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Abstract—This paper presents a novel method for designing
a decentralized fuzzy controller for DC microgrids, aiming to
reduce operating costs. Therefore, a classical fuzzy control is
created for each power supplying grid user based on the voltage
droop control. The control of the active rectifier is then extended
with respect to the electric costs as an additional input. The
input membership functions of this controller are in a next
step optimized with a genetic algorithm, whereas two different
approaches were used: first, only the membership function of the
rectifier was optimized, secondly, the energy storage system was
added to the optimization. The optimization was performed in
terms of minimizing the operative costs of the DC microgrid.
This method and its results were in the end compared with
the optimized characteristic diagrams presented in [1]. These
diagrams were an extension of the voltage droop curves and
the optimization was also based on the operating costs of the
grid. Results achieved with the new concept are as good as
in the previously presented characteristic diagrams approach.
In addition optimization time is reduced significantly (up to 50
times) and the definition of membership functions is more handy.

Index Terms—Energy Control, DC Microgrid, Fuzzy Control,
Voltage Droop Control

I. INTRODUCTION

As stated in the Paris agreement of the 2015th UN Conven-
tion on Climate change, carbon emissions have to be reduced
significantly. Therefore, the use of renewable energy has been
increased. A major disadvantage of these, however, is the
irregular, fluctuating power output. As a result, electricity
prices become more variable and traded on stock exchanges,
such as the Leipzig electricity exchange [2]. These variable
prices are available for end consumers and companies [3]. Due
to the variable pricing structure it is beneficial to use energy
storages to support the grid and at the same time reduce the
operating costs of the plant. The installation of storages in
DC grids is easier than in AC grids, because only DC-DC
converters are needed and no inverter. In addition, such DC
microgrids can be used to distribute braking energy from one
loads to others. So the efficiency can be increased [4].

This paper cnsequently examines such a DC microgrid more
detailed. The exemplary grid is shown in Fig. 1 and consists
of an active rectifier (TAC) which allows regenerative feeding
into the main grid, a photovoltaic system (TRe)(represented
by wind turbines), an energy storage (TBat) and four robots
(T1−4) as standard industrial consumers.

Fig. 1. Overview image of the investigated DC microgrid [1].

A large field of research is the control of such DC micro-
grids. The concepts can be roughly divided into decentralized
and centralized approaches, see [5]. Central approaches have
the advantage that the voltage band can be adhered to more
precisely and load distribution between different suppliers
can be better adjusted. However, a lot of communication
is required and the network is not easily expandable, cf.
[6]. Decentralized approaches, on the other hand, are easily
expandable and require no real-time communication or no
communication. An example of this is the voltage droop
control, in which each active network participant is given
a specific characteristic curve, given a desired relationship
between voltage and current (see Fig 5). Depending on the
voltage, the inverter provides the corresponding current. How-
ever, creating such characteristic curves has the disadvantage
that they cannot be created intuitively, a more handy approach
is to use fuzzy logic. The design of the controller is based
on the experience of the engineer who designs this controller.
Fuzzy control was used very early for the control of microgrids
[7]. In [8] even a whole energy management with fuzzy
controllers was implemented. However, the fuzzy controllers
were not optimized but only heuristically set up. The principle
structure of the control is shown in Fig. 2.

The generated characteristic curves behave very similar to
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Fig. 2. Schematic representation of the fuzzy controller

the droop voltage curves and are compared with the normal
characteristic curves in the following. The disadvantage of
such curves is that they do not influence the load sharing of
the grid [5].

The adaptive voltage droop control, in which the character-
istic curves are adaptively readjusted, provides a workaround.
In this case, the characteristic curve can also be adapted
depending on the electricity price, so that the storage system is
charged at a low and discharged at a high price. Another option
without communication is to extend the dimension of the
characteristic curves so that the current provided also depends
on the electricity costs. This characteristic, as proposed in
our previous work, diagrams were optimized offline based
on the load cycle and then loaded onto the controller [1].
With this method, the advantages of the adaptation can be
used without the need for additional communication and
computing power. This paper takes up this idea and combines
it with the previously described fuzzy control. In [8] a similar
approach was presented, except the State of Charge (SOC) of
the battery was chosen as an input instead of the electricity
costs. In addition, in this work, the membership functions of
Fuzzy controller of the storage system and active rectifier are
optimized using a genetic algorithm, and not heuristically as
in [8], provided that the fitness function includes the operating
costs of the DC microgrid.

The article is organized as follows: In Section II, the layout
of the DC microgrid is described and its modeling is presented.
A short introduction in fuzzy control, as well as a comparison
to classical control approaches is given in Section III. The
structure of the used fuzzy controller is also presented. The
optimization procedure is explained in Section IV. The results
are discussed and compared in Section V. The paper closes
with a conclusion in Section VI.

II. SYSTEM DESCRIPTION AND MODELING
For optimization of the fuzzy controller a model of the DC

microgrid is needed. First, the structure of this is examined
more closely. The investigated microgrid is shown in Fig. 1. It
was assumed that a robotic cell is supplied with direct current
and thus constitutes the load of this dc microgrid. Robots
generate a lot of energy during braking movements. A large
part (up to 17 % [9]) of this energy is converted into heat due to
the passive rectifiers of the robot control system. An expansion
of the robot-internal dc circuit to several robots can, therefore,
bring great energy savings. For this reason, four KUKA KR
16-2 robots were selected as loads within the DC microgrid.
As shown in previous work [10], the energy consumption of
each robot can be simulated/modeled with high accuracy.

As renewable energy source a photovoltaic system was
added. For interruptibility power supply purposes a generic
lithium-ion battery was included into the grid. The supply is
realized as an active front end (AFE, active rectifier) converter
to allow power regeneration into the main grid.

For the optimization, a randomized data set was generated
for each robot covering twice 50 point to point movements.
The power curves of these four robots were merged together
with different pause lengths. The data for the photovoltaic
system are measurements originated from a private facility. To
increase the variance in the data, measurements were scaled
down from 2.5 days to 2 hours. This also has the effect that a
more complex test scenario has been created. The power curve
used for optimization is shown in Fig. 3. The electricity price
change was reduced from 15 minutes to 5 minutes for the
same reason. Its change was modeled based on real electricity
prices on the stock exchange in Germany [2]. In order to
show that the optimization results are not only valid for the
power curve used for optimization, a validation power curve
fulfilling the same criteria was generated. The optimizations
and comparisons in later parts were always based on the
assumption that the energy storage is completely discharged
at the start time in order to create better comparability.

Fig. 3. Power curves used for optimization of fuzzy controller (this paper)
as well as characteristic diagrams in [1].

A. DC Grid Modeling

The modeling of the DC Grid was done as proposed in [1]
and will be explained here only briefly. Since the model of
the DC network is invoked often in the optimization, a short
runtime is mandatory. In order to fulfill this requirement, cable
resistances were neglected based on their insignificance. Thus
the intermediate circuit capacities can be combined into one
capacity.

The general idea behind the DC grid modeling is that the
energy E stored in the electric field of a capacitor can be
described by:

E =
1

2
· C · U2, (1)

with C being the capacity of a general capacitor and U
being the applied electrical voltage, synonymous with the grid
voltage in this case. The controller output I , which depends
on the DC gird voltage, needs to be converted to DC grid
power by multiplying it with the DC grid voltage. The DC
link power of active users can be calculated in this way, the
DC grid power of passive users are either given as a load
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profile or can be measured. By multiplying the summed DC
grid power Psum of each DC grid user by the time step ∆T
used in the simulation the realized work ∆Wsum in time step
k is received

∆Wsum(k) = Psum(k) ·∆T. (2)

Under the assumption, that the realized work ∆Wsum is stored
in the electrical field, Eqn. 1 can be rewritten as:

UDC(k) =

√
2

CDC
· |∆Wsum(k)|+ U2

DC(k − 1). (3)

Whereas CDC is the DC link capacity and UDC(k) is the
resulting DC grid voltage for the time step k. With this
equation the DC voltage can be calculated based on the
consumer power.

The model was validated in [1] with the test setup described
in [11]. The error between simulated and measured rectifier
power for a 15 minute measurement is less than 4.5 %.

III. FUZZY CONTROL

Fuzzy control is based on fuzzy logic, which abandons
the bivalent distinction between true and false and introduces
fuzzy sets instead. The theory was developed by Lotfi Zadeh
in 1965.

In fuzzy logic control engineering concepts can be de-
veloped with vague knowledge. These concepts have been
established especially for unknown and non-linear (complex)
controlled systems, since stable control loops can be imple-
mented easily with a heuristic approach (i.e. fuzzy control)
[12]. The effort required to implement these controllers can
be significantly lower than with classical control concepts.

A. Fuzzy control vs. classical control

Fuzzy controllers are dynamic-free, non-linear, time-
invariant characteristic diagrams [12]. However, such diagrams
can also be achieved using classical control methods, whereby
the characteristic curve of the fuzzy controller cannot always
cover the entire output range. This is due to the defuzzification
method, because for example the boundary areas remain inac-
cessible via the center of gravity method [13]. A distinction
can be made above all by the design methodology, clarity
and vividness: Systematic design methods are available to the
classical controller (e.g. p-controller), which enable a direct
guarantee of stability and a specification of desired control
criteria [12]. This is not available to the fuzzy controller,
since it works according to heuristic methods and gives every
developer a scope for interpretation. Therefore, the stability
and the control behavior cannot be determined by trivial
mathematical transformations, but have to be tested on the
real model or in simulation.

Due to the similarities of both methods, there are no
differences in robustness. The property can only be made
tangible if it can become quantified as well. This means that
a system model would be required to represent the maximum
deviations between nominal and real distance.

An important criterion to compare control structures is inter-
pretability and clarity. By means of the rule bases, the fuzzy
controller proves to be manageable and easily interpretable.
The behavior of the controller can be read directly from the
rules. However, if the control requirements are very high (e.g.
small deviation or fast controller response) and the number of
rules become very high, the clarity decreases considerably.
In the case of classical controllers, interpretations are still
possible even with high complexity (e.g. on the basis of the
state space representation or the determination of the system
poles).

B. Voltage Droop Curves with Fuzzy Logic
In this section, an example of a characteristic curve for

an active rectifier is created using fuzzy logic, based on the
method proposed by Mamdani and Assilian [14]. First the
corresponding membership functions are created. For indus-
trial applications a guideline for the voltage level was given
in [15]. 800 V is the upper and 400 V is the lower protective
limit/boundary, these ranges may not be reached. The transient
over (TueU) and the transient under voltage (TuU) are areas in
which the DC voltage may only be present for a short time. In
the stationary over (UeU) and under voltage (UU) range, the
voltage may remain permanently, but the functionality of all
devices is limited. The ideal voltage range is around 650 V, for
a larger control scope, this has been further divided into three
ranges: lower normal voltage (NlU), normal voltage (NU)
and upper normal voltage (NrU). The associated membership
functions are shown in Fig.4 Part I.

Fig. 4. Input membership functions of the voltage (I), the electric costs(II)
and the output membership functions for the current (III) of the AFE and the
storage.

The output of the controlled system is the current I provided
by the active rectifier or storage system. The associated
membership functions are shown in Fig.4 Part III. For division
optimal coverage (cf. [8]) was chosen, where the x-axis
indicates the actual current related to the maximum current.
NG stands for negative large, NM for negative medium, ZE
for zero, PM for positive medium and PG for positive large.

The examplary fuzzy rules are shown in Tab. I . These were
chosen intuitively, in a way that, e.g. , at UU the supplier must
set NG, to achieve that the grid voltage is led to normal range.
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TABLE I
FUZZY CONTROL RULES FOR THE RECTIFIER

voltage SU TuU UU NIU NU NrU UeU TueU SueU
output NG NG NG NM ZE PM PG PG PG

From these membership functions and the given fuzzy rules
the droop curves (blue) shown in Fig. 5 results. Optically the
characteristics differ the droop curves, which were created
according to [11], conventionally generated voltage droop
curves. due to the decreasing of the gradient at ± 80 %, as
well as the smaller plateaus in the battery curve. This, together
with the steeper AFE curve, results in less oscillating around
the guide voltage value.

(a) Droop curves of the rectifier (b) Droop curves of the battery

Fig. 5. Droop curves for active grid users resulting from defuzzification in
blue and in orange according to [11] conventionally generated voltage droop
curves.

C. Extension of the Fuzzy Control

A second input must be defined for the fuzzy controller in
order to take electricity costs into account. The corresponding
membership functions are shown in Fig. 4 Part II, where NG
stands for negative large, NE for negative/around zero, ZE
for zero, PE positive small, PM positive medium, PG positive
high and PSG for positive very high. The fuzzy rules for the
active rectifier are shown in Tab. II. The cost allocation for the
battery was reversed, since the battery has to be discharged at
high power costs and charged at low costs. With the active
rectifier, the situation is exactly the other way around. To
increase the optimization possibilities, the normal voltage was
not, as shown in Fig. 4, divided into 3 areas, it was divided
into 5 areas. For simplicity’s sake, these were simply referred
to as N1-N5.

From these membership functions and the fuzzy rules result
the characteristic diagrams shown in Fig. 6.

IV. OPTIMIZATION

As stated in [16] two ways exist how to optimize fuzzy
controllers. On the one hand the fuzzy rules can be optimized
and on the other hand the membership functions. In [16]
it was noted that the optimization of the fuzzy rules can
lead to a ”Bang-Bang” regulation. On the other hand the
characteristic diagrams should follow certain laws: at low
voltage all active grid users should feed the DC mircogrid,
at high voltage all should feed back into the main grid. In

TABLE II
FUZZY CONTROL RULES FOR THE RECTIFIER INCLUDING ELECTRICITY

COSTS

ouput costs
NG NE ZE PE PM PG PSG

vo
lta

ge

SU NG NG NG NG NG NG NG
TuU NG NG NG NG NG NG NG
UU NG NG NG NG NG NM ZE
N1 NG NG NG NM NM ZE PM
N2 NG NG NM NM ZE PM PM
N3 NG NM NM ZE PM PM PG
N4 NM NM ZE PM PM PG PG
N5 NM ZE PM PM PG PG PG
UeU ZE PM PG PG PG PG PG
TueU PG PG PG PG PG PG PG
SueU PG PG PG PG PG PG PG

(a) Initial characteristic diagram for
active rectifier control.

(b) Initial characteristic diagram for
energy storage control system.

Fig. 6. Display of the initial characteristic diagrams resulting from defuzzi-
fication on the rules form Table II.

addition, the characteristic diagrams should be a monotonic
(growing) function. In [1] a great effort was made to prevent
this. Due to the predesigning of the fuzzy rules this post
processing is not necessary, but by optimizing the fuzzy rules
this advantage would be lost again. For this reason only the
membership functions are optimized.

Fig. 7. Input membership functions of the voltage of the AFE and the storage
in the range from 550 to 770 V to display the optimization parameters xfuz,i.

Fig. 7 shows the optimization parameters that describe the
membership functions. Since the voltage of the DC microgrid
should only be in the normal range, i.e. between 560 V and
760 V, N1-N5 was assumed to be optimizable. All other
membership functions, of the voltage, are outside this range
and are not changed. For the costs NE, ZE, PE, PM and
PG are assumed to be optimizable. The parameter limits are
-50 Euro

MWh and 200 Euro
MWh . Three parameters are required for
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each membership function: the beginning xfuz,i−1 the peak
xfuz,i and the end xfuz,i+1. Since an optimal coverage was
chosen, the precede peak can be used for the beginning and
the subsequent peak for the end. This results in the description
of the membership functions:

Λ(u) =





u−xfuz,i−1

xfuz,i−xfuz,i−1
xfuz,i−1 ≤ u ≤ xfuz,i

xfuz,i+1−u
xfuz,i+1−xfuz,i

xfuz,i ≤ u ≤ xfuz,i+1

0 else.

(4)

This results in 5 optimization parameters for the cost and 5
for the voltage. An important limitation is that the membership
functions must stay arranged in the given folder. The following
constraint results for optimization:

xfuz,i−1 < xfuz,i < xfuz,i+1. (5)

According to [12] two types of parametrization are possible:
• Absolute parameterization: The peaks xfuz,i of the tri-

angle functions are given directly from the optimization
algorithm xGA,i. A disadvantage here is that the required
limits make it difficult to optimize parameters that lie
within the defined range.

xfuz,i = xGA,i (6)

• Relative parameterization: The peaks xfuz,i of the triangle
functions are sum of the preceding peak xGA,i−1 and
the optimization result xGA,i. Here it is easier to keep
the limits. However, changing the first one will change
all peaks positions and therefore finding the optimum is
challenging.

xfuz,i = xGA,i−1 + xGA,i (7)

As a result of the simulation evaluation, the optimization with
absolute parameterization found the first valid parameter set
later than with relative, but the final parameter set had lower
costs. Therefore the absolute parameterization was used. In the
following, two different optimizations are performed:

• first only the AFE fuzzy controller has been optimized,
the storage fuzzy controller from Fig. 6b. remains un-
changed.

• In the second optimization, both fuzzy controllers were
optimized.

As cost function for the optimization the cost function
presented in [1] is used. The total costs were standardized
to monetary costs and ζtot are thus calculated as follows:

ζtot = K ·
∫ tend

t0

PAFE dt+
Kinv · ELI

a · eb·DOD
−Kend ·Ebat,stor. (8)

PAFE is the converted rectifier power, t0 is the point in time
at which the electricity costs K change and tend up to which
the costs remain constant. Therefore the costs for regenerating
and receiving energy from the main grid are described. The
second part of the equation describes the costs of the lifetime

change of the energy storage due to discharge and charging.
Thereby Kinv is the investment cost for the energy storage,
ELI is the storable energy, a and b are the fitted parameters,
that describe the relationship between depth of discharge
(DOD) and the cycle reduction. Data on the discharge depth
and lifetime were taken from [17]. The investment costs for
lithium-ion batteries were set to 200 Euro

MWh based on [18]. The
last part takes the energy in the energy storage Ebat,stor at the
end of simulation into account. This energy will be evaluated
with the last electricity price Kend.

V. RESULTS

In this section the created fuzzy controllers are evaluated
based on the performance profile from Fig. 3.

A. Initial Fuzzy Control

In Fig. 8 the upper plot shows the DC grid voltage in blue
and the feed-in power of the active rectifier in orange. The left
y-axis limit is equal to the power limit of the active rectifier
(AFE) (30 kW) and the energy storage (30 kW), respectively.
The axis label for the voltage is on the right y-axis. The
plot underneath shows the power curves of the individual grid
users. The electricity cost over time is plotted on the right
y-axis. This design will remain the same for all subsequent
plots.

Fig. 8. Plot of the different characteristics of the simulated DC microgrid
with the initial fuzzy controllers for rectifier and energy storage system from
Fig. 6

The voltage in the upper part of Fig. 8 is within the
predefined range and relative smooth. The power consumption
and output of the active rectifier is far below the limits. In the
lower plot it can be seen that the storage system and the AFE
work in opposite directions. The cost of operating the DC
grid for the given period of time (7000 s) is 4.54e. The cost
is mainly due to switching between charging and discharging.
This can be seen between 4000 and 5000 s, where the storage
power (green) crosses zero very often. Despite this, the costs
are moderate compared to the droop voltage control from [1],
which resulted in 15.89e.
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B. Rectifier Optimized Fuzzy Control
In Fig. 9, the fuzzy controller for the active rectifier, i.e.

the position of the membership functions from Fig. 4, were
optimized. The resulting characteristic diagram has a similar
shape as Fig. 10.a and is not shown here for redundancy
reasons. The voltage in the upper plot is not as smooth as
the voltage in Fig. 8. In the lower area it can be seen that
the storage system and the active rectifier work in opposite
directions, but make even less use of the power limits (here
max 13 kWh, compared to 15 kWh in Fig. 8). However, the
operating costs were reduced to 0.33e compared to the initial
fuzzy controller. This is because the storage system no longer
switches rapidly between charging and discharging.

Fig. 9. Plot of the different characteristics of the simulated DC microgrid
with the rectifier optimized fuzzy controller

C. Rectifier and Storage System Optimized Fuzzy Control
In this section the membership functions of the active

rectifier and the energy storage system were optimized. The
resulting characteristic diagrams are shown in Fig. 10. It
can be seen that steep edges were created at a electric cost
value of zero. This ensures that charge and discharge states
have different behavior, i.e. at the same electricity costs, the
voltage at which the storage device does provide no current
is very different. Thus fast changing between the two states is
prevented.

(a) Optimized characteristic diagram
for active rectier control.

(b) Optimized characteristic diagram
for energy storage control system.

Fig. 10. Display of the active rectifier and energy storage optimized
characteristic diagrams resulting from defuzzification.

In Fig. 11 the effects of the optimized control on the test
scenario are shown. The voltage in the upper plot is even less

smooth than in the preceding scenario. The voltage drops occur
when the energy storage is empty. It can no longer transfer
any energy to the microgrid, as a result the voltage drops.
Since the electricity costs are high, the grid is only supplied
by the AFE in an emergency, to reduce the energy in the DC
microgrid and, as a result, the operating costs. The operating
costs amount to 0.25e.

Fig. 11. Plot of the different characteristics of the simulated DC microgrid
with the rectifier and energy storage optimized fuzzy controller

D. Comparison of the different control concepts

In this section, the different approaches are compared based
on their operating costs and the duration of the optimiza-
tion. The optimized characteristic diagrams from [1] serve
as comparison. The simulated course of the microgrid with
these diagrams is shown in Fig.12. Compared to the other
courses (Fig. 8, 9 & 11 ), it is immediately noticeable that the
performance limits of the AFE and the energy storage system
were exploited. With fuzzy control, the limit values cannot
be reached (see section III) and the gradient of the resulting
characteristic diagrams is restricted by the fuzzy rule. This has
an influence on the operating costs, which are even negative
(see Tab. III).

Fig. 12. Plot of the different characteristics of the simulated microgrid with
the finalized characteristic diagrams from [1]

In Tab. III all operating costs are summarized, where the
1st opt. fuzzy CD is the optimization of the AFE membership
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functions (section V. B.) and the 2nd is the optimization of
the AFE and storage membership functions (section V. C.).
For the validation of the results a validation performance
course was used, which was already introduced in [1]. It
is particularly noticeable that the first optimization approach
generates large operating costs. This can again be explained
by the fast switching between loading and unloading. The
second optimization does not overfit to the optimization pro-
cess, since the operating costs remain in similar value range.
Both optimizations, however, do not approach the savings
presented in [1], since the degrees of the freedom within the
optimization in [1] were much larger. However, this has an
effect on the optimization duration. With the postprocessing
of the characteristic diagrams the optimization of these lasted
approx. 50 h. Sorely optimizing the rectifier took about one
hour, whereas optimizing rectifier as well as energy storage
system took about 10 hrs. Thus, the first optimization is
suitable for an online optimization due to its ’short’ runtime.
With online optimization, a new characteristic map should not
be calculated for every change in the load curves. Only if the
operational behaviour of the DC microgrid deteriorates (e.g.
too high costs, too low voltage) could a new map be optimized
based on measured data. A big advantage is also that no further
postprocessing is necessary, even if the reason for it, the fixed
fuzzy rules, prevents as satisfying results as shown in [1].

TABLE III
COSTS FOR ONE MODEL RUN WITH DIFFERENT CHARACTERISTIC

DIAGRAMS (CD)

applied method initial 1st opt. 2nd opt. opt.
fuzzy CD fuzzy CD fuzzy CD CD [1]

optimization course 4.54 e 0.33 e 0.26 e -0.29
of performance

validation course 13.39 e 6.41 e 0.25 e -0.15 e
of performance

VI. CONCLUSION

In this article a fuzzy control for DC microgrids was
presented. First droop voltage curves were created by fuzzy
logic. These were then extended by a further input, the electric
costs, to characteristic diagrams. In the following step it was
examined, which possibilities for optimization are promising
for success. It was decided not to optimize the fuzzy rules but
only the input membership functions. By the given fuzzy rules
a monotonous map can be created, which would have to be cre-
ated afterwards if the rules were optimized. Two optimizations
were performed: first only the membership function of the
rectifier was optimized, second the membership function of the
rectifier and the energy storage system were both optimized.
The optimization results were compared with each other and
with the results from [1]. It was shown that optimizing only
the membership function leads to fast optimization times.
The method used from [1] can lower the operating costs a
little further, but with more severe additional time effort. This
method is, therefore, a successful alternative, if the time is the

limiting factor, since post processing is no longer necessary
and the design is thus simplified.
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