

k0(a1e
�z + a2e

−�z)2 (a1e
�z + a2e

−�z)2∇2� + 2�(a2
1
e2�z + a2

2
e−2�z)�z = 0

k0(a1cos�z + a2sin�z)
2 (a1cos�z + a2sin�z)

2∇2� + 2�(0.5(a2
2
− a

1

1
)

sin2�z + a1a2cos2�z)�z
= 0

Fig. 1   Architecture of a fully connected feedforward back-propaga-
tion neural network

Engineering with Computers	

1 3

system, in our case the potential problem. With this defini-
tion, we can define [44]:

Theorem 1  If �i ∈ Cm(Ri) is non-constant and bounded, then
Fn is uniformly m-dense in Cm(Rn).

3.2 � Backpropagation

Backpropagation (backward propagation) can be used to
train multilayer feed-forward networks by calculating the
gradient of a loss function and finding the minimum value
of the loss function. The backward (output-to-input) flow
determines how to adjust each weight as shown in Fig. 2.

Backpropagation is based on the chain rule, which is used
to calculate the derivative of loss function with regard to the
weight in the network. The governing equation in our prob-
lem requires the second partial derivatives of the potential
function �(x) . To find the weights and biases, a loss func-
tion Loss(f, �) is defined. The backpropagation algorithm for
computing the gradient of this loss function Loss(f , �) , the
weight coefficients w and thresholds of neurons b can be
written as follow:

Fig. 2   The ‘compute graph’ for the feedforward neural network

	 Engineering with Computers

1 3

3.3 � Physics‑informed deep collocation method

To train the network, we place collocation points in
the physical domain and at the boundaries denoted by
x Ω = (x1,… , xNΩ

)T and x Γ(x1,… , xNΓ
)T , respectively. Then

the potential function � is approximated with the aforemen-
tioned deep feedforward neural network �h(x;�) . Thus, a
loss function related to the underlying BVP is constructed.
Substituting �h

(
x Ω;�

)
 into governing equation, we obtain

which results in a physics-informed deep neural network
G
(
x Ω;�

)
 . The boundary conditions illustrated in Section 2

can also be expressed by the neural network approximation
�h

(
x Γ;�

)
 as: On ΓD , we have

On ΓN,

where qh
(
x ΓN

;�
)
 can be obtained from Eq. (2) by combing

�h
(
x ΓN

;�
)
 . Note the induced physics-informed neural net-

work G(x;�) , q(x;�) share the same parameters as �h(x;�) .
Considering the generated collocation points in domain and
on boundaries, they can all be learned by minimizing the
mean square error loss function [45]:

with

where x Ω ∈ RN , � ∈ RK are the neural network param-
eters. Loss(�) = 0 , �h(x;�) is then a solution to potential
function. Here, the defined loss function measures how
well the approximation satisfies the physical law (govern-
ing equation), boundaries conditions. Our goal is to find a

(7)G
(
x Ω;�

)
= k(x)�h

,ii

(
x Ω;�

)
+ k,i(x)�

h
,i

(
x Ω;�

)
,

(8)𝜙h
(
x ΓD

;�
)
= 𝜙̃,

(9)qh
(
x ΓN

;�
)
= q̃.

(10)Loss(�) = MSE = MSEG +MSEΓD
+MSEΓN

,

(11)

MSEG =
1

Nd

Nd∑

i=1

‖‖‖G
(
x Ω;�

)‖‖‖
2

=
1

NΩ

NΩ∑

i=1

‖‖‖k(xΩ)𝜙
h
,ii

(
x Ω;�

)
+ k,i(xΩ)𝜙

h
,i

(
x Ω;�

)‖‖‖
2

,

MSEΓD
=

1

NΓD

NΓD∑

i=1

‖‖‖𝜙
h
(
x ΓD

;�
)
− 𝜙̄

‖‖‖
2

,

MSEΓN
=

1

NΓN

NΓN∑

i=1

‖‖‖‖
q
(
x ΓN

;�
)
− q̄

‖‖‖‖

2

=
1

NΓN

NΓN∑

i=1

‖‖‖‖−k(xΓN
)
𝜕𝜙

(
xΓN

;�
)

𝜕n
− q̄

‖‖‖‖

2

.

set of parameters � that the approximated potential �h(x;�)
minimizes the loss Loss. If Loss is a very small value, the
approximation �h(x;�) is very closely satisfying governing
equations and boundary conditions, namely

The solution of heat conduction problems by deep colloca-
tion method can be reduced to an optimization problem. In
the deep learning Tensorflow framework, a variety of opti-
mizers are available. One of the most widely used optimiza-
tion methods is the Adam optimization algorithm, which is
also adopted in the numerical study. The idea is to take a
descent step at collocation point xi with Adam-based learn-
ing rate �i,

and then the process in Eq. (13) is repeated until a conver-
gence criterion is satisfied.

3.4 � Convergence of deep collocation method
for non‑homogeneous PDEs

With the universal approximation theorem of neural net-
works, a feedforward neural network is used to approxi-
mate the potential function as �h(x;�) . The approximation
power of neural networks for a quasilinear parabolic PDEs
is shown by Sirignano et al. [29]. For non-homogeneous
elliptic PDEs, the convergence study can be boiled down to:

The non-homogeneous PDEs has a unique solution, s.t.
� ∈ C2(Ω) with its derivatives uniformly bounded. Also,
the conductivity function k(x) is assumed to be C1,1 ( C1 with
Lipschitz continuous derivative).

Theorem 2  Assume that Ω is compact with measures �1 , �2 ,
and �3 whose supports are constrained in Ω , ΓD , and ΓN .
Furthermore, the governing Eq. (1) subject to 2 has a unique
classical solution and material function k(x) being C1,1
( C1 with Lipschitz continuous derivative). Then, ∀ 𝜀 > 0 ,
∃ K > 0 , which may dependent on supΩ‖‖�ii

‖‖ and supΩ‖‖�i
‖‖ ,

s.t. ∃ �h ∈ Fn , satisfies Loss(�) ≤ K�

Proof  For governing Eq. (1) subject to 2, according to Theo-
rem 1, ∀ 𝜀 > 0 , ∃ �h ∈ Fn , s.t.

Recalling that the loss is constructed by Eq. (10), for MSEG
and applying triangle inequality, we obtain:

(12)�h = argmin
�∈RKLoss(�)

(13)�i+1 = �i + �i▽�
Loss

(
xi;�i

)

(14)
∃ �h ∈ Fn, s.t. as n → ∞, Loss(�) → 0, �h

→ �.

(15)

sup
x∈Ω

‖‖‖𝜙,i

(
x Ω

)
− 𝜙h

,i

(
x Ω

)‖‖‖
2

+ sup
x∈Ω

‖‖‖𝜙,ii

(
x Ω

)
− 𝜙h

,ii

(
x Ω

)‖‖‖
2

< 𝜀

Engineering with Computers	

1 3

Let us consider the C1,1 conductivity function k(x) ,
∃ M1 > 0, M2 > 0 , ∃ x ∈ Ω , ‖k(x)‖ ⩽ M1 , ‖‖k,i(x)‖‖ ⩽ M2 .
From Eq. (15), we can then obtain:

On boundaries ΓD and ΓN , we can obtain:

Therefore, using Eqs. 17 and 18, as n → ∞ , we obtain

	� ◻

With Theorem 2 and the condition that Ω is a bounded
open subset of R, ∀n ∈ N+ , �h ∈ Fn ∈ L2(Ω) , it can be con-
cluded from Sirignano et al. [29] that:

Theorem 3  ∀ p < 2 , �h ∈ Fn converges to � strongly in
Lp(Ω) as n → ∞ with � being the unique solution to the
potential problems.

(16)

‖‖‖G
(
x Ω;�

)‖‖‖
2

⩽
‖‖‖k(xΩ)�

h
,ii

(
x Ω;�

)‖‖‖
2

+
‖‖‖k,i(xΩ)�

h
,i

(
x Ω;�

)‖‖‖
2

(17)
∫Ω

k
2

,i
(xΩ)

(
�h

,i
− �,i

)2

d�1 ⩽ M
2

2
�2�1(Ω)

∫Ω

k
2(xΩ)

(
�h

,ii
− �,ii

)2

d�1 ⩽ M
2

1
�2�1(Ω)

(18)

∫ΓD

(
�h

(
x ΓD

;�
)
− �

(
x ΓD

;�
))2

d�2 ⩽ �2�2(ΓD)

∫ΓN

k2(xΓN
)
(
�h
,n

(
x ΓN

;�
)
− �,n

(
x ΓN

;�
))2

d�3 ⩽ M2
1
�2�3(ΓN)

(19)

Loss(�) =
1

NΩ

NΩ∑

i=1

‖‖‖k(xΩ)𝜙
h
,ii

(
x Ω;�

)
+ k,i(xΩ)𝜙

h
,i

(
x Ω;�

)‖‖‖
2

+
1

NΓD

NΓD∑

i=1

‖‖‖𝜙
h
(
x ΓD

;�
)
− 𝜙̄

‖‖‖
2

+
1

NΓN

NΓN∑

i=1

‖‖‖‖−k(xΓN
)
𝜕𝜙

(
xΓN

;�
)

𝜕n
− q̄

‖‖‖‖

2

⩽
1

NΩ

NΩ∑

i=1

‖‖‖k(xΩ)𝜙
h
,ii

(
x Ω;�

)‖‖‖
2

+
1

NΩ

NΩ∑

i=1

‖‖‖k,i(xΩ)𝜙
h
,i

(
x Ω;�

)‖‖‖
2

1

NΓD

NΓD∑

i=1

‖‖‖𝜙
h
(
x ΓD

;�
)
− 𝜙̄

‖‖‖
2

+
1

NΓN

NΓN∑

i=1

‖‖‖‖−k(xΓN
)
𝜕𝜙

(
xΓN

;�
)

𝜕n
− q̄

‖‖‖‖

2

⩽ (M2
2
+M2

1
)𝜀2�1(Ω) + 𝜀2�2(ΓD) +M2

1
𝜀2�3(ΓN) = K𝜀

In summary, for feedforward neural networks Fn ∈ Lp
space ( p < 2 ), the approximated solution �h ∈ Fn will con-
verge to the solution to the non-homogeneous PDE.

3.5 � Collocation points generation

Model training is an important process in machine learning
and the quality of training datasets determines the reliability
of the machine learning model to a large extent. The deep
collocation method (DCM) utilizes physics-informed neural
networks for solving PDEs with randomly generated train-
ing points in the physical domain. To test the influence of
training points on the stability and accuracy, different sam-
pling methods are compared. The Halton and Hammersley
sequences generate random points by a constructing the radi-
cal inverse [46]. They are both low discrepancy sequences.
The method of Korobov Lattice creates samples from
Korobov lattice point sets [47]. Sobol Sequence is a quasi-
random low-discrepancy sequence to generate sampling
points [48]. Latin hypercube sampling (LHS) is a statistical
method, where a near-random sample of parameter values is
generated from a multidimensional distribution [49]. Monte
Carlo methods can create points by repeated random sam-
pling [50]. The distribution plots of different sampling points
inside a cube is listed in Appendix B Table 10 (Fig. 3).

3.6 � Material transfer learning

To improve the generality and robustness of the DCM, trans-
fer learning is exploited, which makes use of the information
from an already trained model yielding to training with less
data and a reduced training time. The basic idea can be found
in Fig. 4. For different material variations in nonhomogene-
ous media, the ‘knowledge’ of one material model can be
exploited as the pretrained model resulting in a two-stage
paradigm. The material transfer learning model is divided

Fig. 3   Schematic diagram of physics-informed neural networks

	 Engineering with Computers

1 3

into two parts, i.e. pretraining, where the network is trained
on a large dataset and longer iterations for one material vari-
ation type. The remaining part is the fine-tuning, where the
pretrained model is trained on other material variations with
few data and number of epochs. Consequently, the weights
and biases and network configurations from a trained model
are passed to other relevant models.

There are still some unresolved limitations in the lit-
erature. Most importantly, physics-informed deep learning
algorithms lack a more systematic procedure to prevent over-
fitting and finding global minima.

4 � Sensitivity analysis

Algorithm-specific parameters, such as the neural archi-
tecture configurations, parameters related to optimizers
and number of collocation points significantly influence
the model’s accuracy. To quantify their influence on the
accuracy, a global sensitivity analysis (GSA) is performed.
Classical GSA including regression methods, screening
approaches, such as Morris method [51], the variance-
based measures, such as Sobol’s method [52], and the Fou-
rier amplitude sensitivity test (FAST) [53], or the extended
FAST (EFAST) [54].

Variance-based methods are usually more computation-
ally expensive than the derivative-based methods as well
as the regression methods. If the model or the parameters
in analysis is large, the use of variance-based method can
be costly. The method of Morris is generally robust to cor-
rectly screen the most and least sensitive parameters for a
highly parameterized model with 300 times fewer model
evaluations than the Sobol’ method [55]. Therefore, the

computational cost of a sensitivity analysis can potentially
be reduced by first performing parameter screening using the
Morris method to identify non-influential parameters, reduc-
ing the dimension of the parameter space to be studied in
further analysis, then filter them again, but with the eFAST
method. In this way, we can quantifying the effects of inputs
more accurately with a relatively small amount of time.

4.1 � Method of Morris

The method of Morris [56] is a screening technique used
to rank the importance of parameters by averaging coarse
difference relations termed elementary effects. Given a
model with n parameters, X = X1,X2,…Xn denoting a vec-
tor of parameter values, we can specify an objective function
y(x) = f (X1,X2,…Xn) , change the variables Xi by specific
ranges and then calculate the distribution of elementary
effects (EE) of each input factor with respect to the model
outputs, i.e.

where f(x) represents the prior point in the trajectory. Using
the single trajectory shown in Eq. (20), the elementary
effects of each parameter can be calculated with p + 1 model
evaluations. After sampling the trajectories, the resulting
sets of elementary effects are then averaged to obtain the
total-order sensitivity of the i-th parameter �∗

i
:

(20)EEi =
f (x1,… , xi + Δi,… , xn) − f (x)

Δi

(21)�∗
i
=

1

n

n∑

j=1

|||EE
j

i

|||

Fig. 4   Transfer learning

Engineering with Computers	

1 3

Similarly, the variance of the set of EEs can be calculated as

The mean value �∗ quantifies the individual effect of the
parameters on an output while the variance �2 indicates the
influence of parameter interactions. We rank the parameters
according to

√
�2 + �∗2.

4.2 � eFAST method

The eFAST method [54] is based on Fourier transformations.
The spectrum is obtained by each parameter and the output
variance of model results due to interactions. Employing a
suitable search function, the model y(x) = f (X1,X2,…Xn)
can be transformed by the Fourier transform into y = f (s)

with

The spectral curve of the Fourier progression is defined as
Λj = A2

j
+ B2

j
 . The variance of the model results due to the

uncertainty in the parameter Xi is given by

with the parametric frequency �1 , the spectrum of the Fou-
rier transform Λ , and the non-zero integers Z0 . The total
variance can be obtained by cumulatively summing the spec-
tra at all frequencies

(22)�2
i
=

1

n − 1

n∑

j=1

(EE
j

i
− �i)

2

(23)y = f (s) =

+∞∑

j=−∞

(
Ajcos(js) + Bjsin(js)

)
,

(24)Aj =
�

2 ∫

−
�

2

�

2

f (s)cos(js)ds,

(25)Bj =
�

2 ∫

−
�

2

�

2

f (s)sin(js)ds.

(26)Di =
∑

p∈Z0

Λp�i,

(27)D = 2

∞∑

j=1

Λj.

The fraction of the total output variance caused by each
parameter apart from interactions with other parameters is
measured by the first-order index

To find the total sensitivity of Xi , the frequency of Xi is
set to �i , while a different frequency �′ is set for all other
parameters. By calculating the frequency �i and its higher
harmonics p�i spectra, the output variance D−i due to the
influence of all parameters except Xi and their interrelation-
ships can be obtained. Thus, the total-order sensitivity indi-
ces can be obtained:

5 � Numerical examples

In this section, several cases are considered testing the
accuracy and efficiency of our DCM including the influ-
ence of suitable NN configurations, sampling methods and
optimizers taking advantage of GSA. Also, different mate-
rial variations using material transfer learning are studied.

(28)SFAST
i

=
Di

D
.

(29)STi =
D − D−i

D
.

Table 3   Hyper-parameters
settings in training

Model Hyper-parameters Values

Adam optimizer Learning rate 0.001
L-BFGS-B optimizer Maximum number of iterations to perform 50,000

Maximum number of function evaluations 50,000
Maximum number of variable metric corrections 50
Maximum number of line search steps (per iteration) 50

Fig. 5   Horizontal barplot of the mean absolute elementary effects �∗

	 Engineering with Computers

1 3

The accuracy is measured in the relative error between the
predicted solution and the analytical solution:

where Ea is the analytical solution and Epred is the predicted
solution while ‖⋅‖ refers to the L2-norm. All simulations are
done on a 64-bit macOS Catalina computer with Intel(R)
Core(TM) i7-8850H CPU, 32GB memory. The parametric
settings for training are summarised in Table 3.

5.1 � Case 1: Sensitivity analysis

First, we perform a SA to determine the key parameters of
the deep collocation method.

5.1.1 � Parameters screening with Morris method

The sensitivity indices computed by the Morris screening
method with 30 trajectories and 4 grid levels are listed in

(30)e =

‖‖‖Epred − Ea
‖‖‖

‖‖Ea
‖‖

Figs. 5 and 6, showing the effect of the numbers of neu-
rons, layers, iterations and collocation points on the loss
values. Figure 5 depicts the horizontal barplot of the GSA
measure �∗ . The highest �∗ value is found for the numbers
of layers and neurons. The numbers of collocation points
barely have an effect on the loss value. According to a clas-
sification scheme proposed by Garcia Sanchez et al. [57],
the ratio �∕�∗ allows the characterisation of the model
parameters in terms of (non-)linearity (𝜎∕𝜇∗ < 0.1) , (non-)
monotony (0.1 < 𝜎∕𝜇∗ < 0.5) or possible parameter inter-
actions (1 < 𝜎∕𝜇∗) , see also Fig. 6. For our test models, all
parameters are in the range 𝜎∕𝜇∗ > 1 suggesting that most
parameters exhibit either non-linear behaviour, interac-
tion effects with each other or both. The plot of the mean
value and standard deviation (�,�∗) in Fig. 6 reveals that
the most influential parameter with largest

√
�2 + �∗2 is the

numbers of layers. The number of neurons and iterations is
less important. The collocation points inside the physical
domain and on the surface do not have a significant impact
neither. Thus, while tuning the parameters of the model,

Fig. 6   � versus �∗ for parameter screening with Morris method

Fig. 7   Scatter plot of loss value
against parameter values with
3000 runs

Fig. 8   Results for first-order and total indices with eFAST method

Engineering with Computers	

1 3

more attention should be paid on the numbers of layers, neu-
rons and iterations.

5.1.2 � Variance‑based sensitivity indices

We now take advantage of the variance-based eFAST
method to compute sensitivity indices. The independent
first-order sensitivity indices Si and dependent total order
sensitivity indices STi can be found in Fig. 8. Due to the high
computational costs, with 3000 simulations run and 1000
generated samples, no analyses concerning the variation of
in Si and STi with different sample sizes were performed.

The associated scatter plots are shown in Fig. 7. The more
randomly the loss values are distributed, the less sensitive
the parameters is. According to Fig. 7, the number of layers
is the most influential parameter, followed by the number of
neurons and number of iterations.

The first-order sensitivity index Si represents the param-
eter importance. The number of layers affects the model
most, followed by the numbers of neurons and the least
influential parameter is the number of iterations, which
agrees well with the results of Morris Method. However,
the first-order indices are all beyond 0.01, which manifest
that those algorithm-specific parameters individually do not
have too much influence on the loss value of the model.
The total effects index STi greater than 0.8 can be regarded
very important parameters. Again, the number of layers and
neurons is greater than 0.8. For the number of iterations,
it is between 0.5 to 0.8. However, there is a big difference
between the value of total and first-order sensitivity indices,
which quantifies the effects of the parameter’s interactions. It
can be concluded that the output variance can be attributed
to their interactions with other parameters rather than their
nonlinear effects and all interactions between these three
parameters are noteworthy.

5.2 � Case 2. Cube with material gradation
along the z‑axis

Let us consider a unit cube (L = 1) with prescribed constant
temperature on two sides. The top surface of the cube at z =
1 is maintained at a temperature of T = 100 while the bottom

Fig. 9   Thermal conductivity variation along the z direction Fig. 10   The boundary conditons of the unit cube

Table 4   Analytical solutions for various forms of thermal conductiv-
ity k(x)

k(x) Analytical solution
for potential func-
tion

5(1 + 2z)2 � =
300z

1+2z

5e2z � = 100
1−e−2z

1−e−2L

5(cosz + 2sinz)2 � = 100
(cot(L)+2)∗sinz

(cosz+2sinz)

Fig. 11   Comparison of results predicted by DCM with different acti-
vation functions

	 Engineering with Computers

1 3

temperature at z = 0 is zero. The remaining four faces are
insulated (zero normal flux). Three different classes of vari-
ations shown in Table 4 are considered [58]. The profiles of
the thermal conductivity k(z) of the three material variation
cases are illustrated in Fig. 9, and the boundary conditions
of the unit cube can be found in Fig. 10. For each nonho-
mogeneous thermal conductivity, the analytical solution is
summarized in Table 4.

5.2.1 � Deep collocation method configurations

First, different NN configurations are investigated. Figure 11
shows the relative error for various activation functions and
layers. The arctan function yields the most stable and accu-
rate results. Both arctan and Tanh function outperform the

other activation functions. Figure 12 depicts the influence
of different sampling methods on the relative error. Random
sampling method obtained most stable and accurate poten-
tials with increasing layers. Korobov, Hammersley, LatinHy-
percube sampling methods also provide reasonable results.

Next, we focus on various material variations, see Fig. 13.
All material variations can be predicted accurately, but the
most accurate results are obtained for the exponential con-
ductivity. The results from Figs. 11, 12 and 13 suggest that 2
hidden layers are a good choice for the underlying problem.

We study now different numbers of collocation points
(inside the cube and on its surface). The relative error in
the temperature is depicted in Figs. 14 and 16. We also
compared our results to results from FEM in Fig. 15. The
temperature profiles along the z-axis for three material

Fig. 12   Comparison of results predicted by DCM with different sam-
pling methods

Fig. 13   Comparison of predicted results for different material varia-
tions

Fig. 14   Comparison of predicted results for different collocation
points in the cube

Fig. 15   Comparison of predicted results with FEM versus numbers of
points

Engineering with Computers	

1 3

variations are plotted with the corresponding analytical
solutions in Fig. 17.

The predicted temperature and flux distributions for three
material variations inside the cube are shown in Figs. 18, 19
and 20. The heat distribution varies with graded variation
in the z coordinates which is consistent with the material
property of the FGMs.

Let us now test the influence of the optimizer on the
results. First-order methods minimize the function using
its gradient, while second-order methods minimize the loss
function using the second-order derivatives (Hessian infor-
mation). In this application, a combination of these two
optimizers is employed. The used first-order method is the
Adam algorithm while L-BFGS is the tested second-order
method. The convergence history for different optimizers is
illustrated in Fig. 21. Although the first-order optimizer can
be faster, they require more iterations. The L-BFGS opti-
mizer needs less iterations, but there is the risk in being
trapped in local minima. Using the combined optimizers,
the loss reaches a significant smaller value with acceptable
number of iterations and simultaneously ensures the solution
being close to the global minima. The results for different
number of layers are illustrated in Fig. 22.

5.2.2 � Material transfer learning

The loss vs number of iterations is shown in Fig. 23. After
funetuning, the loss decreases to a smaller value in less
iterations for all three material variations. The numerical
results are summarized in Table 5 demonstrating that the
computational effort can be drastically reduced with transfer
learning.

Figure 24 shows the loss vs iteration using transfer learn-
ing for different material parameters while Tables 6 and 7
list the accuracy and CPU time with and without transfer
learning.

Fig. 16   Comparison of predicted results for different collocation
points on each boundary

Fig. 17   Temperature profile in the Z direction for different material
variations

Fig. 18   a Predicted temperature
and b Predicted flux for expo-
nential material variation for the
functionally graded unit cubic

	 Engineering with Computers

1 3

Fig. 19   a Predicted temperature
and b Predicted flux for trigono-
metric material variation for the
functionally graded unit cubic

Fig. 20   a Predicted temperature
and b Predicted flux for quad-
ratic material variation for the
functionally graded unit cubic

Fig. 21   Comparison of different optimizers for deep collocation
method

Fig. 22   Convergence graph for DCM with increasing hidden layers

Engineering with Computers	

1 3

5.3 � Case 3: Cube with a 3D material gradation

Now, we consider a cube with the following three-dimen-
sional thermal conductivity variation:

The iso-surfaces of the 3D variation of the thermal conduc-
tivity is illustrated in Fig. 25. The analytical solution for
this variation is

The boundary conditions at the six faces of the cube are
listed in Table 8.

The predicted temperature and flux distributions are
shown in Fig. 26. The predicted relative error of the tem-
perature across the cube is 5.215360e-03, see also Fig. 27.

5.4 � Case 4: Irregular‑shaped annular sector

Next, we present results for an irregular-shaped annular sec-
tor as depicted in Fig. 29. The inner radius is 0.3, the outer
radius is 0.5, the top surface is at Z = 0.1 and the thermal
conductivity for the geometry varies exponentially accord-
ing to

The variation of the thermal conductivity k(z) is illustrated
in Fig. 28. The temperature is specified along the inner
radius as Tinner = 0 , and outer radius as Touter = 100 ; all

(31)
k(x, y, z) =(5 + 0.2x + 0.4y + 0.6z + 0.1xy

+ 0.2yz + 0.3zx + 0.7xyz)2

(32)

�(x, y, z)

=
xyz

(5 + 0.2x + 0.4y + 0.6z + 0.1xy + 0.2yz + 0.3zx + 0.7xyz)

(33)k(z) = 5e(3z)

Fig. 23   Loss vs iteration using transfer learning with different mate-
rial variations

Table 5   Relative error and training time for material variation with
transfer learning

Results Material variation

Exponential Exponential Quadratic Trigono-
metric

Without TL With TL With TL With TL

Relative
error

4.2846e-06 3.9015e-06 3.7033e-06 3.6562e-06

Training
time

45.5s 9.1s 22.4s 18.3s

Fig. 24   Loss vs iteration using
transfer learning with different
material parameters

	 Engineering with Computers

1 3

other surfaces are insulated. The boundary conditions of
the geometry are shown in Fig. 29.

The results of the predicted temperature can be found in
Figs. 30 and 31 and is compared to a FEM solution using
the commercial software package ABAQUS, as no analytical
solution is available for this problem. The temperature along
the radial direction at the edge is plotted and compared with
results obtained by ABAQUS in Fig. 32.

6 � Conclusion

We presented a transfer learning-based deep collocation
method (DCM) for solving the problems of potential in non-
homogeneous media. It avoids classical discretization meth-
ods, such as FEM, and treats the problem as minimization
problem, minimizing a loss function which is related to the
underlying governing equation. Thanks to the nonlinear acti-
vation function, the approach enables us to discover complex
nonlinear pattern. The DCM requires sampling inside the
physical domain. Therefore, we obtained a suitable sampling
method for selected problems. To find the most favorable
configuration of the neural network for specific problems, we
carried out a sensitivity analysis quantifying the influence of
algorithm-specific parameters on specific outputs such as the
relative error in the L2 norm. For different material variation
forms and material parameters, a material transfer learning is
embedded into the framework to enhance the robustness and
generality of this deep collocation method. To demonstrate
the performance of the proposed DCM, various benchmark
problems including the heat transfer and a representative
potential problem are studied.

Table 6   Relative error of
temperature with varying
material parameters

k0 �

3 2 1

Without TL With TL Without TL With TL Without TL With TL

6 1.9416e-05 8.6204e-06 1.7244e-05 8.2445e-06 3.8324e-06 3.1974e-06
5 1.8445e-05 1.9075e-05 6.8346e-06 9.9521e-06 1.9358e-06 2.7892e-06
4 1.4026e-05 8.0790e-06 6.8956e-06 1.6358e-05 4.8229e-06 2.3579e-06

Table 7   Computation time with
varying material parameters (s
or sec)

k0 �

3 2 1

Without TL With TL Without TL With TL Without TL With TL

6 6.9715e+01 1.8325e+01 4.6163e+01 1.0890e+01 4.7989e+01 5.4962e+00
5 5.6954e+01 1.2305e+01 4.0428e+01 1.0409e+01 4.3479e+01 4.9966e+00
4 6.4699e+01 1.3876e+01 5.3908e+01 6.9735e+00 3.8583e+01 6.1923e+00

Fig. 25   Representation of iso-surfaces for the three-dimensional vari-
ation of thermal conductivity k(x,y,z)

Table 8   The boundary conditons of cube with a 3D material grada-
tion

Boundary condition

Dirichlet Neumann

�(0, y, z) = 0 q(1, y, z) = −0.2zy(25 + 2y + 3z + zy)

�(x, 0, z) = 0 q(x, 1, z) = −0.1xz(50 + 2x + 6z + 3xz)

�(x, y, 0) = 0 q(x, y, 1) = −0.1xy(50 + 2x + 4y + xy)

Engineering with Computers	

1 3

Appendix A: Data flow for this study

The data flow inside all three modules is depicted in Fig. 33.
The first module is based on the DCM. The second module
includes a parametric study on the influence of algorithm-
specific parameters including numbers of collocation points
and parameters for the deep learning configurations on pre-
dictive accuracy, which in turn provides guidance for fur-
ther applications of the DCM. For the parametric analysis,
a two-step Morris screening method and EFAST method are
adapted providing qualitative and quantitative measures of
importance and interaction of DCM-specific parameters. To
facilitate and improve the generality and robustness of the
presented model, data are finally imported into a material
transfer learning model to transfer and expand the learned
knowledge between different material variations.

Fig. 26   Distributions of a
temperature; and (b)flux for the
cube with 3D material variation

Fig. 27   Temperature profile in diagonal line for the cube with a 3D
material gradation

Fig. 28   Profile of thermal conductivity in z direction. The exponential
variation of the conductivity is k(z) = 5e(3z)

Fig. 29   Annular sector subjected to thermal boundary conditions

	 Engineering with Computers

1 3

Appendix B: Activation function
and sampling method for comparison

The following table shows a list of classical activation func-
tions and its graphs that studied in this application, which
will help to choose a suitable activation for physics-informed
neural networks (Table 9).

Various sampling methods are used to generate sequence
of points within a cube. The purpose of the sampling method
is to generate training datasets for the DCM and improve the
training of the network. Proper sampling will help in case
the neural network is only trained on fixed points and prevent
a biased trained model, which may have a better prediction
on random new data (Table 10).

Fig. 30   Temperature distribu-
tion for irregular-shaped FGMs
obtained by a deep collocation
method; and b ABAQUS

Fig. 31   Flux distribution
for irregular-shaped FGMs
obtained by a deep collocation
method; and b ABAQUS

Fig. 32   Temperature comparison along the right top edge (indicated
by the arrow)

Engineering with Computers	

1 3

Table 9   Activation function Table B1: Activation function
Activation function Explicit function form Function figure Derivatives of function figure

Tanh f(x) = e2x−1
e2x+1 -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Tanh Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives Tanh Functions

Sigmoid f(x) = 1
1+e(−x)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Sigmoid Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Sigmoid Functions

Swish f(x) = x
1+e(−βx)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Swish Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Swish Functions

LeCuns Tanh f(x) = 1.7159× tanh(23x) -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

LeCuns Tanh Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of LeCuns Tanh Functions

Bipolar sigmoid f(x) = ex−1
ex+1

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Bipolar sigmoid Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Bipolar sigmoid Functions

Mish f(x) = x× tanh(ln(1 + ex))
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Mish Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Mish Functions

Arctan f(x) = tan−1(x)
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Arctan Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Arctan Functions

Silu f(x) = x× sigmoid(x)
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Silu Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Silu Functions

	 Engineering with Computers

1 3

Fig. 33   Data flow in physics-informed deep collocation method and sensitivity analysis

Table 10   Sampling method Table B2: Sampling method
Sampling method points figure Sampling method points figure

Latin hypercube Monte Carlo

Random Halton Sequences

Hammersley Sequence Korobov Lattice

Sobol Sequence

Engineering with Computers	

1 3

Acknowledgements  The authors extend their appreciation to the Dis-
tinguished Scientist Fellowship Program (DSFP) at King Saud Univer-
sity for funding this work.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Hinton GE, Salakhutdinov RR (2006) Reducing the dimensional-
ity of data with neural networks. Science 313(5786):504–507

	 2.	 Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm
for deep belief nets. Neural Comput 18(7):1527–1554

	 3.	 Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy
layer-wise training of deep networks. In: Advances in neural infor-
mation processing systems, pp 153–160

	 4.	 Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
Press, Cambridge

	 5.	 Patterson J, Gibson A (2017) Deep learning: a practitioner’s
approach. O’Reilly Media, Inc.

	 6.	 Yang L, MacEachren A, Mitra P, Onorati T (2018) Visually-ena-
bled active deep learning for (geo) text and image classification:
a review. ISPRS Int J Geo-Inf 7(2):65

	 7.	 Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Bax-
ter SL, McKeown A, Yang G, Wu X, Yan F et al (2018) Identify-
ing medical diagnoses and treatable diseases by image-based deep
learning. Cell 172(5):1122–1131

	 8.	 Ouyang W, Wang X, Zeng X, Qiu S, Luo P, Tian Y, Li H, Yang S,
Wang Z, Loy C-C et al (2015) Deepid-net: Deformable deep con-
volutional neural networks for object detection. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp 2403–2412

	 9.	 Zhao Z-Q, Zheng P, Shoutao X, Wu X (2019) Object detection
with deep learning. A review. IEEE Trans Neural Netw Learn Syst

	10.	 Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg
E, Case C, Casper J, Catanzaro B, Cheng Q, Chen G et al (2016)
Deep speech 2: end-to-end speech recognition in English and
mandarin. In: International conference on machine learning, pp
173–182

	11.	 Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K (2019) Speech
recognition using deep neural networks: a systematic review.
IEEE Access

	12.	 Yue T, Wang H (2018) Deep learning for genomics: a concise
overview. arXiv:​1802.​00810

	13.	 Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do
BT, Way GP, Ferrero E, Agapow P-M, Zietz M, Hoffman MM
et al (2018) Opportunities and obstacles for deep learning in biol-
ogy and medicine. J R Soc Interface 15(141):20170387

	14.	 Heaton JB, Polson NG, Witte JH (2017) Deep learning for finance:
deep portfolios. Appl Stochastic Models Bus Ind 33(1):3–12

	15.	 Fischer T, Krauss C (2018) Deep learning with long short-term
memory networks for financial market predictions. Eur J Oper Res
270(2):654–669

	16.	 Gyrya V, Shashkov MJ, Skurikhin AN, Tokareva S Machine learn-
ing approaches for the solution of the Riemann problem in fluid
dynamics: a case study

	17.	 McCulloch WS, Pitts W (1943) A logical calculus of the ideas
immanent in nervous activity. Bull Math Biophys 5(4):115–133

	18.	 Dias FM, Antunes A, Mota AM (2004) Artificial neural net-
works: a review of commercial hardware. Eng Appl Artif Intell
17(8):945–952

	19.	 Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks
for solving ordinary and partial differential equations. IEEE Trans
Neural Netw 9(5):987–1000

	20.	 Lagaris IE, Likas AC, Papageorgiou DG (2000) Neural-network
methods for boundary value problems with irregular boundaries.
IEEE Trans Neural Netw 11(5):1041–1049

	21.	 Kevin SM, James RM (2009) Artificial neural network method
for solution of boundary value problems with exact satisfac-
tion of arbitrary boundary conditions. IEEE Trans Neural Netw
20(8):1221–1233

	22.	 Funahashi K-I (1989) On the approximate realization of continu-
ous mappings by neural networks. Neural Netw 2(3):183–192

	23.	 Hornik K, Stinchcombe M, White H (1989) Multilayer feed-
forward networks are universal approximators. Neural Netw
2(5):359–366

	24.	 Mhaskar HN, Poggio T (2016) Deep vs. shallow networks: an
approximation theory perspective. Anal Appl 14(06):829–848

	25.	 Weinan E, Han J, Jentzen A (2017) Deep learning-based numeri-
cal methods for high-dimensional parabolic partial differential
equations and backward stochastic differential equations. Com-
mun Math Stat 5(4):349–380

	26.	 Han J, Jentzen A, Weinan E (2018) Solving high-dimensional
partial differential equations using deep learning. Proc Natl Acad
Sci 115(34):8505–8510

	27.	 Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. J Comput Phys 378:686–707

	28.	 Beck C, Weinan E, Jentzen A (2019) Machine learning approxi-
mation algorithms for high-dimensional fully nonlinear partial
differential equations and second-order backward stochastic dif-
ferential equations. J Nonlinear Sci

	29.	 Sirignano J, Spiliopoulos K (2018) Dgm: a deep learning algo-
rithm for solving partial differential equations. J Comput Phys
375:1339–1364

	30.	 George EK, Ioannis GK, Lu L, Paris P, Sifan W, Liu Y (2021)
Physics-informed machine learning. Nat Rev Phys 3(6):422–440

	31.	 Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Arti-
ficial neural network methods for the solution of second order
boundary value problems. Comput Mater Continua 59(1):345–359

	32.	 Guo H, Zhuang X, Rabczuk T (2019) A deep collocation method
for the bending analysis of Kirchhoff plate. Comput Mater Con-
tinua 59(2):433–456

	33.	 Guo H, Zhuang X, Chen P, Alajlan N, Rabczuk T (2022) Stochas-
tic deep collocation method based on neural architecture search
and transfer learning for heterogeneous porous media. Eng Com-
put 1–26

	34.	 Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo
H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach
to the solution of partial differential equations in computational
mechanics via machine learning: concepts, implementation and
applications. Comput Methods Appl Mech Eng 362:112790

	35.	 Nguyen-Thanh VM, Zhuang X, Rabczuk T (2020) A deep energy
method for finite deformation hyperelasticity. Eur J Mech A Solids
80:103874

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1802.00810

	 Engineering with Computers

1 3

	36.	 Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Trans-
fer learning enhanced physics informed neural network for phase-
field modeling of fracture. Theor Appl Fract Mech 106:102447

	37.	 Zhuang X, Guo H, Alajlan N, Zhu H, Rabczuk T (2021) Deep
autoencoder based energy method for the bending, vibration, and
buckling analysis of Kirchhoff plates with transfer learning. Eur
J Mech A Solids 87:104225

	38.	 Wenzhen Q, Chen W, Zhuojia F (2015) Solutions of 2d and 3d
non-homogeneous potential problems by using a boundary ele-
ment-collocation method. Eng Anal Bound Elem 60:2–9

	39.	 Alves CJS, Chen CS (2005) A new method of fundamental solu-
tions applied to nonhomogeneous elliptic problems. Adv Comput
Math 23(1–2):125–142

	40.	 Paris F, Canas J (1997) Boundary element method: fundamentals
and applications, vol 1. Oxford University Press, Oxford

	41.	 Dhingra A Activation functions in neural networks
	42.	 Misra D (2019) Mish: A self regularized non-monotonic neural

activation function. arXiv:​1908.​08681
	43.	 Zhang H, Weng T-W, Chen P-Y, Hsieh C-J, Daniel L (2018) Effi-

cient neural network robustness certification with general acti-
vation functions. In: Advances in neural information processing
systems, pp 4939–4948

	44.	 Hornik K (1991) Approximation capabilities of multilayer feed-
forward networks. Neural Netw 4(2):251–257

	45.	 Raissi M, Perdikaris P, Karniadakis GE (2017) Physics informed
deep learning (part i): Data-driven solutions of nonlinear partial
differential equations. arXiv:​1711.​10561

	46.	 Rafajłowicz E, Schwabe R (2006) Halton and Hammersley
sequences in multivariate nonparametric regression. Stat Prob
Lett 76(8):803–812

	47.	 Wang X, Sloan IH, Dick J (2004) On Korobov lattice rules in
weighted spaces. SIAM J Numer Anal 42(4):1760–1779

	48.	 Dick J, Pillichshammer F, Waterhouse BJ (2007) The construction
of good extensible Korobov rules. Computing 79(1):79–91

	49.	 Shields MD, Zhang J (2016) The generalization of Latin hyper-
cube sampling. Reliab Eng Syst Saf 148:96–108

	50.	 Shapiro A (2003) Monte Carlo sampling methods. Handb Oper
Res Manag Sci 10:353–425

	51.	 Iooss B, Lemaître P (2015) A review on global sensitivity analysis
methods. In: Uncertainty management in simulation-optimization
of complex systems. Springer, pp 101–122

	52.	 Sobol IM (2001) Global sensitivity indices for nonlinear math-
ematical models and their Monte Carlo estimates. Math Comput
Simul 55(1–3):271–280

	53.	 Cukier RI, Fortuin CM, Shuler Kurt E, Petschek AG, Schai-
bly JH (1973) Study of the sensitivity of coupled reaction sys-
tems to uncertainties in rate coefficients. I theory. J Chem Phys
59(8):3873–3878

	54.	 Saltelli A, Tarantola S, Chan KP-S (1999) A quantitative model-
independent method for global sensitivity analysis of model out-
put. Technometrics 41(1):39–56

	55.	 Herman JD, Kollat JB, Reed PM, Wagener T (2013) Method of
Morris effectively reduces the computational demands of global
sensitivity analysis for distributed watershed models. Hydrol
Earth Syst Sci Discuss 10(4)

	56.	 Morris MD (1991) Factorial sampling plans for preliminary com-
putational experiments. Technometrics 33(2):161–174

	57.	 Garcia Sanchez D, Lacarrière B, Musy M, Bourges B (2014)
Combining first-and second-order elementary effects methods.
Application of sensitivity analysis in building energy simulations.
Energy Build 68:741–750

	58.	 Sutradhar A, Paulino GH (2004) A simple boundary element
method for problems of potential in non-homogeneous media.
Int J Numer Methods Eng 60(13):2203–2230

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1908.08681
http://arxiv.org/abs/1711.10561

	Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis
	Abstract
	1 Introduction
	2 The governing equation for 3D problems of potential
	3 Physics-informed deep learning-based collocation method
	3.1 Feed forward neural network
	3.2 Backpropagation
	3.3 Physics-informed deep collocation method
	3.4 Convergence of deep collocation method for non-homogeneous PDEs
	3.5 Collocation points generation
	3.6 Material transfer learning

	4 Sensitivity analysis
	4.1 Method of Morris
	4.2 eFAST method

	5 Numerical examples
	5.1 Case 1: Sensitivity analysis
	5.1.1 Parameters screening with Morris method
	5.1.2 Variance-based sensitivity indices

	5.2 Case 2. Cube with material gradation along the z-axis
	5.2.1 Deep collocation method configurations
	5.2.2 Material transfer learning

	5.3 Case 3: Cube with a 3D material gradation
	5.4 Case 4: Irregular-shaped annular sector

	6 Conclusion
	Acknowledgements
	References

