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Abstract: Optical phased arrays are of strong interest for beam steering in telecom and LIDAR
applications. A phased array ideally requires that the field produced by each element in the
array (a pixel) is fully controllable in phase and amplitude (ideally constant). This is needed to
realize a phase gradient along a direction in the array, and thus beam steering in that direction. In
practice, grating lobes appear if the pixel size is not sub-wavelength, which is an issue for many
optical technologies. Furthermore, the phase performance of an optical pixel may not span the
required 2π phase range or may not produce a constant amplitude over its phase range. These
limitations result in imperfections in the phase gradient, which in turn introduce undesirable
secondary lobes. We discuss the effects of non-ideal pixels on beam formation, in a general
and technology-agnostic manner. By examining the strength of secondary lobes with respect
to the main lobe, we quantify beam steering quality and make recommendations on the pixel
performance required for beam steering within prescribed specifications. By applying appropriate
compensation strategies, we show that it is possible to realize high-quality beam steering even
when the pixel performance is non-ideal, with intensity of the secondary lobes two orders of
magnitude smaller than the main lobe.
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citation, and DOI.

1. Introduction

Optical phased arrays (OPAs) are of strong interest for applications requiring random-access
pointing, multiple beam forming, and dynamic beam generation and steering, such as light
detection and ranging (LIDAR) technology for autonomous machines, self-driving cars, smart
antennas, and inter-satellite communications [1–4]. LIDARs require a beam steering function to
enable ranging over a scan area of interest. Some commercial LIDARs implement this function
by mechanic rotation [5]. However, mechanic systems are bulky, not easy to integrate without
compromising the aesthetics, and slow for self-driving vehicles. An OPA is a 2D array of
pixels, and the steering function is implemented by creating a phase gradient over the surface via
electronic control. Pixels can be coherent light emitters or scatterers.
Pixels based on emitters may be implemented, e.g, as vertical-cavity surface-emitting lasers

(VCSELs) [6–8], while pixels based on scatterers modify the properties of light upon reflection or
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transmission. Conventionally, a reflective phased array may be implemented in liquid crystal on
silicon (LCoS) [9] technology (often termed spatial light modulators), where each pixel reflects
the incident light with a variable phase. However, the requirement to re-orient molecules in a
liquid by applying an electric field makes LCoS technology slow (response time of the order of
milliseconds) [10–13]. Solutions based on microelectromechanical systems (MEMS) mirrors
have also made much progress allowing microsecond response time [14–18]. Pixels in LCoS and
MEMS can provide high reflectance and 2π phase range. However, they are large, thus leading to
grating lobes and a limited angular range of operation, also known as field-of-view (FoV).

Silicon photonics and photonic integrated circuits (PICs) offer a promising platform for OPAs
by allowing full electronic control and high tuning speed, which is required in LIDAR for
real-time applications [1,2,19–21]. Waveguide gratings in silicon-on-insulator (SOI) technology
have been extensively studied for 1D [22,23] and 2D [24–30] beam steering. In waveguide arrays,
2D beam steering is generally realized by exploiting two different physical principles: phase
tuning of the waveguides for steering along one axis, and wavelength tuning of a laser source in
conjunction with a grating, for steering along the other axis [25,27,31,32]. In waveguide arrays,
the pitch is typically large to avoid crosstalk between adjacent waveguides. Recently, silicon
nitride waveguides have been proposed for high field confinement and crosstalk reduction [33],
including for operation in the visible range [34].
A recent approach for implementing OPAs exploits metal [35,36] or dielectric [37–40]

metasurfaces. Metasurfaces are typically formed by sub-wavelength meta-atoms (i.e., pixels),
thus they are naturally adapted to OPAs because the pixels can be arranged in a sub-wavelength
pitch to avoid the creation of grating lobes. In metasurfaces, the control of the phase can be
achieved via electrical gating and carrier refraction effect in transparent conductive oxides (TCOs),
such as indium-tin oxide (ITO) [36,41–47], phase-change materials [48–50], liquid crystals
[37,51–53], the thermo-optic effect in bulk dielectrics [19,32,54], carrier refraction in high-index
dielectric resonators [55], ultrafast photo-carrier excitation in TCOs [56], Fermi-level gating in
graphene [57], or via the quantum-confined Stark effect in multi-quantum wells [58,59]. Phase
control can also be achieved for nonlinear beam steering by coupling a plasmonic metasurface to
a monolayer of transition metal dichalcogenides [60].
Contrary to phased arrays in the microwave regime, where pixels can be ideal (i.e., sub-

wavelength, and controllable in amplitude and phase), pixels for OPAs have yet to provide such
level of control. Thus, a study of the effects of pixel limitations on beam steering quality is
well-motivated and timely.

In this paper, we describe in detail all sources of beam quality degradation in a general and
technology-agnostic manner – our results and conclusions apply to OPAs implemented in any
technology. We use the theory of phased antenna arrays, which is reviewed in Section 2.. This
theory shows that beam formation depends on both the details of the array geometry – such as
the distance between pixels (i.e., pitch), the array shape, and the array size (number of pixels)
– and the radiation properties of the pixels that comprise the array. While the effect of array
geometry on beam quality is well documented, a systematic investigation of the effect of pixel
limitations, which is particularly relevant in the optical regime, has yet to be reported. In order
to make our paper comprehensive, we discuss both cases. In Section 3., we review the impact
on beam steering performance of array properties such as pitch, shape and size for ideal pixels
(i.e., pixels that are fully controllable in amplitude and phase). In Section 4., we study how
the properties of individual pixels and their imperfections – such as limited phase range and
non-uniform amplitude – affect the quality of the steered beam for perfect array conditions. In
Section 5., we describe a Python code to evaluate beam steering quality in optical phased arrays,
which we are making publically available [Code 1, Ref. [61]. In Section 6. we give concluding
remarks.

https://doi.org/10.6084/m9.figshare.12659744
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2. Phased array theory

In this section we review the theory for optical phased arrays. The framework is general and
valid for arrays operated either in transmission or in reflection [62], sender or receiver [63], or
arrays composed of coherent light sources, where each pixel is driven to emit light with a specific
amplitude and phase. We consider an array of pixels in the xz−plane of size (2Nx + 1) × (2Nz + 1),
as shown in Fig. 1(a). An odd number of pixels is considered along x and z so that the origin of
our coordinate systems can be placed at the central pixel, which simplifies the calculations. We
assume pixels are immersed in a dispersionless material, for example, air or glass, of refractive
index n1. The approach is valid for pixels arranged with a pitch size ax × az, but for simplicity we
assume a square lattice, and a = ax = az will be referred to as the array pitch. For generality, the
pitch is normalised to the wavelength λ, with λ = λ0/n1 and λ0 the vacuum wavelength. Thus all
sizes are dimensionless, and the results are applicable over a broad range of the electromagnetic
spectrum, e.g., from radio waves to visible.

arrays composed of coherent light sources, where each pixel is driven to emit light with a specific
amplitude and phase. We consider an array of pixels in the GI−plane of size (2#G +1) × (2#I +1),
as shown in Fig. 1(a). An odd number of pixels is considered along G and I so that the origin of
our coordinate systems can be placed at the central pixel, which simplifies the calculations. We
assume pixels are immersed in a dispersionless material, for example, air or glass, of refractive
index =1. The approach is valid for pixels of size 0G × 0I , but for simplicity we assume a
square pixel, and 0 = 0G = 0I will be referred to as the array pitch. For generality, the pitch
is normalised to the wavelength _, with _ = _0/=1 and _0 the vacuum wavelength. Thus all
sizes are dimensionless, and the results are applicable over a broad range of the electromagnetic
spectrum, e.g., from radio waves to visible.
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Fig. 1. (a) Array of radiating sources aligned in the GI-plane of size (2#G+1)×(2#I+1)),
and spherical coordinates (\, q) to describe the radiation pattern. (b) Spherical
coordinates (\B , qB) to describe beam steering with respect to the normal =̂ to the plane
of the array. As an example, we sketch the case #G = #I = 3.

a b

The light emission from each pixel is modelled as originating from a coherent set of radiating
sources (yellow arrows in Fig. 1(a)). We describe the radiation pattern of this array by using
spherical coordinates (\, q) with origin in the central pixel of the array and zenith direction
along the I-axis, as shown in Fig. 1(a). Each pixel is assumed to emit a complex electric field
originating from its radiating source, written in phasor notation as � (?, @) = |� (?, @) |4 9k (?,@) ,
where (?, @) is the position of the pixel in the array, and k the phase of the pixel at that location.
The power radiation pattern of the array can be expressed as [62, 64]

|* |2 = |�|2 · |� |2, (1)

where � is the array factor,

�(\, q) =
#G∑

?=−#G

#I∑
@=−#I

� (?, @)4−8: ?0GB8=\ cos q4−8:@0I cos \ , (2)

and � is the radiation pattern of a single pixel. Beam steering is described using a second
spherical coordinate system (\B , qB) having the same origin as the previous one and zenith

Fig. 1. (a) Array of radiating sources aligned in the xz-plane of size (2Nx + 1) × (2Nz + 1)),
and spherical coordinates (θ, φ) to describe the radiation pattern. (b) Spherical coordinates
(θs, φs) to describe beam steering with respect to the normal n̂ to the plane of the array. As
an example, we sketch the case Nx = Nz = 3.

The light emission from each pixel is modelled as originating from a coherent set of radiating
sources (yellow arrows in Fig. 1(a)). We describe the radiation pattern of this array by using
spherical coordinates (θ, φ) with origin in the central pixel of the array and zenith direction
along the z-axis, as shown in Fig. 1(a). Each pixel is assumed to emit a complex electric field
originating from its radiating source, written in phasor notation as E(p, q) = |E(p, q)|ejψ(p,q),
where (p, q) is the position of the pixel in the array, and ψ the phase of the pixel at that location.
The power radiation pattern of the array can be expressed as [62,64]

|U |2 = |A|2 · |F |2, (1)
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where A is the array factor,

A(θ, φ) =
Nx∑

p=−Nx

Nz∑
q=−Nz

E(p, q)e−ikpaxsinθ cosφe−ikqaz cos θ , (2)

and F is the radiation pattern of a single pixel. Beam steering is described using a second
spherical coordinate system (θs, φs) having the same origin as the previous one and zenith
direction along the direction n̂ perpendicular to the plane of the array, as shown in Fig. 1(b). The
angle φs lies in the plane of the array, is measured from the x-axis, and identifies the steering
direction. By enforcing a phase gradient along a desired steering direction φs, beam steering is
obtained in a steering plane perpendicular to the plane of the array, i.e., the φs-plane, as shown in
Fig. 1(b). The angle θs lies in the steering plane and represents the steering angle. For steering in
the 0◦-plane, the coordinate transformations from the first to the second spherical coordinate
system are θ = 90◦ and φ = θs + 270◦, while for steering in the 90◦-plane, they are φ = 0◦ and
θ = −θs + 90◦.

To simplify our discussion in the sections that follow, we evaluate far-field radiation performance
considering only the array factor in Eq. (2). Thus the results we present are independent of
the particular technology that is used to create the OPA. We consider a phase gradient along x
and, without loss of generality, steering in the 0◦-plane. To obtain complete far-field radiation
patterns for a given pixel radiation pattern F, one can then use our results below to evaluate
the performance of a particular OPA technology via Eq. (1). In fact, in the Python code
[Code 1, Ref. [61], the user can introduce any pixel radiation pattern F, such as a dipole
emitter arbitrarily oriented in the xz-plane, or a more complex non-dipolar pattern based on
experimental/theoretical results. Note that F = 1 describes the special case of dipole emitters
oriented along z (F(θ) = cos( π2 cos θ)/sin θ) and steering in the 0◦-plane (θ = π/2), for which
we have F(π/2) = 1.

2.1. Beam steering and secondary lobes

To steer a beam towards a specific direction, we must produce a phase gradient across the array
along that direction. For example, in order to steer in the 0◦-plane, a phase gradient along x is
needed – deriving the formulas for other steering directions is straightforward. The ideal phase
distribution is continuous and is given by ψ(x) = ψ ′(x)x, as shown in Fig. 2 (dotted black line),
where ψ ′(x) = ∂ψ(x)/∂x is the phase gradient. In Fig. 2 we also show its modulo 2π (dashed
black line), that is what is implemented in practice [11]. For ψ ′(x)>0 we have steering towards
the right, i.e., x>0 (θs>0), and for ψ ′(x)<0 we have steering towards the left, i.e., x<0 (θs<0). In
fact, the term eiψ introduces a delay in the time-domain signal for ψ>0, and ψ ′(x)>0 means that
the field is progressively delayed along x, thus producing steering in the same direction. In the
case of a phase profile discretized with a pitch a, we obtain ψ ′(x) = 2π/d = ∆ψx/a, where ∆ψx is
the phase difference between two adjacent pixels along x, i.e., ∆ψx = ψ(p + 1, q) − ψ(p, q), and d
is the sawtooth period or “long-period” as illustrated in Fig. 2. This long-period d is larger than
the pitch and represents the distance over which a 2π phase variation occurs. Without loss of
generality, we simply indicate the phase difference between adjacent pixels as ∆ψ. The steering
angle θs can be found from the generalized law of reflection [65]:

sin θs =
ψ ′(x)
k
=
λ

d
=
∆ψ

a
1
k
, (3)

where k = 2πn1/λ0 is the wavenumber in the medium in which the steered beam propagates.
An ideal phase gradient for steering a plane wave requires an infinite array of infinitely small

pixels with fully controllable phase and amplitude. However, this is not possible in reality, and a
non-ideal phase gradient produces secondary lobes that are undesirable in LIDAR applications

https://doi.org/10.6084/m9.figshare.12659744
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Fig. 2. Ideal and realistic phase profiles as a function of pixel location along x. A finite
array size leads to side lobes, a too large pitch leads to grating lobes, and a missing phase
range (ψmax<2π) leads to long-period grating lobes.

because they may cause interfering signal returns. A finite array of size smaller than the incident
beam produces side lobes (similarly to an aperture); such a finite size is indicated in Fig. 2.
Because pixel pitch is not infinitely small, a realistic phase gradient is discretized as indicated in
Fig. 2. However, if the pixel pitch is too large, it results in side lobes due to aliasing, also termed
grating lobes, which may have similar strength as the main lobe. Further, most pixels proposed to
date for optical phased arrays are non-ideal, i.e., they exhibit a limited phase range (the maximum
phase achievable ψmax is less than 2π), as well as a pixel amplitude that varies with its phase.
Such non-ideal pixels introduce imperfections in the phase gradient with periodicity equal to the
long-period, as sketched in Fig. 2, where the red horizontal band highlights the missing phase
range, and the vertical grey bands indicate the pixel locations where a compensation strategy for
the missing phases is needed. These long-period imperfections produce another set of side lobes,
that we term “long-period grating lobes” (LPGLs).

In the following sections, we describe three types of secondary lobes, i.e., side lobes, grating
lobes and LPGLs, including strategies to minimize them. We first review the effect of array
limitations (Section 3), then introduce the effects of pixel limitations (Section 4), which can be
particularly problematic for optical technologies.

3. Effect of array limitations

In this section, we consider ideal pixels which are controllable in phase over a 2π range, and we
review how the properties of the array, such as shape and size, and pixel pitch affect the beam
steering performance. We consider square arrays with 2Nx + 1 = 2Nz + 1 = N, assuming a
uniform amplitude from each pixel (i.e., |E(p, q)| = 1) to which we apply windowing strategies.
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3.1. Array size and shape

It is known that increasing the size of the array reduces the distance between nulls and sharpens the
main lobe, thus reducing the beam width and making the radiation pattern more directive. A large
array is also important for increasing resolution, as the number of phase shifters is approximately
the same as the number of spots that can be resolved in the far-field [18]. Figure 3(a) shows
the radiation patterns for different values of N, with pitch a = 0.5λ and steering angle θs = 10◦.
These computations model either a finite array of coherent emitters, or an infinite plane wave
incident on a finite reflect- or transmittarray. The side lobes are caused, effectively, by diffraction
from a square aperture since the array is square and finite. We also observe that the level of the
highest side lobe (identified by a star “*”) is nearly constant for varying N, and this applies also
to the second highest, and so on.

a

b c d e

Fig. 3. Radiation patterns for a steering angle of θs = 10◦ for (a) different N (a square array
of size N × N is considered), and for the following windows: (b) no window, (c) circular
window, (d) Gaussian window, (e) circular and Gaussian windows.

The side lobes in Fig. 3(a) are rather high at almost 10−1 of the main lobe, which may be too
high for LIDAR applications. We now review different array illumination patterns and shapes,
also known as windowing, to improve on this performance. Windowing is useful for beam
steering at the transmitter or at the receiver (or both). At the transmitter, windowing may be used
to improve the radiation diagram when steering a Gaussian beam that is larger than the array
area. At the receiver, the illumination will be a plane wave, so windowing is essential to reducing
the side lobe levels before detection. Here, we describe the effect of circular and Gaussian
(apodization) windowing. A circular window can be implemented as a circular aperture stop
placed in front of the array or by realising a circular array rather than a square one. A Gaussian
window can be implemented as a graduated neutral density filter placed in front of the array or by
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using a Gaussian beam as the incident wave instead of a plane wave (passive apodization [66]).
Such circular and Gaussian windows can be combined straightforwardly. Apodization can also
be realized by actively modulating the amplitudes of the pixels across the array [67]. However,
controlling the amplitude via light attenuation decreases the power efficiency, and algorithms
such as those used in holography (e.g., Gerchberg-Saxton) can be used to steer a beam only by
tuning the pixel phase across the array [68].

To facilitate comparisons with different windowing functions, we re-plot the radiation pattern
of Fig. 3(a) in Fig. 3(b) for the case N = 101. We then use windowing, which is implemented by
multiplying the field E(p, q) at each pixel by a circular window,

Wc(p, q) =
{
1, if

√
p2 + q2 ≤ Nx

0, otherwise
(4)

a Gaussian window,

Wg(p, q) = exp
{
− p2 + q2

(σ · Nx)2
}
, (5)

or both, where Nx = (N −1)/2. Note that windowing only affects the field amplitude at each pixel,
and not the phase. We quantify the beam steering quality by calculating the sidelobe-to-peak
ratio (spr), i.e., the ratio between the intensity of the highest side lobe (identified by a star “*”)
and that of the main lobe. In Fig. 3(c) we show the case where a circular window of diameter
equal to the size of the square array was applied. We note a lower spr relative to the square case,
given that diffraction by a circular aperture is comparatively weaker. If we apply a Gaussian
window with σ = 0.75 to the two cases of Figs. 3(b) and 3(c), we obtain the radiation patterns
in Figs. 3(d) and 3(e), and note that the case whereWc andWg are combined provides the best
result in terms of side lobe level (spr lower than 10−3). All the radiation patterns in this paper are
normalized with respect to the total power emitted by the array, obtained by squaring the sum
of all the pixel amplitudes. Without this normalization, for example, the level of the lobes in
Fig. 3(b) would be higher than in Fig. 3(c), because the total power emitted by a square array
completely illuminated is higher than that of an array with a non-uniform illumination.

In the remainder of the paper, we assume operation of the phased array at the transmitter, and
we use combined circular and Gaussian windows. Also, we will assume N = 201 to reduce the
beam width, and σ = 0.5 to further reduce the level of the side lobes.

3.2. Pitch and field-of-view

The pitch of an optical phased array is often large, due to the size of the pixel, as in phased
VCSELs, or to avoid mutual coupling between pixels, such as in waveguide arrays. A large
pitch produces grating lobes, and since they may have similar amplitudes as the main beam,
they are undesirable in LIDAR applications. In particular, the well known condition a<0.5λ,
that ensures steering up to θs,max = 90◦ without grating lobes, may be difficult to achieve for a
particular technology. Strategies have recently been reported to suppress grating lobes, such as
by engineering a sub-wavelength pitch [67,69], adopting a non-uniform spacing between emitters
[70–73], via design of a random array [8], and by suppressing the inter-channel coupling or
crosstalk [23,74].
In this section, we review how the pitch affects the emergence and growth of grating lobes,

and thus the FoV. For steering at an angle θs, the grating diffraction equation is

sin θ(m)s = sin θs + m
λ

a
, (6)

where m is the order of the grating lobe (positive or negative integer). In practical applications,
the FoV is usually symmetric around θs = 0◦ and defined as FoV= ±θs,max, where θs,max is the
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(| sin \B,<0G − _
0
| > sin \B,<0G), and for a negative steering angle (sin \B,<0G < 0), the < = 1

grating lobe is outside the FoV (| sin \B,<0G + _
0
| > | sin \B,<0G |). Based on Eq. (7), when

\B,<0G (i.e., the FoV) decreases, 0<0G increases. Thus, in applications where a smaller FoV
is needed, the requirements for 0 < 0<0G are relaxed. For example, for a desired \B,<0G = 5◦,
0<0G = 5.74_ is required; for \B,<0G = 10◦, 30◦ and 50◦, then 0<0G is 2.88_, _ and 0.65_,
respectively.
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Fig. 4. Radiation patterns (intensity vs. steering angle) for different values of 0 < 0<0G

and \B,<0G (the FoV is highlighted by a grey band in each sub-figure). The insets show
the phase k(G) along the G-axis.

This is confirmed in Fig. 4 by computing the radiation diagram for different cases of 0 and
\B,<0G . In each sub-figure, the FoV is highlighted by a grey band and we also show the ideal
steered beam for 0 = 0.5_ (black dashed line). In the insets, we show the ideal phase profile
(black dashed line) and the realistic one (coloured line) over a portion of the array of length 20_
for illustration convenience. For \B,<0G = 5◦, all 0 values are smaller than 5.74_, and we do not
see grating lobes in the FoV. For \B,<0G = 10◦, the case 0 = 5.45_ does not satisfy the condition
0 < 0<0G , and we see a grating lobe in the FoV. For \B,<0G = 50◦, only the case 0 = 0.62_
satisfies the condition 0 < 0<0G , and we see grating lobes in the FoV for all the other 0 values.

Fig. 4. Radiation patterns (intensity vs. steering angle) for different values of a<amax and
θs,max (the FoV is highlighted by a grey band in each sub-figure). The insets show the phase
ψ(x) along the x-axis.
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desired maximum steering angle such that there are no grating lobes in the FoV. However, certain
applications may benefit of an asymmetric FoV. Furthermore, the FoV can be limited in the
case the radiation pattern of the single pixel is narrow, such as in VCSEL pixels. The condition
a<amax, where the upper limit for a is

amax =
λ

2| sin θs,max | , (7)

ensures that only the main lobe exists within the FoV. This is obtained by enforcing that
for a positive steering angle (sin θs,max>0), the m = −1 grating lobe is outside the FoV
(| sin θs,max − λ

a |> sin θs,max), and for a negative steering angle (sin θs,max<0), the m = 1 grating
lobe is outside the FoV (| sin θs,max + λ

a |> | sin θs,max |). Based on Eq. (7), when θs,max (i.e., the
FoV) decreases, amax increases. Thus, in applications where a smaller FoV is needed, the
requirements for a<amax are relaxed. For example, for a desired θs,max = 5◦, amax = 5.74λ is
required; for θs,max = 10◦, 30◦ and 50◦, then amax is 2.88λ, λ and 0.65λ, respectively.
This is confirmed in Fig. 4 by computing the radiation diagram for different cases of a and

θs,max. In each sub-figure, the FoV is highlighted by a grey band and we also show the ideal
steered beam for a = 0.5λ (black dashed line). In the insets, we show the ideal phase profile
(black dashed line) and the realistic one (coloured line) over a portion of the array of length 20λ
for illustration convenience. For θs,max = 5◦, all a values are smaller than 5.74λ, and we do not
see grating lobes in the FoV. For θs,max = 10◦, the case a = 5.45λ does not satisfy the condition
a<amax, and we see a grating lobe in the FoV. For θs,max = 50◦, only the case a = 0.62λ satisfies
the condition a<amax, and we see grating lobes in the FoV for all the other a values.

4. Effect of pixel limitations

Ideally, beam steering requires full control of all pixels in the array, that is, full control over
E(p, q). However, in practice, optical pixels have limitations that preclude such full control. For
example, they may not provide a full 2π phase range, or they may not provide control of the
amplitude (or even maintain a constant amplitude) over the phase range. Such limitations will
lead to other types of secondary lobes. In what follows, we investigate the effect of several
common pixel limitations, while assuming the best array configuration among those considered
in the previous section, i.e., circular and Gaussian (σ = 0.5) windows, and a = 0.5λ.

4.1. Pixels with limited phase range

Here, we study how a limited pixel phase range (max{∠E(p, q)} = ψmax<2π) affects the main
lobe and the characteristics of secondary lobes. As illustrated in Fig. 2, beam steering requires
that a phase gradient be created along the steering direction. In practical applications, a realistic
phase gradient is implemented by using pixels of finite size as shown in Fig. 2. Also, what is
implemented in applications is the modulo 2π of the continuous phase, resulting in a sawtooth
phase profile of period d,

d =
2π
ψ ′
=

2π
k · sin θs =

λ

sin θs
= M · a, (8)

where Eq. (3) was used, andM is the number of pixels per sawtooth period (which is also the
number of pixels contained within 2π),

M =
d
a
=

2π
∆ψ

. (9)

In previous literature,M has been considered as an integer [11,12,51]. However,M can be any
real number, and in this section we discuss both cases. We can rewrite Eq. (8) as

sin θs =
( a
λ
·M

)−1
. (10)
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Examining Eq. (10), we notice that a/λ depends on the technology, andM determines the steering
angles that can be obtained. Thus, only considering integer M would lead to a discrete set of
steering angles, rather than a continuous beam steering.

When ψmax<2π, the discretized sawtooth phase profile cannot be fully achieved because some
phase values are not available, as illustrated in Fig. 2. This results in a sawtooth with defects of
periodicity d. We call the periodicity d of the sawtooth “long-period” because it is greater than
the pitch, and the secondary lobes due to the defects in the sawtooth are named “long-period
grating lobes” (LPGLs). Writing the grating diffraction equation in terms of the long-period d,
we obtain:

sin θ(l
′)

s = sin θs +
l′λ
d
= (1 + l′) sin θs, (11)

where we used Eq. (3). By making the change of variable l = 1 + l′, we can write Eq. (11) as

sin θ(l)s = l sin θs, (12)

where l is the diffractive order of an LPGL. The maximum order for an LPGL, lmax, emerges
when sin θ(lmax)s = 1, giving

lmax = int
( 1
| sin θs |

)
. (13)

The number of LPGLs is 2lmax, which increases as the steering angle θs decreases. Also, l varies
between −lmax and lmax, and l = 1 identifies the main lobe at θs, that is not counted as an LPGL.
Note that LPGLs caused by missing phase values are more tightly spaced than grating lobes
produced by a too-large pitch. Thus, they cannot generally be avoided by restricting the desired
maximum steering angle, i.e., the FoV.
The numberM is important also in the case of pixels with limited phase range. In fact, ideal

steering (with no LPGLs) can be obtained even when the pixel phase does not cover the 2π range.
Given an integerM, ideal steering at θs is possible if ψmax ≥ 2π ·M/(M + 1). For example, for
a = 0.5λ andM = 14 (M = 4), we can steer at θs = 8.21◦ (θs = 30◦) without LPGLs given that
ψmax ≥ 336◦ (ψmax ≥ 288◦).
As already discussed in Fig. 2, a limited phase range requires compensation strategies for

the missing phase values. We investigate four compensation strategies, as shown in Fig. 5: (i)
replacing the missing phases with ψmax (“replace by ψmax”); (ii) replacing the missing phases
with 2π (“replace by 2π”); (iii) replacing one half of the missing phases with ψmax and the other
half with 2π (“replace half-half”); and (iv) skipping the missing phases and restart the sawtooth
immediately to ψ = 0◦. Optimization algorithms and artificial intelligence can also be used to
find non-intuitive phase compensations.

We plot in Fig. 6 the computed radiation patterns that result from our compensation strategies.
We also add in each case the radiation pattern produced by the ideal phase gradient as the black
dashed curves. The strategies already introduced in Fig. 5, are illustrated in the insets of each
sub-figure of Fig. 6, where we consider different values of ψmax, i.e., ψmax = 240◦, 270◦, 300◦,
and 330◦, and we use an integer number of pixels to discretize d, i.e., M = 14, thus resulting
in θs = 8.21◦. This steering angle produces 2lmax = 14 LPGLs, following Eq. (13). We fix
|E(p, q)| = 1 (before windowing), so that the secondary lobes are only due to the limited pixel
phase range.
For each sub-figure in Fig. 6, we also report the spr (the largest LPGL is identified by “*”).

We see that the spr decreases with increasing ψmax for all compensation strategies, and that the
“replace half-half” strategy is best. This is not surprising, as it best approximates the phase
gradient in the range where the phase values are missing. The “replace by ψmax” strategy gives
smaller spr than “replace by 2π”, while the “skip” strategy gives the worst result. However, “skip”
also alters the phase gradient and thus the steering angle, as noted by comparison of the “skip”
main lobe with the ideal main lobe (black dashed). The “skip” strategy also gives a larger number
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a

b

c

d

Fig. 5. Ideal and realistic phase profiles ψ(x) for different compensation strategies applied
when ψmax<2π: (a) replace by ψmax, (b) replace by 2π, (c) replace half-half, (d) skip.
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Fig. 6. Radiation patterns (intensity vs. steering angle) to highlight long-period grating
lobes due to different phase compensation strategies (illustrated in the insets following
the approach in Fig. 5), for varying k<0G and for steering at \B = 8.21◦ (" = 14,
0 = 0.5_).

Fig. 6. Radiation patterns (intensity vs. steering angle) to highlight long-period grating
lobes due to different phase compensation strategies (illustrated in the insets following the
approach in Fig. 5), for varying ψmax and for steering at θs = 8.21◦ (M = 14, a = 0.5λ).

of LPGLs since the sawtooth period is modified, d(skip) = ψmax/∆ψ, andM is now non-integer.
Importantly, these results show that it is possible to realize high-quality beam steering even for
ψmax<2π, as the LPGLs can be two orders of magnitude smaller than the main lobe, which is
adequate for many applications.
We have considered so far M as an integer. Thus, the only long-period introduced by the

missing phases is d. In general, M can assume any real value, and this is also valid for d and θs
(see Eq. (8)). This modifies the long-period in the phase gradient to αd, with α such that αM is
an integer; the higher α is, the more LPGLs we expect. For example, M = 7.5, 7.25 and 7.05
correspond to α = 2, 4 and 20, meaning that the long-period is, in fact, 2d, 4d and 20d; these
cases are shown in Fig. 7, along with the caseM = 7, for ψmax = 270◦, using the replace half-half
strategy. In the case α = 20, the number of LPGLs is so high that they cannot be distinguished.
For non-integerM, the orders and angles of the LPGLs are obtained by putting the long-period
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αd in Eq. (11):

sin θ(l
′)

s = sin θs +
l′λ
αd

. (14)

By using the change of variable l = α + l′, Eq. (14) becomes

sin θ(l)s =
l
α

sin θs, (15)

where
lmax = int

( α

| sin θs |
)

(16)

is the maximum LPGL order. Although a non-integer M increases the number of LPGLs, we
notice that the lobes of order l such that l/α is an integer in Eq. (15) remain higher in amplitude –
these lobes are identified by Eq. (12). We conclude that considering only the periodicity d for the
evaluation of the LPGLs and for the calculation of the spr is accurate in most cases. In Fig. 7, we
also notice that the spr is higher for an integer M with respect to the non-integer cases due to the
fact that the total radiated power is concentrated in fewer lobes, i.e., choosing an integerM is a
worst case scenario. Thus, in real applications, where the steering angle can assume any value
and M is most likely non-integer, the spr can be lower than what predicted for integer M values.

LP=2𝑑 LP=4𝑑LP=𝑑

Fig. 7. Radiation patterns (intensity vs. steering angle) to highlight long-period grating
lobes for different values ofM (integer and non-integer), ψmax = 270◦ and “replace half-half”
strategy. From left to right we have 6, 14, 28, and 140 LPGLs, respectively. The insets show
the phase profile ψ(x) over a range of 20λ along x.

4.2. Pixels with varying amplitude

Optical pixels often produce a response where the amplitude of the field cannot be controlled (or
maintained constant) independently from the phase [36,43]. Thus, altering the phase often results
in perturbing the amplitude which is generally undesirable. Here, we investigate the effects of
varying amplitude by assuming ψmax = 2π.

We consider a perturbed electric field across the array by adding a perturbing function, fp(x), to
|E(x)| = 1 before windowing, i.e., |Ẽ(x)| = 1+ fp(x). Inspired by numerical results in [36], where
a sin-like amplitude profile was observed for plasmonic pixels, we choose the perturbing function
to be a sum of an offset constant A and a sinusoidal function with amplitude B and period d/Pd,

fp(x) = A + B · sin
(
2π

x
d/Pd

)
, (17)

where Pd controls the shape of the perturbation. In fact, Pd represents the number of cycles of
the sinusoidal function within d, i.e.,

2π
x

d/Pd
= Pd · ψ ′(x)x = Pd · ψ(x), (18)
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revealing the dependence of the sinusoidal perturbation on the pixel phase ψ(x). For a perturbation
containing full sinusoidal cycles (Pd ≥ 1), we have A = 0 because the sinusoid is symmetric about
unity. ForPd ≤ 0.5, we need to useA , 0 that, by vertically translating the sinusoid, guarantees that
the maximum and minimum of |Ẽ(z)| are equidistant from unity, i.e., (|Ẽ(x)|max+ |Ẽ(x)|min)/2 = 1.
Varying Pd, while tuning B and A, allows us to obtain different perturbation shapes of the same
strength |Ẽ |var, which we define as

|Ẽ |var = |Ẽ(x)|max − |Ẽ(x)|min|Ẽ(x)|max + |Ẽ(x)|min
(19)

and is expressed in what follows as a percentage. This perturbation strategy only provides a set
of simplified cases, which may be not exhaustive. For real applications, the reader can use the
attached Python code (Code 1, Ref. [61) and modify the amplitude profile based on specific
experimental or theoretical data.

In Fig. 8, we plot the far-field radiation patterns resulting from different amplitude perturbations
applied over a long-period d for |Ẽ |var = 10%, 20%, 30% and 50%, and Pd = 0.01, 0.5, 1, 1.5
and 2. Also in this case, we consider M = 14 and θs = 8.21◦. The insets plot the ideal amplitude
of E(x) before windowing, i.e., |E(x)| = 1 (black dashed line), as well as the amplitude of the
perturbed field, |Ẽ(x)| (coloured curves). Unsurprisingly, the spr in Fig. 8 increases with |Ẽ |var
but not necessarily with Pd. We note for non-integer Pd that the LPGLs occur at the same
diffraction angles already reported in Section 4.1 for the LPGLs due to missing pixel phases. For
an integer Pd, we have less orders but they have nearly double amplitude – given that l = 1 is the
main lobe, we have LPGLs of orders l = 1 ± Pd.

4.3. Combined effect of limited phase range and varying amplitude

In this section, we summarize our findings by considering a broader set of steering angles and
pixel limitations. In Fig. 9, we plot the average spr (i.e., spr) for steering angles between 1◦
and 90◦ in steps of 1◦, for a<0.5λ, for different values of Pd and |Ẽ |var, and for varying ψmax
(applying the replace half-half strategy). The case Pd = 0.01 produces the lowest levels for the
LPGLs. We also note a large change in spr as |Ẽ |var varies from 0% to 10%, which reinforces
the notion that the amplitude profile strongly affects the radiation pattern. For a given |Ẽ |var,
we see that the spr is constant over a range of ψmax. This clearly separates the regime where
LPGLs are dominated by the varying amplitude, from the regime where LPGLs are dominated
by the limited phase range. If we set spr = 10−2 as the maximum value that we can tolerate in
practical applications, we find that the sawtooth amplitude perturbation (Pd = 0.01) allows us
to obtain this ratio even with ψmax ∼ 270◦ and |Ẽ |var ∼ 30%, which are achievable with many
pixel designs. We also note that ψmax = 260◦ represents a limit in that no beam steering with
spr<10−2 can be realized for ψmax<260◦.

https://doi.org/10.6084/m9.figshare.12659744
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Fig. 8. Radiation patterns (intensity vs. steering angle) to highlight long-period grating
lobes due to perturbations in the pixel amplitude of varying strengths, |�̃ |E0A , and
shapes, %3 . Same nominal steering set up at \B = 8.21◦ as for Fig. 6 (" = 14,
0 = 0.5_). The insets show the amplitude perturbation strategy over two long-periods
along G.

Fig. 8. Radiation patterns (intensity vs. steering angle) to highlight long-period grating
lobes due to perturbations in the pixel amplitude of varying strengths, |Ẽ |var , and shapes, Pd .
Same nominal steering set up at θs = 8.21◦ as for Fig. 6 (M = 14, a = 0.5λ). The insets
show the amplitude perturbation strategy over two long-periods along x.
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Fig. 9. Average spr for steering angles between 1◦ and 90◦, for a limited pixel phase range
(varying ψmax) and a non-uniform pixel amplitude (varying |Ẽ |var and Pd).

5. Python code

We provide a Python code [Code 1, Ref. [61] that exploits distributed computing to calculate the
radiation pattern of an array with the following input parameters:

• steering angle θs,

• steering plane (identified by φs),

• polarization direction of all radiation sources,

• size of the array (2Nx + 1) × (2Nz + 1),
• windowing strategy (circular and/or Gaussian),

• pitch size ax × az (both normalized with respect to λ),

• maximum pixel phase ψmax,

• phase compensation strategy,

• shape of the amplitude perturbation (through the parameter Pd),

• strength of the amplitude perturbation |Ẽ |var (through the parameters A and B).

https://doi.org/10.6084/m9.figshare.12659744
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In particular, the Python code (Code 1, Ref. [61) can generate 3D radiation patterns as shown in
Fig. 10 for different values of steering direction φs and steering angle θs. Figures 10(a), 10(b)
and 10(c) are extracted from Visualization 1, Visualization 2, and Visualization 3, respectively.
These movies use N = 31 elements without windowing, and show beam steering in the horizontal
(φs = 0◦), vertical (φs = 90◦) and diagonal plane (φs = 45◦). Dipole sources oriented along z
were used in this case to highlight the difference between steering in the 0◦- and 90◦-plane. The
square images in each sub-figure of Fig. 10 represent the phase profile across the array to produce
beam steering. Furthermore, the 3D beam is projected in the xy (blue dots), xz (green dots) and
yz (orange dots) planes to better illustrate its orientation in space.

Fig. 10. Illustration of beam steering in 3D in the (a) 0◦-plane with θs = 10◦ [Visualization
1], (b) 90◦-plane with θs = 30◦ [Visualization 2], (c) 45◦-plane with θs = 20◦ [Visualization
3]. In this case, we assumed dipole sources oriented along z, i.e., F(θ) = cos( π2 cos θ)/sin θ.

In these visualizations we have used ideal conditions, i.e., a<0.5λ, ψmax = 2π, and constant
amplitude, but the user can generate 3D plots in presence of pixel and array imperfections to
visualize the effect of such limitations on beam steering and secondary lobes. Having access
to the Code 1 (Ref. [61), the user can introduce new phase compensation strategies, amplitude
profiles, and input a pixel radiation pattern that is more complex than a dipole emitter. Code 1
(Ref. [61) also allows to save the data for the 2D radiation patterns plotted throughout the paper,
which can be used for further analysis.

6. Conclusion

Pixels for optical phased arrays in practice have limitations in terms of size, phase range and
amplitude control. All of these characteristics affect the quality of the steered beam by reducing
the amplitude of the main lobe and generating undesired secondary lobes, such as grating lobes
due to a too-large pitch and long-period grating lobes due to an incomplete phase range and/or
non-constant amplitude, which occur over much longer length scales than the pitch. Our paper
reviews and investigates the effect of many common sources of undesired lobes, as well as presents
strategies to minimize them. We have reviewed the effect of different windowing strategies on
side lobes, highlighting the best solutions to minimize the side lobe level. We have shown that
the pitch size can be increased and grating lobes can be avoided if the desired steering range is
reduced accordingly. We have discussed the effect of pixel limitations, such as a limited phase,
and discussed the performance of different strategies to compensate for the missing phase range.
Furthermore, we have considered the effect of a non-uniform pixel amplitude by evaluating the
performance for different amplitude perturbation shapes. We find that a sawtooth perturbation
of the pixel amplitude allows achieving a sidelobe-to-peak ratio of 10−2 with a maximum pixel
phase down to ∼ 270◦, and a percentage variation of the pixel amplitude up to ∼ 30%. Since

https://doi.org/10.6084/m9.figshare.12659744
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these values are obtainable in many pixel technologies, optical phased arrays based on those pixel
technologies are viable for practical applications. The attached Python code (Code 1, Ref. [61) is
handy to visualize/analyze in 3D and 2D how the parameters of the array affect the steered beam.
Due to its generality, our study can be of interest to researchers from different communities
working on optical phased arrays for beam steering for applications in LIDAR technology and
smart communications.
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