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Plant mitochondrial genomes are renowned for their structural complexity, extreme variation in size and mu-
tation rates, and ability to incorporate foreign DNA. Parasitic flowering plants are no exception, and the close
association between parasite and host may even enhance the likelihood of horizontal gene transfer (HGT) be-
tween them. Recent studies on mistletoes (Viscum) have revealed that these parasites have lost an exceptional
number of mitochondrial genes, including all complex I genes of the respiratory chain. At the same time, an
altered respiratory pathway has been demonstrated. Here we review the current understanding of mitochondrial
evolution in parasitic plants with a special emphasis on HGT to and from parasite mitochondrial genomes, as

well as the uniquely altered mitochondria in Viscum and related plants.

1. Introduction

Plant mitochondria are involved in a variety of key cellular pro-
cesses such as programmed cell death, stress response and anti-micro-
bial defense, but their primary function is to generate ATP by oxidative
phosphorylation and produce metabolic intermediates for various cel-
lular processes. Thus, these organelles house key metabolic pathways
such as the mitochondrial tricarboxylic acid (TCA) cycle, the mi-
tochondrial electron transport chain (ETC) and the Fe-S cluster bio-
genesis machinery (Millar et al., 2011; Rao et al., 2017). A number of
ETC proteins are encoded by genes located in the mitochondrial
genome (mitogenome), and these genes have been considered essential
to mitochondrial function (e.g. Adams and Palmer, 2003). Recent work
in a group of parasitic plants has begun to challenge this long-held view
and to suggest that these genes may be dispensable in plants as they
have been shown to be in unicellular eukaryotes such as bakers’s yeast,
Saccharomyces cerevisiae (Maclean et al., 2018; Petersen et al., 2015a;
Senkler et al., 2018; Skippington et al., 2015).

Compared to most other eukaryotes, the mitogenomes of plants and
flowering plants (angiosperms) in particular are remarkably divergent
in terms of size, structure, mutation rate, RNA editing, and ability to
incorporate foreign DNA. These features have been described and re-
viewed in a number of papers (Gualberto and Newton, 2017; Johnston,
2019; Knoop, 2012; Kozik et al., 2019; Mower et al., 2012a,b; Sloan,
2015; Yurina and Odintsova, 2016), and in the present volume an
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updated review focusing on gene and intron divergence among an-
giosperms can be found (Mower, this issue). Our understanding of plant
mitochondrial evolution is limited by existing sequence data, with the
number of complete mitogenomes for angiosperms far lower than the
number of complete plastid genomes (plastomes) (142 species with
complete mitogenomes versus 4445 species with complete plastomes,
NCBI 18 NOV 2019). The main reason for the lack of complete mito-
genome data is the structural diversity of the mitogenome. Although
many angiosperm mitogenomes are visualized as one circular chro-
mosome — the “master chromosome” (Palmer and Shields, 1984) or
“master circle” (Lonsdale et al., 1984) — increasing evidence suggests
that plant DNA primarily exists in vivo as a dynamic, recombining
collection of circular and non-circular (linear, branched) forms (see
e.g., Gualberto and Newton, 2017; Kozik et al., 2019). While there is
extensive diversity in intergenic regions within plant mitochondria, the
overall gene complement appears to be largely conserved both in
content and amount of sequence divergence.

Given the fundamental nature of mitochondrial function and the
essential role of the mitochondrial genes, a parasitic lifestyle (altered
source of carbon, nitrogen and other nutrients) might not be expected
to influence mitogenome evolution substantially. Accordingly, parasitic
plants examined to date do not appear to differ substantially from other
plants in their mitogenome gene content, aside from a possibly higher
frequency of putatively horizontally transferred genes. However, recent
findings of highly divergent mitogenomes and strongly altered

Received 19 December 2019; Received in revised form 5 March 2020; Accepted 23 March 2020

Available online 26 March 2020

1567-7249/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/15677249
https://www.elsevier.com/locate/mito
https://doi.org/10.1016/j.mito.2020.03.008
https://doi.org/10.1016/j.mito.2020.03.008
mailto:gitte.petersen@su.se
https://doi.org/10.1016/j.mito.2020.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mito.2020.03.008&domain=pdf

G. Petersen, et al.

respiratory function in mistletoes (Viscum) (Maclean et al., 2018;
Petersen et al., 2015a; Senkler et al., 2018; Skippington et al., 2015)
have led to increased interest in mitochondrial evolution in parasitic
plants.

Parasitism has evolved in almost all major groups of plants (e.g.
rhodophytes, chlorophytes, bryophytes, lycophytes, monilophytes,
gymnosperms, angiosperms) (see e.g. Figueroa-Martinez et al., 2015;
Merckx and Freudenstein, 2010; Preuss et al., 2017; Westwood et al.,
2010 and references therein), but in the present review we will focus on
aspects of mitochondrial evolution in parasitic angiosperms. Parasitic
angiosperms take up nutrients and water from their host, and they have
adopted at least a partially heterotrophic lifestyle. These plants are
typically classified by whether they require a host to complete their life
cycle (obligate parasites) or not (facultative parasites), and by whether
they have some photosynthetic activity (hemiparasites) or have lost it
completely (holoparasites). The term parasitic angiosperm is mostly
applied to those parasites having another plant as the direct host,
whereas those feeding on a fungal host are referred to as mycohetero-
trophs. While many plants have fungal associations that are important
for obtaining water and inorganic nutrients (in exchange for the plant's
carbon), mycoheterotrophs have reversed the direction of carbon flow
and may indirectly obtain carbon from another plant via the fungus.

The evolution of parasitism and mycoheterotrophy has occurred
repeatedly among angiosperms (see Table 1). With the inclusion of the
family Balanophoraceae in the order Santalales, the number of parallel
evolutionary events leading to parasitism is at least 12 (Barkman et al.,
2007; Su et al., 2015; Westwood et al., 2010). Within the 12 parasitic
lineages of angiosperms, holoparasitism has evolved at least 10 times.
While the majority of the parasites are eudicots (the rest being mag-
noliids), full mycoheterotrophy (i.e. with a complete lack of photo-
synthesis) is most common among monocots, having evolved within at
least seven monocot families including orchids, but in only three eu-
dicot families (Graham et al., 2017; Merckx and Freudenstein, 2010;
Westwood et al., 2010). The exact number of times that mycohetero-
trophy has evolved is unclear since the trophic status for many my-
corrhizal partnerships has not been determined. Thus, full mycoheter-
otrophy is thought to have evolved independently more than 50 times
(Graham et al., 2017; Merckx and Freudenstein, 2010), but many of the
events may have occurred within clades already being partially myco-
heterotrophic. Generally, the recurrent development of parasitism and
mycoheterotrophy provides an excellent framework for comparative
evolutionary studies.

The close association between parasitic plants and their hosts, either
via a haustorial structure or as endoparasites within host tissue, makes
them excellent candidates for studying horizontal gene transfer (HGT).
Mitochondria are potentially well suited to incorporating foreign DNA
into their genomes due to an active DNA uptake system (Koulintchenko
et al., 2003) and their propensity to fuse and split and recombine their
genomes (Arimura et al., 2004; Logan, 2006). The phenomenon of HGT
between plants, first detected in mitochondria (Bergthorsson et al.,
2003), has been a research focus for the past 15 years and a subject of
reviews spanning angiosperms (Bock, 2010; Mower et al., 2012a;
Renner and Bellot, 2012; Richardson and Palmer, 2007; Sanchez-
Puerta, 2014; Wickell and Li, 2020) and focusing on parasites in par-
ticular (Davis and Xi, 2015). While the increasing amount of data from
nuclear genomes has broadened our appreciation of HGT in parasitic
plants, the mitogenome is still largely unexplored for what is likely a
prevalent process. Newer studies are hinting at both the incorporation
of massive amounts of host sequence into parasite mitogenomes, as well
as a surprising absence of transfers, so that the expected occurrence of
HGT in parasitic genomes remains unclear.

Here we briefly summarize the current data available and evidence
for mitochondrial evolution in parasitic and mycoheterotrophic an-
giosperms, and then focus on two aspects of parasite mitochondria that
appear to differ from most other plants, namely elevated HGT and the
curious case of an altered mode of respiration in Viscum.
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2. Parasitic mitogenomes

There are remarkably few completely sequenced and assembled
mitogenomes from parasitic and mycoheterotrophic plants (Table 1).
The first published mitogenome for a parasitic plant was the small and
very divergent mitogenome of Viscum scurruloideum (Skippington et al.,
2015), followed soon after by the mitogenome of V. album (Petersen
et al., 2015a). Remarkably, both species lack nad genes encoding
complex I subunits of the electron transport chain (see Section 4) and
most of their remaining mitochondrial genes appear highly divergent
compared to homologous genes in other angiosperms (Petersen et al.,
2015a; Skippington et al., 2015, 2017).

Although the differences in size and structure of the mitogenomes in
Table 1 may appear vast, the diversity is consistent with known flow-
ering plant mitogenome diversity (Mower et al., 2012a), which include
sizes up to 11.3 Mb and chromosome numbers exceeding one hundred
(Sloan et al., 2012).

Data from the few complete mitogenomes suggests no evolutionary
correlation between the type of parasitic lifestyle and mitogenome size
and structure. Although this may be expected, it should be emphasized
that mitogenome structure is particularly problematic to determine,
and the data listed here are results of individual researchers’ preferred
methods of assembly and visualization. Given that plant mitochondrial
DNA primarily exists in vivo as a dynamic collection of non-circular
(linear, branched) forms and that these configurations are shaped by
recombination between/across repeated sequences (see, e.g. Johnston,
2019; Kozik et al., 2019), both chromosome numbers and genome sizes
should be considered approximations.

In addition to the complete mitogenomes, larger but partial mito-
genome assemblies have been produced for a few parasite species, and
for additional species more or less complete gene surveys (protein
coding genes and ribosomal RNA genes) have been reported (Table 1).
However, the availability of the gene data varies considerably: the raw
data may or may not be publicly available, and the genes reported may
or may not be available either. Nevertheless, from the twelve evolu-
tionary lineages of parasitic plants, nine now have at least some gene
complement data, whereas only three mycoheterotrophic lineages have
data, but from complete mitogenomes. Raw sequence data is accumu-
lating as part of genome assembly projects and genome skimming,
which provide opportunities to assemble partial or entire mitogenomes.
For parasites, recent genomic work includes genomes of two Cuscuta
species (Sun et al., 2018; Vogel et al., 2018), Santalum (Santalaceae)
(Mahesh et al., 2018) and Striga (Orobanchaceae) (Yoshida et al.,
2019).

Gene content in both parasites and mycoheterotrophs appears to be
generally conserved compared to other angiosperms, consistent with
the unremarkable variation in size and structure. The exception to this
pattern is the gene content of Viscum and Phoradendron, both members
of Viscaceae, a family that also seems to have unusually high sequence
divergence in the mitochondrial genes that are still present. While it
seems that gene content is largely conserved across parasites, the origin
of some of those genes or the presence of extra copies appears to be due
to HGT, which appears to be enhanced by parasitism (see Section 3).

3. Parasitic plants and HGT

While HGT has been defined to include movement of genetic ma-
terial between genomic compartments such as the nucleus and mi-
tochondrion (e.g. Mower et al., 2012a), here we define HGT in plants to
be the movement of genetic material between species by a means other
than sexual reproduction (i.e. the fusion of gametes of close relatives).
In a parasitic context, this exchange could arise as a result of cell-to-cell
contact or the uptake of DNA from lysed cells or vascular fluid as in,
e.g., grafting experiments (Stegemann and Bock, 2009; Stegemann
et al., 2012). The persistence of any incorporated DNA then depends on
its eventually entering a meristem and the subsequent production of
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Table 1
List of lineages of parasitic and mycoheterotrophic angiosperms and species with published mitogenome data.

Lineage (parasitic species') Species with data® Parasite type® Mt data® Mitogenome size (bp) [chromosomes] Reference

Parasites

Santalales (> 2300) Viscum scurruloideum hemi complete 65,873 [1 circular, 1 linear] (Skippington et al., 2015)
Viscum album hemi complete 565,432 [1 linear] (Petersen et al., 2015a,b)
Viscum minimum hemi genes (Petersen et al., 2015a,b)
Viscum crassulae hemi genes (Petersen et al., 2015a,b)
Phoradendron liga hemi genes (Zervas et al., 2019)
Lophophytum mirabile holo complete 821,919 [54 circular] (Sanchez-Puerta et al., 2017)
Langsdorffia hypogaea holo genes (Zervas et al., 2019)
Loranthus europaeus hemi genes (Zervas et al., 2019)
Osyris alba hemi genes (Zervas et al., 2019)

Orobanchaceae (> 1900) Castilleja paramensis hemi complete 495,499 [1 circular] (Fan et al., 2016)
Bartsia pedicularoides hemi partial > 414,794 (Fan et al., 2016)
Schwalbea americana hemi genes (Fan et al., 2016)
Orobanche crenata holo genes (Fan et al., 2016)
Orobanche gracilis holo genes (Fan et al., 2016)
Phelipanche ramosa holo genes (Fan et al., 2016)
Lathraea squamaria holo genes (Zervas et al., 2019)
Lathraea clandestina holo genes (Zervas et al., 2019)

Cuscuta (> 200) Cuscuta gronovii holo partial > 212,123 (Park et al., 2015)

Rafflesiaceae (37) Rafflesia lagascae holo partial > 320,255 (Molina et al., 2014)
Rafflesia cantleyi holo genes (Xi et al., 2013)
Rafflesia tuan-mudae holo genes (Xi et al., 2013)
Sapria himalayana holo genes (Xi et al., 2013)

Krameria (23) Krameria lanceolata hemi genes (Zervas et al., 2019)

Cassytha (19) Cassytha pubescens hemi genes (Zervas et al., 2019)

Cytinaceae (12) Cytinus hypocistis holo genes (Zervas et al., 2019)

Hydnoraceae (10) holo

Apodanthaceae (10) holo

Lennoaceae (4) Pholisma sonorae holo genes (Zervas et al., 2019)

Mitrastemon (2) holo

Cynomorium (1) Cynomorium coccineum holo complete 1,106,389 [49 circular] (Bellot et al., 2016)

Mycoheterotrophs

Orchidaceae® (220) Gastrodia elata myco complete 1,340,105 [12 circular, 7 linear] (Yuan et al., 2018)

Thismiaceae (60) myco

Burmanniaceae (56) myco

Triuridaceae (45) myco

Corsiaceae (27) myco

Gentianaceae® (25) myco

Ericaceae® (16) Monotropa hypopitys myco complete 801,116 [1 circular, 1 linear] (Shtratnikova et al., 2019)

Epirixanthes (7) Epirixanthes elongata myco complete 365,168 [1 circular] (Petersen et al., 2019)

Petrosavia (2) myco

Geosiris (1) myco

! Species numbers from Nickrent: The Parasitic Plant Connection (https://parasiticplants.siu.edu/) and (Merckx and Freudenstein, 2010).
2 The list does not include species with a few genes sequenced e.g. in phylogenetic analyses.

3 Hemi = hemiparasite, holo = holoparasite, myco = mycoheterotroph (full).
4 Data is categorized as complete for completely sequenced mitogenomes, partial when larger contigs were assembled, and genes when the gene complement (at

least protein coding genes) is reported.

5 In Orchidaceae, Gentianaceae and Ericaceae mycoheterotrophy has evolved more than once.

reproductive structures (flowers). While this is often the assumed route
for HGT involving parasitic plants, other mechanisms of HGT may also
be invoked to explain the presence of foreign DNA, such as illegitimate
pollination (probably more likely when plants are more closely related)
or epiphytic interactions (Rice et al., 2013; Richardson and Palmer,
2007).

Inferences of HGT are typically through phylogenetic analysis,
where the supposed foreign DNA sequences are statistically supported
as grouping with a different group of organisms than the known close
relatives of the sample, though this is not without difficulties sur-
rounding phylogenetic analysis and other mechanisms causing incon-
gruencies in trees (Andersson, 2005; Richards et al., 2003; Smith et al.,
1992). Given that our ability to detect HGT relies on differences be-
tween sequences, HGT is more easily detected when host and recipient
are more distantly related, and probably overlooked when they are
closely related (Richardson and Palmer, 2007). This is especially true
for HGT events involving plant mitochondrial genes, where highly
conserved sequences can limit the number of characters available to
confidently determine where putatively foreign DNA may have come
from, or if it is indeed foreign (Richardson and Palmer, 2007). Since

175

parasites often live in close association with (i.e. parasitize) distantly
related plants and probably have more opportunities for exchange than
autotrophic plants, we might expect to more easily detect HGT between
parasites and their hosts.

The early indications of HGT between multicellular plants were
detected in mitochondria, with the strange phylogenetic distribution of
cox1 introns (Cho et al.,, 1998) and then three mitochondrial genes
inferred to have been transferred between angiosperms (Bergthorsson
et al., 2003) and one from angiosperms to Gnetum (Won and Renner,
2003). Perhaps it is not surprising that the first indications of HGT were
found in mitochondria given the greater sequence availability at that
time compared to the nuclear genome, but what stands out is that even
though plastomes have many more sequences available than mitogen-
omes, there is almost no indication of HGT between plastomes
(Sanchez-Puerta, 2014). This difference is partly attributed to the pro-
pensity for mitochondrial fusion (Arimura et al., 2004) and active DNA
uptake (Koulintchenko et al., 2003), and could be related to gene order
and the length and content of intergenic regions in plant mitochondria,
which are so dynamic (Mower et al., 2012b; Sanchez-Puerta, 2014).
Foreign DNA is probably more likely to be incorporated and retained if
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Table 2
Inferred horizontal gene transfers in parasitic plants.
Lineage Parasite Transfer" Partner” References
Santalales ? mito? — > mito? Botrychium (fern) (Davis et al., 2005)
? cp/mito? — > mito Amborella (Rice et al., 2013)
Viscum album mito < — mito? Ericales? Santalales? (Skippington et al., 2017)
Lophophytum mirabile mito < — mito Fabaceae (Choi et al., 2019; Kovar et al., 2018; Sanchez-Puerta
et al., 2017, 2019)
Orobanchaceae  Bartsia (?) mito? — > mito? Plantago (Mower et al., 2004)
Phelipanche mito? < - cp/mito? Orobanche (Park et al., 2007)
Cistanche deserticola mito? < - cp/mito? Haloxylon ammodendron (Li et al., 2013)
Bartsia (?) mito? — > mito Geranium (Park et al., 2015)
Orobanche coerulescens mito? < — mito? Asteraceae (Kwolek et al., 2017)
Aphyllon epigalium mito < - cp/mito? Galium (Schneider et al., 2018)
? mito — > mito Physochlaina orientalis (Gandini et al., 2019)
Striga hermonthica nuc < - nuc Poaceae (Yoshida et al., 2010)
Phelipanche nuc < - nuc Fabaceae (Zhang et al., 2013)
Orobanche aegyptiaca nuc < -nuc Brassicaceae (Zhang et al., 2014)
Phelipanche, Orobanche nuc < - nuc Brassicaceae (Sun et al., 2016)
Phelipanche aegyptiaca, Striga hermonthica, nuc < -nuc (multiple angiosperms) (Yang et al., 2016)
Triphysaria versicolor
Orobanche minor, Aeginetia indica nuc < - nuc Fabaceae, Poaceae (Kado and Innan, 2018)
Striga asiatica nuc < - nuc Poaceae (Yoshida et al., 2019)
Cuscuta C. sp. mito — > mito Plantago (Mower et al., 2010, 2004)
C. gronovii mito — > mito Geranium (Park et al., 2015)
C. pentagona, C. suaveolens nuc? < - nuc? ? (Jiang et al., 2013)
C. pentagona nuc < -nuc Fabaceae (Zhang et al., 2013)
C. australis nuc < -nuc Brassicaceae (Zhang et al., 2014)
C. campestris nuc < - nuc (multiple orders) (Vogel et al., 2018; Yang et al., 2019)
Rafflesiaceae Rafflesia, Sapria mito? < — mito? Tetrastigma (Davis and Wurdack, 2004)
Rafflesia pricei, Rhizanthes lowii mito < - mito? Tetrastigma diepenhorstii (Barkman et al., 2007)
Rafflesia cantleyi, R. tuan-mudae, Sapria mito < - mito Vitaceae (Xi et al., 2013)
himalayana
Rafflesia cantleyi nuc/mito < - nuc/ Tetrastigma rafflesiae (Xi et al., 2012)
mito
Rafflesia lagascae nuc/mito < - cp/nuc/  Vitaceae, others (Molina et al., 2014)
mito?
Apodanthaceae  Apodanthes caseariae, Pilostyles thurberi mito? < — mito? Ericales, Fabales (Nickrent et al., 2004)
Pilostyles thurberi mito? < - mito? Fabaceae (Barkman et al., 2007)
Mitrastemon M. yamamotoi mito? < - mito? Fagaceae (Barkman et al., 2007)
Cynomorium C. coccineum mito? < - mito? Sapindales (?) (Barkman et al., 2007)
C. coccineum mito/nuc < - mito? Sapindales, Caryophyllales (Bellot et al., 2016; Cusimano and Renner, 2019)
Orchidaceae Orchidaceae, Epidendroideae mito < — mito? fungus (Ustilaginales?) (Sinn and Barrett, 2019)

1 Source genome, direction of transfer and destination genome (mito = mitogenome, nuc = nuclear genome, cp = plastome). Question marks indicate uncertainty
or lack of evidence for genomic location, e.g. when a mitochondrial gene is transferred, but may actually be present in the recipient's nucleus.

2 Partner here may or may not be a host. While it is likely that HGT involving parasitic plants occurs via the parasitic interaction, it is possible that it also occurs by
another mechanism (e.g. illegitimate pollination, wounding, epiphytic interactions, etc.).

there is little restriction on genome and intergenic spacer sizes (e.g.
Marienfeld et al., 1999). Indeed, more recent work suggests a correla-
tion between genome size and the amount of putatively foreign DNA
(Gandini and Sanchez-Puerta, 2017).

It soon became evident that parasitic plants were likely candidates for
these HGT events, with inferred transfers of mitochondrial genes from
parasites to hosts (Mower et al., 2004) and hosts to parasites (Davis and
Wurdack, 2004; Nickrent et al., 2004). Over the last 15 years, examples of
HGT involving parasitic angiosperms have continued to accumulate
(Table 2). Recent studies are revealing extensive transfers into parasite
nuclear genomes, sometimes putatively functional, which were harder to
detect prior to the increase in accessible sequence data. So far, it is unclear
whether there are HGT events from parasite nuclear genomes into their
hosts, with the only evidence for transfers in that direction coming from
mitochondrial genes. Of the putative twelve lineages in which plant
parasitism has evolved in angiosperms, seven have been shown to be in-
volved in some kind of HGT (see Table 2). The remaining five lineages
(Krameria, Cassytha, Cytinaceae, Hydnoraceae and Lennoaceae) have ei-
ther not been investigated for HGT or are lacking evidence. The extent of
HGT within parasitic angiosperm mitochondria remains largely un-
explored, with some of the larger lineages (e.g. Santalales) having only a
few assembled mitogenomes, and most of the others without any (see
Table 1).

For mycoheterotrophs, there is almost no indication of HGT so far,
though this may be associated with possible barriers between angios-
perms and fungi that might explain the lack of detected HGT (Richards
et al., 2009). There are only a few putative transfers between fungi and
angiosperms, such as the previously mentioned cox1 intron (Vaughn
et al., 1995) and some mitochondrial plasmids (Handa, 2008; Warren
et al.,, 2016). A recent discovery of two putative mitochondrial HGT
events between fungi and orchids suggested the transfers occurred into
the ancestors of those plants (Sinn and Barrett, 2019). Since orchids are
dependent on fungi for at least a part of their lifecycle and should have
ample opportunity for exchange through their evolution, the finding of
evidence for only a few events suggests that genetic exchanges between
plants and fungi are rarely successfully retained in plant mitochondria.
It seems unlikely that mycoheterotrophs will show elevated rates of
plant-plant HGT, given HGT would likely require two plant-fungal HGT
events. If a plant-fungal interaction is an effective corridor for HGT, we
might also expect HGT between land plants that rely on mycorrhizal
partners, and not just those that rely on fungi for a carbon source.

While parasites have been shown to exchange RNA with their hosts
across the haustorial connection (e.g. Kim et al., 2014), the majority of
putative HGT events in angiosperms appear to be via pieces of DNA,
based on the presence of introns, lack of RNA editing and the size of
pieces with syntenic genes that are incorporated (Dunning et al., 2019;
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Kado and Innan, 2018; Mower et al., 2010; Yang et al., 2016, 2019;
Zhang et al., 2014; Zhang et al., 2013). One of the hypotheses for how
DNA could be incorporated into mitochondria is that of mitochondrial
fusion, whereby entire mitochondrial chromosomes recombine with
recipient mitochondrial DNA (Bock, 2010; Rice et al., 2013). Evidence
for this mechanism includes the bizarre case of the Amborella mito-
genome, where almost two full moss mitogenomes have been differ-
entially incorporated along with large amounts of green algal and
flowering plant sequences (Bergthorsson et al., 2004; Rice et al., 2013;
Taylor et al., 2015). For parasites, an outstanding example is that of
Lophophytum, where approximately 80% of the genes and 60% of the
mitogenome sequence is thought to have been incorporated from its
host (Sanchez-Puerta et al., 2017, 2019). This mechanism does not
appear to explain other cases, however, where apparently only a few
genes are inferred to have been transferred, such as in Viscum
(Skippington et al., 2017). How prevalent the mitochondrial fusion
mechanism is across parasite mitochondria remains to be explored as
more genomes are assembled.

Based on the limited survey of parasite sequences to date, it is dif-
ficult to detect a consistent association between the amount of HGT and
the form of parasitism. Looking at holoparasites vs. hemiparasites, it
appears that the only examples of large-scale incorporation of foreign
genes/sequences into mitochondria are from holoparasites such as
Rafflesia (Xi et al., 2013) and Lophophytum (Sanchez-Puerta et al.,
2017), and not in hemiparasites investigated to date. The amount of
HGT across holoparasites is not consistent though, with intermediate
levels of HGT found in Cynomorium (Bellot et al., 2016; Cusimano and
Renner, 2019) and apparently lower levels in Apodanthaceae (Nickrent
et al., 2004) and Orobanchaceae (Kwolek et al., 2017; Schneider et al.,
2018). The few hemiparasites for which mitochondrial data has been
examined show little to no evidence of HGT events in their mitochon-
dria, e.g. Viscum (Skippington et al., 2017). In the case of a better-
studied stem parasite, Cuscuta, there is evidence for substantial nuclear
HGT with functional significance (Yang et al., 2019) and mitochondrial
genes transferred to other plants (Mower et al., 2010; Park et al., 2015),
but apparently no clear HGT events into the mitogenome (B. Anderson,
K. Krause, G. Petersen, unpublished). Other aspects of parasite biology
may be important in understanding how likely they are to be involved
in HGT, such as whether they live inside their hosts (e.g. Rafflesia) or
primarily interact via haustorial connections (e.g. Cuscuta). The relative
dependence of the parasite on its host from germination through the
development of a connection, the extent of cellular interaction during
that process, and which plant organs are involved could also affect how
much opportunity there is for genetic exchange and how likely that
exchange is to be incorporated in reproductive material. A survey of
four species in the Orobanchaceae showed that frequency of HGT in-
creased with relative dependence on the host, possibly explained by
both earlier contact and the type of haustorial connection (phloem or
not) in more dependent parasites (Yang et al., 2016). More surveys of
the prevalence of mitochondrial HGT across different types of para-
sitism may help to clarify whether there is any correlation between the
type of parasitism and the amount of detected HGT.

So far, most detected mitochondrial transfers into parasites typically
result in pseudogenization of the extra foreign genes or more rarely re-
placement of recipient mitochondrial genes (Mower et al., 2012a). A
particularly striking exception to the typical pseudogenization of foreign
gene copies is the previously mentioned case of Lophophytum, where 26
genes have likely been replaced by host-derived copies (Sanchez-Puerta
et al., 2017). Two other potential scenarios are 1) the reintroduction of
mitochondrial genes that had been lost from the recipient (e.g. to the
nucleus), termed recapture HGT; and 2) coexistence and gene conversion
with the recipient's copy, or chimeric HGT (Bergthorsson et al., 2003;
Sanchez-Puerta, 2014). Examples of these two scenarios involving parasitic
plants include the recapture of rps4 and rps14 into Geranium species from
Cuscuta (Park et al., 2015), and gene conversion between recipient (Plan-
tago) and donor (Cuscuta) atp1 copies (Mower et al., 2010). The conversion
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scenario in particular has been suggested as a mechanism for generating
mitochondrial diversity (Hao et al., 2010; Mower et al., 2010), although
examples such as atp1 in Ternstroemia indicate few amino acid changes as a
result of chimerism (Hao et al., 2010). Given the conserved nature and
function of plant mitochondrial genes (Mower et al., 2012a), it may be that
transfers of similarly conserved genes, even following conversion or re-
placement, will have limited impact on the biology of the organism, but
this remains unclear. In contrast, nuclear transfers have been shown to
likely be functional and potentially adaptive for parasites (e.g. Yang et al.,
2019). In the search for evolutionarily significant HGT in parasites, it ap-
pears that the nuclear genome holds the most promise. Surveying mito-
genomes nevertheless remains an important area to explore given func-
tional anomalies detected in Viscum (see Section 4) and the lack of
knowledge around what determines plant mitogenome size and the ap-
parently correlated incorporation of foreign (as well as intracellular) DNA.

4. Divergent mitochondria in the family Viscaceae
4.1. Altered oxidative phosphorylation system

Mitogenomes of Viscum and Phoradendron (both Viscaceae) are ex-
ceptional among angiosperms in terms of gene loss (Mower, this issue;
Petersen et al., 2015a; Skippington et al., 2015, 2017; Zervas et al.,
2019). They have functionally lost all nine nad genes, which unequi-
vocally form the mitochondrial complement of genes encoding complex
I of the electron transport chain (ETC) in all other angiosperms se-
quenced to date (Mower, this issue). While small fragments of most nad
genes can still be identified in the mitogenome of Viscum album, no
recognizable gene sequences are left in V. scurruloideum (Petersen et al.,
2015a; Skippington et al., 2015, 2017). Gene surveys, but no com-
pletely assembled mitogenomes, of two other species of Viscum (V.
minimum and V. crassulae) and a species of Phoradendron also suggest
the presence of only a few nad gene fragments, but other re-
presentatives of the Santalales appear to have a normal nad gene
complement (Petersen et al., 2015a; Zervas et al., 2019).

The only other known cases of nad gene loss from the mitogenome
among land plants are the several independent losses of nad7 in some
species of liverworts, hornworts, mosses (Bell et al., 2014; Goryunov
et al., 2018; Groth-Malonek et al., 2007; Li et al., 2009; Liu et al., 2014;
Villarreal et al., 2018; Xue et al., 2010) and the lycophyte Huperzia (Liu
et al., 2012). In the liverwort Marchantia, the nad7 gene has been
functionally transferred to the nuclear genome (Kobayashi et al., 1997)
and it is possible that one ancient transfer has made several subsequent
mitochondrial losses possible. Further losses of one or a few mi-
tochondrial nad genes, including nad7, have occurred among chlor-
ophyte algae (see e.g., Mower et al., 2012b; Sloan et al., 2018; Turmel
et al., 2010 and references therein).

Outside the plant lineage, complete loss of all mitochondrial nad
genes has been observed in a few eukaryotic lineages. However, all
cases reported so far concern unicellular species. Examples are mostly
found in anaerobic organisms where the mitogenomes may be lost
completely (Miiller et al., 2012), but also in some facultative aerobic
organisms including fungi (e.g, the cryptomycotan Rozella and some
saccharomycetes) and alveolates (e.g., Plasmodium and Chromera) (e.g.,
Flegontov et al., 2015; Gabaldén et al., 2005; James et al., 2013;
Pramateftaki et al., 2006; Vaidya and Mather, 2009; van Dooren et al.,
2006). Since complete loss is consistently associated with loss of nu-
clear complex I genes, these organisms all rely on alternative means of
respiration, and it was thought a similar alternative pathway may be
what allows Viscum to survive without mitochondrial nad genes
(Petersen et al., 2015a; Skippington et al., 2015).

Since Viscum species are the very first multicellular eukaryotes re-
ported to lack all complex I genes in the mitogenome, their mode of re-
spiration is of considerable interest. How do Viscum species produce suf-
ficient amounts of ATP to drive basic cellular functions? Recently, the
composition and function of the oxidative phosphorylation (OXPHOS)
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system in V. album was investigated biochemically (Maclean et al., 2018;
Senkler et al., 2018; see also comments in Busch, 2018; da Fonseca-Pereira
et al., 2018). Mitochondria were isolated from buds and leaves of V. album
(Maclean et al., 2018; Senkler et al., 2018). Protein complexes of the
isolated organelles were systematically analyzed by blue-native gel elec-
trophoresis in combination with protein identification by mass spectro-
metry. It was confirmed at the protein level that mitochondrial complex I
is very likely absent, as no subunits or activity could be detected. This
suggests that the mitochondrial complex I genes have probably not been
replaced by functional nuclear copies of these genes. The other complexes
of the OXPHOS system (complexes II to V) are present in the mitochondria
of V. album, but at comparatively lower abundance than in mitochondria
of other angiosperms like Arabidopsis or potato (Fig. 1) (Maclean et al.,
2018; Senkler et al., 2018). Interestingly, complexes III and IV form very
stable supermolecular assemblies.

Contrasting the absence of complex I, alternative oxidoreductases,
like the alternative NAD(P)H dehydrogenases and alternative oxidase,
are abundant in V. album mitochondria. As a result, even in the absence
of complex I, the mitochondria of V. album appear to contain a func-
tional, albeit remodeled, OXPHOS system. Electrons enter the re-
spiratory chain via complex II or via the alternative NAD(P)H dehy-
drogenases (Fig. 1). The second half of the respiratory chain appears to
be fully functional as evidenced by the presence of supercomplexes
formed by complexes IIl and IV and of the alternative oxidase. Due to
the absence of complex I, which largely contributes to the formation of
the proton gradient across the inner mitochondrial membrane, and the
low abundance of mitochondrial ATP synthase (Fig. 1), it is likely that
mitochondrial ATP production is low in V. album. Extra-mitochondrial
ATP-producing processes may have evolved to compensate for this.
These metabolic adaptations may include enhanced glycolysis (Maclean
et al., 2018) or increased ATP formation by the plastids (Senkler et al.,
2018), although it is uncertain to what extent it would contribute to
cytosolic ATP content (Gardestrom and Igamberdiev, 2016). In con-
clusion, the loss of complex I in V. album appears to be accompanied by
a reorganization of the cellular bioenergetic network, a phenomenon
previously undocumented in photosynthesizing species. This metabolic
adaptation remains a fruitful avenue for future investigations.

The OXPHOS system is the major protein component of the mi-
tochondrial cristae membranes (Fuchs et al., 2020) and ATP synthase
dimers have been shown to be important for cristae formation (Hahn
et al.,, 2016). Therefore, a remodeled OXPHOS system might be ex-
pected to influence cristae morphology. Interestingly, ATP synthase
dimers could not be detected in V. album (Senkler et al., 2018), but the
cristae morphology appears normal, though fewer cristae per mi-
tochondria were observed (Maclean et al., 2018; Senkler et al., 2018).
These observations suggest that the number of cristae per mitochon-
drion reflects the abundance of the OXPHOS system.

4.2. Additional gene losses

In addition to the loss of nad genes in Viscum and Phoradendron,
numerous ribosomal protein genes have also been lost (Petersen et al.,
2015a; Skippington et al., 2015, 2017; Zervas et al., 2019), but this is
not uncommon among plants (e.g., Petersen et al., 2017; Sloan et al.,
2012; Zhu et al., 2014). More intriguing is the absence in some Visca-
ceae of matR and ccmB, which are present in all other sequenced an-
giosperm mitogenomes (Mower, this issue; Petersen et al., 2015a;
Skippington et al., 2015, 2017; Zervas et al., 2019). Both genes are
absent from the mitogenome of V. scurruloideum and gene surveys of
two more species of Viscum (V. minimum and V. crassulae) and Phor-
adendron liga' suggest absence in those species as well (Petersen et al.,
2015a; Skippington et al., 2015, 2017; Zervas et al., 2019). In V. album,

YIn Zervas et al. (2019) Fig. 1 ccmB is erroneously marked as present in
Phoradendron.

Mitochondrion 52 (2020) 173-182

however, the genes are both present (Petersen et al., 2015a;
Skippington et al., 2017). Thus, the genes have either been lost at least
twice or lost once in a common Viscaceae ancestor to be gained later in
V. album or a lineage leading to it. In contrast to most mitochondrial
genes in Viscaceae being exceptionally divergent from other angios-
perms, the matR and ccmB genes found in V. album are both quite
normal (Petersen et al., 2015a; Skippington et al., 2017), and Skip-
pington and coworkers (2017) favor a hypothesis of gain through HGT.
Whether the genes are functional still needs to be determined, but if
other Viscaceae species can survive without these genes being located
in the mitogenome, V. album should not need horizontally transferred
copies to function.

So how do species of Viscum and Phoradendron cope with loss of
matR and ccmB from their mitogenome? Their conservation in all other
angiosperms suggests that they are indispensable without an alter-
native. Two evident options are that the plants use an alternative gene
or pathway as they do to cope with the loss of nad genes, or that the
genes have been functionally transferred to the nucleus. For matR
Skippington and coworkers (2015) favor the former. They argue that
the maturase encoded by matR could be substituted by a nuclear-en-
coded homologous protein. However, for ccmB they favor the latter.
The ccmB gene is involved in mitochondrial biogenesis of cytochrome c
together with three more mitochondrial ccm genes and several nuclear
genes (Sanders et al., 2010), so it is arguably more likely to be trans-
ferred and still functional, given the remaining mitochondrial ccm genes
are most likely functional (Skippington et al., 2015). However, in other
eukaryote lineages including chlorophyte algae, an alternative cyto-
chrome c biogenesis pathway operates (Allen et al., 2008; Babbitt et al.,
2015). To our knowledge this pathway has not been found in land
plants, although functional loss of all mitochondrial ccm genes has oc-
curred repeatedly. In some liverworts (Liu et al., 2011), hornworts (Li
et al., 2009; Xue et al., 2010), lycophytes (Grewe et al., 2009; Hecht
et al., 2011; Liu et al., 2012) and ferns (Guo et al., 2017; Wolf et al.,
2015), all mitochondrial ccm genes have been lost completely or
pseudogenised. An attempt to identify ccm genes in the nuclear genome
of the lycophyte Selaginella did not recover any of the genes, and in the
fern Ophioglossum no transcripts of ccm genes were detected (Banks
et al., 2011; Guo et al., 2017), suggesting that an alternative pathway
might exist. Among angiosperms, additional cases of ccm gene pseu-
dogenisation are possible for Silene conica (Sloan et al., 2012) and in the
Convolvulaceae, where the ccmFc gene appears to be pseudogenised in
Ipomoea (Hoshino et al., 2016) and Cuscuta (B. Anderson, K. Krause, G.
Petersen, unpublished). In light of the altered respiratory pathway used
in the Viscaceae, it seems possible that some alternative genes or
pathways may also exist for cytochrome c biogenesis both in this family
and possibly other land plants.

4.3. Elevated substitution rates

Coupled with the loss of complex I genes, most other mitochondrial
genes in Viscum and Phoradendron are highly divergent from those of
most other angiosperms (Petersen et al., 2015a; Skippington et al.,
2015, 2017; Zervas et al., 2019). Petersen et al. (2015a) initially failed
to identify some of the most divergent genes and questioned the func-
tionality of others because of this high divergence. However, copies of
supposedly missing genes were later found in a re-analysis by Skip-
pington and coworkers (2017), who argued for the functionality of most
genes. Subsequently, proteome studies of V. album confirmed func-
tionality of the genes in that species (Maclean et al., 2018; Senkler
et al., 2018), and transcriptome data for both Viscum and Phoradendron
show the presence of transcripts from most of the mitochondrial genes,
providing supporting evidence for functionality (Zervas, 2018). That
high sequence divergence alone does not necessarily alter mitochon-
drial function have also been shown in the two species of the auto-
trophic genus Silene (Havird et al., 2019).

The divergent protein-coding genes of Viscum, including genes for
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Fig. 1. Representation of the OXPHOS system in Viscum album.
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OXPHOS complexes are shown in dark grey and labelled with roman numbers. Complex I is shown in white as it was not detected. The alternative pathways are
shown in light grey. Electron transport and proton transport are represented with grey and black arrows, respectively. The white double headed arrow indicate the
occurrence of a stable supercomplex. Numbers under each complex indicate the relative amount of the respective complex in Viscum as compared to Arabidopsis
(Maclean et al., 2018). IMS: intermembrane space, IMM: inner mitochondrial membrane, Alt-NDH: alternative NAD(P)H dehydrogenases, Q: quinone pool, AOX:

alternative oxidase, c: cytochrome ¢, ND: not detected.

OXPHOS complexes [I-V, cytochrome c biogenesis and ribosomal pro-
teins, have highly elevated synonymous as well as non-synonymous
substitution rates, and most appear to evolve under relaxed selection
compared to other angiosperms (Skippington et al., 2015, 2017). Since
this pattern resembles evolution of still functional plastome genes in
parasitic and mycoheterotrophic plants with reduced photosynthesis
(see Wicke and Naumann, 2018 and references therein), the elevated
substitution rates and relaxed selection in Viscum mitochondria might
be associated with the parasitic lifestyle (Petersen et al., 2015a;
Skippington et al., 2015; Zervas et al., 2019). Theoretically, increased
substitution rates may be beneficial to parasites evolving under a co-
evolutionary host-parasite arms race (e.g., Haraguchi and Sasaki,
1996). Under such a model, the elevated substitution rates are expected
to affect all genomic compartments, and a study based on nuclear,
plastid and mitochondrial genes from representatives of all 12 lineages
of parasitic plants and their assumed closest autotrophic relatives did
find a general increase in most parasitic lineages (Bromham et al.,
2013). Using mitochondrial sequence data from seven clades of para-
sites and a more comprehensive phylogenetic sampling of autotrophic
taxa, Zervas and coworkers (2019) also detected slightly to moderately
increased substitution rates in some of the parasites and a significantly
large increase for Viscum and Phoradendron. However, they did not find
any statistically significant differences between autotrophs, hemi-
parasites and holoparasites in general, since some autotrophic lineages
of angiosperms also have highly elevated substitution rates for mi-
tochondrial genes (Sloan, 2015; Zervas et al., 2019). Previously pub-
lished phylogenies for species of Viscaceae and other members of the
order Santalales tend to show a pattern of long branches for Viscaceae
although rates have not been quantified (e.g., Der and Nickrent, 2008;
Le et al., 2018; Matsubara et al., 2003; Maul et al., 2019; Nickrent et al.,
2019; Petersen et al., 2015b; Su et al., 2015). Some of these phylogenies
are based on combinations of data from two or more genomic com-
partments, but it does appear that both plastid and nuclear sequences
from the Viscaceae evolve slightly faster than in other Santalales, with
the exception of plastid sequences from holoparasites. The potentially
increased substitution rate in the nuclear and plastid genomes is,
however, orders of magnitude smaller than the increase in the mito-
genome, and since most other members of the Santalales are also
parasitic, a host-parasite arms race is unlikely to account for the highly
elevated mitochondrial substitution rate in Viscaceae. Further studies
including a much denser taxon sampling in the Santalales are needed in
order to understand the peculiar, and so far unique, molecular evolu-
tion of the mitogenome within the clade.

5. Future prospects

The scarce amount of mitogenomic data currently available from
parasitic and mycoheterotrophic species is likely to be soon supple-
mented by large amounts of data from ongoing and future genome
sequencing projects. We anticipate that we will soon have data from all
clades of parasites, and thus be able to investigate much more precisely
whether any general correlation exists between parasitism and mi-
tochondrial evolution. Genome sequencing projects will also provide
valuable sources of data for non-parasites, allowing for much denser
taxon sampling in future studies trying to identify sources of HGT.

The physical mechanisms underlying the transfer of DNA between
parasites and hosts, and the incorporation of foreign DNA into mi-
tochondrial and nuclear genomes, remain poorly understood and de-
serve future attention. While furthering our understanding of species
interactions in general, increased knowledge may be useful for con-
trolling parasitic plants, which include extremely harmful agricultural
pests such as broomrape and witchweed.

In addition to genome sequencing projects, efforts should be made
to investigate the fascinating physiology of parasitic plants.
Biochemical investigations of the mitochondria from parasites should
be performed to better understand the metabolic changes in organisms
that opted for a parasitic life strategy. In the context of known HGT of
mitochondrial genes, might the genes acquired through HGT possibly
give a metabolic advantage to the parasite?

Currently, the altered mitogenome and respiratory pathway used by
species of Viscaceae have no parallels among other parasites, and thus
may not be related to the parasitic lifestyle at all. If the modifications
remain unique, further studies into the origin and evolution of the
modified respiratory machinery may help elucidate a possible correla-
tion. Such studies requires a much denser sampling of data from the
Viscaceae as well as from closely related families in the Santalales.

In plastomes of Viscum and other species in the Santalales, the ndh
genes that code for the plastid NADH dehydrogenase complex involved
in cyclic electron transport complex are either lost or pseudogenized
(Petersen et al., 2015b). Although these genes are consistently the first
to be lost from the plastome in parasitic lineages and are observed to be
lost in other clades of autotrophic plants (see Wicke and Naumann,
2018 and references therein), it is tempting to speculate whether the
mitochondrial complex I loss is in any way related to the plastid ndh
loss. Establishing the impact of these losses on plant energy metabolism
will require thorough studies of the metabolism of Viscum cells, mi-
tochondria and plastids.
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