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Abstract 

Nuclear accidents can release large amounts of radioactivity that affects not only the vicinity of 

the nuclear power plant (NPP), but can be detected in large parts of the world. This work targets 

the effects of the largest nuclear accidents, the Chernobyl nuclear accident on April 26, 1986, 

and the Fukushima accident on March 11, 2011. The importance for radioecology is to 

understand the behavior and dispersion of radionuclides in the environment. To achieve a 

comprehensive understanding, the environmental fate of the radionuclides needs to be studied 

intensively for several years. 

In this work, the fission products 90Sr, 129I, and 137Cs and reactor nuclides 3H, and 134Cs were 

analyzed in the compartment water from the immediate vicinity of the Chernobyl and 

Fukushima NPPs, and the methods were adapted for these measurements. Both, radioanalytical 

and mass spectrometrical methods were used, such as liquid scintillation counting, gamma 

spectrometry via high-purity germanium detector, and accelerator mass spectrometry. The 

optimized methods were subsequently applied to natural water samples from the Chernobyl 

exclusion zone with large sample volumes. Further adaptations were made for small sample 

volumes of Fukushima surface water samples, which were sampled only a month after the 

accident. Finally, both drinking water as well as a variety of surface water samples from sites of 

the Tokyo 2020 Olympic Games were tested for their radionuclide content to assess potential 

risks to athletes and visitors. 

In the Chernobyl water samples, activities of 90Sr and 137Cs were still easily detectable even after 

more than 30 years later. The activities ranged from 0.6 - 4.1 Bq/kg for 90Sr and 0.06 - 8 Bq/kg 

for 137Cs. With increasing distance from the NPP, a decrease in activities was observed.  

In the Fukushima surface water samples, taken one month after the accident, high levels of 

contamination could be determined. In particular, the tritium activity concentration of a puddle 

sample near the Fukushima NPP showed the highest reported concentration so far of 

184 ± 2 Bq/L. Comparison of the puddle sample with water from a close proximity rice paddy 

showed ratios of 1 % for radiocesium, 12 % for 129I, and about 40 % for 3H and 90Sr. The cause of 

the decreased activity concentration of the radionuclides are different: for cesium and iodine 

this is the result of adsorption onto natural minerals and organic matter respectively, whereas 

the differences in the concentration of 3H and 90Sr are mainly caused by dilution.  

Analysis of potable water samples from Japan revealed no radiological concerns for a two week 

stay in Japan as athlete or visitor of the Olympic Games (< 3 µSv). It was found that the main 

contributor to internal dose is inhalation of na4tural radioactive radon (27 µSv). Air dose rate 
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measurements were conducted at all Olympic Games venues to determine the radiological 

hazards of external dose. By means of this investigation, it could be exemplified by concrete 

measurements that Japan generally has low air dose rates. 

 

Keywords: Radioecology, Chernobyl, Fukushima Daiichi, Olympic Games Tokyo 2020 
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1 Introduction 
 

This PhD thesis is a cumulative thesis and includes three publications. The introducing chapters 

provide background and context for these publications, including theoretical background 

information and insight from current literature. The focus of this thesis lies on the optimization 

of different (radio-)analytical treatments for radionuclides and on the application on water 

samples from Chernobyl and Fukushima. The overreaching objective of the thesis is to provide 

a scientific basis for the risk assessment for participants of the 2021 Tokyo Olympic Summer 

Games. 

 

D1 R. Querfeld, W. Schulz, J. Neubohn, G. Steinhauser; Antropogenic radionuclides in water 

samples from the Chernobyl exclusion zone. J Radioanal Nucl Chem 318, 423-428 (2018). 

https://doi.org/10.1007/s10967-018-6030-y 

D2 R. Querfeld, A.-E. Pasi, K. Shozugawa, C. Vockenhuber, H.-A. Synal, P. Steier, G. 

Steinhauser; Radionuclides in surface waters around the damaged Fukushima Daiichi 

NPP one month after the accident: Evidence of significant tritium release into the 

environment. Sci Total Environ 689, 451-456 (2019). 

 https://doi.org/10.1016/j.scitotenv.2019.06.362 

D3 R. Querfeld, M. Hori, A. Weller, D. Degering, K. Shozugawa, G. Steinhauser; Radioactive 

Games? Radiation Hazard Assessment of the Tokyo Olympic Summer Games. Environ Sci 

Technol 54 (18), 11414-11423 (2020). 

 https://doi.org/10.1021/acs.est.0c02754 
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2 Theory 

2.1 The History of Nuclear Energy 

The history of nuclear energy began with the discovery of uranium in 1789 by Martin Klaproth, 

a German scientist. Around 100 years later, in 1895, Wilhelm Roentgen discovered ionizing 

radiation by passing an electric current through an evacuated glass tube and producing 

continuous X-rays. A year later, Henry Becquerel noticed that pitchblende caused a 

photographic plate to darken, even though there was no other light source present. He 

discovered that his observation could be explained by beta radiation (electrons) and alpha 

particles (helium nuclei). Marie and Pierre Curie were the ones to name this phenomenon 

“radioactivity”. Subsequently, they isolated polonium and radium from the pitchblende in 1898. 

Paul Ulrich Villard discovered gamma rays, which proved to show similar characteristics like 

X-rays, as a third type of radiation from pitchblende in 1900. The term γ-radiation was 

introduced by Ernest Rutherford, who chose it in 1903 in continuation of the terms α- and β-

radiation that were introduced in 1899. In 1902, Ernest Rutherford concluded that radioactivity, 

as a spontaneous event emitting an alpha or beta particle from the nucleus, creates a different 

element. In 1909, Rutherford discovered that the mass of atoms is concentrated in their centers, 

thus discovering the atomic nucleus. In 1919, in order to receive a complete understanding of 

the atom, he fired alpha particles from a radium source into nitrogen and observed a nuclear 

reaction of the type 14N(α,p)17O. Following this discovery, he theorizes the existence of a neutral 

particle in the nucleus called ‘neutron’ in 1920. Based on the results of Irene Joliot-Curie, the 

daughter of Marie and Pierre Curie, which stated that - what she believed - gamma radiation 

was being able to knock protons out of parafin, James Chadwick conducted experiments on the 

topic and found Rutherford's neutrons in 1932, proving their existence. [1] 

With the discovery of neutrons, many researchers started irradiation experiments with various 

elements and nuclides. In 1938, Otto Hahn and Fritz Strassman conducted probably the most 

important of these experiments by bombarding neutrons onto a uranium target. By that, they 

found that the “activation product”, in explicably, was a barium radioisotope. It was Lise Meitner 

and Otto Robert Frisch who identified this phenomenon as ‘splitting of the atom’ and named it 

nuclear fission [2]. One year later, in 1939, Leó Szillárd and Enrico Fermi performed neutron 

multiplication studies and recognized nuclear fission as a potential way to induce a chain 

reaction. With this discovery, Szillárd together with Eugene Paul Wigner and Edward Teller 

determined that the chain reaction induces multiple nuclear fission reactions. The fission 

reactions are followed by a release of incredible amounts of energy. They realized the potential 

use of nuclear reactions as form of weapons. During the same year, they convinced Albert 
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Einstein, a famous scientist at this time, to sign a letter warning President Roosevelt of the 

possibility of German nuclear weapons. Afterwards, Roosevelt authorized a study on uranium, 

leading to the formation of the Advisory Committee on Uranium, which started with research of 

a nuclear weapon. In 1942, at the University of Chicago, Fermi successfully created the first 

controlled nuclear chain reaction. By successfully performing this experiment, the so-called 

Manhattan Project was able to grow quickly in size and speed. Two types of nuclear bombs were 

invented simultaneously, one working with enriched uranium, and the other one made of 

plutonium. Enormous efforts were expended to obtain the incredibly high amounts of uranium 

and plutonium needed: Three large-scale processing sites were built. The first one was located 

in Oak Ridge, the second one in Hanford, and the last in Los Alamos. In Oak Ridge, the first gram-

quantities of plutonium for study were produced, even though its main task was uranium 

enrichment. In Hanford, the reactors were used for plutonium production. Also plutonium 

extraction chemistry plants have been built. The results of production and enrichment processes 

converged in Los Alamos, where the development of weapon technology took place. Both 

elements proved successful for nuclear bomb production. However, despite the higher risks and 

uncertainty regarding its design, the plutonium implosion device was preferred and successfully 

tested at the Trinity site in New Mexico in July 1945. In August 6 and 9, 1945, “Little Boy” and 

“Fat Man” were dropped on Hiroshima and Nagasaki, resulting in the complete destruction of 

the two cities. 250,000 people died in the explosions. Six days later, Japan surrendered 

unconditionally, ending World War II [3]. 

In August 5, 1963, the governments of the Soviet Union, the United Kingdom and the United 

States signed the Partial Test Ban Treaty (PTBT) before it was opened for signature by other 

countries. The ‘Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and 

Under Water’ prohibited all test detonations of nuclear weapons except those conducted 

underground. Three centuries later, on September 10, 1996, PTBT has been modified and is 

known as the ‘Comprehensive Nuclear-Test-Ban Treaty’ (CTBT), which was adopted by the 

United Nations General Assembly and signed by 184 states. The CTBT bans all nuclear tests, for 

both civilian and military purposes, in all environments. [4] 

After World War II and the revelation of the destructive power of nuclear fission, the first civilian 

experimental liquid metal-cooled reactor, called EBR-I, was attached to a generator in 1951, 

producing the first nuclear generated electricity in Idaho, USA. Admiral Rickover pushed to use 

reactors to power submarines. The USS Nautilus launched in 1954 as the first nuclear-powered 

submarine. Soon after, the Soviet Union opened the first non-military, electricity-producing 

reactor. Many nuclear reactors were built to provide an efficient and relatively cheap supply of 
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electricity through the 1960s and 1970s. With uranium readily available, electricity produced by 

nuclear power plants is economically favored and emission-free with a very low mining and 

transportation footprint. In addition, plutonium from nuclear disarmament efforts is frequently 

used for civilian purposes. With this perspective, different types of reactors were developed in 

various countries over the years of the second half of the 20th century for cheap and plentiful 

electricity production. [5] 

The use of nuclear energy led to several nuclear power plant accidents, leading to a release of 

radionuclides. In the following chapters, the worst nuclear accidents in history – Chernobyl and 

Fukushima – are briefly introduced. 
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2.2 The Chernobyl Nuclear Accident 
 

The Chernobyl nuclear accident (April 26, 1986) was the most significant nuclear accident in 

history [6, 7]. It was classified as an impact 7 event (Major accident) of the International Nuclear 

and Radiological Event Scale (INES).  

The accident occurred during a safety test and was caused by a cascade of operating errors. In 

addition, the reactor type itself promoted the failure. The Chernobyl reactor number 4 was a 

RBMK-1000 reactor (Russian: реактор большой мощности канальный, РБМК; reaktor bolshoy 

moshnosti kanalnyy, "high-power channel-type reactor"): It is a graphite-moderated nuclear 

power reactor designed and built by the Soviet Union, using low enriched (2 % 235U) uranium 

dioxide fuel. It has a unique design, instead of a large steel pressure vessel surrounding the 

entire core, each fuel assembly is enclosed in an individual 8 cm diameter pipe (called “channel”) 

which allows the flow of cooling water around the fuel. The RBMK is an early Generation II 

reactor and the oldest commercial reactor design still in wide operation [8]. Important aspects 

of the RBMK reactor design contributed to the 1986 Chernobyl disaster: the 4.5 m graphite 

displacer ends of the control rods, the active removal of decay heat, the positive void coefficient 

properties and instability at low power levels [9]. The Chernobyl RBMK experienced a very large 

reactivity excursion, leading to a steam and hydrogen explosion, a large fire and subsequent 

meltdown. The released radioactivity spread over a huge part of Europe. After the Chernobyl 

accident, some of the flaws in the design of RBMK-1000 reactors were corrected and several 

reactors have since been operating without any serious incidents for over 30 years [9]. To date, 

10 RBMK reactors are still operating in Russia [9]. The last of these reactors will be 

decommissioned in 2050 [9]. 

The reactor was built for production of electricity and weapons grade plutonium and started its 

operation time in 1984. The accident-causing test was scheduled as a safety test to check if the 

coasting turbines after shutdown could be sufficient to supply enough electricity for the cooling 

water pumps until the emergency generators have started up, in the event of a power failure 

and shutdown of the reactor. The test began at 13:05 on April 25, 1986 with the power reduction 

at 50 % and shut down of the emergency cooling system. At 14:00 the test was interrupted, 

because the City of Kiev expressed the demand for more electricity, and even after raising the 

power level, the operation crew kept the emergency system shut off. At 23:10 the test was 

continued, but with a different operation crew due to a change of work shifts and the power of 

the reactor should be reduced to 25 % of its normal operation power. At 00:28 (April 26, 1986), 

the power dropped to a level of 1 % and usually an RBMK type reactor had to be shut down 
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completely whenever the power of a reactor drops below 20 %. Yet the crew decided on 

continuation of the protocol and performed another attempt to increase the power by removing 

more control rods. At 00:32, the reactor reached a power level of 7 % and parts of the safety 

systems were still shut down. Only 4 (of 8) cooling-pumps were operating at this time. Around 

20 minutes later, after closing the turbine fast-acting valves, the temperature of the coolant and 

the pressure in the vessel increased dramatically. The shift leader wanted to induce an 

emergency shutdown of the reactor by reinserting the control rods, but by performing this 

action the opposite effect was induced: because of the graphite spacers, the neutrons were 

better moderated, the power increased to even greater extent, and by that also the 

temperature. A series of explosions occurred, the top of the reactor containment vessel, as well 

as the rooftop of the reactor-building were blasted away during this event. The surrounding air 

flow into the reactor caused the graphite to start burning and the flames spread over a large 

area. Around 05:00, the fires outside of the reactor building were extinguished, but it was not 

possible to cool and/or stop the burning graphite inside of the reactor [8]. 

On April 27, 1986, the remaining three reactors located on the Chernobyl site shut down and 

the evacuation of the population of Pripyat started. With helicopters, different materials (lead, 

clay, sand, dolomite, and boron carbide) were thrown into the reactor, but the temperature 

continued to increase [10]. It took ten more days (May 6, 1986) to extinguish the burning reactor 

by pumping nitrogen into the reactor [11]. 

On April 28, 1986, without any European country knowing about this accident, a contamination 

alarm at the nuclear power plant Forsmark in Sweden indicated an unusually high, yet 

inexplicable release of radioactivity into the atmosphere. Due to the change shifts, the crew 

members coming from outside were found to be contaminated. After a complete check of their 

measurement systems, Forsmark concluded they were not the source of contamination. The 

Chernobyl accident was first announced officially by a Soviet news agency on April 29, 1986. In 

the following days, the radioactive plume reached great parts of Western Europe and due to 

rainfall, the radioactivity was washed out and deposited, which caused large contaminated areas 

in Europe. After several days, on May 14, Michail Gorbachev, the later president of Soviet Union, 

announced the accident to the population via television [11]. 

Throughout the following months in 1986, debris from the site was removed and a sarcophagus 

was built (and finished in November), to cover the damaged reactor. The remaining three 

reactors started to operate again [10, 11]. 
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A total of 5300 PBq of mainly volatile radionuclides (nuclides of I, Cs, and Te) were released into 

the environment, as well as other radionuclides, as for example radiostrontium and actinides (in 

the form of nuclear fuel particles, often referred as “hot particles”) [12]. These particles were 

and can still be found in soil samples up to a distance of 100 km from Chernobyl nuclear power 

plant (ChNPP) [13]. When hot particles are deposited in the environment, weathering processes 

take place and radionuclides are subsequently mobilized [14, 15]. 

The radioecological effects and the radiological impact on the waterbodies in the vicinity of the 

ChNPP have been studied thoroughly in the years after the accident [16]. However, since 

previous studies proved a great variability of the ecological half-lives of many relevant 

radionuclides in natural aquatic ecosystems, the current status of activity levels in the waters 

remains an interesting topic of scientific investigation. Mirzoyeva et al. determined the 

ecological half-lives (Teco) of 90Sr in components of the Dnieper River basin and found 

considerable variability for aquatic organisms (Teco = 4-24 y) [17]. Their findings were in a good 

agreement with Pröhl et al., who found similar values for water in Ukrainian rivers and 

freshwater reservoirs (Teco = 6-24 y) for 90Sr [18]. For 137Cs, multiple ecological half-lives are given, 

reflecting various environmental processes: 2-7 y (for rapid wash-off from the watershed) and 

8-73 y (increasing fixation of radionuclides), respectively [18–20]. 

 

Figure 1 Overview of the area around the Chernobyl nuclear power plant with the channels, the cooling 
pond and the Pripyat river. 
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The cooling pond of the ChNPP is one of the major water bodies adjacent to the site (see Figure 

1) that were heavily contaminated. The cooling pond was designed for the purpose of cooling 

all four units at ChNPP. The water level has been adjusted at 110.7 m above sea level, which 

exceeded the low water stage of the Pripyat River by 7 m. Because of a high head pressure 

between the pond and the river, combined with the high water-permeability of the dam 

material, leakage through the dam resulted. To compensate the losses from leakage and 

evaporation, the water level was maintained using a pumping station, serving the purpose of 

refilling the pond with water from the Pripyat River. After the permanent shutdown of the power 

plant in 2000 [21], the pumping station was shut down in May 2014. As a result, the water level 

has been decreasing continuously and had lowered 5 m by the end of 2017 [22].  

Before the accident, from 1976 to April 1986, the cooling pond contamination was associated 

with the operation of the ChNPP. The main source of contamination in the first 2-3 years after 

the start-up of the ChNPP was non-reusable water discharged into the pond. The total annual 

release of activity of fission products was 37-370 GBq (excluding tritium). Cesium-137 accounted 

for 10% of the total activity and the input of other sources, flow of fission products and corrosion 

products with service water, deposition of aerosol emissions on the water surface, was an order 

of magnitude smaller. In the following years, the input from the global fallout was higher than 

the discharges of radionuclides and aerosol emissions from the ChNPP. Two additional 

radioactive releases to the cooling pond occurred in 1981 and 1982: A leak and a radiation 

related incident. Open literature does not give any information about the scale or characteristics 

of these events [22]. 

The contamination of the cooling pond during the accident in 1986 occurred in two ways. The 

first included the deposition of radioactive particles (hot particles) from the damaged reactor 

fuel onto the surface of the cooling pond. The second was the discharge of highly radioactive 

water through the outlet channel from the reactor emergency cooling system and the water 

used to extinguish the fire. A significant increase of dissolved 90Sr was observed between 1987 

and 1988 due to chemical alterations and corrosion processes of the hot particles [23]. The 

weathering and corrosion process of these particles is closely linked to their chemical 

composition and prevailing chemical nature of the environment. According to their composition, 

Kashparov et al. [15] categorized three groups of hot particles formed during the ChNPP 

accident. The first group contains fuel particles (UO2) that originated from the mechanical 

fragmentation through the explosions [24], which are chemically relatively stable. The second 

group consists of oxidized fuel particles (UO2+x) that formed during the graphite fires. These 

particles exhibit high dissolution rates because the UO2 core is surrounded by a layer of 



 

16 
 

U2O5/U3O8 [24]. The third group is chemically rather inert and exhibits low dissolution rates 

because these are fuel particles embedded into a zirconium matrix (ZrUxOy) that originated 

through annealing of UO2 fuel with zirconium materials inside the molten reactor core. However, 

most of the hot particles sank to the benthic division of the cooling pond and have been stored 

in a chemically stable state due to the lack of oxygen in the anoxic ground [23]. Due to the 

decreasing water level of the cooling pond, the hot particles become exposed to atmospheric 

oxygen and chemical alterations and weathering have started. While the flooded hot particles 

are likely to survive 100 years and more, the actually exposed particles will decompose within 

15-25 years [25]. As a result, the newly exposed particles are causing a further contamination of 

the cooling pond and the surrounding area [26]. 
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2.3 The Fukushima Nuclear Accident 
 

The Fukushima nuclear accident occurred after a strong earthquake followed by a tsunami on 

March 11, 2011. After Chernobyl, it was the second nuclear accident classified as an impact 7 

event on the INES scale. 

First commissioned in 1970, the Fukushima Daiichi nuclear power plant (FDNPP) consisted of six 

boiling water reactors. These light water reactors drove electrical generators with a combined 

power of 4.7 GW, making Fukushima Daiichi one of the 15 largest nuclear power stations in the 

world. Fukushima was the first nuclear plant to be designed, constructed, and run in conjunction 

with General Electric and Tokyo Electric Power Company (TEPCO). The blocks 1-5 are of type GE 

Mark I while reactor block 6 is of type GE Mark II. In most cases uranium dioxide was used as 

fuel, although mixed oxide fuel rods were used in block 3. In all blocks, the reactor core is located 

in the reactor pressure vessel. The reactor pressure vessel is located in the pressure chamber. 

For this type of reactor, the containment consists of the pressure chamber and an annular 

condensation chamber. In case of an incident, pressure can be released from the reactor 

pressure vessel into the condensation chamber by steam release via safety and relief valves, 

thus allowing the pressure in the reactor pressure vessel to be regulated. The condensation 

chamber is partially filled with water as coolant, which also has to be cooled, as it is heated by 

the steam. A steady power supply must be available during operation, but also in case of a 

shutdown to ensure cooling by electrically operated pumps. For this reason, emergency diesel 

generators and batteries are installed [27].  

On March 11, 2011 at 14:46 local time, Japan faced the most powerful earthquake in its history 

since the seismological recordings started in 1900. The earthquake had a magnitude of 9.0 and 

its epicenter was about 130 km offshore of the eastern coast of Honshu Island [28]. The event 

that triggered the accident in the TEPCO FDNPP was a tsunami resulting from the powerful 

earthquake. The tsunami waves had a run-up height up to 40 m and travelled about 10 km inland 

[29]. At the time of the earthquake, three blocks were in operation (blocks 1, 2, 3) and three 

were shut down for service (blocks 4, 5, 6) [27]. The earthquake caused destruction in the vicinity 

of the power plant, which resulted in the failure of the external power supply of the power plant. 

As a result, the emergency diesel generators took over the power supply and blocks 1 to 3 were 

quickly shut down. However, the tsunami destroyed the emergency power supply of the power 

plant a short time later. This resulted in the loss of cooling of the reactors, temperature, and 

pressure inside the reactors and a fraction of the fission products became volatile and migrated 

out of the fuel material into a gas phase [30]. At the time when the reactor cores overheated, 
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the gaseous elements were released to the reactor pressure vessel. Volatile elements, iodine, 

tellurium, cesium and noble gases were released first [30]. 

The first major release of radionuclides occurred shortly after the accident began on March 12. 

The release followed a hydrogen explosion in Unit 1. The radioactive plume moved along the 

Japanese coast in a northeasterly direction and eventually turned toward the Pacific Ocean. The 

plume was detected as an increase in the continuously monitored gamma dose rate at 

Minamisoma, located about 25 km north of the FDNPP. This release caused a dry deposition of 

radionuclides along the east coast of Miyagi Prefecture, but appeared to have little to no impact 

on residents in these areas [31].  

The second major release was caused by controlled venting on March 13 and an uncontrolled 

hydrogen explosion on March 14 in Unit 3. During that time, fortunately, the wind was blowing 

towards the Pacific Ocean and no elevated dose rates were detectable either in the Fukushima 

Prefecture or on Honshu Island [31].  

In the next two days the weather conditions changed, causing the radioactive plume from 

another controlled venting on the morning of March 15, and an explosion inside Unit 2. The 

highest dose rate since the beginning of the accident was measured near the main gate. The 

radioactive plume followed complex travel patterns, depending on the prevailing weather 

conditions. It moved first southwards and then north-west. Light precipitation caused wet 

deposition west and south-west of the accident site [32, 33]. Due to precipitation, the 

radioactive material deposited on land was mostly distributed north-west of the power plant at 

a distance of 40 km [7].  

It was approximated that due to the westerly wind, about 70-80% of the radionuclides released 

in the Fukushima accident were deposited in the Pacific Ocean. Activity concentrations in the 

Pacific Ocean measured 30 km off-shore from the power plant on March 23 were 77 Bq/L for 

131I and 134 Bq/L for 137Cs [34]. The sea on the east coast of Japan was also contaminated by 

direct discharges of radioactive water. A total of about 4 PBq of 137Cs and 7 GBq of 129I [35] were 

discharged directly into the Pacific Ocean during the accident, with more being released later on 

[34].  

The total amounts released in the atmosphere for the most significant radionuclides of 131I and 

137Cs are estimated to be 160 PBq and 15 PBq, respectively [36]. The total amount of radioactivity 

(excluding noble gases) released to the atmosphere from Fukushima is estimated to be 

around 520 PBq [7]. In addition to the highly volatile radionuclides, small amounts of low volatile 

nuclides of the elements strontium, plutonium and uranium were released [7]. 
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As mentioned earlier, the amount of 131I released was an order of magnitude higher than that 

of 137Cs. Most of the 131I results are estimates derived from AMS measurements of 129I. The 

known isotopic ratio of 131I/129I was used to retrospectively calculate the activity of 131I, since all 

131I decayed about 80 days after the accident. The highest activity concentration measured for 

131I was 187 MBq/m2. The activity was corrected to the corresponding date, March 12. The 

highest activity concentration for 137Cs was 15.5 MBq/m2, again an order of magnitude lower 

than for iodine [30]. 

The evacuation of the people living around the NPP took place in multiple steps. First, the 

evacuation order was issued within a 3 km radius of FDNPP and the order to stay indoors was 

issued within a 10 km radius at 21:23 on March 11, 2011. One day later, the evacuation order 

was issued within a 10 km radius (05:44) and later that day (18:25) within a 20 km radius [37]. 

76,000 people lived within this area, and more than 97 % of residents were evacuated by March 

15 when the highest amount of radioactive plume was released from FDNPP [38, 39]. It was later 

decided to additionally evacuate areas where the annual cumulative radiation dose was 

expected to exceed 20 mSv/year. Figure 2 shows a map of the evacuation zones on April 22, 

2011 planned by the Fukushima Prefectoral Government. Overall, 164,865 citizens were 

evacuated from 13 municipalities surrounding the NPP in May, 2011 [37, 40–42]. 

 

 

 

Figure 2 Evacuation map of Fukushima from April 22, 2011 and April 1, 2017. 
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The lifting of each evacuation order started in 2012 step-by-step. On April 1, 2017, the 

evacuation designated zones (371 km2) occupy 2.7 % of the areas of Fukushima Prefecture 

(13,783 km2) [37]. The number of evacuees is still at 43,214 as of December, 2018 [37]. The 

reconstruction and revitalization in the ‘Difficult-to-Return’ zones are showing steady progress 

with remediation and construction underway [37]. 

After the accident, many efforts have been made to stop the release of more radionuclides and 

to decommission the FDNPP, which will probably take at least 30-40 years. At the FDNPP, a large 

amount of contaminated water has been continuously generated over the last 10 years. The 

treatment of this water is one of the major problems facing the decommissioning efforts. Two 

main sources are producing this contaminated water: The continuous cooling of the inside of 

the reactors and groundwater flowing into the buildings, which is mixed with the contaminated 

water [43]. To treat this continuously increasing amount of contaminated water, many facilities 

were developed and constructed at the FDNPP. A steel seaside impermeable wall was installed 

in 2015 to stop the flow of contaminated groundwater to the sea. Another landside-

impermeable wall (frozen soil wall) was installed around the outside of the buildings. After 

confirming that the radioactive concentration (including tritium) is below the regulatory limit of 

1500 Bq/L [44], the subdrain water is discharged right into the sea. Because of these measures, 

the amount of contaminated water flowing to the sea has been decreased from about 

540 m3/day (May 2014) [45] to less than 200 m3/day today [43]. 

Three systems are installed at FDNPP to process the collected contaminated water. First, the 

water flows through a cesium adsorption system, which removes a major part of the cesium and 

strontium isotopes. Two different zeolite-based systems are being used: KURIOS (using 

chabazite) and SARRY (using crystalline silico-titanate) [46]. Then it is sent to a desalination 

system, which uses a reverse osmosis membrane. After this step, the permeated water is 

recycled as cooling water for the reactors. The remaining water was stored until the Advanced 

Liquid Processing System (ALPS) started its operation in 2013. This system contains several 

adsorption units and is optimized to remove more than 62 different contaminants [43]. Despite 

all this effort, small amounts of contaminants and tritium remain in the water, which is stored 

as so called ‘tritiated water’ in tanks on the FDNPP site [43]. Tritium is a low energy beta emitter 

is relatively harmless, and has the lowest dose coefficient for those radioactive isotopes 

reported in the tanks [47]. The total amount of tritium stored in these tanks is reported to be 

around 0.86 PBq [48]. On December 11, 2021, the capacity of tritiated water tanks of 

1,370,000 m3 will be reached [49]. As of December 17, 2020, the total amount of stored treated 
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water from 1,240,237 m3 was reported [49]. The space for water tank constructions at FDNPP 

has nearly reached its limit [45]. TEPCO and the Japanese government are considering the 

release of tritiated water into the Pacific Ocean, which has been widely discussed by scientists 

and the media [43, 45, 50]. 
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2.4 Radionuclides of Interest 

In this chapter, some background information on the nuclides of interest will be provided. These 

nuclides are tritium (3H), strontium-90 (90Sr), iodine-129 (129I), cesium-134 (134Cs) and cesium-137 

(137Cs). All of them are β--emitters and are produced in a reactor by fission or neutron activation. 

Some of these nuclides are of greater importance in the context of environmental monitoring 

than other radioactive isotopes. All of them were released during the accidents of Chernobyl 

and Fukushima. 

2.4.1 Radiocesium 

Cesium isotopes were among the most significant radionuclides released during both the 

Chernobyl and especially the Fukushima nuclear accident. Cesium is an alkali metal and has 

several radioactive isotopes in addition to one stable isotope, 133Cs. The main focus after the 

Fukushima accident was on the two radioactive isotopes, 

134Cs and 137Cs, with half-lives of 2.1 and 30.1 years, 

respectively. Both cesium isotopes decay to barium by 

beta decay. The decay schemes of both cesium isotopes 

are presented in Figure 3 and Figure 4. Cesium is a very 

volatile element because of its low boiling point at 671 °C 

[51]. This explains why cesium was one of the main 

elements released from the Fukushima power plant. 

Cesium-137 is a fission product of 

uranium and plutonium, with a high 

fission yield of 6.2 % (235U) and 6.6 % 

(239Pu), while 134Cs is produced by 

neutron activation from stable 133Cs 

[52]. Large amounts of 134Cs and 137Cs 

(8.3 - 50 and 7 - 20 PBq respectively) 

were released from FDNPP [30], which 

show a characteristic isotopic 

fingerprint of the Fukushima accident. 

The 134Cs/137Cs activity ratios were 

found to be about 0.9-1.1 in the 

Fukushima releases [53], showing that 

both isotopes of cesium were released in almost equal amounts. The cesium isotope releases 

Figure 3 Decay scheme of 137Cs 

Figure 4 Simplified decay scheme of 134Cs 



 

23 
 

from the Chernobyl accident resulted in a 134Cs/137Cs ratio of about 0.6 [7]. With known isotope 

ratios, it is possible to distinguish releases between different nuclear events [54]. For example, 

if a site is contaminated from multiple nuclear events, the ratios can be used to calculate the 

fractions and determine how much activity comes from each event. This may be particularly 

relevant for 137Cs due to its long half-life, as it is present in the environment for hundreds of 

years after release, and there is a possibility that a site may be contaminated with 137Cs due to 

several different nuclear events. In the case of the Fukushima accident, isotope ratios were used 

to determine releases from various reactor units and waste storage tanks [55]. A distinction of 

the four reactors involved in the Fukushima nuclear accident solely by 134Cs/137Cs activity ratios, 

however, is much more challenging. 

Cesium also has radiological significance because it resembles potassium in biological systems. 

Both elements are alkali metals, which allows cesium to accumulate in human and animal 

tissues, causing a radiation dose with a biological half-life of 110 days . After the Fukushima 

accident, one of the major concerns was the effect of cesium in agriculture and stock farming 

[56]. 
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2.4.2 Radiostrontium 

Strontium is an alkaline earth metal and therefore occurs in the +II oxidation state. Due to its 

boiling point of 1384 °C [51], it is classified as a medium volatile element. Strontium has three 

main radioactive isotopes 90Sr, 89Sr and 85Sr, two of which are beta-emitting radionuclides (90Sr, 

89Sr), and 85Sr decays by electron capture. The beta-emitting strontium isotopes are formed as 

fission products, and in radioanalytical chemistry 85Sr is often used as radioactive tracer [52]. 

Strontium-85 is typically produced by the nuclear reaction 85Rb(p,n)85Sr in a cyclotron [57]. The 

high radiotoxicity of radiostrontium is of high concern for the public safety. It is characteristically 

a chemical homologue to calcium, which causes strontium to be highly relevant from a 

radioecological point of view. As they are both alkaline earth metals, strontium can accumulate 

in bones and by constant, long-term irradiation enhances the probability of causing leukemia or 

skeletal cancer [58]. The biological half-life of 90Sr in higher organisms ranges from 80 days in 

exchangeable compartments up to years in bone tissue as strontium substitutes calcium in 

calcium hydroxylapatite (the mineral matrix in bones) [59]. The decay scheme of 90Sr is 

presented in Figure 5. Strontium-90 decays to 90Y, which adds to the radiotoxicity of strontium 

because 90Y has a fairly short half-life (64 hours [60]) and high maximum beta energy of 

2.27 MeV.  

An estimated total of 600 PBq 90Sr has been 

released in the course of atmospheric 

nuclear explosions of the 20th century [61]. 

Studies on the anthropogenic release of 

strontium into the environment show that 

emissions from the FDNPP accident were 

relatively low, as most strontium remained 

in the (molten) core. The atmospheric 

releases of different strontium isotopes have been estimated to be around 0.1 PBq for 90Sr and 

2 PBq for 89Sr. These released activities correspond to about 0.03% of the total radiostrontium 

inventory in the reactor units [35]. 

The greatest focus concerning FDNPP releases is on 90Sr, due to its high fission yield of 5.8 % 

(235U) and long-term radiological relevance. Since 90Sr is a pure beta emitter, it is usually directly 

measured by liquid scintillation counting, LSC, but a gas ionization detector can also be used. 

The daughter nuclide of 90Sr, 90Y can also be used for the determination of 90Sr activity, by 

measurement with Cherenkov counting after an 90Y ingrowth period of approximately 

Figure 5 Decay scheme of 90Sr to 90Y and 90Zr 
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2-3 weeks. Due to its short half-life (50 d), 89Sr decayed shortly after the FDNPP accident and for 

that reason did not raise concern in long-term safety assessment.  

Not many studies exist about strontium releases from FDNPP. This might be due to the fact that 

measurement of strontium is not as straightforward as other, mostly gamma-emitting, 

radionuclides [62]. Strontium-90 requires separation from other radionuclides before it can be 

measured and the measurement is highly time consuming if the 90Y ingrowth technique is used.  

Although little radiostrontium was released into the atmosphere, accidental and possibly 

intentional discharges of the reactor cooling waters caused contamination in the Pacific Ocean. 

Therefore, the activity concentration of radiostrontium in seawater has been studied thoroughly 

after the Fukushima accident. Measured activity concentrations in a previous study ranged from 

0.8 to 85 Bq/m3 and 19-265 Bq/m3 for 90Sr and 89Sr, respectively [63]. Because of the short half-

life of 89Sr, all detectable activity in these studies could be assigned to the Fukushima event, 

since every possible source of previous contamination of 89Sr had been decayed prior to the 

Fukushima releases. By contrast, the 90Sr results have to be compared to background levels, 

since traces from previous nuclear events can be found. Studies on inland samples generally 

have very low activity concentrations, with a maximum of around 1 Bq/g (up to 4 orders of 

magnitude lower then 137Cs concentration in the same sample). Due to the low volatility of 

strontium, atmospheric releases are significantly lower than those of cesium or iodine isotopes 

[62].  

Strontium isotopes can also be used to determine the source of nuclear contamination. Isotopic 

ratios can be calculated using either strontium isotopes only, e.g. 89Sr/90Sr, or the ratio of 

strontium and cesium (90Sr/137Cs) can be used. Based on these radionuclide ratios, it is possible 

to determine the source or even to estimate the activity of the particular nuclide if the ratio and 

activity of the other nuclides are known. This is part of nuclear forensics. The 89Sr/90Sr ratio in 

samples from the Pacific Ocean collected after the Fukushima accident ranged from 1.8 to 4.3 

[63]. The 90Sr/137Cs ratio in the seawater samples was about 0.02 and could be used to estimate 

the released activity of 90Sr because the activity of 137Cs is well known. Using the 90Sr/137Cs 

isotope ratio, the calculated amount of 90Sr released to the Pacific Ocean ranges from 90 to 

900 TBq [35]. 
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2.4.3 Tritium 

Hydrogen has three naturally occurring isotopes, two of which are stable (2H, 1H) and the third 

is the radioactive tritium (3H) [52]. Tritium is a soft beta emitter with a maximum beta energy of 

18.6 keV [60] and a relatively long half-life of 12.3 years. Tritium is produced naturally by cosmic 

ray interactions with nitrogen and, in particular, by the reaction between neutrons and nitrogen 

in the upper atmosphere (14N(n,3H)12C) [58]. 

Typically, tritium occurs in nature as tritiated water, HTO, but a small amount can also be bound 

in hydrogen gas, HT. Tritium can also replace hydrogen atoms in organic molecules. In the 

environment, tritium is incorporated into the hydrogen cycle and rapidly diluted. The biological 

half-life of tritium is 12 days, which is relatively short [64]. Combining these properties with the 

low beta energy it emits during decay, it can be summarized that tritium does not pose major 

radiation protection concerns. Tritium decays to stable 3He, as presented in its decay scheme in 

Figure 6. 

Anthropogenic tritium was released into the 

atmosphere in large quantities during the nuclear 

testing era, especially thermonuclear (fusion) tests 

in 1952-1963. The production of this 

anthropogenic bomb-related tritium, is based on 

the reaction of lithium with neutrons in [6Li(n,α)3H] 

[52]. Tritium can also be produced as a ternary fission product with a fission yield of 0.01 %, or 

in other neutron activation reactions including reactions with boron [10B(n,2α)3H] or helium 

[3He(n,p)3H] [52].  

In publications, the concentration of tritium is generally presented as tritium units (TU), which 

describes the ratio of tritium to hydrogen in rain water before the nuclear age. One tritium unit 

has 1 tritium atom for 1018 hydrogen atoms (3H/1H= 10-18) [52]. When expressed as activity, 

1 tritium unit equals 0.118 Bq/L [58].  

Tritium levels have been monitored for decades, and there have been two peak concentrations 

over the years. In the Northern Hemisphere, the first peak concentration of tritium was about 

10,000 TU at the time of the thermonuclear tests. The second peak of anthropogenic tritium 

releases was caused by the Chernobyl accident in 1986. At Japan, tritium levels have been 

monitored since 1961, and have been around 10 TU since the 1980s. As a background level of 

tritium before the accident, precipitation samples collected in Tsubuka, Japan, in 2010 showed 

tritium levels of 6 TU. The tritium concentration within the first precipitation, 170 km from the 

Figure 6 Decay scheme of 3H 
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FDNPP, was 160 TU [65]. Until this thesis, the highest measured tritium activity concentration of 

1342 TU was measured in a precipitation sample 10 days after the accident at a distance of 

25 km from the NPP [66]. In the present thesis, we found the highest tritium activity 

concentration of 1560 ± 17 TU (decay corrected to the accident) in a puddle sample, collected 

on April 11, 2011, approximately 1.5 km from the FDNPP site [D2]. 
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2.4.4 Radioiodine 

Iodine is an element of the halogen group and is a non-metal and can adopt oxidation states 

ranging from –I to +VII. Iodine has one stable isotope, 127I and several radioactive isotopes, of 

which 131I and 129I are the most significant when studying the Fukushima accident. In Fukushima, 

131I was one of the most significant fission products released among cesium isotopes -134 

and -137. Iodine-131 has a short half-life of 8 days, whereas 129I has a half-life of 1.57 ∙ 107 years. 

Iodine-129 decays to stable xenon by beta decay and the decay scheme is presented in Figure 

7. The maximum beta energy of 129I is 154 keV. It is estimated that the largest released activity 

of a single radionuclide, 150-160 PBq, was from 131I 

released from Fukushima, if noble gases are excluded. 

For the long-lived iodine isotope 129I, the amount of 

released activity is estimated to total about 8 GBq. 

Iodine was released predominantly in the 

atmosphere, but the greatest impact was to the 

Pacific Ocean, not only by deposition from the 

atmosphere but also by direct release from 

contaminated cooling water [67]. 

Iodine-131 is radiologically considered to be one of the most harmful radionuclides released 

from the FDNPP, as it exhibited a high activity immediately after the accident. Iodine is known 

to have a high affinity to the thyroid. Thus, having a high probability of causing thyroid cancer, 

especially in children. Iodine-129 is of little radiological concern compared with than 131I, but it 

is an important oceanographic and ecological tracer and serves as a sensitive fingerprint of 

nuclear pollution in the environment [68]. Furthermore, when estimating the impact and 

dosimetry of 131I after the Fukushima accident, 129I is also very important nuclide. Because of the 

identical chemical behavior of different iodine isotopes, 129I can still be used retrospectively as 

an environmental analog for short-lived 131I, which decayed within few weeks after the accident. 

The information provided by the 129I measurements can be used to reconstruct the levels and 

distribution of the short-lived 131I [67]. In order to reconstruct the 131I contents, the ratio of 

iodine isotopes, 129I/131I, is applied. The 129I/131I isotope ratio measured after the accident was 

about 16 in precipitation and 32 in soil samples. The ratio in soil samples is decay corrected to 

March 15, 2011, and the value in precipitation is an average of the period March 3-31, 2011 [68, 

69]. In comparison, the 129I/131I ratios measured in rainwater after the Chernobyl accident ranged 

from 16 to 35 [70]. Based on the results of those studies, the Fukushima and Chernobyl 

radioiodine ratios are comparable. 

Figure 7 Decay scheme of 129I 
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Not only the ratios of iodine isotopes can be calculated, but also, in general, the activity ratios 

of different radioisotopes such as 129I/137Cs and 131I/137Cs. The 129I/137Cs activity ratio measured 

after the Fukushima accident averaged 1.1 ∙ 10-6 in aerosol samples [71], during the same ratio 

measured after the Chernobyl accident was 2.75 ∙ 10-7 [72]. In air samples, the value after the 

Fukushima accident for 131I/137Cs averaged 32 collected within 80 km of the FDNPP. In samples 

with greater distance, the 131I/137Cs ratio was higher. The values of 131I/137Cs in samples collected 

at a distance of 2000-12,000 km ranged from 63 to 77. The values increase with distance due to 

the transport phase of the radionuclides. After release, 137Cs is bound to aerosol particles, while 

131I is transported either in aerosol particles or in the gas phase. During transport, the aerosol 

particles containing the radionuclides, in this case 137Cs and partially 131I, are efficiently deposited 

by rain or gravity, while the nuclides in the gas phase, 131I, remain longer in the atmosphere [71].  
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3 Methods 

3.1 Samples 

The water samples for this thesis were collected during three sampling campaigns:  

- Chernobyl surface waters including cooling pond water, from 2017 [D1] 

- Fukushima surface water from the vicinity of the FDNPP sampled 1 month after the 

accident [D2] 

- Potable and surface water from venues in Japan of the Tokyo 2020 Olympic Games [D3] 

The sampling of Chernobyl surface water from the exclusion zone occurred on May 16 and 17, 

2017. Ten water samples were taken directly from the shore, after removing floating matter 

(e.g., algae or pollen) from the surface. Figure 1 in [D1] shows a map of the sampling sites and 

detailed sampling location are given in Table 2 [D1]. Different types of surface water were 

collected widely around the entire area around the power plant and Chernobyl City: Tap water 

from Chernobyl City, rainwater collected from the rooftop of a car, water of the cooling pond, 

water from the channel which leads into the cooling pond, puddle water at the checkpoint, 

water from the Ush river and from the Pripyat River Bay, water of ponds near the street to 

Chernobyl city, and water from a swamp. The sample volume was 1 L each except the rainwater 

sample, which was 600 mL. The samples were stored, untreated, in PET bottles in a refrigerator 

until further sample preparation. 

The sampling of Fukushima surface water samples was performed on April 10, 2011. The exact 

locations and sample types are presented in Table S1 [D2] and the sample collection locations 

are also shown in Figure S1 [D2]. There were three different types of samples; puddle, paddy 

water and seawater samples. Puddles in this study refer to a water sample that is collected from 

cracks in an asphalt based road, paddy water refers to rice paddy field and there was one 

seawater sample collected from surface of the Pacific Ocean very close to the shore. All samples 

had been filtered with 0.45 μm membrane filters prior to any sample preparation. The samples 

were stored in plastic vials (PP) that were sealed in plastic bags to avoid any leakage. The vials 

were kept in a refrigerator until further sample preparation. The sample volumes vary between 

40 and 100 mL. 

The Olympic water samples include two types: Potable water (tap water and bottled water) as 

well as surface water and tap water. A total of 12 potable water samples in PET bottles were 

bought in supermarkets. The content of the bottled water was produced in the prefectures 

Hokkaido, Fukushima, Chiba, Tokyo, Kanagawa (2 independent samples), Ishikawa, Hyogo, 

Shimane, Hiroshima, Fukuoka, and Kumamoto. In addition, 4 surface water samples were taken 
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on February 14 and 19, 2018, to address concerns of athletes getting into contact with these 

surface waters. They were taken from the venues of the Windsurfing competition (Tsurigasaki 

Surfing Beach, Chiba), Sailing (Enoshima Yacht Harbour, Kanagawa), Triathlon Swimming 

(Odaiba Marine Park, Tokyo) and Canoe Slalom (Kasai Canoe Slalom Course, Tokyo) and one tap 

water sample from the Cycling Track (Izu Velodrome, Shizuoka). All sampling prefectures and 

venues are shown in Figure 2 [D3]. The sample volume was 1 L each and the samples were 

stored, untreated, in a refrigerator in PET bottles until further sample preparation. 

  



 

32 
 

3.2 Sample Preparation and Method Optimization 

This thesis consists of three parts: The method optimization for each nuclide of interest, 

especially for 90Sr with respect to the Chernobyl water samples; utilization of these methods for 

the Fukushima water samples where only small volumes were available; and lastly, confirming 

that these methods are suitable for low-level measurements with low detection limits for the 

Olympic water samples. 

The initial step was to measure the air dose rates of the wrapping surface of the water samples 

with a contamination monitor (Berthold Technologies, LB 124 SCINT). These air dose rates are 

the first indicator of activity in these samples. All samples were prepared by means of the same 

treatment sequence: First the samples were acidified and filtered, following a gamma 

measurement to determine 137Cs activity, then the preparation for 90Sr, 3H, and in the case of 

the Fukushima samples for 129I. 

Prior to any measurements, the water samples from the Chernobyl exclusion zone and from 

venues in Japan of the Olympic games 2020 were acidified with 1 mL nitric acid (VWR Chemicals, 

69 %, p.a.) to 1 L solution and filtered through a 2-4 µm WhatmannTM filter paper. In addition, 

for some of the measurements a defined volume was filtered through a 0.45 µm syringe filter 

(VWR, PP-membrane), which will be described in the respective radionuclide section. The 

Fukushima surface samples were first filtered through a 0.45 syringe filter and later acidified (or 

alkalized for iodine sample preparation). The exact sample treatment of the different campaigns 

is given in the publications [D1, D2, D3]. 

3.2.1 Radiocesium 

Cesium did not need any special separation or sample preparation, because the characteristic 

gamma energies of both cesium isotopes were used for determination (605 keV and 795 keV for 

134Cs, 662 keV for 137Cs). The only preparation for cesium isotope measurements included filling 

the water samples into a defined geometry. In this thesis, Marinelli beakers in different sizes 

500 – 1500 mL (Chernobyl water and Olympic water) and 50 mL centrifuge tubes (Fukushima 

water) were used. Efficiency calibrations were done with the same geometry before 

measurement. The calibration solution included known activities of different energy 

radionuclides and by measuring the counts and knowing the initial activity, the efficiency of the 

high-purity germanium detector at a defined energy could be determined. The main focus of the 

gamma measurements was to determine the activities of cesium isotopes 134Cs and 137Cs. 
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The samples from Chernobyl and Fukushima were measured with the software GENIE2K on a 

high-purity germanium detector. The measurement times ranged from 1 to 6 days, depending 

on each sample activity. Every sample was measured until the uncertainty for 137Cs peak was 

10 % or less. The Olympic samples were measured in Dresden, Germany, in a low-level 

underground laboratory called “Felsenkeller”.  
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3.2.2 Radiostrontium 

The strontium separation was performed with the extraction chromatography resin, ‘SR Resin’, 

from Triskem. Together with Weller et al., we tested these resins at different conditions [73]. 

One test included the long-term storage of unloaded SR resins at different temperatures, 

another tested the storage of 85Sr loaded resins under highly acidic conditions and also under a 

combination of acidic and complexing agent conditions. Finally, the reusability of the resin 

material was investigated [73].  

One part of this thesis was to evaluate the process on the basis of its recovery determination 

using stable strontium, which is readily applied with the addition of the carrier solution, and 

which process is able to perform the recovery calculation with 85Sr. For samples which can be 

estimated to have rather low-level activities, the recovery determination procedure using stable 

strontium and measurement via ICP-AES have been proven favorable. This is especially 

applicable to the Olympic water samples, which were expected to contain 90Sr activities from 

none to barely above LoD. Chernobyl sample material that has been characterized beforehand, 

has likewise been evaluated via stable Sr carrier recovery calculations to test this method. As 

the Fukushima surface water samples were expected to show higher activities, 85Sr addition was 

chosen for recovery determination. 

Strontium extraction chromatography 

The strontium-selective part of the resin is the crown ether 4,4’(5’)-di-t-butylcyclohexano-18-

crown-6, which has an inner diameter of the crown fitting perfectly to the ionic radius of a 

strontium cation coordinated by two nitrate anions. One percent of the crown ether is diluted 

in 1-octanol and the resulting organic solution is embedded into an inert chromatographic 

stationary phase. The particle size of the chromatographic stationary phase was 50 - 100 μm 

[74]. 

The strontium ion is loaded on the resin with 8 M nitric acid (highest equilibrium constant k of 

90) and eluted with 0.025 M nitric acid (k less than 1). For this reason, an easy separation of 

strontium from calcium is possible because of calcium’s low affinity towards the stationary 

phase. The barium retention is relatively high on the SR resin, but has maximal affinity at 3 M 

nitric acid, in which case a resin loading with 8 M results in washing the Ba off the column. 

Furthermore, tetravalent actinides show significant retention on the Sr column. Through 

addition of oxalic acid as a competitive complexing agent, the tetravalent actinides are washed 

from the column. Lead has an even higher affinity to the resin than strontium and, moreover, 

has natural occurring radioisotopes 210Pb and 212Pb.  
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Interferences from sodium or calcium with concentration lower than 0.5 M are not significant, 

but a calcium mass above 320 mg shows an influence on the chemical yield. Moreover, 

concentrations of higher than 0.1 M potassium show a similar decrease of the chemical yield. In 

this case, prior oxalate precipitation is recommended. The maximal capacity of one SR resin is 

21 mg for a 2 mL column, it is recommended to work at 10-20 % of the maximum capacity. It 

was also found that the particle size used has influence on the elution band. A smaller particle 

size distribution results in narrower elution band but slower flow rates [74, 75]. 
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3.2.3 Tritium 

Tritium with its low beta energy of 18 keV is preferably measured via LSC. Tritium activity 

concentration of natural waters (precipitation, groundwater, surface waters) has recently 

reached a level too low to be directly measured by low-level liquid scintillation (LSC) techniques. 

In order to measure tritium in environmental water samples, an enrichment of tritium 

containing water (HTO) in H2O is necessary. In this thesis, two different methods for tritium 

enrichment were applied: distillation and electrolysis.  

Distillation 

A tritium enrichment via distillation process lies in the physical basis that the rates of escaping 

atoms and molecules from a liquid surface to a gaseous phase are generally inversely 

proportional to the square roots of their masses (Graham’s Law) [76]. Multistage distillation 

techniques are necessary for satisfactory results, because the fractionation factor of HTO in H2O 

is rather small [77]. The setup and the procedure are both straightforward and inexpensive, as 

most equipment is commonly available in every chemical laboratory. The major disadvantages 

of distillation as an enrichment process are the relatively long times required for enrichment, 

the poor reproducibility, and the modest enrichment factors achieved [78]. The degree of 

separation also decreases significantly with increasing temperature; at 100 °C, the separation 

factor is only about 1.036 [78]. Optimal fractionation of tritium relative to water is achieved at 

the same distillation times at a pressure of about 130 to 160 mbar (at which water boils at 

52-55 °C) [79]. Distillation of water samples represents a purification process that is particularly 

useful when water samples are contaminated with organic matter, interfering chemicals or 

radionuclides [80]. 

The used equipment setup consisted of basic distillation glassware. The focus was on removal 

of the beta emitting radionuclides present in the solution and concentration of tritiated water. 

Hold-back carriers were included into the procedure: By addition of sodium carbonate, sodium 

iodide and sodium sulphite, volatile radionuclides can be retained. Most radionuclides in water 

samples can barely be vaporized. However, some nuclides can be released if the hold-back 

carriers are not used. An example of a vaporizable, interfering radionuclide is 14C, which is most 

likely to be released as carbon dioxide during distillation, but can be retained by sodium 

carbonate. Another example is iodine (e.g. 129I and 131I), which readily vaporizes as I2, but it is 

reduced to non-vaporazible iodide by sodium sulphite.  

To ensure that no HTO was in the glassware at the beginning of the experiment, all glass 

equipment and teflon sealing was dried in an oven at 105 °C beforehand. The distillation was 
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performed under vacuum to further enhance the process. The maximum temperature in the 

distillation apparatus ranged between 61 to 76 °C. The samples were distilled until dry with care 

taken to prevent splashing of the residue. 

Electrolysis 

The tritium activity concentration can be increased to a measurable level by electrolytic 

enrichment. During electrolytic enrichment of tritium, water is decomposed into its individual 

components, hydrogen and oxygen. Due to the isotope effect, the compound HTO has a lower 

reaction and migration rate than H2O. Even though isotopes of one element show the same 

chemical behavior, isotope effects can occur due to the noticeable mass differences. Whenever 

a vectored force has an effect on different isotopes, as for example when a centrifugal force is 

applied, a mass fractionation can take place. This mass fractionation happens to be unaffected 

by the chemical properties of the element itself. For hydrogen and tritium, the mass difference 

is a factor of three, giving a relatively high probability of isotope effects to occur. These effects 

have to be considered when working with tritiated water. For isotopes with masses larger than 

carbon, the isotope effect can be neglected. By means of the isotope effect, HTO can be 

separated from H2O via electrophilic enrichment. The larger the initial water volume, the larger 

the enrichment factor, i.e., the ratio of the final to the initial tritium activity concentration of a 

sample increases. Common tritium enrichment factors range from about 3 [81] to 18 [82] for 

250 mL initial water volume, from 18 [83] to 28 [82] for 500 mL initial water volume, and can 

reach 75 or even 175 for 1 L or 2 L initial water volume [84]. With the setup used in this work, 

an enrichment factor of 13 (reduction of 200 mL to approx. 15 mL) was achieved. During this 

process, gases are produced and ventilation should be applied. When hydrogen concentration 

in the surrounding air reaches a critical level (4 – 77 volume % H2), uncontrollable oxyhydrogen 

reactions can take place [85]. 
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3.2.4 Radioiodine 

Due to its long half-life of 15.7 Ma and the low β- and γ-energies, direct radiometric 

measurements of 129I are only possible with comparatively high concentrations. In order to 

circumvent this issue, accelerator mass spectrometry (AMS) was chosen as the analytical 

method for 129I determination. The mode of operation is based on multiple separations of the 

analyte from isobaric interferences of the sample matrix. By application of this technique, 

extremely low LoDs are achieved, which makes this method ideally suited for 129I determination.  

For AMS measurements, the iodine must be extracted from the water samples, precipitated as 

silver iodide, and pressed into specialized AMS targets. The method used in this work for 

extraction and preparation of silver iodide targets for AMS measurement is a variant of the 

method performed by Hou et al. [86]. 

Different volumes are needed to prepare water samples for AMS measurements according to 

the expected 129I/127I ratios. Only a few milliliters (5 - 10 mL) are needed for samples from the 

immediate vicinity of the reprocessing plants (ratio of ca. 10-6), while up to 1 L is necessary for 

lower ratios, for example in precipitation and surface waters. For the samples prepared in this 

work, volumes of 1 - 38 mL were applied and mixed with 50 μL of the Woodward iodine-added 

carrier. Woodward iodine is 127I of high isotopic purity (129I/127I isotopic ratio of 10-14), which can 

be obtained from special geological deposits, usually sealed from the atmosphere. Due to the 

very low 129I content, Woodward iodine is suitable for "dilution" of seawater samples highly 

concentrated in 129I for sensitive AMS. The challenging part of the 129I sample preparation for the 

measurement is in the identification of suitable activity levels for the AMS. On the one hand, 

contamination of the AMS facility has to be avoided, which is why too high activities are 

impractical. On the other hand, if too high dilutions are applied and 129I levels appear to be near 

the LoD, high uncertainties of the measurement results will be unavoidable. The exact treatment 

is described in [D3]. The concentration of stable iodine 127I in the initial samples was measured 

via ICP-MS and each result was used for calculation of 129I activity concentration by means of the 

corresponding 129I/127I ratio. 

Accelerator mass spectrometry 

Negatively charged ions are ablated from the surface of the samples precipitated as silver iodide 

(AgI) by a Cs sputter source, accelerated and sent through the first mass separator. Only ions 

with the set mass-to-charge ratio (m/z = 129) are able to pass. The decisive step occurs in the 

+3 MV Tandem Accelerator, since the gas used there and the "stripper coil" cause the introduced 

iodine to lose electrons, leaving it with a +4 charge. Interfering ions, which are on the same 
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isobar, yet chemically different from iodine, do not show a +4 charge after this step. In this way 

the most interfering xenon isotope 129Xe can be removed from the measurement. The 

subsequent mass analyzers separate again according to the defined m/z ratio. It is thereby 

possible to achieve detection limits for 129I/127I ratios in the order of 10-14 [87]. 
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4 Conclusion and Outlook 
 

In this thesis, modern radioanalytical and mass spectrometry techniques were used and partly 

optimized for the relatively long-lived radionuclides 3H, 90Sr, 129I and (134)+137Cs in environmental 

water samples. The behavior and durability of commonly used SR resin for separation of 

radiostrontium under several possible sample preparation steps were investigated. Afterwards, 

surface water samples from Chernobyl and Fukushima were analyzed for their radioactive 

content by optimization of methods for small volume samples. The applied methods were then 

validated for their detection limits with low-level potable water samples. 

For radiostrontium measurements, the yield tracer 85Sr does show slight increases of the count 

rate of 90Sr in LSC measurements increasing the detection limits. For ultra-low-level analyses, 

the use of stable strontium was proven to be sufficient and its benefits regarding the analytical 

procedure were highlighted. The concentrations of interfering cations (e.g. Ca2+, Ba2+, Pb2+) and 

the overloading of strontium can be controlled prior to the extraction with the first aliquot (for 

example with ICP-AES). Therefore, it can be evaluated if there is a necessity for an increased 

amount of SR resin needed to avoid a breakthrough of the Sr due to excessive loading of the 

resin. After extraction, another aliquot can be used to determine the recovery rate. In this thesis, 

the application of this method showed recovery rates between 72 and 95 % [D1]. 

Nearly all water samples from Chernobyl exclusion zone exhibited detectable activities of 90Sr 

and 137Cs, even after more than 30 years (approx. one half-life of these isotopes after the 

accident in 1986) [D1]. It was found that neither the rainwater sample from the Kopachi village 

did exceed the detection limit of 90Sr (LoD = 0.07 Bq/kg), nor the puddle water sample near the 

checkpoint to the Chernobyl exclusion zone, nor tap water from a laboratory in Chernobyl city, 

nor water from the Ush river contain detectable amounts of 90Sr or 137Cs. The other samples of 

this study contain detectable amounts of 0.6 – 4.1 Bq/kg for 90Sr and 0.06 – 8 Bq/kg for 137Cs. 

Two significant observations have been made: The aqueous environment in the southern region 

of the ChNPP is characterized by low contamination levels and the 90Sr/137Cs ratio seemingly 

tending to increase with distance from the source. 

The Fukushima surface water samples have a high scientific value due to the timing of the 

sampling only one month after the nuclear accident [D2]. Four of those samples exhibited 

tritium in detectable concentrations of 5 – 184 Bq/L. One puddle water sample, collected 

approximately 1.5 km from the FDNPP site, showed the highest tritium activity concentration 

reported in scientific literature of 184 ± 2 Bq/L, the highest concentration until that date was at 

160 Bq/L in precipitation at a distance of 25 km 10 days after the accident. Strontium-90 was 
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detected in all samples, but only the puddle water sample exceeded the limit of quantification 

(LoQ = 1 Bq/L). The Pacific Ocean water sample investigated in this study showed a higher tritium 

concentration compared to other seawater samples from different sampling campaigns at a 

later stage after the accident, including non-coastal areas. The 134Cs/137Cs ratio of 1.1 ± 0.3 

indicates that virtually the entirety of radiocesium in this sample is Fukushima-derived. Activities 

of long-lived 129I were determined and used to retrospectively assess the contamination levels 

with highly radiotoxic, short-lived 131I. Since the storage of the samples between sampling and 

analyzing was not optimal, the calculated activity concentrations of 131I should be regarded as 

the minimum concentrations. The puddle samples exhibited high 131I concentrations of 

≥ 300 Bq/L, the one from close proximity almost 5 kBq/L, and is in line with the highest 131I 

activity concentration reported for rainwater. In addition, the activity concentration of the 

seawater sample of 88 ± 2 Bq/L is in a good agreement with other studies. The comparison of a 

puddle and a paddy sample from the same location gave information about the radioecological 

characteristics of the analyzed fission products. The ratios given by the tritium activity 

concentration of those samples showed the isotope dilution effect from precipitation (puddle 

sample) and stagnant water (rice paddy sample). The deviation from this ratio for other nuclides 

may reflect adsorption to minerals (cesium) or organic matter (iodine). 

Potable water and surface water samples from Olympic sites in Japan for Tokyo 2020 have been 

analyzed for a radiological hazard assessment for internal and external exposures [D3]. In 

addition, air dose rates at all Olympic sites were measured for assessments of the external 

exposure. An extensive literature review helped provide information on internal exposure from 

radon inhalation in Japan and was compared to countries where other Olympic Games have 

taken place. Strontium-90 could not be detected in any of those samples with a detection limit 

of 70 mBq/L. The tritium activity in a potable water sample from Fukushima prefecture was 

below the pre-accident background. The potable water sample from Chiba exceeded the 137Cs 

activity above the detection limit with 3.1 ± 0.7 mBq/L. However, the radiocesium level is far 

below the regulatory limit of 10 Bq/kg. It could be shown that the effective dose for a two-week 

stay in Japan can predominantly be attributed to the flights to and from Japan and internal dose 

by inhalation of natural radioactive 222Rn and its progeny. 

For further investigation on this topic, the Fukushima surface water samples should be 

measured for their 135Cs/137Cs-ratio, especially for environmental nuclear forensics studies. By 

means of determination of isotopic ratios, these samples may lead to more information about 

the process of the Fukushima accident. An additional recommendation for future studies is to 

adopt in-situ measurements for radiostrontium via liquid extraction chromatography coupled 
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with ICP-QQQ-MS system as a rapid radiostrontium measurement system. Usage of such a 

coupled system provides greater enhancement of consistent repetition of measurements, as 

well as the possibility to reach even lower limits of detection. Optimization and continuous 

advancements regarding the chemical sample preparation are the most important targets to 

aim for in radioanalytical science. 
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