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A Parameter Identification Method for Static Cosserat Rod Models:
Application to Soft Material Actuators with Exteroceptive Sensors

Max Bartholdt?*, Mats Wiese'*, Moritz Schappler?, Svenja Spindeldreier? and Annika Raatz!

Abstract— Soft material robotics is a rather young research
field in the robotics and material science communities. A
popular design is the soft pneumatic actuator (SPA) which,
if connected serially, becomes a highly compliant manipulator.
This high compliance makes it possible to adapt to the environ-
ment and in the future might be very useful for manipulation
tasks in narrow and wound environments. A central topic is
the modelling of the manipulators. While comparatively rigid
continuum robots are build of metal or other materials, that
conduct a linear behaviour, the material used in soft material
robotics often exhibits a nonlinear stress-strain relationship. In
this paper we contribute an identification method for material
parameters and data-based approach within the constitutive
equations of a Cosserat rod model. We target bending and
extension stiffness, consider shear and neglect torsional strains.
The proposed method is applicable to any continuum robot
which can be modelled by the classic theory of special Cosserat
rods, including constraint models, and shows great improve-
ment in experimental results with mean position errors of
0.59% reference length.

I. INTRODUCTION

Geometrically exact beam and rod theories such as the
special Cosserat rod theory play a central role in modelling
continuum robots. They have been applied in feed-forward
control strategies [1], design optimisation [2] as well as in
simulations [3]. The Cosserat rod model considers shear,
extension and flexure as well as torsion. In the young field of
soft material robotics, the ability to account for nonlinear ma-
terial effects in large deformations and shearing deformation
is of importance [4], [5], [6]. In [7] pneumatic, McKibben-
like actuators are modelled as cylindric, hyperelastic continua
and forces induced by the actuator are applied to a Cosserat
rod model, although the manipulator itself is realised without
a backbone structure. However, the material law of the rod
is modelled as linear elasticity. Nonlinear effects in stiffness
due to coupling of asymmetric fibre reinforced entangled
enclosures have experimentally been shown by [8]. An iden-
tification method is presented using a constraint optimisation
of four parameters, whereof two are material parameters
and two kinematic parameters. For the optimisation process
the shape of the manipulator is measured utilising a scan
arm. The applied model of the static rod contains flexure
and torsion under the assumption of a constant curvature
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Fig. 1. Overview of the identification procedure. The boundary value
problem (BVP) of the rod is solved with a shooting method as initial
value problem (IVP)(optimisation of stiffness parameter, or optional initial
conditions if they are not measured). The pictures on the right hand side
show the actuator and sensor systems utilised, to measure the boundary
condition at the base and tip. As a result a map of linear stiffness parameters
is exported and used to train artificial neuronal networks.

and torsion due to the internal pressure. They are treated
as kinematic parameters and optimised for every tuple of
pressure.

A popular soft pneumatic actuator design with three sym-
metric, cylindrical air chambers was experimentally exam-
ined regarding the modelling with Cosserat rod beams [9].
Gilbert et al. state, that qualitative results of their dynamic
model are promising, but errors due to manufacturing and
material nonlinearity need to be considered. The drawback
of Cosserat rod models lies within the computation time,
if compared to multi-body models based on the constant
curvature kinematic like the ones used in [10] and [11].
Moreover, the authors of [1] state that in order to perform
static feedback control, rod models do not improve perfor-
mance due to a manifold of unknown system parameters and
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strong model order reduction, which is necessary to reach a
sufficient computational time. They base their conclusion on
the results of a comparative study in [12].

Recent advances have shown that with certain numerical
models and efficient implementation, a computation time
below 10 ms for Cosserat rod models considering system dy-
namics with over 100 spatial nodes is possible [3]. Till et al.
present different actuator concepts and provide correspond-
ing modelling strategies, validating the models for slender
continuum robots or rods. Also, finite element approaches
used on Cosserat rod theory have been implemented that
show great improvement in computational time and resulted
in the SimSOFT environment [13].

This contribution follows these advances and proposes a
method to improve the precision of the models when used
in an application. Computational efficiency is maintained
by targeting the constitutive equations of elasticity. By this
problems discussed in [1] and [9] are targeted with a hy-
brid modelling approach. In this study, sole static models
based on the numerical integration schemes given in [3] are
investigated.

The overall idea, depicted in Fig. 1, is to identify model
parameters, in this case the stiffness parameters, by measur-
ing the boundary conditions (BC) of an actuator segment. For
each static point measured, an optimisation of the constitutive
parameters and optionally unknown boundary conditions
takes place, generating a stiffness map.

Artificial neural networks are used as nonlinear regression
method to estimate the stiffness for different combinations
of pressure. The proposed method is applicable to any
Cosserat beam model using linear material laws, improving
their accuracy when applied to real systems. In contrast to
model-free machine learning approaches as in [14], a straight
forward transition to dynamic and contact modelling and
simulation is possible.

To summarise, the contributions of this paper are

« a theoretical concept for the material parameter iden-
tification of Cosserat rod models using heterogeneous
exteroceptive measurements as boundary conditions,

o the incorporation of identified parameters in hybrid
modelling (i.e. combination of classical modelling
schemes and data based approaches),

« the exemplary application of the general concept to a
soft pneumatic actuator,

« experimental validation of the method using an external
camera system for end effector tracking.

The remainder of the paper is structured as follows. Sec. II
summarises the analytical and numerical model composed
of three serial beams with boundary conditions at each
transition. The single segment actuator is briefly reviewed
and all geometrical assumptions are explained. Thereafter, in
Sec. III, details on the optimisation problem, possible cost
functions and the applied topology of the artificial neuronal
networks for nonlinear regression of the optimisation results
are given. Sec. IV outlines the experimental setup including
sensors, actuators as well as software for data acquisition
and control. The described methods are then validated and

discussed with an SPA test bench in Sec. V. Sec. VI
concludes the paper.

II. MODELLING: THEORETICAL BACKGROUND

Fig. 2 depicts the outer view and the cross sectional view
of the soft pneumatic actuator that is considered in this paper.

The actuator has a total length of 130 mm. The middle
section is made of Ecoflex00-50 silicone, while the caps
consist of the stiffer Dragon Skin 20 silicone (Smooth-On,
Inc.). The three pressure chambers are fibre reinforced to
prevent radial expansion when pressurised.

The actuator is modelled using a static Cosserat rod model.
For the basic model, the following assumptions apply:

o The material exhibits a linear elastic behaviour.

o The deformed cross sections are approximated by tan-
gential planes at the centerline.

« Reinforcing fibres are not explicitly modelled but con-
sidered by the assumption of a constant chamber cross
section under deformation.

o Pressure acting on the lateral chamber walls is ne-
glected.

o Geometrical dimensions of the design apply to manu-
factured actuators.

In the following, we briefly review the basic kineto-static
relations for the special Cosserat rod theory with linear
elastic materials. Detailed derivations can be found in [15].
Subsequently, the model is specified to include the pneumatic
actuation and boundary conditions for the considered SPA.
The notation follows [15] and [3].

A. Kinematics

The macroscopic deformation of the actuator is described
by a one dimensional backbone curve with an initial length
L and a centerline r(s) € R3, where s is the arc length
parameter in the undeformed state. The curve’s orientation
is given by a rotation matrix R(s) € SO(3). For the sake
of clarity, the dependency of s in the following equations
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Fig. 2. Outer view and cross section (as seen from clamped side) of soft
pneumatic actuator under investigation. s, sy, and s denote the arc length
parameter per section a, b and c. The cross sectional view also depicts the
numeration of the pressure chambers.
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TABLE 1
PARAMETERS OF THE SOFT PNEUMATIC ACTUATOR

parameters Liube Loft To T
value 110 mm 10 mm 21.1 mm 2.9 mm
parameter Tch dech Tfib bch
value 5.15mm 12mm 6.7 mm 120°
parameter PEF PDS Egr Eps
value 1070 5% 108055  82.7kPa  337.8kPa

is left out after the variable first appeared in the text. The
rate of change of position v(s) in the local frame and the
flexure and torsional strains w(s) in the local frame can be
calculated with

v = RTrs and 0 = RTRS, (D)

where () indicates the derivative w.rt. arclength s. The
~operator denotes a transformation from a vector to a skew-
symmetric matrix.

B. Statics and Material Law

For a mechanical model the equilibrium of forces and
moments in the global frame is formulated for infinitesimal
sections along the arc length, yielding

ng+f=0
ms+rsxn+l1=0,

2

with n(s) and m(s) denoting the body force and moment,
respectively, and f(s) and I(s) the distributed forces and
moments.

In the linear elastic case, the local change of position
is related to body forces at a material point s and the
stiffness K, = diag(GA,GA, EA) (shear (s), extension
(e)). Analogously, the local flexural and torsional strains are
dependent on the body moment and the respective stiffness
K\, = diag(El,, F1,,GI,) (bending (b) or twist (t)) with
shear modulus G, elastic modulus FE, cross sectional area A
and second moment of area I resulting in

v=K_'R'n +v*
1T . 3
u=K, ;R m+u”.
The symbols v*(s) and u*(s) specify the initial config-
uration. In case of a straight rod pointing in z-direction
v'=(0 0 l)T and u* = 0 apply. Rearranging (1) to
(2) and combining with (3) yields a system of ordinary
differential equations (ODE)

rs = Rv

R, = Ru

— “)
my,=—rsxmn—1

that can be solved by defining boundary conditions and
performing numerical integration.

C. Application to a Soft Pneumatic Actuator

As explained in [3], the Cosserat rod model applied to the
soft pneumatic actuator includes distributed forces f,(s) and
moments [,(s) that are induced by the actuating pressures
and gravitational forces f, with gravity vector g, yielding

M=3

f="Ffy—F,=pAg— > pidciR.E. )

i=1
M=3
1==> pileniRs[(v + den ;) xE. + dey i xBE.] . (6)
i=1

Within the model, the actuating air pressure p; acts on the
top and bottom surface Ag,; = erh of chamber i with
orthonormal vector €,. For the distributed moment [ the
pressure-induced force is multiplied with lever dcy; as the
center of the corresponding chamber cross section, relative to
the segment’s center line expressed in the local frame. Note
that distributed forces and moments caused by the difference
in effective area from the outer and inner lateral surface of
each chamber, while being deformed, are neglected.

For reasons of numerical stability and following [16], a
quaternion representation h(s) for the orientation of the
rod instead of the rotation matrix is used. For the sake of
simplicity in the following equations, the state variables are
summarised as y = (rT AT nT mT)T

The actuator is comprised of three sections, namely the
actuated Ecoflex section and Dragon Skin caps (refer to
Fig. 2). Therefore, the model consists of three beams (a/b/c)
with states variables y(s,), y(s,) and y(s.) that are coupled
at their ends with

Y(sa =0) =y, Y(sa = loff) = Y

Y(sb =0) = Yo Y(sb = ltube) = Yu 0

Y(sc =0) =y Y(sc = lott) = Yor-
For the coupling points, ¥y, = ¥y,; and y., = y,; holds
for position and material orientation. Due to the actuating
pressure in section b there is a discontinuity in force and
moment, giving

M=3
Mo = Mot + Y PiAeni Ruo€-

i=1
M=3 (8)

My = My + Z dch,ipiAch,inOéz
i=1
and M=3
Ty = M) — Z DiAch,iRco€-
o ©)

M=3
Mo = Mp; — Z dch,ipiAch,iRcOéz~

i=1
The ODE system in (4) is treated as a boundary value
problem (BVP) with boundary conditions given by a fixed
clamped side, thus 7,0 = 0 and hyo = (1 0 0 O)T. If
no additional load is acting on the free end of the actuator
the body forces and moments at that point vanish, meaning

neg = 0 and my = 0.
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D. Numeric Model

For simulation of an actuator we solve the BVP by
applying a shooting method as described in [3]. Therefore,
the rod is discretised into N + 1 nodes. The rod’s base and
tip are denoted by indices 0 and /N. Boundary conditions
are accounted for by setting rg = 7,0 and hg = hyo. In
combination with an initial guess for the body forces ng and
my the state y is numerically integrated along the actuator
using the fourth order Runge-Kutta method. The residual e
at the actuator’s tip is calculated with

e=((ng —nx)T (mg—my)") |3 (10)

The Levenberg-Marquardt algorithm is used to minimise the
residual by updating ny and m accordingly as

(ng™ mgT

(11

)T = argmin e(ng, mg).
mn0,M0

Thereby, the discretised state y along the Cosserat rod
is determined to yield the configuration of the SPA model.
In the next section, the initial conditions and residual e are
adapted to contain more boundary conditions and the targeted
optimisation variables are switched to the rod’s stiffness
parameters.

III. HYBRID MODELLING

The hybrid modelling approach combines parameter iden-
tification of a physical model with artificial neuronal net-
works learning these parameter sets. To generate the required
stiffness data for learning, the previously presented optimisa-
tion problem can be reformulated in terms of the optimisation
variables. If additional boundary conditions at one end of the
rod for a static configuration are measured, it is possible to
optimise the parameters of the chosen inverse material law,
which is mapping the local body forces and moments to local
displacements.

For the presented actuator, an operating-point-dependent
linear material law is introduced. On the one hand, com-
pared to a nonlinear material law, this approach provides
higher computational efficiency, since displacements may be
calculated by inverting a stiffness matrix instead of solving a
set of nonlinear equations. On the other hand, if chosen and
identified correctly, a nonlinear material law would possibly
lead to more precise estimation of the configuration, which
is the whole body deformation of the actuator.

A. Identification of Stiffness Characteristics

An operating-point-dependent linear material law implies
linearising a nonlinear material law v = v(n) [u = u(m)]
for an operating point n° [m°] resulting in

_ 0v(n) _ Ou(m)

v = n and u=
om

on

(12)
ne m°

Finding the hypotheses © and w that sufficiently describe
the reality in this case, is cumbersome. Challenging fabrica-
tion techniques result in anisotropic properties of the actuator

and deviation from the assumed geometry described in the

previous section. Furthermore, the compressible medium will
affect the stiffness as well.

Therefore, in this first study, we assume the inverse
material law to be dependent on the pressure within the
chambers and to be described by the algebraic equations

v(s.p) = K (p) |[R'n(s)] +v",

u(s,p) = K (p) [R"m(s)] +u". a3)

By repeating the parameter optimisation for multiple de-
formation states, a table of stiffness values for each degree of
freedom of deformation is generated. The deformation in our
case is caused by the distributed body forces and moments
induced by pressure within the chambers. Since shear load
is small compared to bending moments and normal forces,
we here rely on literature parameters given in Tab. I. For an
explanation of geometric parameters refer to Fig. 2. ppr and
pps denote the density of Ecoflex00-50 and Dragon Skin 20,
respectively. Exr and Epg are the respective elastic moduli
according to the manufacturer.

For this identification procedure the twist, described by
the component u,, is constrained to be zero, since for
all load cases in the model m, = 0. This way a triple
(EA, El,, ElL,) for each triple of (p1,p2,ps) is identified.
Thereby, errors in the mapping of pressure to normal forces
and moments are taken into account.

B. Optimisation Problem

The cost function subject to minimisation is the residual
e between the boundary conditions and the result of the
numeric integration method. Both directions of integration
either tip to base or base to tip are possible.

The residual is defined by a combination of differences

er =Ty —TnN, (14)
er = ®(log(RNR.)), (15)
en =Ny — Ny, (16)
em =M, — My, (17

where the index x* is a placeholder for the BC at tip or base,
N describes the N-th and thereby last node of the numeric
integration. The operator & maps the skew-symmetric matrix
as result of the matrix logarithm to er € R? as axis-angle-
representation of the rotation between Ry and R, [17].

In order to accomplish comparability of the different
physical quantities in e,, er, e,, and ey, two virtual,
translational and rotational springs at the node N transfer dis-
placements, forces and moments into energy. This potential
energy is used to compare the deviation in force, moments,
deviation in position or orientation. For the translational
stiffness it is defined by
Ct T Ct egen
Utc7l = 567 €r and Utc,2 = 5 < C% > ) (18)

and for the rotational stiffness by

e (el em
Urc,2 = 5 ( C? > ; (19)

Cr

Urc,l = 9

erer and
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The spring’s stiffness c; is determined by

Mhigh
¢ = _“high
Thigh

(20)

and has the same value for both translational springs. The
two scalars nyjgp, and 7yig in the fraction are values for force
and position empirically weighted as high deviation from the
measured or assumed BC, so that for a high deviation each
virtual spring stores the same amount of energy. The same
procedure is applied with the virtual, rotational stiffness c;,
so that Uic, 1, Usc,2, Urc,1 and U, 2 possess the same value
for respective high deviation e,., er, e, and e,,.
The final cost function is calculated by

€ = || (Utc,l Utc,2 Utr,l Utr,Z) H§7 (21)

The visualised example in Fig. 3 shows a result of the
optimisation process with numeric integration from base to
tip. The violet dot depicts the measured position at the tip
and position at the base. Physical parameters are normalized
regarding values calculated from literature to improve the
conditioning of the optimisation problem. The resulting
optimisation problem for the column vector o containing
the scaling factors is formulated by

T .
(O-;xt. o-;;end.,z Gﬁend.,y) = argmin 6(0') . (22)

o€R3
If some initial conditions of the shooting method are un-
known, they are added to the set of optimisation parameters.
In the following, the regression method for prediction of
scaling factors is presented.

C. Artificial Neural Network

The identified pressure-dependent stiffness parameters are
used to learn the relationship between actuating pressures and
resulting stiffness parameters. We set up an artificial neural
network (ANN) for each element of the scaling vector o as

Oext. = fANN,ext. (P) (23)
Obend.,s = JANN,bend.z (P) (24)
Obend.,y = JANNpend..y (P)- (25)
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Fig. 3. Optimisation result for a single static state using the proposed

cost function. The boundary conditions are shown as crosses in the plots
a) distributed body forces and b) body moments and violet dots as well as
directors in ¢)

TABLE II
ARTIFICIAL NEURAL NETWORK PARAMETERS FOR LEARNING THE
PRESSURE TO STIFFNESS RELATIONSHIP

parameter value
feedforward neural network architecture:

number of input neurons 3
number of output neurons 1
number of neurons hidden layer 1 45
number of neurons hidden layer 2 50
activation function hidden layer 1 tanh(v)
activation function hidden layer 2 tanh(v)
activation function output layer v (linear)
training parameters:

relative size training set 80 %
relative size validation set 20 %
maximum number of epochs 100
early-stopping 10
optimisation method Levenberg-Marquardt

with Bayesian regularisation:

initial value 0.01
increase factor 10
decrease factor 0.1
maximum value 10

The three multilayer perceptrons are set up with the hyper-
parameters shown in Table II. For optimising the network’s
parameters (weights and biases) we choose the Levenberg-
Marquardt backpropagation algorithm with Bayesian regular-
isation. The algorithm not only minimises the mean squared
error between target values (i.e. identified scaling factors) and
network output, but simultaneously minimises the network’s
weights, in order to give the learned function a degree of
smoothness and generalise well over unseen data [19]. The
learned continuous mapping can be used in a hybrid model,
which combines the classical mechanical Cosserat rod model
and a data based actuation - stiffness map.

IV. EXPERIMENTAL SETUP

Fig. 4 shows the experimental setup. The soft actuator is
fixed to a metal frame facing downwards. The three pressure
chambers of the actuator are each connected to a proportional
valve (LS-V25s, Enfield Technologies) via silicone tubes.
The test stand runs with a pressure supply of 200 kPa.

Sensors: The valves’ outputs are connected to a pressure
sensor (142BC30A-PCB, First Sensor) each to enable PID
control of the pressure within the chambers [18]. Cameras
(Prime 17W, OptiTrack) used for optical tracking of the
actuator’s tip are connected to an external computer via
Gigabit Ethernet. Tracking markers are attached to the ac-
tuator’s tip to allow for position and orientation tracking.
Base reaction forces are measured using a 6-axis force/torque
sensor (Nanol7, ATI Industrial Automation).

Signal processing: Pressure sensor inputs and valve com-
mands are read in and set via the EtherCAT realtime bus with
input and output terminals (EL3164 and EL4104, Beckhoft).
A Linux PC running a realtime kernel with the Preempt-
RT patch hosts the pressure control process. Output voltages
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Fig. 4. Test bench for the analysis of a soft pneumatic actuator. Each
actuator chamber is connected to a valve and a pressure sensor to allow
seperate pressure control for each chamber. A camera system tracks the
SPA’s end effector position. Base reaction forces are measured using a 6-
axis force/torque sensor. The actuator system is controlled with a realtime
Linux PC.

Pressure supply 200 kP

are set according to the PID control system for controlling
the valves. The OptiTrack software Motive processes the
camera data on a Windows PC and streams position and
orientation data to the realtime PC via Ethernet. A ROS
Node processes this data and provides the pose to be saved.
The output of the force/torque sensor is connected to a data
acquisition card (NI6220, National Instruments) within the
realtime PC. There, using a calibration matrix, the output
voltages are converted to forces and torques which are further
processed with an interface based on the nidaqgmx library.
This general interface may be used for any sensor voltage
readings compatible with NI I/O cards. Offset correction is
carried out during the initial straight configuration of the
soft actuator, such that all forces and torques are zeroed out
except for the force in z-direction which is calibrated to give
a signal according to the actuator’s mass (including markers).

The control architecture and data acquisition described
above is set up in MATLAB/Simulink using the Etherlab
framework on an external development PC and compiled to
run on the realtime PC. With this set up we can obtain the
required data, namely chamber pressures and the correspond-
ing actuator’s tip position and orientation as well as the base
reaction forces and torques at each time step with a sample
time of 1 ms.

V. VALIDATION AND DISCUSSION

In order to validate the proposed identification and hybrid
modelling approach, a dataset of 213 = 9261 samples is
generated by screening the actuator space in steps of 3.5 kPa
from O to 70kPa in each chamber. Pressure is given as
difference of measured and atmospheric pressure.

A. Identification

In this first study we apply the proposed identification
procedure for each sample by numerically integrating from

tip to base, with known boundary conditions r+;;, (measured)
and my;, = 0. The tracking markers at the actuator’s tip are
considered a point mass of Mmarker =6 g and accounted for
in the boundary condition np, = Mmarkerg- For the residual
at the actuator’s base, the position and orientation are known.
The dataset for identification therefore only contains the
actuation pressure and the respective measured tip position
of the soft actuator.

Fig. 5 depicts these tip positions with the colour indicating
the identified scaling factor for the corresponding stiffness
parameter o. Samples, for which the identification algorithm
is unable to find a solution, are excluded from the visualisa-
tion, validation and further processing during neural network
training. This failure in identification can be observed if the
deformed state lies near the principal axes of the undeformed
cross section.

Small deformations in x result in small flexural strains
Uy, so that the bending stiffness around y has not sufficient
impact on the model’s behaviour in this point, thus no valid
parameter is identified. The same applies for a deformation
along the y-axis and bending stiffness around x.

Fig. 5 shows that the identified scaling factor for the lon-
gitudinal stiffness o.x¢. is below 1 throughout the actuator’s
workspace. This means the actual stiffness is lower than the
ideal geometrical data in combination with literature material
parameters suggests. Moreover, the more deformation the ac-
tuator exhibits, the higher the identified longitudinal stiffness
becomes.

The identified scaling factors for bending stiffnesses
Obend.,o And Opend.,y both range from around 0.4 to 1.4 with
Obend.,y being slightly higher. A tendency is visible that with
increasing elongation a softening of the bending stiffness
occurs. Besides a nonlinear stress - strain relationship, this
behaviour might be due to a volume preserving constriction
of the cross section, thus a decrease of the second moment
of area.

The identified parameters are validated with their related
actuation pressures in forward simulations from base to tip
with known base position 7,5 and orientation hy,,se and the
tip force and moment (n4;, and my;p,) for the residual, as it
is described in Sec. II. The mean absolute position error w.r.t.
the initial actuator length over all remaining samples is less
than 9-10~%%, showing the effectiveness of the identification
method. Since these parameters are not directly used in the
model, which is done with trained ANN and described in the
next section, a validation on a separated test set of data is
not intended.

B. Scaling Factor Learning

For the subsequent training of the neural networks, the
dataset is separated in 80% for training and 20% for validat-
ing. Only the successfully identified pressure - scaling factor
data pairs are selected to be used in the actual training and
neural network performance analysis.

The box plot illustrated at the top of Fig. 6 shows the
deviation between ANN output and target data for the
individual scaling factors. While the majority of errors is
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Fig. 5. Measured tip positions of the SPA depending on different pressure inputs. The colour codes indicate the identified scaling factor for the respective

stiffness parameter in that operating point.

distributed closely around 0, the maximum error is around
300%. Depicting the errors according to the corresponding
tip position as done exemplarily in the bottom of Fig. 6 for
Obend.,» Teveals that the larger errors occur when the tip
position lies close to the principal z-axis.

As mentioned earlier this is where the influence of the
bending stiffness around x is minimal. Hence, the identifi-
cation procedure is hardly sensitive to changes of oyhend. s
which might lead to a undesired scattering behaviour of the
identified scaling factor near the principal axis. The ANN
does not reproduce this behaviour, thus shows large errors
in prediction.

C. Hybrid Model

Finally, we validate the full hybrid modelling approach
by applying the ANNs in forward simulation from base to
tip. Therefore, all pressure - tip position data pairs from the
test set are used including data pairs where no successful
identification was carried out.

Fig. 7 shows the error between measured tip position and
simulated tip position using the hybrid model. In the box
plot, the radial distance Ar is given as the deformation in
the x-y-plane, because it intuitively summarises the error
Az and Ay, while Az is displaying the error in height of
the tip position. Errors are reported as measured (or target)
minus simulated value in relation to the initial actuator length
of 130 mm. For comparison, the box plot also includes the
errors when simulating the model with constant stiffness
parameters taken from literature (indicated by subscript LIN).

Overall, simulation of the Cosserat model with a learned
mapping from actuation to stiffness parameters shows good
accordance with measured tip positions. The deformation
in radial direction as well as in z-direction shows errors
less than 2.2% when compared to measured tip positions
(see Fig. 7). Note, that this includes operating points, the
identification was not able to find a solution for. The ANN
generalises well for unseen data. Although the performance
analysis of the ANNs showed large errors when it comes
to approximating the identified values, these errors do not
occur in the error analysis of the hybrid model. This again
indicates the weak influence of the bending stiffness when
the SPA performs a deformation close to the principal axis.
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Fig. 6. Error between ANN output for scaling factors and identified factors
(top). Error for obend. . Visualised according to tip position (bottom). Large
errors occur when the tip position is close to the principal z-axis.

In contrast to the hybrid model the linear elastic material
parameters from literature overestimate the stiffness. The ac-
tual deformation of the actuator is greater than the simulated
one in this case.

The mean relative Euclidean distance between simulation
and measurements is 0.59% and thereby more than seven
times lower than for simulations using linear elastic literature
parameters (mean 4.26%). Standard deviations are 0.42% and
1.61%, respectively.

D. Discussion

The proposed hybrid modelling method was validated with
a single actuator segment without external loads. Future work
will target extrapolation considering external loads by e.g.
attaching external payload or mounting the actuator sideways
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Fig. 7. Prediction errors in radial distance Ar with » = y/x2 + y2 and
height Az of linear (LIN) Cosserat and hybrid (ANN) Cosserat model given
in relation to the initial actuator length of 130 mm.

and validate and adapt the presented approach for multi-
segment manipulators. This will likely increase the shear
within the actuator, which calls for the identification of
further parameters. Furthermore, it might be necessary to
investigate the input of the ANN in order to generalize well.

Besides these additional scenarios, we will conduct fur-
ther analyses incorporating all available sensor information
namely base reaction forces and moments and tip orientation.
Therefore, a suffient amount of data from experiments has
to be collected to perform these evaluations.

VI. CONCLUSIONS

Geometrical and material nonlinearities are a challenging
topic in soft material robotic research. We presented a hybrid
modelling approach combining classical mechanical Cosserat
rod modelling with data based stiffness estimation. Instead
of nonlinear constitutive equations that have to be solved
numerically, our model relies on a workpoint-dependent
linear stress-strain relationship. Thus, we keep the modelling
approach computationally efficient, in order to be used for
static control, trajectory planning, design optimisation or be
enhanced for dynamics modelling and control.

The presented identification method enables the incorpo-
ration of various sensor information at the actuator’s ends
and the identification of stiffness parameters for linear-elastic
Cosserat rod models.

Experimental validation was carried out, by identifying
longitudinal and bending stiffness of a soft pneumatic actua-
tor and learning the actuation to stiffness map using artificial
neural networks. The hybrid model was able to predict the
tip position of the actuator given a pressure input with a
mean error of 0.59%.

For future work, we will further analyze this hybrid mod-
elling approach by investigating the influence of added pay-
load on the accuracy and the applicability to multi-segment
soft pneumatic manipulators. Besides offline identification
and learning, an extension of the approach towards online
learning is considered to keep up with effects like material
fatigue. Moreover, we intend to enhance the approach to
handle the system dynamics.
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